

ADOPTED: 30 June 2021 doi: 10.2903/j.efsa.2021.6766

Scientific support for preparing an EU position for the 52nd Session of the Codex Committee on Pesticide Residues (CCPR)

European Food Safety Authority (EFSA)

Abstract

In accordance with Article 43 of Regulation (EC) 396/2005, EFSA received a reguest from the European Commission to provide support for the preparation of the EU position for 52nd session of the Codex Committee on Pesticide Residues (CCPR). In 2019, JMPR evaluated 20 active substances regarding the setting of toxicological reference values to be used in consumer risk assessment (acetochlor, boscalid, chlorothalonil, cyprodinil, dicamba, mesotrione, metaflumizone, thiabendazole, afidopyropen, buprofezin, clethodim, dimethoate, metconazole, omethoate, pyflubumide, pyridate, pyrifluquinazon, tolclofosmethyl, triflumuron, valifenalate) and 47 active substance regarding the setting of Maximum Residue Limits (MRLs) (acetochlor, azoxystrobin, boscalid, chlorantraniliprole, chlorothalonil, cyantraniliprole, cyprodinil, dicamba, fenazaquin, flonicamid, flupyradifurone, fosetyl-Al, glyphosate, mesotrione, metaflumizone, S-methoprene, pendimethalin, spirotetramat, tebuconazole, thiabendazole, acetamiprid, afidopyropen, benzovindiflupyr, bifenthrin, buprofezin, carbendazim, clethodim, cyclaniliprole, cypermethrins, dimethoate, fluazifop-p-butyl, fluensulfone, kresoxim-methyl, mandestrobin, metconazole, omethoate, penthiopyrad, picoxystrobin, pydiflumetofen, pyflubumide, pyrifluquinazon, pyriofenone, pyriproxyfen, tolclofos-methyl, tolfenpyrad, triflumuron, valifenalate). EFSA prepared comments on the Codex MRL proposals and the proposed toxicological reference values. In addition, EFSA provided the views on followup assessments of JMPR on pesticides where specific concerns were raised in the previous CCPR meetings. The current report should serve as the basis for deriving the EU position for the CCPR meeting.

© 2021 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: consumer risk assessment, toxicological evaluation, residue definitions, MRL setting, 52nd CCPR meeting

Requestor: European Commission

Question number: EFSA-Q-2019-00551; EFSA-Q-2019-00552; EFSA-Q-2019-00553; EFSA-Q-2019-00554; EFSA-Q-2019-00555; EFSA-Q-2019-00556; EFSA-Q-2019-00557; EFSA-Q-2019-00558; EFSA-Q-2019-00559; EFSA-Q-2019-00560; EFSA-Q-2019-00561; EFSA-Q-2019-00562; EFSA-Q-2019-00563; EFSA-Q-2019-00564; EFSA-Q-2019-00565; EFSA-Q-2019-00566; EFSA-Q-2019-00567; EFSA-Q-2019-00569; EFSA-Q-2019-00568; EFSA-Q-2019-00706; EFSA-Q-2019-00707; EFSA-Q-2019-00708; EFSA-Q-2019-00709; EFSA-Q-2019-00710; EFSA-Q-2019-00711; EFSA-Q-2019-00712; EFSA-Q-2019-00713; EFSA-Q-2019-00714; EFSA-Q-2019-00715; EFSA-Q-2019-00716; EFSA-Q-2019-00717; EFSA-Q-2019-00718; EFSA-Q-2019-00719; EFSA-Q-2019-00720; EFSA-Q-2019-00721; EFSA-Q-2019-00722; EFSA-Q-2019-00723; EFSA-Q-2019-00724; EFSA-Q-2019-00725; EFSA-Q-2019-00726; EFSA-Q-2019-00727; EFSA-Q-2019-00723; EFSA-Q-2019-00729; EFSA-Q-2019-00730; EFSA-Q-2019-00731; EFSA-Q-2019-00732; EFSA-Q-2019-00733; EFSA-Q-2019-00734; EFSA-Q-2019-00735

Correspondence: pesticides.mrl@efsa.europa.eu

Declarations of interest: The declarations of interest of all scientific experts active in EFSA's work are available at https://ess.efsa.europa.eu/doi/doiweb/doisearch.

Suggested citation: European Food Safety Authority (EFSA), 2021. Scientific support for preparing an EU position for the 52nd Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2021;19(8):6766, 342 pp. https://doi.org/10.2903/j.efsa.2021.6766

ISSN: 1831-4732

© 2021 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, a European agency funded by the European Union.

Summary

For the preparation of the 52nd session of the Codex Committee on Pesticide Residues (CCPR meeting), the European Commission asked EFSA to provide comments on the individual active substances assessed in the Joint FAO/WHO Meetings on Pesticide Residues (JMPR) (extraordinary meeting of May and regular meeting of September), in particular on the recommended toxicological reference values and the proposed MRLs at steps 3 and 6 of the Codex procedure.

In the two meetings held in 2019, JMPR evaluated in total 20 active substances regarding the setting of toxicological reference values to be used in consumer risk assessment (acetochlor, boscalid, chlorothalonil, cyprodinil, dicamba, mesotrione, metaflumizone, thiabendazole, afidopyropen, buprofezin, clethodim, dimethoate, metconazole, omethoate, pyflubumide, pyridate, pyrifluquinazon, tolclofos-methyl, triflumuron, valifenalate). EFSA compared the acceptable daily intake (ADI) and acute reference dose (ARfD) values derived by JMPR with the values derived at EU level and, in case differences were identified, EFSA provided further explanations for the reasons of the differences.

Regarding the setting of Maximum Residue Limits (MRLs), JMPR assessed 47 substances (acetochlor, azoxystrobin, boscalid, chlorantraniliprole, chlorothalonil, cyantraniliprole, cyprodinil, dicamba, fenazaquin, flonicamid, flupyradifurone, fosetyl-Al, glyphosate, mesotrione, metaflumizone, S-methoprene, pendimethalin, spirotetramat, tebuconazole, thiabendazole, acetamiprid, afidopyropen, benzovindiflupyr, bifenthrin, buprofezin, carbendazim, clethodim, cyclaniliprole, cypermethrins, dimethoate, fluazifop-p-butyl, fluensulfone, kresoxim-methyl, mandestrobin, metconazole, omethoate, penthiopyrad, picoxystrobin, pydiflumetofen, pyflubumide, pyrifluquinazon, pyriofenone, pyriproxyfen, tolclofos-methyl, tolfenpyrad, triflumuron, valifenalate). EFSA provided comments on the proposed Codex MRLs as well as on active substances that were re-assessed by JMPR following specific concerns raised in the previous years and on general issues discussed in the 2019 JMPR meetings.

It is highlighted that the EFSA comments were derived based on the information provided in the JMPR reports. Since the JMPR reports do not contain the full detailed information on the studies submitted to JMPR, the EFSA comments are restricted to the specific questions specified in the Terms of Reference. Hence, the conclusions reached on Codex MRL proposals reported in this report should be considered as indicative and might have to be reconsidered in a more detailed assessment when needed. The comments presented in this report have to be seen in the context of the currently applicable guidance documents and the MRL legislation applicable at the time of commenting. The comments may not be valid any more or may have to be modified, if the legal or scientific framework changes.

Table of contents

Abstrac	t	1
Summa	ary	3
1.	Introduction	10
1.1.	Background	10
1.2.	Terms of Reference	12
2.	Assessment	13
3.	General Consideration items	14
3.1.	Extraordinary 2019 JMPR meeting	14
3.1.1.	Extra JMPR Meetings	14
3.2.	Regular 2019 JMPR meeting	14
3.2.1.	Update to Chapter 5 of the Environmental Health Criteria (EHC) 240: Dose-response assessment	
512111	and derivation of health-based guidance values	14
3.2.2.	Combined exposure to multiple chemicals	14
3.2.3.	Guidance for the evaluation of genotoxicity of chemical substances in food	15
3.2.4.	Results for probabilistic modelling of acute dietary exposure to evaluate the IESTI equations	15
3.2.5.	Need for a guidance on toxicological interpretation due to the shift from maximum tolerated dose	
	(MTD)-based to kinetically-derived maximum dose (KMD)-based evaluation of pesticide residues	15
3.2.6.	Comments on chlorpyrifos.	15
3.2.7.	Possible need for amendments to the Environmental Health Criteria (EHC) 240 guidance on	
	appropriate use of toxicological historical control data (HCD)	16
3.2.8.	Use of monitoring data for the estimation of maximum residue levels	16
4.	Responses to specific concerns raised by the Codex Committee on Pesticide Residues (CCPR)	16
4.1.	Buprofezin (173)	16
4.2.	Diflubenzuron (130).	16
4.3.	Fluxapyroxad (256)	16
4.4.	Iprodione (111)	16
4.5.	Isofetamid (290) – Reconsideration of the maximum residue levels for bush berries, dry beans and dry	10
1.5.	peas	16
4.6.	Picoxystrobin (258)	16
4.7.	Propiconazole (160) – Reconsideration of the maximum residue level for peach	16
4.8.	Pyraclostrobin (210)	16
4.9.	Request from CCPR concerning okra	17
5.	Comments on JMPR report chapter 5 (individual substances assessed)	17
5.1.	Dimethoate (027) R/T	17
5.1.1.	Background information	
5.1.2.	Toxicological reference values	
5.1.3.	Residue definitions	
5.1.4.	Codex MRL proposals	20
5.1.5.	Consumer risk assessment	
5.2.	Omethoate (055) R/T	
5.2.1.	Background information	
	Toxicological reference values	21
5.2.3.		
5.2.4.		22
5.2.4.		22
5.2.5. 5.3.		
	Thiabendazole (65) R/T	22
	Background information Toxicological reference values	22
5.3.2.		23
5.3.3.		23
5.3.4.		25
5.3.5.	Consumer risk assessment	28
5.4.	Chlorothalonil (81) R/T	29
5.4.1.	Background information	29
5.4.2.	Toxicological reference values	30
5.4.3.	Residue definitions	31
5.4.4.	Codex MRL proposals	32
5.4.5.	Consumer risk assessment	33
5.5.	Cypermethrin (including alpha and zeta-cypermethrin) (118) R	
5.5.1.	Background information	34

	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.6.	S-Methoprene (147) R	37
5.6.1.	Background information	37
5.6.2.	Toxicological reference values	38
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.7.	Glyphosate (158) R	
5.7.1.	Background information	40
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
5.7.5.	Consumer risk assessment	43
5.8.	Propiconazole (160) R	
	Background information	
	Toxicological reference values	
	Residue definitions	
5.8.4.	Codex MRL proposals	46
	Consumer risk assessment	46
5.9.	Buprofezin (173) R/T	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.10.	Bifenthrin (178) R	
	Background information	
5.10.2.	Toxicological reference values	51
5.10.3.	Residue definitions	51
5.10.3. 5.10.4.	Residue definitions Codex MRL proposals	51 52
5.10.3. 5.10.4. 5.10.5.	Residue definitions Codex MRL proposals Consumer risk assessment	51 52 53
5.10.3. 5.10.4. 5.10.5. 5.11.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T	51 52 53 53
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information	51 52 53 53 53
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values	51 52 53 53 53 54
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.3.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values Residue definitions	51 52 53 53 53 54 55
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.3. 5.11.4.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals	51 52 53 53 53 53 54 55 56
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.3. 5.11.4. 5.11.5.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values	51 52 53 53 53 54 55 56 57
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12.	Residue definitions	51 52 53 53 53 54 55 56 57 57
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12. 5.12.1.	Residue definitions	51 52 53 53 53 54 55 56 57 57 57
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12. 5.12.1. 5.12.2.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values	51 52 53 53 53 54 55 56 57 57 57 57
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12. 5.12.1. 5.12.2. 5.12.3.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values Residue definitions	51 52 53 53 53 54 55 56 57 57 57 57 58 58
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12.5. 5.12.1. 5.12.2. 5.12.3. 5.12.4.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values Residue definitions Codex MRL proposals	51 52 53 53 53 53 54 55 56 57 57 57 57 58 58 59
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12.5. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values Residue definitions Codex MRL proposals Codex MRL proposals Codex MRL proposals Codex MRL proposals	51 52 53 53 53 53 53 53 53 55 56 57 57 57 57 58 58 59 60
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.12.5. 5.13.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values Residue definitions Codex MRL proposals Codex MRL proposals Consumer risk assessment Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T	51 52 53 53 53 53 53 53 53 55 56 57 57 57 57 58 58 59 60 61
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12. 5.12.1. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.12.5. 5.13.1.	Residue definitions	51 52 53 53 53 53 53 54 55 56 57 57 57 57 57 58 58 59 60 61 61
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12. 5.12.1. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.12.5. 5.12.4. 5.12.5. 5.13.1. 5.13.2.	Residue definitions	51 52 53 53 53 53 53 54 55 56 57 57 57 57 58 58 59 60 61 61 62
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12. 5.12.1. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.12.5. 5.12.4. 5.12.5. 5.13.1. 5.13.1. 5.13.2. 5.13.3.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values. Residue definitions	51 52 53 53 53 53 53 53 54 55 56 57 57 57 57 58 58 59 60 61 61 62 62
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12. 5.12.1. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.13.1. 5.13.1. 5.13.2. 5.13.3. 5.13.4.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values. Residue definitions Codex MRL proposals Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals	51 52 53 53 53 54 55 56 57 57 57 57 57 57 58 58 59 60 61 61 62 62 64
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.12.5. 5.12.1. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.13.1. 5.13.1. 5.13.2. 5.13.3. 5.13.4. 5.13.5.	Residue definitions	51 52 53 53 53 54 55 56 57 57 57 57 57 57 57 58 88 59 60 61 61 62 62 64 66
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.12.5. 5.12.1. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.13.1. 5.13.1. 5.13.2. 5.13.4. 5.13.5. 5.14.	Residue definitions	51 52 53 53 53 54 55 56 57 57 57 57 57 57 57 57 58 58 59 60 61 61 62 62 64 66 67
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.12.5. 5.12.1. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.13.1. 5.13.1. 5.13.2. 5.13.4. 5.13.5. 5.13.4. 5.13.5. 5.14.1.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Kresoxim-methyl (199) R	$\begin{array}{c} 51\\ 52\\ 53\\ 53\\ 53\\ 54\\ 55\\ 56\\ 57\\ 57\\ 57\\ 57\\ 58\\ 59\\ 60\\ 61\\ 61\\ 62\\ 62\\ 64\\ 66\\ 67\\ 67\\ 67\\ \end{array}$
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.12.5. 5.12.1. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.13.1. 5.13.1. 5.13.2. 5.13.1. 5.13.2. 5.13.4. 5.13.5. 5.13.4. 5.13.5. 5.14.5. 5.14.1. 5.14.2.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values Residue definitions Codex MRL proposals Codex MRL proposals Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values Residue definitions Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values Residue definitions Consumer risk assessment Toxicological reference values Residue definitions Consumer risk assessment Toxicological reference values Residue definitions Consumer risk assessment Toxicological reference values Residue definitions Consumer risk assessment Consumer risk consumer risk con	$\begin{array}{c} 51\\ 52\\ 53\\ 53\\ 53\\ 54\\ 55\\ 56\\ 57\\ 57\\ 57\\ 58\\ 58\\ 59\\ 60\\ 61\\ 61\\ 62\\ 62\\ 64\\ 66\\ 67\\ 67\\ 67\\ 67\\ 67\\ 67\\ \end{array}$
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.12.5. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.13.1. 5.13.1. 5.13.2. 5.13.1. 5.13.2. 5.13.4. 5.13.5. 5.13.4. 5.13.5. 5.14.1. 5.14.2. 5.14.2. 5.14.3.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values Residue definitions Codex MRL proposals Consumer risk assessment Kresoxim-methyl (199) R Background information Toxicological reference values Residue definitions	$\begin{array}{c} 51\\ 52\\ 53\\ 53\\ 53\\ 54\\ 55\\ 56\\ 57\\ 57\\ 57\\ 58\\ 59\\ 60\\ 61\\ 61\\ 62\\ 64\\ 66\\ 67\\ 67\\ 67\\ 67\\ 67\\ 67\\ 67\\ 67\\ 67$
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.12.5. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.13.1. 5.13.1. 5.13.2. 5.13.1. 5.13.2. 5.13.4. 5.13.5. 5.13.4. 5.13.5. 5.14.4. 5.14.2. 5.14.3. 5.14.4.	Residue definitions Codex MRL proposals Consumer risk assessment Clethodim (187) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tolciofos-methyl (191) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tolciofos-methyl (191) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Kresoxim-methyl (199) R Background information Toxicological reference values. Residue definitions Codex MRL proposals	$\begin{array}{c} 51\\ 52\\ 53\\ 53\\ 53\\ 54\\ 55\\ 56\\ 57\\ 57\\ 57\\ 58\\ 59\\ 60\\ 61\\ 61\\ 62\\ 64\\ 66\\ 67\\ 67\\ 67\\ 67\\ 69\\ \end{array}$
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.2. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.12.5. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.13.4. 5.13.4. 5.13.4. 5.13.4. 5.13.4. 5.14.5. 5.14.5. 5.14.5.	Residue definitions	$\begin{array}{c} 51\\ 52\\ 53\\ 53\\ 53\\ 54\\ 55\\ 56\\ 57\\ 57\\ 57\\ 58\\ 59\\ 60\\ 61\\ 61\\ 62\\ 64\\ 66\\ 67\\ 67\\ 67\\ 67\\ 69\\ 69\\ \end{array}$
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.1. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.12 5.13 5.13 5.13 5.13 5.13 5.14 5.15	Residue definitions . Codex MRL proposals Consumer risk assessment Clethodim (187) R/T. Background information Toxicological reference values. Residue definitions . Codex MRL proposals Consumer risk assessment. Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment. Tolclofos-methyl (191) R/T. Background information Toxicological reference values. Residue definitions Consumer risk assessment. Toxicological reference values. Residue definitions Consumer risk assessment. Consumer risk assessment. Codex MRL proposals Consumer risk assessment. Codex MRL proposals. Codex MRL proposals. Codex MRL proposals. Codex MRL proposals. Codex MRL proposals. Codex MRL proposals. Consumer risk assessment. Pyriproxyfen (200) R.	$\begin{array}{c} 51\\ 52\\ 53\\ 53\\ 53\\ 54\\ 55\\ 56\\ 57\\ 57\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 62\\ 64\\ 66\\ 67\\ 67\\ 67\\ 67\\ 69\\ 90\\ 70\\ \end{array}$
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.2. 5.11.2. 5.11.3. 5.11.4. 5.11.5. 5.12. 5.12.1. 5.12.2. 5.12.3. 5.12.4. 5.12.5. 5.13.4. 5.13.4. 5.13.5. 5.14.4. 5.14.5. 5.14.5. 5.14.5. 5.14.5. 5.15.5. 5.15.1.	Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tebuconazole (189) R Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Tolclofos-methyl (191) R/T Background information Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment Consumer risk assessment Residue definitions Codex MRL proposals Consumer risk assessment Residue definitions Consumer risk assessment Residue definitions Consumer risk assessment Priproxyfen (200) R Background information Consumer risk assessment Priproxyfen (200) R	$\begin{array}{c} 51\\ 52\\ 53\\ 53\\ 53\\ 54\\ 55\\ 56\\ 57\\ 57\\ 57\\ 58\\ 59\\ 60\\ 61\\ 61\\ 62\\ 62\\ 64\\ 66\\ 7\\ 67\\ 67\\ 69\\ 9\\ 70\\ 70\\ \end{array}$
5.10.3. 5.10.4. 5.10.5. 5.11. 5.11.2. 5.11.3. 5.11.4. 5.12.5. 5.12.1.5.12.2. 5.12.1.5.12.2.5.12.3.5.12.4. 5.12.4.5.12.5.5.13.1.5.13.2.5.13.4.5.13.5.14.4.5.13.5.14.4.5.14.5.5.14.4.5.5.15.15.5.15.	Residue definitions . Codex MRL proposals Consumer risk assessment Clethodim (187) R/T. Background information Toxicological reference values. Residue definitions . Codex MRL proposals Consumer risk assessment. Toxicological reference values. Residue definitions Codex MRL proposals Consumer risk assessment. Tolclofos-methyl (191) R/T. Background information Toxicological reference values. Residue definitions Consumer risk assessment. Toxicological reference values. Residue definitions Consumer risk assessment. Consumer risk assessment. Codex MRL proposals Consumer risk assessment. Codex MRL proposals. Codex MRL proposals. Codex MRL proposals. Codex MRL proposals. Codex MRL proposals. Codex MRL proposals. Consumer risk assessment. Pyriproxyfen (200) R.	$\begin{array}{c} 51\\ 52\\ 53\\ 53\\ 53\\ 54\\ 55\\ 56\\ 57\\ 57\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 62\\ 64\\ 66\\ 67\\ 67\\ 67\\ 67\\ 69\\ 90\\ 70\\ \end{array}$

5.15.4.	Codex MRL proposals	71
	Consumer risk assessment	71
5.16.	Cyprodinil (207) R/T	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
5 16 5	Consumer risk assessment	74
5.10.5.	Pyraclostrobin (210) R/T	
	Background information	
5.17.1.	Toxicological reference values	75
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.17.5.	Boscalid (221) R/T	
	Background information	
5.10.1.	Toxicological reference values	78
5.10.3.	Residue definitions	78 79
5.10. 4 .	Codex MRL proposals Consumer risk assessment	79 80
5.19.		
5.19.1.	Background information Toxicological reference values	80
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.20.	Chlorantraniliprole (230) R	
	Background information	
	Toxicological reference values.	
	Residue definitions	
5.20.4.	Codex MRL proposals	84
	Consumer risk assessment	
5.21.	Spirotetramat (234) R	
5.21.1.	Background information	85
5.21.2.	Toxicological reference values	86
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.22.	Metaflumizone (236) R/T	
	Background information	
	Toxicological reference values	89
	Residue definitions	89
	Codex MRL proposals	
	Consumer risk assessment	
5.23.	Dicamba (240) R/T	93
	Background information	93
	Toxicological reference values	93
	Residue definitions	94 05
	Codex MRL proposals	95
	Consumer risk assessment	97
5.24.	Penthiopyrad (253) R	97
	Background information	97
	Toxicological reference values	
	Residue definitions	98
	Codex MRL proposals	
	Consumer risk assessment	
5.25.		
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
5.25.5.	Consumer risk assessment	104

5.26.	Picoxystrobin (258)	105
5.26.1	Background information	105
5 26 2	Toxicological reference values	105
	Residue definitions	
	Codex MRL proposals	
5 26 5	Consumer risk assessment	102
	Benzovindiflupyr (261) R.	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Fluensulfone (265) R	
	Background information	
5 28 2	Toxicological reference values	117
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5 20.5.	Tolfenpyrad (269) R.	110
5.29.	Background information	110
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.29.5.	Mesotrione (277) R/T	122
	Background information	
5.30.1.	Toxicological reference values	123
	Residue definitions	
	Codex MRL proposals	
5.30.4.	Consumer risk assessment	125
	Acetochlor (280) R/T	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
5.51.4.	Consumer risk assessment	129
	Flonicamid (282) R	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.32.5. 5.33.	Fluazifop-p-butyl (283) R	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Flupyradifurone (285) R Background information	
5.54.1.	Toxicological reference values	120
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Isofetamid (290) R/T	
	Background information	
	Toxicological reference values.	
	Residue definitions	
5.35.4.	Codex MRL proposals	142
	Consumer risk assessment	
	Pendimethalin (292) R	
2.20.1.	Background information	144

	Toxicological reference values	
5.36.3.	Residue definitions	145
5.36.4.	Codex MRL proposals	146
5.36.5.	Consumer risk assessment	146
5.37.	Cyclaniliprole (296) R	147
5.37.1.	Background information	147
	Toxicological reference values	
5.37.3.	Residue definitions	148
5.37.4.	Codex MRL proposals	149
5.37.5.	Consumer risk assessment	155
5.38.	Fenazaquin (297) R	156
5.38.1.	Background information	156
5.38.2.	Toxicological reference values	156
5.38.3.	Residue definitions	157
5.38.4.	Codex MRL proposals	157
5.38.5.	Consumer risk assessment	158
	Fosetyl-AI (302) R	
5.39.1.	Background information	159
5.39.2.	Toxicological reference values	160
5.39.3.	Residue definitions	161
5.39.4.	Codex MRL proposals	161
	Consumer risk assessment	
5.40.		
5.40.1.	Background information	
5.40.2.	Toxicological reference values	165
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.41.		
	Background information	
5.41.2.	Toxicological reference values	172
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.42.		
5.42.1.	Background information	
5.42.2.	Toxicological reference values	182
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Afidopyropen (312) R/T	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.44.	Metconazole (313) R/T	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.45.	Pyflubumide (314) R/T	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.46.	Pyridate (315) T	
	Background information	
	Toxicological reference values	
	Residue definitions	

	210
5.46.5. Consumer risk assessment	
5.47. Pyrifluquinazon (316) R/T	210
5.47.1. Background information	210
5.47.2. Toxicological reference values	211
5.47.3. Residue definitions	
5.47.4. Codex MRL proposals	212
5.47.5. Consumer risk assessment	212
5.48. Triflumuron (317) R/T	212
5.48.1. Background information	
5.48.2. Toxicological reference values	212
5.48.3. Residue definitions	
5.48.4. Codex MRL proposals	214
5.48.5. Consumer risk assessment	
5.49. Valifenalate (318) R/T	214
5.49.1. Background information	
5.49.2. Toxicological reference values	215
5.49.3. Residue definitions	215
5.49.4. Codex MRL proposals	216
5.49.5. Consumer risk assessment	217
5.50. Acetamiprid (246), carbendazim (072) – Codex MRL proposals for spices (seeds)	217
5.50.1. Background information	
5.50.2. Toxicological reference values	219
5.50.3. Residue definitions	219
5.50.4. Codex MRL proposals	220
5.50.5. Consumer risk assessment	220
References	221
Abbreviations	237
Appendix A – Calculations of Consumer exposure with Pesticide Residue Intake Model (Primo)	239

1. Introduction

1.1. Background

Manufacturers of pesticides who are interested in the setting of Codex Maximum Residue Limits (CXLs) submit data to the Joint Meeting on Pesticide Residues (JMPR) for assessment. The most recent JMPR evaluations of the toxicological data and the residue studies are summarised in the Extra and Regular JMPR Reports 2019 (FAO, 2019, 2020). It comprises in total 49 active substances: 20 of them were assessed for both toxicological reference values and residues, 47 active substances were assessed in view of setting new CXLs and 8 active substances were assessed for specific concerns raised by the official delegations.

On 13 August 2019, the European Commission requested EFSA to provide support for the preparation of the EU-coordinated position for the 52nd session of the Codex Committee on Pesticide Residues (CCPR). In particular, EFSA was asked to give advice and to provide comments on the recommendations of the 2019 Joint FAO/WHO meeting on pesticide residues (JMPR). Additionally, the European Commission requested EFSA to give its comments on other proposed Codex MRLs that were retained at Step 4 or 7, respectively, in previous years and are likely to be discussed in the 52nd CCPR meeting, in case that such new advice from EFSA is needed and appropriate.

Furthermore, the European Commission asked for comments on the general chapters of the JMPR 2019 report, where relevant for risk assessment as well as other comments on the proposed crop groupings, the JMPR priority list and documents related to the revision of the IESTI equation.

For reasons of transparency and traceability, EFSA has created separate questions for each of the active substances covered by the mandate with the following reference numbers and subjects:

Question number	Subject
EFSA-Q-2019-00551	Thiabendazole (65) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00552	Chlorothalonil (81) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00553	S-Methoprene (147) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00554	Glyphosate (158) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00555	Tebuconazole (189) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00556	Cyprodinil (207) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00557	Boscalid (221) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00558	Azoxystrobin (229) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00559	Spirotetramat (234) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00560	Metaflumizone (236) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00561	Dicamba (240) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00562	Chlorantraniliprole (263) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00563	Mesotrione (277) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00564	Acetochlor (280) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00565	Flonicamid (282) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00566	Flupyradifurone (285) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019

Question number	Subject
EFSA-Q-2019-00567	Pendimethalin (292) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00568	Fosetyl-Al (302) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00569	Fenazaquin (297) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00706	Dimethoate (027) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00707	Omethoate (055) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00708	Cypermethrins (118) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00709	Propiconazole (160) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00710	Buprofezin (173) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00711	Bifenthrin (178) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00712	Clethodim (187) $-$ EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00713	Tolclofos-methyl (191) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00714	Kresoxim-methyl (199) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00715	Pyriproxyfen (200) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00716	Cyclaniliprole (296) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00717	Pyraclostrobin (210) $-$ EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00718	Penthiopyrad (253) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00719	Fluxapyroxad (027) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00720	Picoxystrobin (256) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00721	Benzovindiflupyr (261) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00722	Fluensulfone (265) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00723	Tolfenpyrad (269) $-$ EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00724	Fluazifop-p-butyl (283) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00725	Isofetamid (290) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00726	Mandestrobin (307) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00727	Pydiflumetofen (309) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00728	Pyriofenone (310) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00729	Afidopyropen (312) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019

Question number	Subject
EFSA-Q-2019-00730	Metconazole (313) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00731	Pyflubumide (314) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00732	Pyridate (315) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00733	Pyrifluquinazon (316)- EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00734	Triflumuron (317)- EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019
EFSA-Q-2019-00735	Valifenalate (318) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2019

The draft scientific report of EFSA was submitted for commenting to the EU Member State experts and European Commission on 18 February 2020. All the comments received were addressed either directly in the final EFSA scientific report or though discussion during the Council Working Party meetings for the preparation of the 52nd Session of the Codex Committee on Pesticide Residues.

1.2. Terms of Reference

The requested advice and comments on the recommendations of the 20 active substances of the extraordinary Joint FAO/WHO meeting on pesticides residues (JMPR) of 7–17 May 2019 and the 27 active substances of the JMPR Regular meeting of 17–26 September 2019 and, where appropriate, on other proposed Codex MRLs, retained in the step procedure and reviewed by JMPR in previous years, should contain the following information:

- Background information on all active substances under discussion regarding the status of the active substance at EU level (approval status of the active substance, availability of EFSA conclusions and availability of EFSA reasoned opinions on MRL applications or MRL review);
- In case new toxicological reference values were proposed by JMPR, a comparison of the proposed reference values with agreed EU reference values and an evaluation of the possible reasons for differences;
- As regard the proposed draft Codex MRLs for discussion in CCPR 2020, EFSA should provide relevant comments on the proposed MRLs and specifically address the following questions:
 - Whether the residue definitions derived by JMPR are comparable with the existing EU residue definitions,
 - Whether the proposed draft Codex MRLs are comparable with the existing EU MRLs,
 - Whether the proposed draft Codex MRLs are sufficiently supported by data,
 - Whether the proposed draft Codex MRLs are appropriate in terms of the data that have been used to establish them and in terms of the method used for their calculation,
 - Whether the proposed draft Codex MRLs are safe for European consumers with regard to chronic, and where relevant, acute exposure.

The requested comments to the general chapters of the JMPR 2019 report relevant for risk assessment as well as comments on the JMPR priority list can be provided as contribution to the EU coordinated positions when these are discussed with the Member States and do not need to be covered by the scientific report.

(Terms of reference as provided by the European Commission in the Mandate of 13 August 2019)

EFSA agreed with the European Commission to respond to this request with a scientific report.

On 30 November 2019, EFSA submitted the compilation of the comments on the substances covered by the extraordinary JMPR meeting to MSs and European Commission.

A draft report containing the comments on the substances assessed by JMPR in the regular meeting of September 2019 was shared with the European Commission and Member States on 18 February 2020, which was the basis for the discussion in the first Council Working Party held on 4 March 2020. A second draft report addressing the Member State comments was completed on 13 March 2020; this document was then further discussed in the second Council Working Party held on 8 March 2021.

The comments provided by Member States during the commenting period were addressed either directly in the final EFSA scientific report or through discussion during the Council Working Party meetings for the preparation of the 52nd Session of the CCPRs.

2. Assessment

EFSA provided the requested background information regarding the toxicological reference values (second bullet point of the Terms of Reference) by comparing the assessments performed by JMPR with the assessments performed at EU level in the framework of the peer review under Regulation (EC) No 1107/2009¹. The sources of information used are the EFSA conclusions available for the active substances under consideration, the Review Reports, Draft and Renewal Assessment Reports (DAR/ RAR) prepared by the Rapporteur Member States and other sources of information if available.

For deriving the comments on the third bullet point in the Terms of Reference (comments on the Codex MRL proposals), EFSA compared the levels of the Codex MRL proposals and the enforcement residue definition derived by JMPR with the MRLs and the residue definition established in the EU legislation (Regulation (EC) No 396/2005²) or the legislation under preparation. The EU residue definitions for risk assessment were retrieved from the EFSA conclusions, EFSA reasoned opinions on MRL review under Article 12 of Regulation 396/2005 or, where these documents are not available, the reports prepared by the European Commission in the framework of the peer review of active substances or Member State evaluations in Draft Assessment Reports. The comparison of the existing EU MRLs and the proposed Codex MRLs are presented in tabular form. Codex MRL proposals that are higher than the existing EU MRLs are printed in bold. In line with the presentation of MRLs in the EU legislation, limit of quantification (LOQ) MRLs are indicated by adding an asterisk ('*') after the value. The comparison of MRL proposals with existing EU MRLs is performed for commodities listed in Part A of the EU food classification, but not for products that are listed in Part B. For MRL proposals for animal products, EFSA verified the plausibility of the Codex MRL proposals without a detailed check of the dietary burden calculation, since this would go beyond the scope of the current mandate and would require the availability of dietary burden calculators for other global regions (USA/Canada, Australia, Japan).

For assessing whether the draft Codex MRL proposals are sufficiently supported by data EFSA took into account the currently valid EU guidance documents for consumer risk assessment and the agreed EU policies (European Commission, 1996, 1997a–g, 2000, 2010b, 2017c) as well as relevant OECD guidelines and guidance documents (OECD, 2011, 2013). It is noted that due to the different data requirements and policies in JMPR (FAO, 2016), the assessment of identical residue data sets submitted in support of an EU MRL and Codex MRL request may result in different recommendations at EU level and by JMPR. In this report, EFSA provides background information on the reasons for these differences. For calculating the numerical MRL value, EFSA used the same methodology as JMPR (OECD calculator) (OECD, 2011).

With regard to the question whether the draft Codex MRLs are sufficiently supported by data, EFSA focused on the availability of residue trials and metabolism studies. Details on independence of residue trials, storage stability, analytical method validation and other details, which would be assessed in detail in the framework of EU MRL applications, are not reported in the JMPR Reports. Hence, comments on these aspects of the dossier are not within the scope of the current assessment.

For the assessment of the safety of the draft Codex MRL proposals, EFSA used the EFSA PRIMo rev. 3.1. (EFSA, 2018c, 2019r). For assessing the acute consumer risk, EFSA applied the standard EU methodology, including the agreed EU variability factors and the ARfD agreed at EU level. For the assessment of the long-term consumer risk, EFSA calculated the exposure resulting from the existing EU MRLs, taking into account the most recent information on STMRs and including the STMR values derived by JMPR for commodities where the proposed Codex MRLs are higher than the existing EU MRLs. It is noted that this approach is likely to overestimate the actual exposure, because it is not likely that each food item consumed contains residues at the maximum level allowed in the European legislation, but it is a sufficiently conservative risk assessment screening. For active substances where

¹ Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.

² Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC (1). OJ L 70, 16.3.2005, p. 1–16.

the MRL review has not yet been completed, a less refined calculation was performed for the commodities where the EU MRL is higher than the proposed Codex MRL, using the EU MRL as input values for the risk assessment. The contribution of the individual crops under consideration in the CCPR meeting was calculated separately. The exposure assessments are usually based on the EU toxicological reference values, unless it is specifically mentioned that the JMPR values were used. For draft Codex MRL proposals for food of animal origin, EFSA focussed mainly on the consumer risk assessment and the validity of feeding studies and animal metabolism studies. For draft Codex MRL proposals for animal commodities, a full assessment of the expected dietary burden at EU level is not possible in the framework of this report because relevant information is not available to EFSA (e.g. use of the active substance on all feed items in the EU and in Third Countries). For pesticides where the EU and JMPR residue definitions for risk assessment are not comparable, EFSA calculated tentative risk assessment scenarios. The assumptions and uncertainties of these scenarios are described individually.

It is highlighted that the comments presented in this report have to be seen in the context of the currently applicable guidance documents and the MRL legislation valid at the time of commenting. Thus, the comments may not be valid any more or may have to be modified, if the legal or scientific framework changes.

In addition, it is noted that comments were derived on the basis of the JMPR reports summarising the recommendations of the 2019 JMPR Extraordinary and Regular meeting, which were published, respectively, on 6 June 2019 and 10 January 2020. Due to the timelines agreed with the requestor, EFSA could not use the JMPR evaluations which were published at a later stage to prepare the comments. Thus, the conclusions reached in this report should be considered as indicative and might have to be reconsidered in a more detailed assessment, when needed.

3. General Consideration items

3.1. Extraordinary 2019 JMPR meeting

3.1.1. Extra JMPR Meetings

The extraordinary efforts of JMPR to prepare assessments for the extra JMPR meeting are highly appreciated. This meeting was a significant contribution to reduce the backlog for new uses.

3.2. Regular 2019 JMPR meeting

3.2.1. Update to Chapter 5 of the Environmental Health Criteria (EHC) 240: Dose-response assessment and derivation of health-based guidance values

EFSA welcomed the initiative from the WHO to update the chapter 5 of the Environmental Health Criteria (EHC) 240: Dose–response assessment and derivation of health-based guidance values. In line with the WHO EFSA recommends the use of the benchmark dose approach as alternative to the no observed adverse effect level (NOAEL) as the point of departure (EFSA Scientific Committee, 2017a).

3.2.2. Combined exposure to multiple chemicals

In line with the WHO, EFSA is actively involved in the development of guidance for harmonised methodologies for combined exposure to multiple chemicals and it is considered a priority for EFSA. A guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals was published in 2019 (EFSA Scientific Committee, 2019b) and general methodology for classifying pesticides into cumulative assessment groups has been also developed.

In April 2020, EFSA published the final reports of cumulative risk assessments for the effects of pesticide residues on the nervous system and the thyroid (EFSA, 2020f,g). These are pilot assessments preceding a wider programme of implementation of cumulative risk assessments of pesticides in EU. Nervous system and thyroid were the selected organs for this pilot because they are frequent targets of pesticides and this choice allowed testing the methodologies for acute and chronic effects. In February 2021, EFSA published the report of cumulative risk assessment of chronic acetylcholinesterase inhibition by residues of pesticides (EFSA, 2021a) while the assessment of cumulative risk assessment of pesticides regarding cranio-facial malformations is currently ongoing.

These assessments do not entirely fit to the approach suggested by the FAO/WHO expert consultation because they were retrospective cumulative risk assessments, based on the actual dietary exposure – and not prospective assessments, the main scenario of interest for JMPR. The main difference with the FAO/WHO approach lies in the fact that no exposure cut-off was considered or applied in the EFSA assessments.

The assessments conducted by EFSA may include elements of interest to be considered by JMPR and JECFA in further discussion on the guidance under development.

The cumulative risk assessments conducted by EFSA addressed precise assessment questions and were performed in consistency with precise thresholds for regulatory consideration defined by the European risk managers.

The cumulative risks were calculated by probabilistic modelling under the assumption of doseadditivity and expressed in terms of total margin of exposure (MOET). The chemical groups used in these assessments are defined as cumulative assessment groups. They were established based on toxicological effects selected for their relevance in combined toxicity and include substances which can act by either similar or dissimilar mode of action.

The assessments include a rigorous uncertainty analysis conducted following a guidance adopted by the EFSA Scientific Committee and using weight of evidence and expert knowledge elicitation techniques. Each step of the process (hazard identification and characterisation (in other words establishment of cumulative assessment groups), cumulative exposure assessments and cumulative risk characterisation) are reported in individual reports accessible on the EFSA website.

3.2.3. Guidance for the evaluation of genotoxicity of chemical substances in food

In line with WHO, EFSA has been actively involved in the development of guidance for the evaluation of genotoxicity of chemical substances in food (EFSA Scientific Committee, 2011, 2017b, 2019a).

EFSA is aware of the update to Chapter 5 of the EHC 240: Guidance for the evaluation of genotoxicity and provided comments to the WHO accordingly.

3.2.4. Results for probabilistic modelling of acute dietary exposure to evaluate the IESTI equations

EFSA regrets that the final report on the probabilistic acute dietary exposure assessment for the 47 pesticides has been published late (March 2021). The study was intended to provide a benchmarking for the IESTI methodology, providing risk managers information on whether the IESTI calculations are sufficiently protective for consumers. Due to the late publication of the report, a detailed discussion of the conclusions on the interpretation of the findings of the study were not possible in the framework of the current report. As a preliminary comment, EFSA would like to highlight that the study design might not be fully appropriate to address the research question. A more in-depth analysis of the study, however, would be necessary to identify the strengths and the possible limitations of the study.

EFSA agreed with the conclusions of JMPR who discussed the draft paper in its meeting of September 2020 that a more realistic assessment of the level of protection (LoP) could be made by assuming residues at the MRL for a single commodity and residues from monitoring data for other commodities. However, the use of monitoring data requires a careful assessment with regard to their quality in order to be fit for this purpose.

3.2.5. Need for a guidance on toxicological interpretation due to the shift from maximum tolerated dose (MTD)-based to kinetically-derived maximum dose (KMD)-based evaluation of pesticide residues

EFSA agreed that guidance KMD-based toxicity interpretation is needed not only in the area of pesticide residues but in general for toxicological interpretation. Further discussions at OECD/WHO level are recommended.

3.2.6. Comments on chlorpyrifos

In July 2019 the European Commission asked EFSA to provide a statement on the available outcomes of the human health assessment in the context of the pesticides peer review for the renewal of approval of the active substance chlorpyrifos, which was then published in August 2019 (EFSA, 2019q). JMPR is aware of the EFSA statement on chlorpyrifos and strongly recommends chlorpyrifos to be prioritised for re-evaluation. The prioritisation action is welcome by EFSA.

3.2.7. Possible need for amendments to the Environmental Health Criteria (EHC) 240 guidance on appropriate use of toxicological historical control data (HCD)

EFSA agrees that further guidance on appropriate use of toxicological historical control data is needed and welcomes the activity of JMPR.

3.2.8. Use of monitoring data for the estimation of maximum residue levels

EFSA supports the clarifications of JMPR on the approach using monitoring data for MRL setting only in limited cases, i.e. for extraneous residue levels for MRLs for spices, but not for dried chilli peppers, for which residue trials in fresh chilli peppers or in fresh bell peppers should be provided.

4. Responses to specific concerns raised by the Codex Committee on Pesticide Residues (CCPR)

4.1. Buprofezin (173)

The risk assessment of aniline was performed by the EFSA Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (CEF Panel) in 2007 when reevaluating the food colour Red 2G (EFSA AFC Panel, 2007). The assessment of JMPR took into consideration new data including a new in vivo genotoxicity study on aniline not assessed yet by EFSA and therefore a conclusion on whether EFSA would support JMPR assessment cannot be done at this stage. See also Section 5.9.

4.2. Diflubenzuron (130)

In the EU, the application for renewal of the approval of diflubenzuron was withdrawn in May 2020 and consequently the approval expired end of December 2020. The reassessment of the toxicological profile of diflubenzuron and their metabolites, including 4-chloroaniline was not finalised.

4.3. Fluxapyroxad (256)

See Section 5.25.

4.4. Iprodione (111)

Given the 24-year gap since iprodione was last reviewed by JMPR and the magnitude of potential concerns for acute intakes identified by the EU, JMPR strongly recommends iprodione be prioritised for periodic re-evaluation. The prioritisation action is welcome by EFSA.

4.5. Isofetamid (290) – Reconsideration of the maximum residue levels for bush berries, dry beans and dry peas

See Section 5.35.

4.6. **Picoxystrobin (258)**

The last assessment of the available genotoxicity data in the EU took place in 2016 (EFSA, 2016m). JMPR and EFSA differ in their interpretations of the genotoxicity data for picoxystrobin and IN-H8612.

4.7. Propiconazole (160) – Reconsideration of the maximum residue level for peach

See Section 5.8.

4.8. Pyraclostrobin (210)

See Section 5.17.

4.9. Request from CCPR concerning okra

Other options for extrapolation could be acceptable to facilitate the setting of Codex MRLs which are of importance for some Codex members. Although okra is botanically classified in the class of solanaceae, extrapolations form other crops which are morphologically comparable with okra might be acceptable, e.g. extrapolation from beans with pods, provided data are available to support the extrapolations.

5. Comments on JMPR report chapter 5 (individual substances assessed)

In the following sections the active substances assessed by JMPR in the most recent assessment are presented (FAO, 2019, 2020). The terms in brackets after the name of the active substance in the header of the sections refer to the code number used by JMPR; the second parenthesis provides information whether the substance was assessed for toxicological properties (T) and/or for residues (R). The substances are sorted according to the codex number (Tables 1-240).

5.1. Dimethoate (027) R/T

5.1.1. Background information

Table 1: Background information	Table 1:	Background inf	ormation
---------------------------------	----------	----------------	----------

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	Periodic review	
RMS	IT	
Approval status	Not approved	Commission Implementing Regulation (EU) 2019/1090 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2018x)
MRL review performed	Yes, see comments	(EFSA, 2009a) (MRLs of concern) (EFSA, 2016r) (prioritised review)
MRL applications/ assessments	Yes, see comments	(EFSA, 2012f) (olives) (EFSA, 2011e) (various crops) (EFSA, 2010c) (various crops) (EFSA, 2010b) (cauliflower, broccoli, Brussels sprouts and lettuce)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	

(a): Commission Implementing Regulation (EU) 2019/1090 of 26 June 2019 concerning the non-renewal of approval of the active substance dimethoate, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 173, 27.6.2019, p. 39–41.

5.1.2. Toxicological reference values

	MC	IPR evaluation	EU evaluation		TRV	
	Value	Comments	Value	Comments	comparable	
ADI	0.001 mg/kg bw per day	JMPR (2019) Based on the NOAEL for RBC AChE inhibition in female pups on PND 21 in a developmental special study designed to assess the effects of dimethoate on AChE activity in pregnant rats, preweaning rats and young adult rats; applying an UF of 100		(EFSA, 2018x) A genotoxicity potential could not be ruled out <i>in vivo</i> and TRVs were not established	No	
ARfD	0.02 mg/kg bw	JMPR (2003, 2019) Based on an overall acute NOAEL for RBC AChE inhibition in an acute neurotoxicity study and a special study in preweaning females and in young adult females, applying an UF of 100	_	(EFSA, 2018x) A genotoxicity potential could not be ruled out <i>in vivo</i> and TRVs were not established	No	
	The submitted studies provided some evidence for dimethoate being weakly genotoxic in bacterial and mammalian cells in <i>in vitro</i> assays. The JMPR considered the rate of phosphorylation of acetylcholinesterase to be the predominant reaction of dimethoate, whereas mutations resulting from reactions with DNA would only be detected at much higher concentrations and concluded that dimethoate is unlikely to be genotoxic <i>in vivo</i> ; accordingly to the JMPR established toxicological reference values for the parent dimethoate. In contrast, the EU peer review considered that in the absence of adequate <i>in vivo</i> follow up to contravene the positive genotoxicity results <i>in vitro</i> , a genotoxic potential could not be ruled out and no toxicological reference values were established.					
	Metabolites: Omethoate: Considering that omethoate showed genotoxic potential <i>in vivo</i> the setting of reference values was not considered appropriate by both the JMPR and EU peer review.					
	Metabolite III (Dimethoate Carboxylic Acid): The JMPR considered that the metabolite is a major rat metabolite and as such its toxicity is covered by the toxicological reference values established for the parent dimethoate. The EU assessment derived an ADI of 0.09 mg/kg bw per day, based on a 28-day study in rats, UF of 1,000 applied; ARfD was not established as not needed.					
	lack of studies, th	ould not conclude on the genoto le EU peer review appears to ha genotoxicity studies on metabo	ve had a	ccess to additional toxic	ological	
	Metabolite X (C Read across from	-Desmethyl dimethoate): metabolite XI.				
	The EU assessme	O-Desmethyl omethoate): nt derived an ADI of 0.1 mg/kg ⁵ 1,000; ARfD was not establishe			study in rats,	
	The EU assessme	(Des-O-methyl isodimethoate): nt derived an ADI of 0.015 mg/l developmental toxicity study in r t needed.				

Table 2: Comparison of toxicological reference values (TRV derived by JMPR and at EU level)

	JMPR evaluation Value Comments		EU evaluation		TRV
			Value Comments		comparable
	The EU assessme offspring's NOAEL 28-day study in ra Metabolite XXII The EU assessme	O-Desmethyl omethoate carbox nt derived an ADI of 0.1 mg/kg of the reproductive/developme ats, UF of 1000 applied; ARfD w II (O-Desmethyl N-desmethyl O nt derived an ADI of 0.075 mg/ elopmental toxicity study in rats,	bw per o ntal toxic vas not es methoate kg bw pe	day, based on the parer city study in rat, suppor stablished as not neede e): er day from the parenta	ted by the d. I NOAEL of the

5.1.3. Residue definitions

Table 3:	Comp	parison	of the res	idue definitions	derived b	y JMPR and at EU level	
		-					_

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Dimethoate and omethoate (measured and reported separately)	Reg. 396/2005: separate residue definitions were set for dimethoate and omethoate.	Yes
			Peer review (EFSA, 2018x): dimethoate and omethoate, to be considered separately.	
	Animal products	Dimethoate and omethoate (measured and reported separately) The residue is not fat	Reg. 396/2005: separate residue definitions were set for dimethoate and omethoate.	Yes
		soluble	Peer review (EFSA, 2018x): dimethoate and omethoate, to be considered separately.	
			The residue is not fat soluble	
RD RA	Plant products	The Meeting was unable to recommend a definition for dietary risk assessment	Peer review (EFSA, 2018x): Provisionally, the residue definition for risk assessment is proposed as dimethoate and omethoate	Not appropriate
	Animal products	The Meeting was unable to recommend a definition for dietary risk assessment	Peer review (EFSA, 2018x): Provisionally, the residue definition for risk assessment is proposed as dimethoate and omethoate	Not appropriate
Conclusion/ comments	-			

5.1.4. Codex MRL proposals

Commodity	Codex MRL proposal ^(a)	EU MRL Dimethoate/ omethoate	Comment
Artichoke, globe	0.05 (W)	0.01*/0.01*	All existing Codex MRLs established for
Asparagus	0.05*(W)	0.01*/0.01*	dimethoate were proposed for withdrawal,
Barley	2 (W)	0.02*/0.01*	following the considerations that
Brussels sprouts	0.2 (W)	0.1*/0.01*	An ADI or an ARfD for omethoate were
Cabbage, Savoy	0.05*(W)	0.01*/0.01*	not recommended by the WHO panel,
Cattle, Edible offal of	0.05*(W)	_/_	due to concerns regarding its
Cauliflower	0.2 (W)	0.01*/0.01*	genotoxicity;Due to genotoxicity concerns relating to
Celery	0.5 (W)	0.01*/0.01*	omethoate and other related
Cherries	2 (W)	0.01*/0.01*	metabolites, a conclusion on a residue
Citrus fruits	5 (W)	0.01*/0.01*	definition for dietary risk assessment
Eggs	0.05*(W)	0.01*-/0.01*	could not be derived;
Lettuce, Head	0.3 (W)	0.01*/0.01*	 Consequently, a long-term and acute dietary risk assessment could not be
Mammalian fats (except milk fats)	0.05* (W)	0.01*/0.01*	conducted.
Mango	1 (Po) (W)	0.01*/0.01*	
Meat of cattle, goats, horses, pigs and sheep	0.05*(W)	0.01*/0.01* (muscle)	
Milk of cattle, goats and sheep	0.05* (W)	0.01*/0.01*	
Pear	1 (W)	0.01*/0.01*	
Peas (pods and succulent = immature seeds)	1 (W)	0.01*/0.01*	
Peppers Chilli, dried	3 (W)	_/_	-
Peppers, sweet (including pimento or pimiento)	0.5 (W)	0.01*/0.01*	
Potato	0.05 (W)	0.01*/0.01*	
Poultry fats	0.05* (W)	0.01*0.01*	
Poultry meat	0.05* (W)	0.01*/0.01* (muscle)	
Poultry, edible offal of	0.05* (W)	0.01*/0.01	
Sheep, edible offal of	0.05* (W)	0.01*/0.01	
Spices, fruits and berries	0.5 (W)	0.05*/0.05*	
Spices, roots and rhizomes	0.1* (W)	0.05*/0.05*	
Spices, seeds	5 (W)	0.05*/0.05*	
Sugar beet	0.05 (W)	0.01*/0.01*	
Table olives	0.5 (W)	0.01*/0.01*	
Turnip greens	1 (W)	Chinese cabbage: 0.01*/0.01*	
Turnip, Garden	0.1 (W)	0.01*/0.01*(turnips from other root and tuber vegetables except sugar beets)	
Wheat	0.05 (W)	0.01*/0.01*	
Wheat straw and fodder, dry	1 (W)	_/_	

Table 4:	Comparison of Codex MRL	proposals derived by	y JMPR with EU MRLs

Commodity	Codex MRL proposal ^(a)	EU MRL Dimethoate/ omethoate	Comment			
General comments	(a): The Codex MRLs that are proposed for withdrawal refer to the previous residue definition which covered only dimethoate.					

*: Indicates that the MRL is proposed at the limit of quantification.

5.1.5. Consumer risk assessment

Not relevant, since no Codex MRL proposals were derived.

5.2. Omethoate (055) R/T

5.2.1. Background information

Table 5:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	Periodic review	
RMS	No RMS assigned	
Approval status	Not approved	Commission Regulation (EC) No 2076/2002 ^(a)
EFSA conclusion available	No	No conclusion is available for omethoate, but omethoate was assessed in the framework of the peer review of dimethoate (EFSA, 2018x)
MRL review performed	Yes, see comments	(EFSA, 2016r) (prioritised review)
MRL applications/ assessments	No	
Classification of a.s. – cut- off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	

(a): Commission Regulation (EC) No 2076/2002 of 20 November 2002 extending the time period referred to in Article 8(2) of Council Directive 91/414/EEC and concerning the non-inclusion of certain active substances in Annex I to that Directive and the withdrawal of authorisations for plant protection products containing these substances. OJ L 319, 23.11.2002, p. 3–11.

5.2.2. Toxicological reference values

Table 6:	Comparison of toxicologi	cal reference values ((TRV derived by	/ JMPR and at EU level)

	JMPR evaluation			EU evaluation		
	Value	Comments	Value	Comments		
ADI	_	JMPR (1996) The assessment could not be completed with respect to its mutagenic potential <i>in vivo</i> and the ADI for omethoate was withdrawn	_	(EFSA, 2018x) (dimethoate) A genotoxic potential <i>in vivo</i> could not be excluded for omethoate and TRVs were not established		
ARfD	_	JMPR (1996) The assessment could not be completed with respect to its mutagenic potential <i>in vivo</i> and the ADI for omethoate was withdrawn	_	(EFSA, 2018x) (dimethoate) A genotoxic potential <i>in vivo</i> could not be excluded for omethoate and TRVs were not established		
Conclusion/ comment	See also dimethoate (27)					

5.2.3. Residue definitions

See dimethoate (027).

5.2.4. Codex MRL proposals

Table 7: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal ^(a)	EU MRL	Comment		
Spices, fruits and berries	0.01 (W)	0.05*	All existing Codex MRLs established for omethoate were proposed for withdrawal, following the considerations that		
Spices, roots and rhizomes	0.05 (W)	0.05*	 An ADI or an ARfD for dimethoate were not recommended by the WHO panel, due to concerns regarding its genotoxicity; Due to genotoxicity concerns relating to omethoate and other related metabolites, a conclusion on a residue definition for dietary risk assessment could not be derived; Consequently, a long-term and acute dietary risk assessment could not be conducted. 		
General comments		ne Codex MRLs that are proposed for withdrawal refer to the previous residue definition hich covered only omethoate.			

*: Indicates that the MRL is proposed at the limit of quantification.

5.2.5. Consumer risk assessment

Not relevant, since no Codex MRL proposals were derived.

5.3. Thiabendazole (65) R/T

5.3.1. Background information

Table 8:Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	ES	
Approval status	Approved	Commission Implementing Regulation (EU) 2017/157 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2014p)
MRL review performed	Yes, see comments	(EFSA, 2014k) (EFSA, 2016n) (Art. 43)
MRL applications/ assessments	Yes, see comments	(EFSA, 2021h) ^(b) (various crops)
Classification of a.s. – cut- off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	The confirmatory data requirements established by Commission Implementing Regulation (EU) 2017/157 requesting information regarding Level 2 tests as currently indicated in the OECD Conceptual Framework investigating the potential for endocrine-mediated effects have not been addressed. Therefore, in line with the ECHA and EFSA guidance (ECHA and EFSA, 2018) on the identification of endocrine disruptors, additional data are still required before a final conclusion on the endocrine disrupting properties of thiabendazole can be derived ECHA and EFSA guidance (ECHA and EFSA, 2018).

- (a): Commission Implementing Regulation (EU) 2017/157 of 30 January 2017 renewing the approval of the active substance thiabendazole in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 25, 31.1.2017, p. 5–9.
- (b): The assessment performed in the recently published reasoned opinion could not be taken into account for the assessment in this report.

5.3.2. Toxicological reference values

Table 9: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR eval	uation	EU	TRV			
	Value	Comments	Value	Comments	comparable		
ADI	0.1 mg/kg bw per day	JMPR (1992), confirmed by JECFA in 1997	0.1 mg/kg bw per day	(EFSA, 2014p) (2-year rat and 100 UF) confirmed in (European Commission, 2016b)	Yes		
ARfD	0.3 mg/kg bw for women of child- bearing age. 1 mg/kg bw for the general population.	JMPR (2006)	0.1 mg/kg bw	(EFSA, 2014p) (Rat developmental study and 100 UF) confirmed in (European Commission, 2016b)	No		
Conclusion/	The ARfD derived by th	e JMPR evaluation i	on is higher than the ARfD derived by the EU evaluation.				
comment	The JMPR assessed additional toxicological information available since the last review and concluded that no revision of the ADI or ARfDs was necessary. The NOAEL for systemic toxicity from the newly submitted acute neurotoxicity study (50 mg/kg bw) is lower than the NOAEL from the study currently used in the JMPR derivation of the ARfD for the general population (100 mg/kg bw). However, the JMPR concluded that there was no reason to revise the ARfD for the general population because the lowest observed adverse effect level (LOAEL) was 200 mg/kg bw for both studies and the findings in both studies were similar.						
	The EU ADI and ARfD have not been demonstrated to cover the non-rat metabolite benzimidazole, which is included in the tentative residue definitions for risk assessment for plant (relevant to preharvest treatment and rotational crops) and animal products (data gap identified). The consumer risk assessment in the EFSA conclusion was not finalised in terms of residues of the metabolite benzimidazole (EFSA, 2014p).						

5.3.3. Residue definitions

Table 10: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Thiabendazole	Reg. 396/2005: Thiabendazole	Yes
	Animal products	Sum of thiabendazole and 5-hydroxythiabendazole The residue is not fat soluble	Reg. 396/2005: Sum of thiabendazole and 5-hydroxythiabendazole MRL review Art. 43 (EFSA, 2016n): <u>Milk</u> : Sum of thiabendazole, 5-hydroxythiabendazole and its sulfate conjugate, expressed as thiabendazole	Yes (the RD proposed by EFSA in the MRL review for milk has not been implemented). See comments below.
		Other animal commodities: Sum of thiabendazole and 5– hydroxythiabendazole expressed as thiabendazole Peer review (EFSA, 2014p):		

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
			<u>Milk</u> : Thiabendazole, 5– hydroxythiabendazole and its sulfate conjugate, sum expressed as thiabendazole <u>All other animal commodities</u> : Thiabendazole and 5– hydroxythiabendazole, sum expressed as thiabendazole	
			The residue is not fat soluble	
RD RA	Plant products	Thiabendazole	MRL review Art. 43 (EFSA, 2016n): <u>Post-harvest treatment</u> : Thiabendazole (relevant to the authorised uses on citrus fruit, apple, pear, avocado, mango, banana, papaya and consumption potato); this RD is provisional for potatoes and witloof, because of lack of metabolism study.	No, see comments below
			Preharvest treatment and rotational crops: RD 1) Thiabendazole; RD 2) Total benzimidazole (tentative, data gap identified)	
			Peer review (EFSA, 2014p): <u>Post-harvest treatment</u> : Thiabendazole (relevant to the representative uses on citrus and on apple and pear);	
			Preharvest treatment and rotational crops: Thiabendazole, and total benzimidazole (i.e. free and conjugated) (provisional, data gap identified)	
			Processed plant commodities: pending (data gap identified)	
	Animal products	Sum of thiabendazole, 5-hydroxythiabendazole and its sulfate conjugate	MRL review Art. 43 (EFSA, 2016n): <u>Milk</u> : Sum of thiabendazole, 5– OH–thiabendazole and its sulfate conjugate, expressed as thiabendazole; Total benzimidazole (tentative, data gap identified)	No, see comments below
			Other animal commodities: Sum of thiabendazole and 5–OH– thiabendazole, expressed as thiabendazole; Total benzimidazole (tentative, data gap identified)	
			Peer review (EFSA, 2014p): <u>Milk</u> : Thiabendazole, 5–hydroxythiabendazole and its	

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
			sulfate conjugate, sum expressed as thiabendazole, and benzimidazole (provisional; data gap identified)	
			All other animal commodities: Thiabendazole and 5–hydroxythiabendazole, sum expressed as thiabendazole, and benzimidazole (provisional; data gap identified)	
Conclusion, comments	The enforcement residue definitions for plant products derived by the JMPR and EU evaluations are comparable. It is noted that JMPR did not assess metabolism studies representative for the post-harvest use root crops (sweet potatoes). Hence, the appropriateness of the current residue definitions for post-harvest uses in root crops should be verified. In an ongoing EU import tolerance application a metabolism study for post-harvest use in root crops was requested, which should provide information on the formation of metabolites over time (it is not enough to characterise and identify the nature of residues immediately after the treatment, but nature of residues need to be investigated after an appropriate storage period).			

The enforcement residue definition for animal products derived by the JMPR evaluation is comparable with the residue definition established in the EU Reg. 396/2005. The EU Peer review and the EFSA MRL review under Art. 43 proposed to include the sulfate conjugate of 5–hydroxythiabendazole in the enforcement residue definition for milk. Risk managers decided not to implement this residue definition.

The risk assessment residue definition for plant products derived by the JMPR evaluation is comparable with the residue definition derived by the EU evaluation for plant products post-harvest treatment (relevant to the EU authorised uses on fruits) based on metabolism studies in oranges.

The residue definitions derived by the EU evaluation for plant products (preharvest treatment and rotational crops) and for animal products are both wider than the respective JMPR residue definitions, covering also the metabolite benzimidazole and its conjugates (provisional, data gap identified). In the MRL legislation, confirmatory data were requested on the magnitude of residues of benzimidazole for citrus fruit, apples, potatoes and animal products (deadline for submission: 1 July 2019).

5.3.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Beans with pods (includes all commodities in this subgroup)	0.01*	0.01* beans (with pods)	cGAP: USA succulent beans, except soyabean: 0.55 kg a.i./ tonne seed treatment; soyabean: 0.20 kg a.i./tonne seed treatment Number of trials: 6 trials in succulent beans with pods Sufficiently supported by data: Yes Specific comments/observations: Levels of thiabendazole in beans with pods were < 0.01 mg/kg (six trials). JMPR proposed a Codex MRL for the subgroups of succulent beans with pods. The description of the commodity related to the code VP 2060 should be corrected (to include the suffix '(includes all commodities in this subgroup')). Information on benzimidazole (tentative second EU residue definition for preharvest uses) is not reported in the JMPR report. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the

Table 11:	Comparison of Code	ex MRL proposals	derived by JMF	R with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
			EU policy on setting MRLs. It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that the risk assessment for benzimidazole could not be performed. Follow-up action: None.
Dry beans, subgroup of (includes all commodities in this subgroup)	0.01*	0.01* (dry beans, dry lupins)	cGAP: USA dry beans, except soyabean: 0.55 kg a.i./tonne seed treatment; soyabean: 0.20 kg a.i./tonne seed treatment Number of trials: 9 in dry beans Sufficiently supported by data: Yes Specific comments/observations: Levels of thiabendazole in dry beans were < 0.01 mg/kg (nine trials). Information on benzimidazole (tentative second EU residue definition for preharvest uses) is not reported in the JMPR report. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that the risk assessment for benzimidazole could not be performed. Follow-up action: None
Dry peas, subgroup of (includes all commodities in this subgroup)	0.01*	0.01* dry peas, dry lentils	cGAP: USA 0.33 kg a.i./tonne seed treatment Number of trials: 10 overdosed trials (\geq 2.4N rate) Sufficiently supported by data: Yes Specific comments/observations: Levels of thiabendazole in dry peas were < 0.01 mg/kg (five trials) and < 0.05 mg/kg (five trials). Information on benzimidazole (tentative second EU residue definition for preharvest uses) is not reported in the JMPR report. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that the risk assessment for benzimidazole could not be performed. Follow-up action: None
Mango	7 (Po)	0.01*	 cGAP: Central American GAP 0.24 kg a.i./hL dip solution; Brazil GAP 0.19 kg a.i./hL dip solution. Number of trials: 4 Sufficiently supported by data: No Specific comments/observations: The residue trials assessed in the JMPR evaluation were previously submitted to EFSA in support of an import tolerance application for mango (EFSA-Q-2018-00334). The JMPR evaluation derived an STMR and a HR for residues in the pulp. According to information available to EFSA from an ongoing IT application, the residue trials determined thiabendazole residues in mango pulp on the day of treatment only (DAT = 0). However, translocation of residues from the peel to the pulp cannot be excluded during shipping/storage/ripening. These studies may underestimate the magnitude of residues in the edible portion (mango pulp) following a suitable waiting period under typical shipping/storage/ripening conditions. An EU import tolerance application for mangos is currently on clock-stop due to the lack of a valid study investigating the possible transfer of residues to the pulp after a time period which is realistic for shipment of treated mangoes to Europe. Conclusion: The proposed Codex MRL is not acceptable
			Conclusion: The proposed Codex MRL is not acceptable because of a potential acute intake concern identified in scenario 1 (see below). Follow-up action: None

Commodity	Codex MRL proposal	EU MRL	Comment
Peas with pods, subgroup of (includes all commodities in this subgroup)	0.01*	0.01*	cGAP: USA 0.33 kg a.i./tonne seed treatment Number of trials: 6 trials in beans with pods (overdosed) Sufficiently supported by data: Yes, by extrapolation from beans with pods Specific comments/observations: Levels of thiabendazole in beans with pods were < 0.01 mg/kg (six trials). Information on benzimidazole (tentative second EU residue definition for preharvest uses) is not reported in the JMPR report. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that the risk assessment for benzimidazole could not be performed. Follow-up action: None
Succulent beans without pods, subgroup of (includes all commodities in this subgroup)	0.01*	0.01*	 cGAP: USA succulent beans, except soyabean: 0.55 kg a.i./ tonne seed treatment; soyabean: 0.20 kg a.i./tonne seed treatment Number of trials: 1 trial in beans, 9 trials in peas (overdosed) Sufficiently supported by data: Yes, based on combined trials in beans and peas. Information on benzimidazole (tentative second EU residue definition for preharvest uses) is not reported in the JMPR report. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that the risk assessment for benzimidazole could not be performed. Follow-up action: None
Succulent peas without pods, Subgroup of (includes all commodities in this subgroup)	0.01*	0.01*	cGAP: USA 0.33 kg a.i./tonne seed treatment Number of trials: 9 overdosed trials (3–4N rate) Sufficiently supported by data: Yes Specific comments/observations: Information on benzimidazole (tentative second EU residue definition for preharvest uses) is not reported in the JMPR report. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that the risk assessment for benzimidazole could not be performed. Follow-up action: None
Sweet potato	9 (Po)	0.01*	 cGAP: USA 0.16 kg a.i./hL dip solution or spray (on a conveyor belt) at 0.006 kg a.i./tonne post-harvest treatment Number of trials: Spray application GAP: seven trials; dip application GAP: eight trials. Sufficiently supported by data: Yes Specific comments/observations: JMPR evaluation based on dip trials, which gives the highest residues. The residue trials were previously submitted to EFSA in support of an import tolerance application for sweet potato (EFSA-Q-2018-01013). The residue levels of benzimidazole in sweet potatoes were reported in the residue trials (dip and spray application) at PHI 0 days only. The EU evaluation MRL review Art. 12, revised in 2016 (EFSA, 2016n) proposed the residue definition for risk assessment for post-harvest treatment as thiabendazole (provisional). However, further information on the metabolism of thiabendazole in root and tuber vegetables following post-harvest treatment covering a suitable waiting period relevant to the storage period and storage conditions

Commodity	Codex MRL proposal EU MRL Comment		
		was requested that would allow to confirm the suitability the residue definition for risk assessment for post-harvest uses for root and tuber group commodities. For a current ongoing import tolerance application for the post-harvest use on sweet potatoes, this data gap leads to a clock-stop Conclusion: The proposed Codex MRL is not acceptable because of a potential acute intake concern (see below). addition, it should be highlighted that a suitable metabolis study in root crops (post-harvest use) would be required verify the appropriateness of the residue definition for sw potatoes. Follow-up action: None	
General comments	 Further background information Data gaps identified in the Art. 43 (EFSA, 2016n): a detailed and reproducible evaluation of the study investigating the nature of residues after pasteurisation, cooking, brewing and sterilisation in order to judge the validity of the study (data gap relevant for all authorisations reported); data to address the potential for consumer exposure and toxicological properties for the metabolite benzimidazole (data gap relevant for commodities of animal origin and for the authorisations on citrus fruits, apples, potatoes and witloof); Reg. (EU) 2017/1164^(a): Confirmatory data requirement (citrus, apples, potatoes, witloofs, products of animal origin): information on the magnitude of residues of the metabolite benzimidazole (to be submitted by 1 July 2019). 		

*: Indicates that the MRL is proposed at the limit of quantification.

(a): Commission Regulation (EU) 2017/1164 of 22 June 2017 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acrinathrin, metalaxyl and thiabendazole in or on certain products. OJ L 170, 1.7.2017, p. 3–30.

5.3.5. Consumer risk assessment

Table 12: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (i.e. sweet potatoes and mangoes). For mango, EFSA calculated two scenarios: scenario 1 is based on the HR for the whole fruit (4.5 mg/kg); scenario 2 is based on HR edible part of the crop measured immediately after the treatment (DAT 0 days) (0.03 mg/kg). The risk assessment was performed	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2016n) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. For mango, the risk assessment used the STMR whole fruit because information is not available to derive a reliable processing factor for peeling after a suitable waiting period. The risk assessment was performed with the EU ADI.	Specific comments: The JMPR exposure assessment does not include the potential for consumer exposure to the metabolite benzimidazole, which is included in the EU residue definition for risk assessment for plant products (tentative, relevant to preharvest treatment and rotational crops, data gap identified). Information is required on the nature of residues after processing (standard hydrolysis studies).
with the EU ARfD. The calculations are indicative, because information is required on (1) confirmation of the residue definition for risk assessment, (2) the nature of residues after processing	The risk assessment calculations are indicative, because data for the metabolite benzimidazole (toxicological studies and information on magnitude of residues in the crops under assessment) are not available. The calculations are indicative, because	For mango, the JMPR exposure assessment is based on residues in mango pulp (edible potion) on the day of treatment (DAT = 0).

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
(standard hydrolysis studies) and (3) data to address the potential for consumer exposure and toxicological properties for the metabolite benzimidazole. The risk assessment calculations are indicative, because data for the metabolite benzimidazole (toxicological studies and information on magnitude of residues in the crops under assessment) are not available.	information is required on (1) confirmation of the residue definition for risk assessment, (2) the nature of residues after processing (standard hydrolysis studies) and (3) data to address the potential for consumer exposure and toxicological properties for the metabolite benzimidazole. The risk assessment calculations are indicative, because data for the metabolite benzimidazole (toxicological studies and information on magnitude of residues in the crops under assessment) are not available.	
Results: The calculated short-term exposure exceeded the ARfD for one/several crops under assessment. Mangoes: scenario 1: 354% of ARfD (NL toddler) scenario 2: 2.4% of ARfD (NL toddler) Sweet potatoes: 145% of ARfD (IE adult)	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 39% of the ADI (NL toddler). Among the crops under consideration, sweet potato was identified as the main contributor, accounting for up to 17% of the ADI (IE adult).	Results: Long-term exposure: Max. 2–10% of the JMPR ADI. Short-term exposure: Highest results for sweet potatoes: 4–20% (child) and 1–7% (adult) of ARfD for general population; 3–9% of ARfD for women of child- bearing age.

5.4. Chlorothalonil (81) R/T

5.4.1. Background information

Table 13:Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	NL	
Approval status	Not approved	Commission Regulation (EU) 2019/677 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2018a)
MRL review performed	Yes, see comments	(EFSA, 2012i)
MRL applications/ assessments	Yes, see comments	(EFSA, 2020p) (Art. 12 confirmatory data) (EFSA, 2015m) (cranberries)
Classification of a.s. – cut-off criteria	No	Regulation (EC) No 1272/2008 ^(b)
Endocrine effects of a.s.	Not assessed/not concluded	It is noted that the assessment was not performed following the ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/ 605) ^(c)

(a): Commission Implementing Regulation (EU) 2019/677 of 29 April 2019 concerning the non-renewal of the approval of the active substance chlorothalonil, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. OJ L 114, 30.4.2019, p. 15–17.

(b): Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, p. 1–1355.

(c): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.4.2. Toxicological reference values

	JMPR	evaluation	EU evaluation		TRV	
	Value	Comments	Value	Comments	comparable	
ADI	Parent: 0.02 mg/kg bw per day	JMPR (2009), 2-year rat and 100 UF	Parent: 0.015 mg/kg bw per day	(European Commission, 2006b): 90-day rat, supported by the 2-year rat and 100 UF, confirmed in (EFSA, 2018a)	No	
	SDS-3701 : 0.008 mg/kg bw per day	JMPR (2009) 1-year, dog and 100 UF	SDS-3701 (R182281): not concluded (genotoxic potential inconclusive)	(EFSA, 2018a)		
	SDS-46851 (R611965): Covered by the parent, expressed as chlorothalonil	JMPR (2019)	SDS-46851 (R611965): 0.5 mg/kg bw per day	(EFSA, 2018a) 90-day, dog and 100 UF		
	R417888: Covered by the parent, expressed as chlorothalonil	JMPR (2019)	R417888: not concluded (genotoxic potential inconclusive)	(EFSA, 2018a)		
ARfD	Parent: 0.6 mg/kg bw	JMPR (2009) acute toxicity study in rat and 100 UF	Parent: 0.05 mg/kg bw	(EFSA, 2018a) Maternal toxicity in developmental toxicity in rabbit and 100 UF	No	
	SDS-3701 : 0.03 mg/kg bw	JMPR (2009) Developmental toxicity in rabbit and 100 UF	SDS-3701 (R182281): not concluded (genotoxic potential inconclusive)	(EFSA, 2018a)		
	SDS-46851 (R611965): Covered by the parent, expressed as chlorothalonil	JMPR (2019)	SDS-46851 (R611965): 0.83 mg/kg bw	(EFSA, 2018a) Developmental toxicity in rabbit LOAEL and 300 UF		
	R417888 : Covered by the parent, expressed as chlorothalonil	JMPR (2019)	R417888: not concluded (genotoxic potential inconclusive)	(EFSA, 2018a)		
Conclusion/ comment	Regarding the parent, chlorothalonil , the JMPR and EU assessments agreed on the NOAEL or 1.8 mg/kg bw per day for kidney toxicity (increased weight, focal tubular epithelial hyperplasia in the 2-year rat study, but interpreted differently the outcome of the 90-day study in rats for which the EU assessment concluded on a lower NOAEL of 1.5 mg/kg bw per day for kidney effects (histopathological changes, increased weight). Regarding the ARfD, different points of departure were established by the two institutions. The JMPR used an NOAEL of 60 mg/kg bw per day for kidney effects from an acute toxicity study irats. The EU assessment considered the maternal NOAEL of 5 mg/kg bw per day for body weight loss observed at the beginning of exposure at 10 mg/kg bw per day in the developmental toxicity study in rabbits.					

Table 14: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

JMPF	JMPR evaluation		EU evaluation		
Value	Comments	Value	Comments	comparable	
R611965 and ADI was establi females, reduct males and fema mg/kg bw, base	uded that the ADI and A R417888 , expressed as shed at 0.008 mg/kg bw ion in erythrocytes in ma iles in a 1-year study in c ed on the NOAEL of 2.5 r ital toxicity study in rabb	s chlorothalonil. Wit per day based on r ales and increased s dogs, applying an Ul ng/kg bw per day fo	h regard to metabolite eduction in body weigh erum concentrations of ⁼ 100. The ARfD was es or early implantation los	SDS-3701 , an t gain in glucose in tablished at 0.03 is observed in	
 the developmental toxicity study in rabbit, applying an UF of 100 (JMPR, 2009, 2019). <u>The EU assessment</u> did not conclude on the toxicity profile of metabolites SDS-3701 (R182281) and R417888. SDS-3701 (R182281): positive and equivocal results for gene mutation observed <i>in vitro</i>; lack of appropriate <i>in vivo</i> follow-up. Hence, the genotoxicity profile of metabolite could not be concluded, and no toxicological reference values were established by the EU assessment. R417888: Not concluded due to a positive and an equivocal <i>in vitro</i> gene mutation assay in mammalian cells which were not followed up <i>in vivo</i> and due to a potential for aneugenicity <i>in vivo</i>. For metabolites R613636 (SDS-19221) and SYN548581, a genotoxic potential could not be excluded due to a lack of data and no toxicological reference values were derived. SDS-46851 (R611965): An ADI of 0.5 mg/kg bw per day was derived from the NOAEL of 50 mg/kg bw per day observed in a 90-day toxicity study in dogs, applying an UF of 100; the ARfD was established at 0.83 mg/kg bw, based on a maternal and developmental LOAEL of 250 mg/kg bw per day from the developmental toxicity study in rabbits, applying an increased UF of 300 to account for the use of an LOAEL. Metabolites R418503 (SYN548708), R419492 (SYN548765), R471811 (SYN548766), SYN548008 (SYN548738), SYN548580, R611968 (SDS-47525) and SYN507900 (SDS-66882) are unlikely to be genotoxic (EFSA, 2018a). New tox studies have been performed which according to the applicant demonstrated that plant 					

5.4.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Chlorothalonil	Reg. 396/2005: Chlorothalonil	Yes (compared with
			 Peer review (EFSA, 2018a): 1) Chlorothalonil 2) R182281(SDS-3701) 3) R611965 (SDS-46851) for rotational crops (provisional) 	current RD in legislation)
	Animal products	SDS-3701 (2,5,6- trichloro-4- hydroxyisophthalonitrile)	Reg. 396/2005: 2,5,6-trichloro- 4-hydroxyphtalonitrile (SDS- 3701)	Yes (compared with current RD in legislation)
		The residue is not fat soluble	Peer review (EFSA, 2018a): R182281(SDS-3701) (provisional)	
			The residue is not fat soluble	
RD RA	Plant products	1) Chlorothalonil 2) SDS 3701 (2,5,6- trichloro-4-	Peer review (EFSA, 2018a): 1) Chlorothalonil and its conjugates	No
		hydroxyisophthalonitrile)	 2) R182281 (SDS-3701) and its conjugates 3) R613636 (SDS-19221) for 	
			processed commodities 4) R611965 (SDS-46851)/ R417888 and conjugates of	

Table 15: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
			metabolites R613636, R613800 (C15) and R611968 (for rotational crops) Residue definitions provisional	
			MRL review: 1) Chlorothalonil 2) R182281(SDS-3701)	
	Animal products	SDS-3701 (2,5,6- trichloro-4-	MRL review: 1) R182281(SDS- 3701) (ruminants and poultry)	Yes
		hydroxyisophthalonitrile)	Peer review (EFSA, 2018a): R182281(SDS-3701) (provisional)	
Conclusion, comments	-	enforcement residue definiti mended by JMPR.	ons in plant and animal commodi	ties are comparable
	JMPR to cover SE chlorothalonil the conjugates. In addition, the E	OS-3701 residues; in the EU proposed EU risk assessme	sment RD has been derived in the l also the conjugates were include ent residue definition includes chlo parate residue definitions in rotat	ed. Also for parent prothalonil

The residue definitions will have to be modified, considering the conclusions on the toxicological

5.4.4. Codex MRL proposals

profile for SDS-3707.

Commodity	Codex MRL proposal	EU MRL	Comment
Cranberry	15	0.01*	cGAP: USA, 3 × 5.5 kg/ha, PHI 50 days Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: The information on SDS-3701 residues was provided (< 0.01 (4)–0.019 mg/kg). The samples prior to analysis were stored frozen for 22 days (relevant to assess validity of SDS-3701 data). Residue data on SDS-3701 are reported separately (4 < 0.01, 0.019). In 2015/2016 JMPR assessed the use of chlorothalonil in cranberries. Due to low storage stability for chlorothalonil and SDS-3701 after 10 months, no MRL proposal was made, as the validity of the residue trials in cranberries was questionable. The residue trials assessed in 2019 were stored for up to 22 days. The EU MRL for cranberries was recently lowered from 5 to 0.01 mg/ kg, following the decision on non-renewal of the approval. Following the assessment of confirmatory data, it was decided that separate MRLs for SDS-3701 should not be established. Conclusion: Considering that for SDS-3701 a risk assessment could not be performed (inconclusive results on genotoxicity), the proposed MRL for cranberries is not acceptable. Follow-up action: None

Table 16: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

 $\ast:$ Indicates that the MRL is proposed at the limit of quantification.

5.4.5. Consumer risk assessment

Table 17: Summary of the consumer risk assessment

Acute exposure assessment Chronic exposure assessment Comments on JMPR exposure						
Acute exposure assessment	Chronic exposure assessment	assessment				
RA assumptions: A short-term dietary risk assessment was performed for chlorothalonil residues, using PRIMo rev. 3.1 The ARfD was updated to most recent value of 0.05 mg/kg derived by European Commission in 2019 (European Commission, 2019a).	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1 The input values of the most recent long-term risk assessment (EFSA, 2020p), were updated, including the STMR values derived by the JMPR for cranberries.	Specific comments: Exposure assessment was done separately for chlorothalonil and SDS-3701, considering TRVs set individually for each compound. For metabolite R613636 (relevant in processed commodities undergone sterilisation process), the TTC approach was applied to consider				
The exposure to SDS-3701 was estimated using PRIMo rev. 3.1. with TRV as set by the European Commission in 2006 (European Commission, 2006b). No acute consumer intake concerns were identified. The peer review (EFSA, 2018a), due to a number of data gaps, could not conclude on the TRV for SDS-3701.	The risk assessment was performed with the EU ADI derived for chlorothalonil. The exposure to SDS-3701 from the intake of cranberries (and commodities of animal origin) was estimated using PRIMo rev. 3.1. A full risk assessment is not possible, since no EU ADI could be derived for this metabolite, due to a number	exposure from the intake sterilised foods. Concern was unlikely. The same approach and conclusion were taken for metabolites SYN548764 and R611968 (rotational crop metabolite).				
The risk assessment for parent chlorothalonil was performed with the EU ARfD. For SDS-3701 an indicative risk calculation of the expected exposure was calculated. Lacking an EU ARfD for this metabolite, no risk assessment was possible.	of data gaps, identified in the peer review (2018).					
For SDS-46851 (provisional residue definition for rotational crops) no exposure/risk assessment could be performed, lacking information on the expected concentration of this metabolite in processed cranberries. However, considering that the ARfD is significantly higher than the ARfD for the parent compound, it is not expected that the exposure to SDS- 4651 would exceed the ARfD.						
It is noted that exposure assessment does not take into consideration conjugates of chlorothalonil and of SDS-3701. Data on conjugates not available for EU uses assessed in the MRL review as RD for risk assessment did not include conjugates. For cranberries data on conjugates not available, as JMPR RD for risk assessment does not include conjugates.						
Results: No short-term consumer health risk was identified for the crops under assessment.	Results: No long-term consumer health risk was identified. Chlorothalonil: the overall chronic	Results: Long-term exposure: Max 10–50% of the JMPR ADI for chlorothalonil;				
Cranberries: 69% of ARfD for chlorothalonil	exposure accounted for 0.8% of the ADI.	Max 4–10% of the JMPR ADI for SDS-3701				

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
SDS-3701: the acute exposure accounted for 0.09 μ g/kg bw.	The contribution of residues in cranberries is low (< 1% of the ADI). SDS-3701: the overall chronic exposure accounted for 0.00020 µg/kg bw per day.	Short-term exposure: Cranberries: 9% of ARfD (children) for chlorothalonil; 0% of ARfD for SDS-3701

5.5. Cypermethrin (including alpha and zeta-cypermethrin) (118) R

5.5.1. Background information

Table 18:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	BE	
Approval status	Approved	Cypermethrin: Commission Directive 2005/53/EC ^(a) (decision on renewal of the approval is pending)
	Not approved	Alpha-cypermethrin: approval expired on 07/06/2021 Beta-cypermethrin: Commission Implementing Regulation (EU) 2017/1526 ^(b) Zeta-cypermethrin: approval expired on 01/12/2020
EFSA conclusion available	Yes, see comments	Cypermethrin: (EFSA, 2018s) Alpha-cypermethrin: (EFSA, 2018t) Beta-cypermethrin: (EFSA, 2014h) Zeta-cypermethrin: (EFSA, 2009b)
MRL review performed	Yes, see comments	Ongoing (Cypermethrin, alpha-cypermethrin, beta-cypermethrin, Zeta-cypermethrin)
MRL applications/ assessments	Yes, see comments	(EFSA, 2011i) (various crops)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/ not concluded	Not concluded (for all cypermethrin isomer mixtures): based on the available evidence, no conclusions on ED assessment, according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(c)), can be drawn. It is noted that the assessment was not performed following the ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605)

(a): Commission Directive 2005/53/EC of 16 September 2005 amending Council Directive 91/414/EEC to include chlorothalonil, chlorotoluron, cypermethrin, daminozide and thiophanate-methyl as active substances. OJ L 241, 17.9.2005, p. 51–56.
 (b): Commission Investment of the section (SU) 2017/1526 of Contembor 2017 an environment of the section.

(b): Commission Implementing Regulation (EU) 2017/1526 of 6 September 2017 concerning the non-approval of the active substance beta-cypermethrin in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L 231, 7.9.2017, p. 1–2.

(c): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.5.2. Toxicological reference values

	JMPR	evaluation	EU	evaluation	TRV	
	Value	Comments	Value	Comments	comparable	
ADI	0.02 mg/ kg bw per day	JMPR (2006) (3- mo dog with alpha- cypermethrin, with safety factor 100)	0.005 mg/ kg bw per day	(EFSA, 2018s) (2- year rat, with uncertainty factor 100; supported by DNT study, with uncertainty factor 3000)	No	
ARfD	0.04 mg/ kg bw	JMPR (2006) (acute rat neurotoxicity with alpha- cypermethrin, with safety factor 100)	0.005 mg/ kg bw	(EFSA, 2018s) (DNT study, with uncertainty factor 3000)	No	
Conclusion/ comment	JMPR derived in 2006 a group ADI and ARfD for cypermethrin, alpha-cypermethrin and zeta- cypermethrin. In the EU, toxicological reference values were derived for the individual isomers:					
			ADI (mg/kg	g bw per day)	ARfD (mg/kg bw)	
	Alpha-cype	ermethrin	0.00125 (pup LOAEL in developmental neurotoxicity study, UF 200)		0.00125 (pup LOAEL in developmental neurotoxicity study, UF 200)	
	Zeta-cypermethrin		with cyperr 200 to acco	e toxicity of	0.125 (rat developmental study, supported by acute neurotoxicity study)	
	Beta-cypermethrin Beta-cypermethrin		0.0016 (pup LOAEL in developmental neurotoxicity study, UF 300)		0.0016 (pup LOAEL in developmental neurotoxicity study, UF 300)	

Table 19: Comparison of toxicological reference values (TRV derived by JMPR and at EU level)

In the EU evaluations (EFSA, 2018s), specific developmental neurotoxicity studies were provided for cypermethrin and alpha-cypermethrin. For cypermethrin, an increased uncertainty factor of 3000 was applied (based on limited investigations and lack of gavage of the pups) to the pup LOAEL in the developmental neurotoxicity study. For alpha-cypermethrin, an increased uncertainty factor of 200 was applied to the pup LOAEL in the developmental neurotoxicity study.

In the EFSA conclusion for zeta-cypermethrin (EFSA, 2009b), the ADI was based on an overall cypermethrin NOAEL for dogs with an increased uncertainty factor of 200 to take into account the higher toxicity of zeta-cypermethrin versus cypermethrin (no developmental neurotoxicity study was available).

35

DNT: developmental neurotoxicity.

5.5.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Cypermethrin (sum of isomers)	Reg. 396/2005 and Peer review (EFSA, 2018s): Cypermethrin including other mixtures of constituent isomers (sum of isomers)	Yes
	Animal products	Cypermethrin (sum of isomers) The residue is fat soluble	Reg. 396/2005 and Peer review (EFSA, 2018s): Cypermethrin including other mixtures of constituent isomers (sum of isomers) The residue is fat soluble	Yes
RD RA	Plant products	Cypermethrin (sum of isomers)	Peer review (EFSA, 2018s): Cypermethrin (sum of isomers) Provisional, pending finalisation of the assessment of the genotoxic potential of 3-phenoxybenzoic acid (3- PBA) and review of the preliminary conclusions in toxicology on the whole group of related metabolites bearing the 3-phenoxybenzoyl moiety (besides 3-PBA also, e.g. PBAldehyde, 4-OH-PBA) once the confirmatory data on lambda- cyhalothrin have been peer reviewed.	Yes, when compared with provisional RD
	Animal products	Cypermethrin (sum of isomers)	Peer review (EFSA, 2018s):	Yes, when compared with provisional RD.

Table 20:	Comparison of the residue definitions derived by JMPR and at EU level
-----------	---

5.5.4. Codex MRL proposals

Table 21:	Comparison of Codex MRL proposals derived by JMPR w	ith EU MRLs
-----------	---	-------------

assessment of the outstanding toxicological data.

Commodity	Codex MRL proposal	EU MRL	Comment
Ginseng	0.03*	_	cGAP: Republic of Korea, Foliar, 3 × 0.005 kg a.s./hL, PHI 45 days Number of trials: 6 trials compliant with the cGAP Sufficiently supported by data: Yes Specific comments/observations: In the EU, MRLs are not set for fresh ginseng; ginseng is classified in the class of herbal infusions from roots for which the MRLs refer to dried products. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Ginseng, dried including red ginseng	0.15	0.1* (0633020, ginseng)	cGAP: Republic of Korea, Foliar, 3×0.005 kg a.s./hL, PHI 45 days Fresh ginseng samples from residue trials reported above were dried or steamed (to produce red ginseng). The results refer to dried ginseng (washed or steamed), which would be

Commodity	Codex MRL proposal	EU MRL	Comment
			the commodity for which EU MRLs are established. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Ginseng, extracts	0.06*	_	For processed products no EU MRLs are established.
General comments	s –		

*: Indicates that the MRL is proposed at the limit of quantification.

5.5.5. Consumer risk assessment

Table 22: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for ginseng only. The calculations are indicative, because in the EU a final residue definition for risk assessment could not be derived. The risk assessment was performed with the EU ARfD for cypermethrin.	RA assumptions: For ginseng, no chronic consumption data are available in PRIMo rev. 3.1. Since ginseng is not expected to be consumed in significant amounts, the overall dietary exposure situation will not be impacted by the proposed Codex MRL for ginseng. It is noted that the comprehensive MRL review for cypermethrin and its isomers will be performed in the near future (depending on the agreement on prioritisation). In this framework, a reliable, comprehensive risk assessment will be performed for cypermethrin, including existing Codex MRLs.	Specific comments:	
Results: No short-term consumer health risk was identified for the crops under assessment. The exposure accounted for 1% of ARfD for the adults	Results: -	Results: Long-term exposure: previous risk assessment not affected by the new use in ginseng. Short-term exposure: Ginseng: 0% of ARfD	

5.6. S-Methoprene (147) R

5.6.1. Background information

Table 23:Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	-	No RMS allocated
Approval status	Not approved	Commission Regulation (EC) No 2076/2002 ^(b)
EFSA conclusion available	No	
MRL review performed	No	
MRL applications/assessments	No	
Classification of a.s. – cut-off criteria	No	

		Comments, references
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(a)) has not been performed yet.

(a): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

(b): Commission Regulation (EC) No 2076/2002 of 20 November 2002 extending the time period referred to in Article 8(2) of Council Directive 91/414/EEC and concerning the non-inclusion of certain active substances in Annex I to that Directive and the withdrawal of authorisations for plant protection products containing these substances. OJ L 319, 23.11.2002, p. 3–11.

5.6.2. Toxicological reference values

	JMPR evaluation			TRV	
	Value	Comments	Value	Comments	comparable
ADI	0.09 mg/kg bw per day (for the R,S racemate); 0.05 mg/kg bw (for S- methoprene)	JMPR (2005)	_	No toxicological reference values established in EU	Not applicable
ARfD	Unnecessary	JMPR (2005)	-	No toxicological reference values established in EU	Not applicable

5.6.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Methoprene	Reg. 396/2005: Methoprene	Yes
	Animal products	Methoprene The residue is fat soluble	Reg. 396/2005: Methoprene The residue is not fat soluble	Yes
RD RA	Plant products	Methoprene	_	Not applicable
	Animal products	Methoprene	_	Not applicable
Conclusion, comments				when temporary e residue definition appropriate residue e not been
				cific to S-
The residue definition of JMPR was based on pant metabolism studies conduct radiolabelled methoprene in wheat (post-harvest treatment), alfalfa and rice (l application). A metabolism in pulses and oilseeds after post-harvest treatment appropriate foliar metabolism studies) is not available.			rice (leaf painting	
	JMPR concluded that residue is fat-soluble (based on log P_{ow} of 4 for methoprene and approximate 6 for S-methoprene).			ethoprene and

Table 25: Comparison of the residue definitions derived by JMPR and at EU level

(a): Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. OJ L 230, 19.8.1991, p. 1–32.

(b): Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.

5.6.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Peanut, whole	5 Po	0.05*	 Post-harvest: US GAP, 36.4 g S-methoprene/1,000 bushels (corresponding to up to 4.5 g/tonne), no (zero day) withholding period. Number of trials: 5 underdosed residue trials. See also specific comments. Sufficiently supported by data: No, trials were underdosed Specific comments/observations: JMPR derived the MRL proposal on the basis of the application rate of S-methoprene, which was rounded up to the next MRL class. JMPR considered the impact of setting an MRL for peanuts on the dietary burden for livestock calculated in 2016, where JMPR proposed a modification for oilseeds, except peanuts. JMPR concluded that the new use would not require a modification of the MRLs for animal products. The JMPR proposal refers to SO 0703 which is probably an obsolete code for Peanuts, whole. It should be verified if this is the correct code and commodity description; a second code is available for Peanuts (SO 0697). Conclusion: The proposed Codex MRL is not acceptable (see risk assessment and general comments). Follow-up action: None
General comments	 Overall, the following deficiencies were noted which should be taken into account by risk managers to decide whether the proposed Codex MRL is acceptable: The metabolic behaviour following post-harvest treatment in oilseeds was not investigate Peanuts are processed to oil and meal. The nature and the possible concentration of residues in the processed products was not investigated. 		
	In 2017 CCPR th	ne EU ma	ade a reservation for the proposed MRL for oilseeds, except peanuts /kg) for the following reasons:
	 Considering scope to ra possible; he Studies invo nature and It is noted 	g the sign lise the N owever, f estigatin magnitu that the	uropean consumers could not be excluded. nificant background exposure from the existing EU MRLs, there is no MRLs. Further refinements of the chronic exposure calculation are the relevant data have not yet been assessed in the EU. g the metabolic behaviour after post-harvest treatment and on the ide of residues in processed products are lacking. dietary burden calculations should be added to the JMPR report to t that residues in oilseed do not impact on the dietary burden of farm
	The first three b	ullet poi	nts are still relevant for the current Codex MRL proposal.
	grains (5 mg/kg was in place in 2) and an 2008, wł	consider the existing EU MRLs established at levels > LOQ (i.e. cereal imal products. The MRL for cereals probably corresponds to a CXL that nen the EU temporary MRLs have been established. However, the CXL to 10 mg/kg, which is likely to pose a consumer health risk.

Table 26:	Comparison of	Codex MRL p	proposals derived	by JMPR wit	h EU MRLs
-----------	---------------	-------------	-------------------	-------------	-----------

*: Indicates that the MRL is proposed at the limit of quantification.

5.6.5. Consumer risk assessment

Table 27: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions: A short-term dietary risk assessment was not performed since no ARfD has been allocated to the a.s. Not relevant since no ARfD was allocated.	RA assumptions: The long-term dietary risk assessment was performed using PRIMo rev. 3.1.; EFSA used the MRLs as reported in Reg. (EU) No 899/2012 ^(a) and the STMR (5 mg/kg, equal to the CXL) proposed by JMPR for S-methoprene in peanuts. The risk assessment was performed with the JMPR ADI for S-methoprene.	Specific comments: JMPR used the ADI for S- methoprene is 0–0.05 mg/kg bw in the risk assessment.	
	The calculations are indicative, because methoprene was never assessed at EU level. The calculations are affected by additional, non-standard uncertainties, related to the lack of information on the existing MRLs above the LOQ (cereals, swine, bovine, sheep fat and edible offal). Further refinements could not be performed as no detailed information is available for these uses.		
Results: Not relevant	Results: The calculated long-term exposure exceeded the ADI set by JMPR for methoprene. The overall chronic exposure accounted for 136% of the ADI set by JMPR for S-methoprene. The main contributors to the overall exposure were the existing MRLs on wheat (up to 72% of the ADI) and maize (up to 70% of the ADI). MRLs at the LOQ covered 8% of the ADI. The maximum contribution to the chronic exposure of the peanuts (expressed as percentage of the ADI) was 3% (NL child)	Results: Long-term exposure: Max 60% of the JMPR ADI set for s-methoprene. Short-term exposure: Not relevant (JMPR did not derive an ARfD).	

(a): Commission Regulation (EU) No 899/2012 of 21 September 2012 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acephate, alachlor, anilazine, azocyclotin, benfuracarb, butylate, captafol, carbaryl, carbofuran, carbosulfan, chlorfenapyr, chlorthal-dimethyl, chlorthiamid, cyhexatin, diazinon, dichlobenil, dicofol, dimethipin, diniconazole, disulfoton, fenitrothion, flufenzin, furathiocarb, hexaconazole, lactofen, mepronil, methamidophos, methoprene, monocrotophos, monuron, oxycarboxin, oxydemeton-methyl, parathion-methyl, phorate, phosalone, procymidone, profenofos, propachlor, quinclorac, quintozene, tolylfluanid, trichlorfon, tridemorph and trifluralin in or on certain products and amending that Regulation by establishing Annex V listing default values. OJ L 273, 6.10.2012, p. 1–75.

5.7. Glyphosate (158) R

5.7.1. Background information

Table 28: Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	

		Comments, references
Type of JMPR evaluation	New use	
RMS	DE	According to Reg. (EU) 2019/724, ^(a) FR, HU, NL, SE will act jointly as RMS
Approval status	Approved	Commission Implementing Regulation (EU) 2017/2324 ^(b)
EFSA conclusion available	Yes, see comments	(EFSA, 2015x)
MRL review performed	Yes, see comments	(EFSA, 2018i) (EFSA, 2019m) Revised version of MRL review to take into account omitted data
MRL applications/ assessments	No	Ongoing: Import tolerance request for soyabeans Other assessments: Evaluation of the impact of glyphosate and its residues in feed on animal health (EFSA, 2018k)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	No	(EFSA, 2017j)

(a): Commission Implementing Regulation (EU) 2019/724 of 10 May 2019 amending Implementing Regulation (EU) No 686/2012 as regards the nomination of rapporteur Member States and co-rapporteur Member States for the active substances glyphosate, lambda-cyhalothrin, imazamox and pendimethalin and amending Implementing Regulation (EU) No 844/2012 as regards the possibility that a group of Member States assumes jointly the role of the rapporteur Member State. OJ L 124, 13.5.2019, p. 32–35.

(b): Commission Implementing Regulation (EU) 2017/2324 of 12 December 2017 renewing the approval of the active substance glyphosate in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 333, 15.12.2017, p. 10–16.

5.7.2. Toxicological reference values

Table 29:	Comparison of to	oxicological reference	values (TRV)) derived b	y JMPR and at EU level
-----------	------------------	------------------------	--------------	-------------	------------------------

	JMPR	evaluation		EU evaluation	TRV
	Value	Comments	Value	Comments	comparable
ADI	0–1 mg/kg bw per day	JMPR (2011, 2016) (rat, 2-year; 100 UF)	0.5 mg/kg bw per day	(EFSA, 2015x) (Developmental toxicity, rabbit and 100 UF) confirmed in (European Commission, 2017d)	No
ARfD	Unnecessary	JMPR (2011, 2016) (unnecessary)	0.5 mg/kg bw	(EFSA, 2015x) (Developmental toxicity, rabbit and 100 UF) confirmed in (European Commission, 2017a–d)	No
Conclusion/ comment	Commission, 2017a–d)				

Both assessments concluded that the toxicological reference values of glyphosate apply to the metabolites AMPA, N-acetylglyphosate and N-acetyl-AMPA (EFSA, 2015x, 2018k).

5.7.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Soyabean, maize and rape: Sum of glyphosate and N-acetyl glyphosate, expressed as glyphosate Other crops: glyphosate	Reg. 396/2005: Glyphosate MRL review Art. 12 (EFSA, 2018i) (not yet implemented in EU MRL legislation): Two different options proposed by EFSA for further considerations by risk managers: Main RD-enforcement : – For plants with glyphosate tolerant genetically modified varieties currently available on the market (sweet corn, cotton seeds, sugar beets, rapeseeds, maize and soybeans): sum of glyphosate, AMPA and N-acetyl glyphosate, expressed as glyphosate – For all other plant commodities: glyphosate	Yes, for RD implemented in MRL Regulation, except for soyabeans, maize, rapeseed
			Optional RD-enforcement : – For all plant commodities (including plants with glyphosate tolerant genetically modified varieties currently available on the market): sum of glyphosate, AMPA and N-acetyl-glyphosate, expressed as glyphosate	
			Peer review (EFSA, 2015x): Sweet corn, oilseed rape, soyabeans and maize (non-tolerant and tolerant, all modifications): sum of glyphosate and N-acetyl-glyphosate, expressed as glyphosate Other plant commodities: glyphosate	
	Animal products	Sum of glyphosate and N-acetyl glyphosate, expressed as glyphosate The residue is not fat soluble	Reg. 396/2005: Glyphosate MRL review Art. 12 (EFSA, 2018i): Sum of glyphosate, AMPA and N-acetyl-glyphosate, expressed as glyphosate Peer review (EFSA, 2015x): Sum of glyphosate and N-acetyl-glyphosate,	No
			expressed as glyphosate The residue is not fat soluble	
RD RA	Plant products	Glyphosate, N-acetyl glyphosate, AMPA and N-acetyl AMPA, expressed as glyphosate	MRL review Art. 12 (EFSA, 2018i): Sum of glyphosate, AMPA, N-acetyl-glyphosate and N- acetyl-AMPA, expressed as glyphosate Peer review (EFSA, 2015x): Sum of glyphosate, AMPA, N-acetyl-glyphosate	Yes
	Animal products		and N-acetyl-AMPA, all expressed as glyphosate MRL review Art. 12 (EFSA, 2018i): Sum of glyphosate, AMPA, N-acetyl-glyphosate and N- acetyl-AMPA, expressed as glyphosate	Yes
			Peer review (EFSA, 2015x): Sum of glyphosate, AMPA, N-acetyl-glyphosate and N-acetyl-AMPA, all expressed as glyphosate	
Conclusion, comments	comparable. I	in case the optional r	ment (conventional crops), the residue definitions esidue definition for enforcement will be legally in nitions for the crops under consideration will not b	plemented in

Table 30: Comparison of the residue definitions derived by JMPR and at EU level

5.7.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL/ proposed EU MRL ^(a)	Comment	
Dry beans, Subgroup of (includes all commodities in this subgroup) (except soyabeans)	15	Beans (dry): 2/15 Lupins (dry): 10/10	cGAP: UK, one application at 1.44 kg a.i./ha preharvest with a PHI of 7 days Number of trials: 13 Sufficiently supported by data: Yes Specific comments/observations: Residue trials on dry beans performed in USA at an application rate of 4.20 kg a.i./ha pre-emergence and an application rate of 1.71 kg a.i./ha preharvest with harvest 7 DALA. The Meeting considered that the pre-emergence applications would not contribute significantly to residue levels at harvest. This conclusion is supported by EFSA. Residues were analysed for both glyphosate and AMPA. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None	
Dry peas, Subgroup of (includes all commodities in this subgroup)	10	Peas (dry): 10/15 Lentils (dry): 10/10	cGAP: USA, 2 applications at 4.2 kg a.i./ha pre- emergence and 2.5 kg a.i./ha preharvest with a PHI of 7 days. Number of trials: 16 Sufficiently supported by data: Yes Specific comments/observations: Combined data set of trials on dry lentils (11) and dry peas (5) approximating the GAP. Residues were analysed for both glyphosate and AMPA. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None	
General comments	The Codex MRL proposals for dry beans, dry peas and dry lentils are expected to be covered by the MRLs derived during the MRL review. For dry lupins, the Codex MRL proposal is higher than the MRL derived during the Article 12 review. It is underlined that the legal implementation of the MRL review is still pending.			
	(a): MRL pr glyphosate.		MRL review (EFSA, 2019m) for the residue definition	

Table 31:	Comparison of Codex MR	L proposals derived b	y JMPR with EU MRLs

5.7.5. Consumer risk assessment

Table 32:	Summary of the consumer risk assessment
-----------	---

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: In the framework of the Article 12 MRL review, EFSA calculated the acute risk assessment with the HR values, which were higher than the HR values derived from the trials assessed by JMPR (22 mg/ kg for dry beans and peas, 15.2 mg/kg for dry lentils and lupins). Considering that for pulses the acute exposure calculation should be performed according to IESTI case 3, a second scenario was calculated, using the STMR values derived in the MRL review (see chronic RA).	RA assumptions: The most recent risk assessment performed by EFSA in the framework of the Art. 12 MRL review was updated, by including the STMR values for the crops under consideration for which a higher STMR was derived by the JMPR (lentils and lupins). The results reported below are based on the STMR values derived during the MRL review (0.92 for dry beans and peas) and derived by the JMPR (1.7 for dry lentils and 0.32 for dry lupins).	Specific comments:

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
The risk assessment was performed with the EU ARfD and the EFSA PRIMo rev. 2.	The risk assessment was performed with the EU ADI and the EFSA PRIMo rev. 2.	
Results: No short-term consumer health risk was identified for the crops under assessment.	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for	Results: Long-term exposure: Max 4% of the JMPR ADI.
Results considering the HR (as performed during the MRL review): Dry beans: 80.4% of ARfD Dry peas: 18.5% of the ARfD Dry lentils: 18.7% of the ARfD Dry lupins: not reported	18.8% of the ADI. Among the crops under consideration, beans were identified as the main contributor, accounting for up to 0.14% of the ADI.	Short-term exposure: Not relevant (JMPR did not derive an ARfD).
Results considering the STMR: Dry beans: 3.4% of ARfD Dry peas: 0.8% of the ARfD Dry lentils: 2.1% of the ARfD Dry lupins: not reported		

5.8. Propiconazole (160) R

5.8.1. Background information

Table 33:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	Follow-up evaluation due to concern form	In 2018 CCPR, the EU raised a reservation: over the decision of the 2017 JMPR to use the CF*3 Mean to recommend the CXL for post-harvest uses (peach); due to toxicological concerns with certain metabolites; due to an acute intake concern.
RMS	FI	
Approval status	Not approved	Commission Implementing Regulation (EU) 2018/1865 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2017h)
MRL review performed	Yes, see comments	(EFSA, 2015a)
MRL applications/ assessments	Yes, see comments	(EFSA, 2021c) (Art. 12 confirmatory data)
Classification of a.s. – cut-off criteria	Yes, see comments	Toxic for reproduction cat. 1B
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet. The RMS informed EFSA that endocrine effects are currently evaluated under biocide process; the assessment is not yet finalised

(a): Commission Implementing Regulation (EU) 2018/1865 of 28 November 2018 concerning the non-renewal of approval of the active substance propiconazole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. C/2018/7843. OJ L 304, 29.11.2018, p. 6–9.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.8.2. Toxicological reference values

	JMPR e	valuation		EU evaluation	TRV
	Value	Comments	Value	Comments	comparable
ADI	0.07 mg/kg bw per day	JMPR (2015)	0.04 mg/kg bw per day	(EFSA, 2017h) (Chronic rat study with uncertainty factor of 100)	No
ARfD	0.3 mg/kg bw	JMPR (2015)	0.1 mg/kg bw	(EFSA, 2017h) (Developmental study in rat with uncertainty factor of 300)	No
Conclusion/ comment	_			-	

Table 34: Comparison of toxicological reference values (TRV derived by JMPR and at EU level)

5.8.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Propiconazole	Reg. 396/2005: Propiconazole (sum of isomers)	Yes
	Animal products	Propiconazole The residue is fat soluble	Reg. 396/2005: Propiconazole (sum of isomers) Peer review (EFSA, 2017h): CGA91305 (free and conjugated) ((1RS)-1-(2,4-dichlorophenyl)2-(1H- 1,2,4-triazol-1-yl) ethanol)	Yes, compared with the current residue definition in Reg. (EU) No 396/2005
			The residue is fat soluble	
RD RA	Plant products	Propiconazole plus all metabolites convertible to 2,4-dichloro- benzoicacid, expressed as propiconazole.	convertible to the 2,4-dichlorobenzoic	Yes, compared with the current residue definition in Reg. (EU) No 396/2005
			Peer review (EFSA, 2017h): Primary crops (For all categories of crops): 1) Propiconazole (sum of isomers) 2) CGA 118244 (3,5-dideoxy-1,2-O- [(1RS)-1-(2,4-dichlorophenyl)-2-(1H- 1,2,4-triazol-1-yl)ethylidene]-D,L- pentitol) free and glucoside conjugated. Whether the parent compound and CGA 118244 have to be considered together or separately is pending upon the submission of toxicological data to address the toxicity profile on CGA118244). 3) CGA142856 (TAA, 1H-1,2,4-triazol- 1-ylacetic acid) and CGA131013 (TA,3-(1H-1,2,4-triazol-1-yl)-D,L- alanine)	
	Animal products	Propiconazole plus all metabolites convertible to 2,4-dichloro- benzoicacid, expressed as propiconazole.	MRL review (EFSA, 2015a): Parent propiconazole and all the metabolites convertible to the 2,4-dichlorobenzoic	Yes, compared to the RD derived in the MRL review

Table 35: Comparison of the residue definitions derived by JMPR and at EU level

	ommodity roup	JMPR evaluation	EU evaluation	RDs comparable
			Peer review (EFSA, 2017h): 1) Propiconazole, CGA91305 (free and conjugated) and CGA118244 (The way the residue definition will be expressed is pending upon the requested toxicological profile on CGA91305 and CGA118244) 2) CGA71019 (1,2,4-triazole)	
usion, –				,

5.8.4. Codex MRL proposals

comments

Table 36: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL/ proposed EU MRL ^(a)	Comment
Peaches	4	0.01*	cGAP: USA, one post-harvest in-line dip/drench treatment to peach application of 0.014 kg a.i./hL; Number of trials: 4
			Sufficiently supported by data: No Specific comments/observations: Peaches are a category 3 crop for JMPR; therefore, at least 5 trials would be required. The MRL proposal was derived using the Mean + 4SDs. STMR: 1.7 mg/kg; HR: 2.5 mg/kg. Conclusion: The proposed Codex MRL is not acceptable because of an acute intake concern (see below) and because of the insufficient number of residue trials. Follow-up action: None
General comments	_		

*: Indicates that the MRL is proposed at the limit of quantification.

5.8.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the proposed Codex MRL proposal in peaches.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. Considering that at EU level the lowering	Specific comments: –
The risk assessment was performed with the EU ARfD. For the TDMs, no acute risk assessment could be performed.	of the existing MRLs to the LOQ was proposed (EFSA, 2021c), input values were all set at the LOQ of 0.01, except for peaches, where the STMR derived by JMPR was used.	
The risk assessment is affected by additional non-standard uncertainties, since information provided for propiconazole was considered insufficient to conclude on the toxicological profile of the metabolites containing the 2,4-dichlorobenzoic acid	The risk assessment was performed with the EU ADI. For the TDMs no acute risk assessment could be performed. The risk assessment is affected by additional non-standard uncertainties, since information provided for	

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
(metabolites included in the residue definitions for risk assessment).	propiconazole was considered insufficient to conclude on the toxicological profile of the metabolites containing the 2,4- dichlorobenzoic acid (metabolites included in the residue definitions for risk assessment).	
Results: The calculated short-term exposure exceeded the ARfD for one/several crops under assessment. Peaches: 238% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 2% of the ADI. The contribution of peaches was 0.13%	Results: Long-term exposure: Max 7% of the JMPR ADI. Short-term exposure: 40% of the JMPR ARfD.

5.9. Buprofezin (173) R/T

5.9.1. Background information

Table 38: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New uses and response to concern	The EU raised a public health concern about the potential for the formation of aniline from residues of buprofezin in commodities which are subject to processing.
RMS	IT	
Approval status	Approved	Commission Directive 2011/6/EU, ^(a) in 2017 the use of buprofezin was restricted to non-edible crops (Commission Implementing Regulation (EU) 2017/360 ^(b)).
EFSA conclusion available	Yes, see comments	(EFSA, 2010h) (EFSA, 2015n) confirmatory
MRL review performed	No	Assessment in EFSA statement (EFSA, 2019b); all existing EU MRLs were lowered to the LOQ (Regulation 2019/91 ^(c))
MRL applications/ assessments	No	
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	No	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(d)) has not been performed yet

(a): Commission Directive 2011/6/EU of 20 January 2011 amending Council Directive 91/414/EEC to include buprofezin as active substance. OJ L 18, 21.1.2011, p. 38–40.

(b): Commission Implementing Regulation (EU) 2017/360 of 28 February 2017 amending Implementing Regulation (EU) No 540/ 2011 as regards the conditions of approval of the active substance buprofezin. OJ L 54, 1.3.2017, p. 11–13.

(c): Commission Regulation (EU) 2019/91 of 18 January 2019 amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for buprofezin, diflubenzuron, ethoxysulfuron, ioxynil, molinate, picoxystrobin and tepraloxydim in or on certain products. OJ L 22, 24.1.2019, p. 74–78.

(d): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.9.2. Toxicological reference values

	JMPR ev	JMPR evaluation		EU evaluation				
	Value Comment		Value	Comments	comparable			
Buprofezin								
ADI	0.009 mg/kg bw per day			(EFSA, 2010h) (2-year rat, uncertainty factor 100)	Yes			
ARfD	0.5 mg/kg bw JMPR (2008) (13-week dog study, safety factor 100)		0.5 mg/kg bw	(EFSA, 2010h) (rat developmental study, uncertainty factor 100)	Yes			
Aniline								
ADI	0.02 mg/kg bw per day	JMPR (2008) (human volunteer study, safety factor 10)	_	_	Not appropriate			
ARfD	0.02 mg/kg bw	JMPR (2008) (human volunteer study, safety factor 10)	_	-	Not appropriate			
Conclusion/ comment The EU ADI is 0.01 mg/kg bw uncertainty factor of 100). The rat study. The different ADI va			8 JMPR proposed	the same ADI also based	on the 2-year			
The EU ARfD is 0.5 mg/kg bw, based on the rat develop uncertainty factor of 100). The 2008 JMPR proposed the dog study (applying a safety factor 100).								
	the available info	Relevant metabolites assessed during the EU peer review (EFSA, 2015n): On the basis of the available information, no reference values could be established for plant metabolites BF4, BF9, BF12 and aniline.						
	Concerning aniline, 2019 JMPR received a new in vivo genotoxicity study in transge JMPR considers that the mode of action (MoA) for spleen tumours is not genotoxic genotoxicity study has not been peer reviewed yet at EU level.							

Table 39: Comparison of toxicological reference values (TRV derived by JMPR and at EU level

5.9.3. Residue definitions

Table 40: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Buprofezin	Reg. 396/2005: Buprofezin Peer review (EFSA, 2015n): Buprofezin	Yes
	Animal products	Buprofezin The residue is not fat soluble	Reg. 396/2005: Buprofezin Peer review (EFSA, 2010h): Not RD proposed, since not considered necessary for the representative uses The residue is fat soluble	Yes
RD RA	Plant products	Buprofezin	Peer review (EFSA, 2015n): Sum of buprofezin and BF4 conjugates analysed as BF9 + BF12 under acidic conditions and expressed as buprofezin	No
	Animal products	Buprofezin	Peer review (EFSA, 2015n): Not necessary	Not appropriate
Conclusion, comments	-		, 	-

5.9.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Citrus pulp, dry	5	_	14 processing studies in oranges pulp, dry; PF ranged from 1.1 to 4.8, best estimate for PF: 2.9.
Citrus oil, edible	6	_	10 processing studies in oranges oil; PF ranged from 0.88 to 8.9, best estimate for PF: 5.4.
Olive oil, crude	20	_	8 processing studies in olive oil (crude); PF ranged from 0.9 to 4.1, best estimate for PF: 3.5. It is noted that JMPR derived a Codex MRL proposal for crude olive oil, although no MRL proposal is made for unprocessed olives for oil production (SO 0305).The MRL proposal is probably derived by recalculating the existing CXL for table olives (FT 0305) (5 mg/kg) to olive oil, using the PF. However, it is our understanding that a CXL needs to be established for the RAC olives for oil production.
Group of tree nuts	0.05*	0.01*	cGAP: USA, 1 \times 2.24 kg a.i./ha, PHI 60 days Number of trials: 11 (6 in almonds and 5 in pecan nuts) Sufficiently supported by data: Yes Specific comments/observations: In none of the residue trials quantifiable residues were found. Conclusion: The proposed Codex MRL is sufficiently supported by data. To discuss with RM whether the concerns of the EU were sufficiently addressed by JMPR. Follow-up action: None
Almond hulls	3	_	In the EU, no MRLs are set for almond hulls. JMPR derived the MRL proposal from 7 residue trials approximating the US GAP for almonds (see above).
Almond	0.05* (W)	0.01*	Existing CXL is withdrawn; to be replaced with Codex MRL proposal for the group of tree nuts
Mammalian fats except milk fats	0.01*	0.01*	In cattle feeding study conducted at exaggerated dose rates (12N and 35N the estimated dietary burden) no quantifiable residues were found in tissues and milk. Codex MRLs have been established for other animal products except mammalian fat in 2010. Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Eggs	0.01*	0.01*	The dietary burden for poultry was very low (0.002 ppm). No feeding study for poultry is available. JMPR derived the MRL proposal for poultry products, considering the findings of the feeding study in cattle. Sufficiently supported by data: No Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable although no feeding study is available, considering the low dietary burden for poultry. Follow-up action: None
Poultry, edible offal of	0.01*	0.01*	See eggs.
Poultry fats	0.01*	0.01*	See eggs.
Poultry meat	0.01*	0.01*	See eggs.
Poultry meat General comments:	0.01*	0.01*	See eggs.

Table 41: Comparison of Codex MRL proposals derived by JMPR with EU M

 $\ast\colon$ Indicates that the MRL is proposed at the limit of quantification.

5.9.5. Consumer risk assessment

Table 42: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed for parent buprofezin using PRIMo rev. 3.1 tree nuts. The risk assessment was performed with the EU/Codex ARfD. The calculations are indicative, because no information is available on the magnitude of residues for metabolites included in the EU residue definition (BF4 conjugates analysed as BF9 + BF12 under acidic conditions) Exposure to aniline residues expected in processed products was not calculated, since no aniline concentrations were reported for the crops under consideration.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1 (normal mode). The calculations were performed with the STMR values derived by JMPR for tree nuts and the existing EU MRLs for the remaining crops. The risk assessment was performed with the EU ADI. The calculations are indicative, because no information is available on the magnitude of residues for metabolites included in the EU residue definition (BF4 conjugates analysed as BF9 + BF12 under acidic conditions) Exposure to aniline residues expected in processed products was not calculated, since no aniline concentrations were reported for the crops under consideration.	Specific comments: JMPR calculated the long-term exposure for buprofezin and the short-term exposure for parent buprofezin and for aniline.
Results: No short-term consumer health risk was identified for the crops under assessment. All $\leq 0.1\%$ of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 13% of the ADI. Among the crops under consideration, coconut was identified as the main contributor, accounting for up to 0.25% of the ADI.	Results: Buprofezin: Long-term exposure: Max 4–40% of the JMPR ADI. Short-term exposure (including all crops for which CXLs were established/proposed in 2019 JMPR: Highest result for apples and grapes: 10% of ARfD, respectively. Aniline: Long-term exposure: The long-term dietary risk for buprofezin adequately addresses long-term dietary risk to aniline (from uses of buprofezin). Short-term exposure (including all crops for which CXLs were established/proposed in 2019 JMPR: Highest result for apples and grapes: 0% of ARfD, respectively.

5.10. Bifenthrin (178) R

5.10.1. Background information

Table 43: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	Other evaluation, see comment	Follow-up assessment for draft MRL proposals retained at step 4 and 7

		Comments, references
RMS	BE	
Approval status	Not approved	Regulation (EU) No 2019/324, ^(a) approval expired in July 2019
EFSA conclusion available	Yes, see comments	(EFSA, 2008b) (EFSA, 2011f)
MRL review performed	Yes, see comments	(EFSA, 2015j)
MRL applications/assessments	Yes, see comments	(EFSA, 2020u) (Art. 12 confirmatory data assessment and import tolerance for sweet corn)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/ 605 ^(b)) have not been performed yet

(a): Commission Implementing Regulation (EU) 2019/324 of 25 February 2019 amending Implementing Regulation (EU) No 540/2011 as regards the approval periods of the active substances bifenthrin, carboxin, FEN 560 (also called fenugreek or fenugreek seed powder), pepper dust extraction residue and sodium aluminium silicate. OJ L 57 of 26.2.2019, p. 1–3.
 (b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out

scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.10.2. Toxicological reference values

Table 44:	Comparison of toxicological reference values (TRV derived by JMPR and at EU level)
-----------	--

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.01 mg/kg bw per day	JMPR (2009)	0.015 mg/kg bw per day	(EFSA, 2008b, 2011f) (1-year dog, supported by developmental studies with safety factor 100)	No
ARfD	0.01 mg/kg bw	JMPR (2009)	0.03 mg/kg bw	(EFSA, 2008b, 2011f) (90-day rat neurotoxicity with safety factor 100)	No
Conclusion/ comment	-				

5.10.3. Residue definitions

Table 45: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Bifenthrin (sum of isomers)	Reg. 396/2005 and MRL review Art. 12 (EFSA, 2015j): Bifenthrin (sum of isomers) Peer review (EFSA, 2011f): bifenthrin (sum of isomers)	Yes
	Animal products	Bifenthrin (sum of isomers) The residue is fat soluble	Reg. 396/2005 and MRL review Art. 12 (EFSA, 2015j): Bifenthrin (sum of isomers) Peer review (EFSA, 2011f): bifenthrin (sum of isomers) The residue is fat soluble	Yes
RD RA	Plant products	Bifenthrin (sum of isomers)	MRL review Art. 12 (EFSA, 2015j): Bifenthrin (sum of isomers)	Yes

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
			Peer review (EFSA, 2011f): bifenthrin (sum of isomers)	
	Animal products	Bifenthrin (sum of isomers)	MRL review Art. 12 (EFSA, 2015j): Bifenthrin (sum of isomers)	Yes
Conclusion, comments	The residue defin	itions are compar	able.	

5.10.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL/ assessment of confirmatory data	Comment
Strawberry	3	1 (ft)/further risk management considerations required	cGAP: USA, 0.045–0.22 kg a.i./ha, total seasonal rate: 0.56 kg a.i./ha; PHI: not specified. Number of trials: 19 (4 \times 0.22 kg a.i./ha, RTI 14 days) Sufficiently supported by data: Yes Specific comments/observations: In 2019, JMPR also received a new US GAP for strawberries (4 \times 0.11 kg a.i./ha, PHI 3 days). Since the previously assessed, more critical GAP is still authorised in the USA, the JMPR confirmed its previous MRL proposal of 3 mg/kg. Conclusion: Although the proposed Codex MRL is sufficiently supported by residue trials, it is not acceptable because a short-term consumer risk was identified by JMPR and by EFSA (see below). It is noted that JMPR has not recommended withdrawal of the current CXL of 1 mg/kg. It is proposed to include a recommendation in the EU comments to discuss the withdrawal of the current CXL of 1 mg/kg on strawberries. Follow-up action: None
Straw and fodder (dry) of cereal grains	1 (dw)	 cGAP (for barley, assessed by JMPR in 2010): Switzerland, 2 × 0.016 kg a.i./ha; PHI 42 days. Number of trials: 13 The JMPR derived an MRL proposal based on trials cereal straws from barley, oats, triticale and wheat. were carried out with ~ 2 × lower application rates were scaled to comply with the GAP. The maximum dietary burdens calculated based on 2018 OECD Fe diets was less than 10% of the maximum total diet burden estimated by JMPR in 2010 and did not cha the estimated residues in animal commodities. Follow-up action: Switzerland to verify whether the in cereals still exists. 	
General comments	In 2016, CCPR agreed to retain proposed MRLs for strawberries, celery and let step 4, in light of acute intake risk identified in the 2015 JMPR and await an al GAP for review by 2017 JMPR which was then further postponed to 2019 JMPF In 2010, JMPR recommended withdrawal of the CXL of 0.05 mg/kg* for barley CXL of 0.5 mg/kg for barley straw and fodder. Since the manufacturer committ submit supporting data for barley, barley straw and fodder, CCPR 2011 agreed these CXLs under 4 years periodic review procedure. In 2016, CCPR agreed to existing CXL for barley and barley straw and fodder dry, awaiting the outcome 2018 JMPR (CCPR 48–60). Data for barley straw were now submitted (see table)		proposed MRLs for strawberries, celery and lettuce at isk identified in the 2015 JMPR and await an alternative
			ithdrawal of the CXL of 0.05 mg/kg* for barley and the aw and fodder. Since the manufacturer committed to ey, barley straw and fodder, CCPR 2011 agreed to retain dic review procedure. In 2016, CCPR agreed to retain the ey straw and fodder dry, awaiting the outcome of the

Table 46:	Comparison of Codex MRL	proposals derived by	JMPR with EU MRLs
		proposals acritica b	

Commodity	Codex MRL proposal	EU MRL/ assessment of confirmatory data	Comment
	Additional dat an MRL propo withdrawn. Since no data	ta were submitted, osal for okra, the p owere submitted t	ne draft MRL for okra at step 7 awaiting data from India. , but since the number of trials was insufficient to derive previous draft MRL proposal of 0.2 mg/kg should be o 2019 JMPR for celery and lettuce, a decision on needs to be taken in CCPR 52.

5.10.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for strawberries. Two scenarios were calculated, using the EU ARfD (scenario 1) and the JMPR ARfD (scenario 2).	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long- term risk assessment (EFSA, 2015j) were updated, including the STMR value derived by JMPR for strawberries. In addition, for CXLs implemented in the EU MRL legislation in 2018 the corresponding STMR values were included in the calculation model. Two scenarios were calculated, using the EU ADI (scenario 1) and the JMPR ADI (scenario 2)	consumption of strawberries may present a public health
Results: The calculated short-term exposure exceeded the ARfD in both scenarios. Scenario 1, considering ARfD derived by (EFSA, 2008b, 2011f): Short-term exposure concern was identified (max 125% ARfD for strawberries). Scenario 2: considering ARfD derived by JMPR (2009): Short-term exposure concern was identified (max 376% ARfD for strawberries)	Results: No long-term consumer health risk was identified. Scenario 1, considering ADI derived by	Results: Long-term exposure: Max 10–40% of the JMPR ADI. Short-term exposure: Highest result for children: 380% of ARfD

5.11. Clethodim (187) R/T

5.11.1. Background information

Table 48:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	Periodic review	
RMS	SE	
Approval status	Approved	Commission Implementing Regulation (EU) 2018/1266 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2011m)

		Comments, references
MRL review performed	Yes, see comments	(EFSA, 2019e)
MRL applications/ assessments	No	
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) 2018/1266 of 20 September 2018 amending Implementing Regulation (EU) No 540/2011 as regards the extension of the approval periods of the active substances 1-decanol, 6-benzyladenine, aluminium sulfate, azadirachtin, bupirimate, carboxin, clethodim, cycloxydim, dazomet, diclofop, dithianon, dodine, fenazaquin, fluometuron, flutriafol, hexythiazox, hymexazol, indolylbutyric acid, isoxaben, lime sulphur, metaldehyde, paclobutrazol, pencycuron, sintofen, tau-fluvalinate and tebufenozide. OJ L 238, 21.9.2018, p. 81–83.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.11.2. Toxicological reference values

Table 49:	Comparison of toxicological	reference values (TRV derived by	y JMPR and at EU level
-----------	-----------------------------	--------------------	----------------	------------------------

	JMPR evaluation		E	EU evaluation			
	Value	Comments	Value	Comments	comparable		
ADI	0.2 mg/kg bw per day	JMPR (2019) (2-year rat, with safety factor 100)	0.16 mg/kg bw per day	(EFSA, 2011m) (2-year rat, with uncertainty factor 100)	Yes		
ARfD	Unnecessary	JMPR (2019)	Not necessary, not allocated	(EFSA, 2011m)	Yes		
Conclusion/ comment	In both assessments (JMPR and EFSA), the same NOAEL of 16 mg/kg bw per day was derived for the 2-year rat study and rounded to 0.2 by JMPR for the setting of the ADI. JMPR concluded that the ADI for clethodim applies also to clethodim sulfoxide (free and conjugated), 5-hydroxy sulfone, clethodim imine sulfoxide, clethodim imine sulfone, M15R, M17R, M18R and S-methyl sulfoxide, expressed as clethodim. For these metabolites the setting of an ARfD was not considered necessary. JMPR, however, was unable to conclude on the toxicological relevance of metabolites clethodim sulfone, clethodim oxazole sulfoxide, clethodim oxazole sulfone, M19R and M15A. In the EU evaluation (EFSA, 2011m), it was concluded that the metabolites clethodim imine						
	sulfone, clethodim 5-OH sulfone, clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfone, M17R, M18R and M15R were covered by the TRV of clethodim.						
	In the framework of the MRL review, EFSA concluded that the genotoxic potential of the clethodim metabolite 3-chloroallyl alcohol, the aglycon of 3-chloroallyl alcohol glucoside (M14A/M15A) could not be concluded and no toxicological reference values could be derived for this metabolite. Until a conclusion on the toxicological properties of the metabolite is reached, a decision on the residue definition for risk assessment cannot be made which is a prerequisite to perform a reliable dietary risk assessment.						

5.11.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products	Sum of clethodim and its metabolites convertible to dimethyl 3-[2-(ethylsulfonyl) propyl]-pentanedioate (DME) and dimethyl 3- [2-(ethylsulfonyl) propyl]-3-hydroxy- pentanedioate (DME- OH), expressed as clethodim	MRL review Art. 12 (EFSA, 2019e): For raw plant commodities: Sum of clethodim, clethodim sulfoxide and clethodim sulfone, expressed as clethodim For processed commodities: inconclusive (pending on submission of additional hydrolysis studies) Peer review (EFSA, 2011m): Root/tuber vegetable and Oilseeds/Pulses group: Sum of clethodim, clethodim sulfoxide and clethodim sulfone expressed as clethodim	No		
	Animal products	Sum of clethodim and its metabolites convertible to dimethyl 3-[2-(ethylsulfonyl) propyl]-pentanedioate (DME), expressed as clethodim The residue is fat soluble	MRL review Art. 12 (EFSA, 2019e): Sum of clethodim, clethodim sulfoxide and	No		
RD RA	Plant products	A conclusion could not be reached		No		
	Animal A conclusion could not products be reached			No		
Conclusion, comments	n, Since JMPR was unable to conclude on the toxicological relevance of metabolites clethodim sulf					

Table 50:	Comparison of the residue definitions derived by JMPR and at EU level
-----------	---

5.11.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Alfalfa fodder	10 (W)	-	EU MRLs are not established for feed items.
Beans fodder	10 (W)	_	EU MRLs are not established for feed items.
Beans (dry)	2 (W)	2	JMPR withdrew the previous recommendation for dry beans of 2 mg/kg (EU GAP) because residue trials did not measure all analytes in the clethodim residue definition.
Beans, except broad bean and soyabean	0.5* (W)	0.5	JMPR withdrew the previous recommendation since no residue data were provided.
Cotton seed	0.5 (W)	0.5	JMPR withdrew the previous recommendation since no residue data were provided.
Cotton seed oil, crude	0.5* (W)	-	EU MRLs are not established for processed products.
Cotton seed oil, edible	0.5* (W)	-	EU MRLs are not established for processed products.
Edible offal (Mammalian)	0.2* (W)	0.2	The dietary burden, considering that the only potential feed item was apple wet pomace, was calculated to be 0 ppm. JMPR did not derive a recommendation to replace the previous CXL. It is noted that the MRL proposal for pome fruit (LOQ of 0.2 mg/kg) was not put in the recommendations, probably because of the open toxicological questions related to the residue definition for risk assessment.
Eggs	0.05* (W)	0.05*	See edible offal (mammalian)
Field pea (dry)	2 (W)	2	EU MRLs are not established for feed items.
Fodder beet	0.1* (W)	-	JMPR withdrew the previous recommendation since no residue data were provided.
Garlic	0.5 (W)	0.5	JMPR withdrew the previous recommendation; the data submitted in support of the cGAP (NL) since the trials did not match the GAP.
Meat (from mammals other than marine mammals)	0.2* (W)	0.2	See edible offal (mammalian)
Milks	0.05* (W)	0.05*	See edible offal (mammalian)
Onion, Bulb	0.5 (W)	0.5	JMPR withdrew the previous recommendation; the data submitted in support of the cGAP (NL) since the trials did not match the GAP.
Peanut	5 (W)	5	JMPR withdrew the previous recommendation since no residue data were provided.
Potato	0.5 (W)	0.5	JMPR withdrew the previous recommendation since no residue data were provided.
Poultry meat	0.2* (W)	0.2	See edible offal (mammalian)
Poultry, Edible offal of	0.2* (W)	0.2	See edible offal (mammalian)
Rape seed	0.5 (W)	1	JMPR withdrew the previous recommendation; the data submitted in support of the GAPs (cGAP SK; fall-back GAP UK) since the trials did not match the cGAP or were insufficient (4 trials for UK GAP).
Rape seed oil, Crude	0.5* (W)	-	EU MRLs are not established for processed products.
Rape seed oil, Edible	0.5* (W)	-	EU MRLs are not established for processed products.
Soyabean (dry)	10 (W)	10	JMPR withdrew the previous recommendation since no residue data were provided.
Soyabean oil, crude	1 (W)	-	EU MRLs are not established for processed products.
Soyabean oil, refined	0.5* (W)	-	EU MRLs are not established for processed products.
Sugar beet	0.1 (W)	0.5	JMPR withdrew the previous recommendation since no residue data were provided.

Table 51: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

www.efsa.europa.eu/efsajournal

Commodity	Codex MRL proposal	EU MRL	Comment			
Sunflower seed	0.5 (W)	0.5	JMPR withdrew the previous recommendation since no residue data were provided.			
Sunflower seed oil, crude	0.1* (W)	_	EU MRLs are not established for processed products.			
Tomato	1 (W)	1	JMPR withdrew the previous recommendation since no residue data were provided.			
General comments	EFSA did not properties of	derive M the meta ment ca	erformed MRL review (Art. 12 of Regulation (EC) No 396/2005), ve MRL proposals, because no conclusion on the toxicological metabolite could be reached, and therefore, the residue definition nt cannot be derived which is a prerequisite to perform a reliable			

*: Indicates that the MRL is proposed at the limit of quantification.

5.11.5. Consumer risk assessment

Table 52: Summary of the consumer risk assess	ment
---	------

Acute exposure assessment Chronic exposure assessment		Comments on JMPR exposure assessment	
RA assumptions: Not relevant since no ARfD was allocated.	RA assumptions: Not relevant, since no Codex MRLs were proposed. In the framework of the MRL review, EFSA did not perform a risk assessment, considering the outlined uncertainties.	Specific comments: Because JMPR was unable to conclude on the toxicological relevance of metabolites clethodim sulfone, clethodim oxazole sulfoxide, M19R and M15A, the meeting could not reach a conclusion on the residue definitions. As a result, the dietary risk assessment could not be concluded.	

Until a conclusion on the toxicological properties of the metabolite is reached, a decision on the residue definition for risk assessment cannot be made which is a prerequisite to perform a reliable dietary risk assessment.

5.12. Tebuconazole (189) R

5.12.1. Background information

Table 53:Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	DK	
Approval status	Approved	Commission Directive 2008/125/EC ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2008a) (EFSA, 2014a) (amendment of the approval conditions) (EFSA, 2018p) (conclusion on TDMs) EFSA conclusion (under consideration)
MRL review performed	Yes, see comments	(EFSA, 2011k)
MRL applications/ assessments	Yes, see comments	 (EFSA, 2018g) (olives, rice, herbs and herbal infusions (dried)) (EFSA, 2017f) (beans with pods) (EFSA, 2015v) (rye and wheat) (EFSA, 2015c) (cucumbers and courgettes) (EFSA, 2013h) (poppy seed) (EFSA, 2012h) (citrus except oranges, lettuce and other salad plants, parsley and chives)
Classification of a.s. – cut-off criteria	No	

		Comments, references
Endocrine effects of a.s.	Not assessed/not concluded	

(a): Commission Directive 2008/125/EC of 19 December 2008 amending Council Directive 91/414/EEC to include aluminium phosphide, calcium phosphide, magnesium phosphide, cymoxanil, dodemorph, 2,5-dichlorobenzoic acid methylester, metamitron, sulcotrione, tebuconazole and triadimenol as active substances. OJ L 344, 20.12.2008, p. 78–88.

5.12.2. Toxicological reference values

Table 54:	Comparison	of toxicological	reference values ((TRV)) derived b	y JMPR and at EU level
-----------	------------	------------------	--------------------	-------	-------------	------------------------

	JMPF	R evaluation		TRV			
	Value	Comments	Value	Comments	comparable		
ADI	0–0.03 mg/kg bw per day	JMPR (2010) (1-year, dog, UF 100)	0.03 mg/kg bw per day	(EFSA, 2008a) (1-year dog supported by developmental mouse study, LOAEL with UF of 100 (dog) and 300 (mouse), confirmed in (European Commission, 2008b)	Yes		
ARfD	0.3 mg/kg bw	JMPR (2010) (Maternal and developmental NOAEL in rat and rabbit's developmental toxicity studies, supported by a 28-day study in rats, UF 100)		(EFSA, 2008a) (Developmental mouse study, LOAEL with UF 300), confirmed in (European Commission, 2008b)	No		
Conclusion/ comment	There was a different interpretation of the developmental toxicity study in mice between the JMPR and the EU assessments that resulted in the derivation of different ARfDs between the 2 assessments. The EU peer review considered that malformations and post implantation losses were relevant in mice at the LOAEL of 10 mg/kg bw per day (the lowest dose tested). At EU level, ADI and ARfD were also derived individually for the triazole derivative metabolites (TDMs) 1,2,4-triazole, triazole alanine and triazole acetic acid (EFSA, 2018q). New TRVs were recently derived for these common metabolites in the EFSA conclusion on TDMs (EFSA, 2018p). The approach to perform the consumer risk assessment to all triazole active substances is under discussion.						

5.12.3. Residue definitions

Table 55: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Tebuconazole	Reg. 396/2005: Tebuconazole Peer review (EFSA, 2014a): Sum of enantiomers contained in tebuconazole (provisional)	Yes	
	Animal products	Tebuconazole The residue is not fat soluble	Reg. 396/2005: Sum of tebuconazole, hydroxy- tebuconazole, and their conjugates, expressed as tebuconazole	No	
			Peer review (EFSA, 2014a): Tebuconazole + hydroxy- tebuconazole and their conjugates (sum of enantiomers) expressed as tebuconazole (provisional) The residue is not fat soluble		

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD RA	Plant products	Tebuconazole	MRL review Art. 12 (EFSA, 2011k): Tebuconazole (provisional)	Yes		
			 Peer review (EFSA, 2014a): 1) Sum of enantiomers contained in tebuconazole 2) Specific TDM residue definitions applicable to all active substances of the triazole chemical class (TA, TLA, TAA, 1,2,4-T) (EFSA, 2018p) 			
	Animal products	Tebuconazole	MRL review Art. 12 (EFSA, 2011k): Sum of tebuconazole, hydroxy- tebuconazole and their conjugates expressed as tebuconazole	No		
			 Peer review (EFSA, 2014a): 1) Tebuconazole + hydroxy- tebuconazole and their conjugates (sum of enantiomers) expressed as tebuconazole (provisional) 2) Specific TDM residue definitions applicable to all active substances of the triazole chemical class (TA, TLA, TAA, 1,2,4-T) (EFSA, 2018p) 			
Conclusion, comments	For plant commodities, the JMPR residue definition for enforcement is identical with the EU residue definition. For risk assessment, in addition to the parent compound, residue definitions for the triazole derivative metabolites (TDMs) were established in the EU (EFSA, 2018p). It is noted that for post-harvest uses in fruits, no metabolism studies are available (neither in the EU nor at Codex level). In the EU MRL review a study on grapes with foliar application was considered sufficiently representative for post-harvest uses in citrus because it was carried out with short PHIs and parent tebuconazole was the only compound identified.					
			ions derived by JMPR and at EU level c oducts, the discrepancy is not relevant			
	not have any impa		ment (and not for enforcement purpose or tebuconazole. In addition, TDMs are st treatment.			

5.12.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Oranges, Sweet, Sour, subgroup of (includes all commodities in this subgroup)	0.4 (Po)	0.9	cGAP: Spain, post-harvest, 100 g a.i./100 L (drench spray) Number of trials: 4 Sufficiently supported by data: Yes Orange is a major crop and 8 trials would be required. However, JMPR assumed that for post-harvest treatments, the variability of residue levels is expected to be less than in field trials and therefore 4 trials were considered sufficient. According to the EU guidance document on extrapolation (rev. 10.3) a reduced number

Table 56: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
			of trials for post-harvest treatment is acceptable. According to the report the trials were 'approximating' the cGAP; it should be verified that the trials were within the 25% deviation rule. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Mandarins (including Mandarin-like hybrids) Subgroup of (including all commodities in this subgroup)	0.7 (Po)	5 mandarins 5 tangelos (classified under grapefruits, see comments)	 cGAP: Spain, post-harvest, 100 g a.i./100 L (drench spray) Number of trials: 4 Sufficiently supported by data: Yes. Mandarin is a major crop and 8 trials would be required. However, JMPR assumed that for post-harvest treatments, the variability of residue levels is expected to be less than in field trials and therefore 4 trials were considered sufficient. According to the EU guidance document on extrapolation (rev. 10.3) a reduced number of trials for post-harvest treatment is acceptable. According to the report the trials were 'approximating' the cGAP; it should be verified that the trials were within the 25% deviation rule. Specific comments/observations: this subgroup includes tangelo, which is classified in the EU under 'Grapefruits'. In the Codex food classification tangelos are mentioned twice: in the subgroup of mandarins, 'Tangelo, small and medium sized cultivars, see Mandarins, FC 0003, Hybrids of Mandarins × Grapefruit or Mandarin × Shaddock'; in the subgroup of grapefruits, 'Tangelo, large-sized cultivars, see Pummelo and Grapefruits, FC 0005, Citrus × tangelo J.W.Ingram&H.E.Moore'. The assignment to two groups may cause problems in implementing MRLs established for Subgroup Pummelo and Grapefruit, and Subgroup of mandarins. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Citrus pulp, Dry	3 (dw)	_	Specific comments/observations: A processing factor of 7.2 was derived based on 1 trial for dry pomace.
Orange oil, edible	10	-	Specific comments/observations: A processing factor of 24.5 was derived based on 1 trial for orange oil. In addition, two PF were derived for marmalade: < 0.22; 0.63.
General comments	-		

5.12.5. Consumer risk assessment

Table 57: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions:	RA assumptions:	Specific comments:	
The Codex MRL proposals are lower	The Codex MRL proposals are lower	_	
than the existing EU MRLs.	than the existing EU MRLs. Therefore,		
Therefore, an update of the previous	the previously performed EU risk		
EU exposure assessment is not	assessments are still valid (EFSA,		
necessary.	2018g).		

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
The previous risk assessment which is still valid was performed with the EU ARfD using EFSA PRIMo rev. 2.	The previous risk assessment which is still valid was performed with the EU ADI using EFSA PRIMo rev. 2.	
Results: No short-term consumer health risk was identified for the crops under	Results: No long-term consumer health risk was identified.	Results: Long-term exposure: Max 5% of the JMPR ADI.
assessment. Acute exposure for EU MRL: Oranges: 31% of the ARfD Mandarins: 59% of the ARfD	Maximum exposure: 16.5% of the ADI	Short-term exposure: as the ARfD derived by JMPR is higher than the one derived by the EU, its covered by the European assessment.

5.13. Tolclofos-methyl (191) R/T

5.13.1. Background information

Table 58:	Background information
-----------	------------------------

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	Periodic review	
RMS	SE	
Approval status	Approved	Commission Implementing Regulation (EU) 2019/1101 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2018b)
MRL review performed	Yes, see comments	(EFSA, 2014r)
MRL applications/ assessments	Yes, see comments	(EFSA, 2017c) (potatoes)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet.

(a): Commission Implementing Regulation (EU) 2019/1101 of 27 June 2019 renewing the approval of the active substance tolclofos-methyl in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 175, 28.6.2019, p. 20–24.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.13.2. Toxicological reference values

	JMPR evaluation		EU evaluation		TRV		
	Value	Comments	Value	Comments	comparable		
ADI	0.07 mg/kg bw per day	JMPR (2019)	0.064 mg/kg bw per day	(EFSA, 2018b) (2-year mice study and 100 UF) confirmed in (European Commission, 2019b)	Yes		
ARfD	Unnecessary	JMPR (2019)	0.14 mg/kg bw	(EFSA, 2018b) (9-month mice study and 100 UF) confirmed in (European Commission, 2019b)	No		
Conclusion/ comment	rounding. The ADI deriv	ved by JMPR app	blies also to ph-C	. The slightly different value can b CH_3 , TMO-COOH, ph-COOH, TMO, sed as tolclofos-methyl.			
	JMPR considered the setting of an ARfD not necessary. At the EU level, the ARfD of 0.14 mg/kg bw based was set based on the NOAEL of 13.8 mg/kg bw per day for cholinesterase inhibition observed at 564 mg/kg bw per day on day 14 in the 9-month toxicity study in mice. An UF of 100 was applied. The experts acknowledged that dose spacing (ratio NOAEL/LOAEL of 40) in the study and the use of a 14-day data time point lead to a conservative approach. The ARfD provides a margin of exposure of 4,000 relative to the LOAEL for cholinesterase inhibition in mice and therefore the experts considered not necessary to increase the UF because of lack of developmental neurotoxicity in mice. JMPR additionally considered that the acute rat LD_{50} for mice is > 3,500 mg/kg bw suggesting that acute exposure would not elicit a decrease in cholinesterase activity.						
	During the EU peer review, metabolites DM-TM, DM-TM-COOH, DM-TMO, DM-TM-CH2OH, TMO-COOH, TMO-CH2OH and ph-COOH were considered covered by the toxicological profile of the parent.						
	In the EU peer review genotoxicity studies were available to EFSA. Regarding metabolite TM- CH2OH, the available information indicated that it is unlikely to be genotoxic; however, further data would be needed to conclude on general toxicity (data gap). The majority of experts considered that a similar conclusion as drawn on TM-CH2OH can also be drawn for metabolite ph-CH3 and its structurally similar compound ph-CH2OH (i.e. data gap for general toxicity). However, some experts considered that there was some uncertainty regarding evidence of bone marrow exposure in the in vivo micronucleus (MN) test on ph-CH3 and considered the lack of an in vitro MN test a data gap, in particular for aneugenicity since the available in vivo comet assay could cover clastogenicity too. Overall, the experts supported a data gap for an in vitro MN test to reduce uncertainties						

Table 59: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

5.13.3. Residue definitions

Table 60: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant	Tolclofos-methyl	Reg. 396/2005: Tolclofos-methyl	Yes
	products		Peer review (EFSA, 2018b): Tolclofos-methyl (potato (tuber vegetables) and lettuce (leafy crops)	
			MRL review Art. 12 (EFSA, 2014r): Tolclofos-methyl	
	Animal	Tolclofos-methyl	Reg. 396/2005: Tolclofos-methyl	Yes
	products	The residue is fat soluble	Peer review (EFSA, 2018b): Tolclofos-methyl (provisional)	

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
			MRL review Art. 12 (EFSA, 2014r): Tolclofos-methyl. Due to limited identification of metabolites in the edible animal matrices, the MRL review Art. 12 was not able to derive a robust residue definition for enforcement in animal commodities.	
RD RA	Plant products	Sum of tolclofos-methyl, 2,6-dichloro-4- methylphenol (ph-CH ₃), incl. conjugates), O,O- dimethyl O-2,6-dichloro- 4-(hydroxymethyl) phenylphosphorothioate (TM-CH ₂ OH, incl. conjugates), O-methyl O- hydrogen O-2,6-dichloro- 4-(hydroxymethyl) phenylphosphorothioate (DM-TM-CH ₂ OH) and O- methyl O-hydrogen O- (2,6-dichloro-4- methylphenyl) phosphorothioate (DM- TM), expressed as tolclofos-methyl	The residue is fat soluble Peer review (EFSA, 2018b): Root and tuber crops (potato) for tuber treatment: Tolclofos-methyl and DM-TM-CH ₂ OH expressed as tolclofos-methyl; Leafy crops (lettuce) for soil treatment (preliminary): • Tolclofos-methyl • TM-CH ₂ OH-conjugate • ph-CH3-conjugate The EU RDs are preliminary, pending on further information on the relative toxicity of TM-CH ₂ OH- conjugate and ph-CH ₃ -conjugate and/or occurrence in field trials. MRL review Art. 12 (EFSA, 2014r): Tentatively derived as sum of tolclofos-methyl, sugar conjugate of ph-CH ₃ and sugar conjugate of TM- CH ₂ -OH, expressed as tolclofos- methyl, limited to the seed treatment on root vegetables and foliar and soil treatments on leafy vegetables.	No
	Animal products	Sum of tolclofos-methyl and 3,5-dichloro-4- hydroxybenzoic acid (ph- COOH), expressed as tolclofos-methyl	Peer review (EFSA, 2018b): Tolclofos-methyl and ph-COOH, expressed as tolclofos-methyl (provisional). MRL review Art. 12 (EFSA, 2014r): sum of tolclofos-methyl, sugar conjugate of ph-CH ₃ and sugar conjugate of TM-CH ₂ -OH, expressed as tolclofos-methyl. Due to limited identification of metabolites in the edible animal matrices, the MRL review Art. 12 was not able to derive a robust residue definition for risk assessment in animal commodities.	
Conclusion, comments	evaluation for The residue d metabolism in definition inclu methyl; the ra and soil treatr metabolite ph	potato (tuber vegetables) a efinitions for risk assessmer the crop groups was differ udes tolclofos-methyl and m tio between the parent and nent, it includes tolclofos-m	for monitoring according to the JMPR and lettuce (leafy crops) are comparate the differ. The EU peer review concluder ent. For root and tuber (potato), the r netabolite DM-TM-CH ₂ OH expressed as 1 DM-TM-CH2OH was 1:4. For leafy cro nethyl and the metabolites TM-CH ₂ OH- iminary pending on toxicological inform	ole. d that esidue tolclofos- ops (lettuce) conjugate and

Commodity group	JMPR evaluation	EU evaluation	RDs comparable				
tolclofos-meth	The JMPR evaluation RD RA includes also the metabolite DM-TM, a processing degradate of tolclofos-methyl which occurred in a high temperature hydrolytic study (24–87% AR), and detected in heated potatoes and lettuce.						
assessment ar assessment ar Finalisation of dietary burder is taken (full ir CH ₂ OH in the tolclofos-meth account the m swine and pou assessment) c	e comparable. However, th	e EU residue definitions for in animals is pending on the residue definition for risk at e on the magnitude of me ative dietary burden was of sidue trial, using an adjust the trigger value for feeding povisional residue definition nd and one metabolite wh	he recalculation of the assessment for feed items etabolite residue DM-TM- calculated, based on ment factor to take into g studies for ruminant, for animal products (risk nich was found in milk,				

5.13.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Leafy greens except spinach, purslane and chard	0.7		cGAP: Italy, spray application on protected crop when transplanting, $1 \times 2,000$ g/ha, PHI 28 days Number of trials: Five trials in head lettuce. Sufficiently supported by data: Yes Specific comments/observations: According to the Codex principles, residue trials on head lettuce are suitable for extrapolation to the subgroup 013A of Leafy greens (VL 2050). According to the EU guidelines, lettuce and other salad plants are a major crop and at least eight trials would be required.
			The samples were analysed only for parent tolclofos-methyl. An adjustment factor of 2 derived from a metabolism study was used to derive the risk assessment values. In Regulation (EU) 2017/1016 ^(a) confirmatory data were requested for crops classified in the EU lettuce group (i.e. toxicological data on the sugar conjugates of metabolites ph-CH ₃ and TM-CH ₂ OH and on residue trials including analysis of the sugar conjugates of metabolites ph-CH ₃ and TM-CH ₂ OH and on residue trials including analysis of the sugar conjugates of metabolites ph-CH ₃ and TM-CH ₂ OH). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the missing toxicological data for pH-CH3 and TM-CH ₂ OH, the lack of information on the actual occurrence of the metabolites included in the RD for RA, taking into account that for most crops concerned the existing EU MRL is higher than the proposed Codex MRL and that the Codex MRL proposal was derived for an European GAP. Follow-up action: None
Potato	0.3	0.2	cGAP: Italy, potato seed tuber dressing before planting, $1 \times 250 \text{ g/t}$ Number of trials: 31 trials Sufficiently supported by data: Yes Specific comments/observations: The samples were analysed only for parent tolclofos-methyl. An adjustment factor of 6 derived from a metabolism study was used to derive the risk assessment values.

Commodity	Codex MRL proposal	EU MRL	Comment	
			The estimated acute dietary exposure to residues of tolclofos- methyl exceeds the toxicological reference value (ARfD) (see below). Conclusion: The MRL proposal is not acceptable, due to acute intake concerns. It is recommended to review the EU MRL which may also lead to an exceedance taking into account the new acute toxicological reference value and new residue definition derived in the EU peer review. Follow-up action: None	
Edible offal (Mammalian)	0.01*	0.01*	JMPR calculated the dietary burden for livestock on the basis of residues in feed crops under assessment and their by-products (potato cull and potato process waste (wet peel)), using an adjustment factor of 6.0 for total residues. The max estimated burden for cattle was calculated for EU beef cattle. Since no feeding study was available, the MRL proposal was derived from the metabolism study. Conclusion: The proposed Codex MRL may be considered acceptable despite some data gaps, since the proposed MRL is at the LOQ. Follow-up action: None	
Eggs	0.01*	0.01*	 JMPR calculated the dietary burden for livestock on the basis residues in feed crops under assessment and their by-produc (potato cull and potato process waste (wet peel)), using an adjustment factor of 6. The max estimated burden for poultry was calculated for EU layer. The JMPR used the hen metabolism study to estimate residu levels in animal commodities Conclusion: The proposed Codex MRL may be considered acceptable despite some data gaps, since the proposed MRL at the LOQ. Follow-up action: None 	
Mammalian fats (except milk fats)	0.01*	0.01*	See edible offal (mammalian)	
Meat (from mammals other than marine mammals)	0.01*	0.01*	See edible offal (mammalian)	
Milks	0.01*	0.01*	See edible offal (mammalian)	
Poultry fats	0.01*	0.01*	See eggs	
Poultry meat	0.01*	0.01*	See eggs	
Poultry, Edible offal of	0.01*	0.01*	See eggs	
General comments	 (ft): EFSA identified some information on residues trials, toxicological data on the sugar conjugates of metabolites ph-CH3 and TM-CH2OH and on residue trials including analysis of the sugar conjugates of metabolites ph-CH3 and TM-CH2OH as unavailable. The missing data should be submitted by 6 February 2018. In 2018 applicant requested extension of the deadline and gave argumentation to reconsider the residue definition for RA. 			

*: Indicates that the MRL is proposed at the limit of quantification.

(a): Commission Regulation (EU) 2017/1016 of 14 June 2017 amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for benzovindiflupyr, chlorantraniliprole, deltamethrin, ethofumesate, haloxyfop, Mild Pepino Mosaic Virus isolate VC1, Mild Pepino Mosaic Virus isolate VX1, oxathiapiprolin, penthiopyrad, pyraclostrobin, spirotetramat, sunflower oil, tolclofos-methyl and trinexapac in or on certain products. OJ L 159, 21.6.2017, p. 1–47.

5.13.5. Consumer risk assessment

Table 62: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. The EU residue definitions for risk assessment for plant and animal origin commodities are tentative. The calculations are affected by additional, non-standard uncertainties, related to the data gap for the toxicological assessment of the metabolites TM-CH ₂ OH conjugate and ph-CH ₃ conjugate (relevant to the	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2017c) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. The EU residue definitions for risk assessment for plant and animal origin commodities are tentative. The calculations are affected by additional, non-standard uncertainties,	Specific comments: None.
consumer risk assessment of the CXL proposal for leafy greens), and the tentative consumer risk assessment considering only exposure to residues in potato using an estimation of the magnitude of the major metabolite DM-TM- CH ₂ OH (relevant to the consumer risk assessment of the CXL proposal for potatoes).	related to the data gap for the toxicological assessment of the metabolites TM-CH2OH conjugate and ph- CH3 conjugate (relevant to leafy greens) and the tentative consumer risk assessment considering only exposure to residues in potato using an estimation of the magnitude of the major metabolite DM-TM-CH2OH (relevant to potatoes.	
The risk assessment was performed with the JMPR adjustment factors to derive the risk assessment values.	The risk assessment was performed with the JMPR adjustment factors to derive the risk assessment values.	
The risk assessment was performed with the EU ARfD.	The risk assessment was performed with the EU ADI.	
The calculations are indicative, because toxicological data for $pH-CH_3$ and $TM-CH_2OH$ and their conjugates is not available, and there is a lack of information on the actual occurrence of the metabolites included in the residue definition for risk assessment.	The calculations are indicative, because toxicological data for pH-CH3 and TM- CH2OH and their conjugates is not available, and there is a lack of information on the actual occurrence of the metabolites included in the residue definition for risk assessment.	
Results: The calculated short-term exposure exceeded the ARfD for one crop under assessment.	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted	Results: Long-term exposure: Max 1% of the JMPR ADI.
Potatoes: 138% of ARfD (UK infant) Escaroles/broad-leaved endives: 22.38% of ARfD Lettuces: 21.21% of ARfD Lamb's lettuce/corn salads: 1.57% of ARfD	for 3% of the ADI. Among the commodities under consideration, milk and potatoes were identified as the main contributors, accounting for up to 0.9% and 0.8% of the ADI, respectively.	Short-term exposure: Not relevant (JMPR did not derive an ARfD).

5.14. Kresoxim-methyl (199) R

5.14.1. Background information

Table 63:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	Periodic review	
RMS	SE	
Approval status	Approved	Commission Implementing Regulation (EU) No 810/ $2011^{(a)}$
EFSA conclusion available	Yes, see comments	(EFSA, 2010k)
MRL review performed	Yes, see comments	(EFSA, 2014b)
MRL applications/ assessments	Yes, see comments	(EFSA, 2018z) (confirmatory data) (EFSA, 2015o) (leeks) (EFSA, 2010n) (blueberries and cranberries)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	

(a): Commission Implementing Regulation (EU) No 810/2011 of 11 August 2011 approving the active substance kresoximmethyl, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 207, 12.8.2011, p. 7–11.

5.14.2. Toxicological reference values

	JMPR evaluation		E	TRV	
	Value	Comments	Value	Comments	comparable
ADI	0.3 mg/kg bw per day	JMPR (2018)	0.4 mg/kg bw per day	(EFSA, 2010k) (2-year oral rat with an uncertainty factor of 100)	No
ARfD	Unnecessary	JMPR (2018)	Not allocated	Not necessary	Yes
Conclusion/ comment	2018 JMPR concluded that the ADI derived for parent kresoxim-methyl was applicable also for the metabolites BF-490-1 (490M1) and BF-490-9 (490M9) and their conjugates). As regards BF-490-2 (490M2) JMPR could not conclude that the ADI of parent compound is applicable. Hence the TTC concept was used for this metabolite. In the EU peer review, it was considered unlikely that metabolites BF 490-1 (490M1), BF 490-2 (490M2) and BF 490-9 (490M9) are more toxic than kresoxim-methyl, and therefore, the reference values of the parent were considered applicable.				

Table 64: Comparison of toxicological reference values (TRV derived by JMPR and at EU level)

5.14.3. Residue definitions

Table 65: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Kresoxim-methyl	EU Reg. 2019/1015 ^(a) : Kresoxim-methyl	Yes
	Animal products	Sum of metabolites (2 <i>E</i>) (methoxyimino){2- [(2methylphenoxy)methyl]	EU Reg. 2020/856 ^(b) : Kresoxim-methyl (BF-490-9 (490M9), expressed as	No

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
		phenyl} acetic acid (490M1), and (2 <i>E</i>)-{2[(4-hydroxy-2- methylphenoxy) methyl] phenyl}(methoxyimino) acetic acid (490M9) expressed as kresoxim- methyl.	parent) (applies to all animal products except honey) The residue is not fat soluble	
RD RA	Plant products	The residue is not fat soluble Sum of kresoxim-methyl and metabolites (2 <i>E</i>)- (methoxyimino){2[(2- methylphenoxy)methyl] phenyl} acetic acid (490M1) and (2 <i>E</i>)-{2[(4-hydroxy-2- methylphenoxy) methyl] phenyl}(methoxyimino) acetic acid (490M9) including their conjugates expressed as kresoxim-methyl.	Art.12 (EFSA, 2014b) and peer-review (EFSA, 2010k): Sum of kresoxim-methyl and the metabolites BF 490-2 (490M2) and BF 490-9 (490M9), free and conjugated, expressed as parent.	No
	Animal products	Sum of metabolites (2 <i>E</i>) (methoxyimino){2- [(2methylphenoxy)methyl] phenyl} acetic acid 490M1), and (2 <i>E</i>)-{2[(4-hydroxy-2- methylphenoxy) methyl] phenyl}(methoxyimino) acetic acid (490M9) expressed as kresoxim- methyl.	Art.12 (EFSA, 2014b) and peer-review (EFSA, 2010k): Ruminant matrices and milk: Sum of metabolites BF 490-1 (490M1), BF 490-2 (490M2) and BF 490-9 (490M9), expressed as parent. No residue definition is proposed for poultry matrices.	No
Conclusion, comments	The EU and JMPR residue definitions are comparable only for the enforcement of plant products. For risk assessment in plants, JMPR included 490M1, but not metabolite 490M2. The inclusion of 490M2 and 490M9 in the EU RD was supported by the residue trials on grapes where they were observed at similar levels to the parent. While 490M1 is considered as an intermediate in the metabolic pathway, that is hydroxylated to form metabolites 490M2 and 490M9. The 2018 JMPR also noted that if future uses of kresoxim-methyl result in an increase of the dietary exposure to metabolite 490M2 (BF 490-2), to more than the threshold of toxicological concern (TTC) for a Cramer Class III compound, a reconsideration of the residue definition for dietary exposure may be necessary. For animal products, the current EU RD both for enforcement and risk assessment differ from the ones proposed by JMPR. The EU residue definition for enforcement is restricted to the most relevant metabolite for the respective matrices, while JMPR established a comprehensive residue definition that covers all metabolites observed in animal products. For risk assessment, as in plants, 490M2 (BF 490-2) is included in the EU RD since it is a major compound in metabolism studies.			

(a): Commission Regulation (EU) 2019/1015 of 20 June 2019 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for aminopyralid, captan, cyazofamid, flutianil, kresoxim-methyl, lambda-cyhalothrin, mandipropamid, pyraclostrobin, spiromesifen, spirotetramat, teflubenzuron and tetraconazole in or on certain products. OJ L 165, 21.6.2019, p. 23–64.

(b): Commission Regulation (EU) 2020/856 of 9 June 2020 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for cyantraniliprole, cyazofamid, cyprodinil, fenpyroximate, fludioxonil, fluxapyroxad, imazalil, isofetamid, kresoxim-methyl, lufenuron, mandipropamid, propamocarb, pyraclostrobin, pyriofenone, pyriproxyfen and spinetoram in or on certain products. OJ L 195, 19.6.2020, p. 9–51.

5.14.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Pome fruit	0.2 (W)	0.2	JMPR proposes to withdraw the MRL for pome fruit and replace it with an MRL of 0.15 mg/kg for the whole pome fruit group, except Japanese persimmon. See below.
Pome fruit (except Persimmon, Japanese)	0.15	0.2 (pome fruits: apples, pears, quinces and medlars) 0.9 (azaroles)	cGAP: 4 foliar treatments \times 0.22 kg a.s./ha, 7 days minimum interval, PHI 30 days. Number of trials: 17 trials compliant with GAP on apples and 8 trials compliant with GAP on pears. Sufficiently supported by data: Yes Specific comments/observations: According to Codex food classification, pome fruit include also medlars, azaroles. The existing EU MRL of 0.2 mg/kg was derived from the CXL, which is now proposed to be withdrawn and replaced by a lower CXL of 0.15 mg/kg, which corresponds to the MRL needed to cover the EU uses for pome fruits (apples, pears, quinces, medlar, loquat). Conclusion: The proposed Codex MRL is acceptable.It should be discussed with MS whether the existing EU MRL for pome fruit should be lowered. Follow-up action: None
General comments	6 –		

Table 66:	Comparison of Codex	MRL proposals derived b	y JMPR with EU MRLs
-----------	---------------------	-------------------------	---------------------

5.14.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2018z) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. The risk assessment was performed with the EU ADI. The calculations are indicative, because for the Codex MRLs, the STMRs do not cover metabolite 490M2 (instead, 490M1 is covered, but not included in the EU RD).	Specific comments: In 2018, JMPR noted that the recommendation for the residue definition for dietary exposure may be necessary, if for future uses the exposure to metabolite BF 490-2 (490M2) would exceed the TTC for Cramer Class III compounds.
Results: Not relevant	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 1% of the ADI. Among the crops under consideration, apple was identified as the main contributor, accounting for up to 0.3% of the ADI.	Results: Long-term exposure: Max 0.4% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD). JMPR also updated the exposure calculation for BF-490—2 (490M2) (0.30 μ g/kg bw per day) which was found to be below the TTC of 1.5 μ g/kg bw per day.

5.15. Pyriproxyfen (200) R

5.15.1. Background information

Table 68: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	The use on mango and banana have been assessed previously by 2018 JMPR, but the trials were insufficient to derive an MRL proposal
RMS	NL	
Approval status	Approved	Commission Directive 2008/69/EC ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2019g)
MRL review performed	No	
MRL applications/ assessments	Yes, see comments	(EFSA, 2016b) (bananas) (EFSA, 2013q) (stone fruits and tea)
Classification of a.s. – cut- off criteria	No	
Endocrine effects of a.s.	No	Negative: following ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)).

(a): Commission Directive 2008/69/EC of 1 July 2008 amending Council Directive 91/414/EEC to include clofentezine, dicamba, difenoconazole, diflubenzuron, imazaquin, lenacil, oxadiazon, picloram and pyriproxyfen as active substances, OJ L 172, 2.7.2008, p. 9–14.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.15.2. Toxicological reference values

	JMPR evaluation			TRV		
	Value	Comments	Value	lue Comments		
ADI	0.1 mg/kg bw per day	JMPR (1999) (1-year dog	0.1 mg/kg bw per day	Commission Directive 2008/69/EC ^(a)	No	
		study, safety factor 100)	0.05 mg/kg bw per day	(EFSA, 2019g) (78-week mouse study and 300 UF for using an LOAEL instead of an NOAEL) confirmed in (European Commission, 2020)		
ARfD	RfD Unnecessary JMPR		Not necessary	Commission Directive 2008/69/EC ^(a)	No	
		1 mg/kg bw	(EFSA, 2019g) (rabbit study and 100 UF) confirmed in (European Commission, 2020)			
Conclusion/ comment	During the EU assessment for renewal (EFSA, 2019g), the revised assessment of the 78-week mouse study led to an LOAEL of 16.4 mg/kg bw per day and an agreed ADI of 0.05 mg/kg bw per day by using a total uncertainty factor of 300. Additionally, a revised assessment of the rabbit developmental toxicity study identified the occurrence of malformations leading to an ARfD of					

Table 69: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

(a): Commission Regulation (EU) 2017/1016 of 14 June 2017 amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for benzovindiflupyr, chlorantraniliprole, deltamethrin, ethofumesate, haloxyfop, Mild Pepino Mosaic Virus isolate VC1, Mild Pepino Mosaic Virus isolate VX1, oxathiapiprolin, penthiopyrad, pyraclostrobin, spirotetramat, sunflower oil, tolclofos-methyl and trinexapac in or on certain products. OJ L 159, 21.6.2017, p. 1–47.

1 mg/kg bw.

5.15.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Pyriproxyfen	Reg. 396/2005: Pyriproxyfen Peer review (EFSA, 2019g): Pyriproxyfen (only for fruit and pulses/ oilseeds)	Yes
	Animal products	Pyriproxyfen The residue is fat soluble	Reg. 396/2005: Pyriproxyfen Peer review (EFSA, 2019g): Pyriproxyfen The residue is fat soluble	Yes
RD RA	Plant products	Pyriproxyfen	Peer review (EFSA, 2019g): Pyriproxyfen (only for fruit and pulses/oilseeds)	Yes
	Animal products	Pyriproxyfen	Peer review (EFSA, 2019g): Pyriproxyfen	Yes
Conclusion, comments	The residue definition proposed by JMPR for enforcement and risk assessment are identical with the EU residue definitions.			

5.15.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Mango	0.02*	0.05*	cGAP: Malaysia, $2 \times 5g$ a.i/hL, 14 days interval, PHI 14 days Number of trials: 6 (< 0.02*) Sufficiently supported by data: Yes Specific comments/observations: In 2018 JMPR assessed a different GAP (2×5 g a.i./ha, 14 days interval, PHI 1 day), which was not sufficiently supported by trials (6 trials were submitted with a PHI of 14 days instead of 1 day). This year JMPR assessed a different GAP. However, it seems that the GAP was wrongly reported (it is expected that the application rate is expressed as g a.i./ha, instead of hL). Conclusion: The proposed Codex MRL is acceptable; however, the existing EU MRLs is higher Follow-up action: To check in JMPR evaluation the GAP reported to JMPR (application rate expressed as ha or hL) and whether the residue trials actually match the GAP.
General comments	_		

Table 70: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

*: Indicates that the MRL is proposed at the limit of quantification.

5.15.5. Consumer risk assessment

Table 71: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Although the Codex MRL proposal is lower than the existing EU MRL, an acute exposure was estimated using the HR of the residue trials submitted in support of the Codex MRL request. The previous risk assessment was performed with the recently derived ARfD (EFSA, 2019g).	RA assumptions: Since the Codex MRL proposal is lower than the existing EU MRLs, the previously performed EU risk assessments input values derived in 2016 (EFSA, 2016b) and updated for melons and papaya (CXLs have been taken over in the EU legislation) are still valid. The risk assessment was performed	Specific comments: –
	with the recently derived ADI (EFSA, 2019g).	

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: No short-term consumer health risk was identified for the crops under assessment. Acute exposure for EU MRL for mango is 0.2% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 22% of the ADI.	Results: Long-term exposure: Max 1% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD).

5.16. Cyprodinil (207) R/T

5.16.1. Background information

Table 72: Background information

		Comments, references	
JMPR assessment	Extraordinary JMPR meeting May 2019		
Type of JMPR evaluation	New use		
RMS	FR		
Approval status	Approved	Commission Directive No 2006/64/CE ^(a)	
EFSA conclusion available	Yes, see comments	(EFSA, 2006a) EFSA conclusions (Additional data request)	
MRL review performed	Yes, see comments	(EFSA, 2013n)	
MRL applications/ assessments	Yes, see comments	(EFSA, 2021e) (blueberries, gooseberries, currants and cranberries) (EFSA, 2019j) (rhubarb) (EFSA, 2019c) (Florence fennel) (EFSA, 2015g) (celery)	
Classification of a.s. – cut-off criteria	No		
Endocrine effects of a.s.	Not assessed/not concluded	Not finalised: following ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)), additional data were requested.	

(a): Commission Directive 2006/64/CE of 18 July 2006 amending Council Directive 91/414/EEC to include clopyralid, cyprodinil, fosetyl and trinexapac as active substances. OJ L 206, 27.7.2006, p. 107–111.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.16.2. Toxicological reference values

Table 73: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR evaluation		E	TRV		
	Value	Comments	Value	Comments	comparable	
ADI	0–0.03 mg/kg bw per day	JMPR (2003)	0.03 mg/kg bw per day	(EFSA, 2006a) (2-year rat study and UF 100) confirmed in (European Commission, 2006c)	Yes	
ARfD	Not necessary	JMPR (2003)	Not necessary	(EFSA, 2006a) confirmed in (European Commission, 2006c)	Yes	
Conclusion/ comment	The TRV values derived by JMPR and at EU level are identical. In the framework of the renewal of the approval for cyprodinil, the setting of an ARfD is under discussion.					

5.16.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Cyprodinil	Reg. 396/2005: Cyprodinil	Yes
	Animal products	Cyprodinil The residue is fat soluble	Reg. 396/2005: <u>Animal products (except milk</u> <u>and honey</u>): Cyprodinil (sum of cyprodinil and CGA 304075 (free), expressed as cyprodinil)	No
			<u>Milk</u> : Cyprodinil (sum of cyprodinil and CGA 304075 (free and conjugated), expressed as cyprodinil).	
			<u>Honey</u> : Cyprodinil The residue is fat soluble	
RD RA	Plant products	Cyprodinil	MRL review Art. 12 (EFSA, 2013n): Cyprodinil	Yes
	Animal products	Cyprodinil The residue is fat soluble	MRL review Art. 12 (EFSA, 2013n): <u>Animal</u> <u>products (except milk and honey</u>): Cyprodinil (sum of cyprodinil and CGA 304075 (free), expressed as cyprodinil)	No
			<u>Milk</u> : Cyprodinil (sum of cyprodinil and CGA 304075 (free and conjugated), expressed as cyprodinil).	
			<u>Honey</u> : Cyprodinil The residue is fat soluble	
Conclusion, comments	The different residue definitions for animal products is of no relevance for the current assessment, as the only Codex MRL proposal under assessment refers to soybeans.			

Table 74: Comparison of the residue definitions derived by JMPR and at EU level

5.16.4. Codex MRL proposals

Table 75: Comparison of Codex MRL proposals derived by JMPR with EU MRLs
--

Commodity	Codex MRL proposal	EU MRL	Comment
Soyabean (dry)	0.3	0.02*	cGAP: Brazil, 2×1.05 kg a.i./ha, appl. interval 7 days and a PHI 30 days Number of trials: 4 GAP compliant trials and 8 trials which were performed at a lower dose rate. 6 of these trials with residues > LOQ were scaled up. Sufficiently supported by data: Yes Specific comments/observations: Soyabean is a major crop and therefore 8 residue trials are required. JMPR scaled residue trials which differed not only in the application rate but also with regard to the interval between the application (14 days instead of 7 days), since the interval did not appear to have a significant impact on the final residues. Details to check the possible impact of the longer RTI of the residue trials on the final residues are not reported in JMPR Evaluation report. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs. Follow-up action: None
General comments	_		5

*: Indicates that the MRL is proposed at the limit of quantification.

5.16.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since currently no ARfD was allocated.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2021e) were updated, including the STMR value derived by JMPR for soybeans.	Specific comments: Only long-term dietary exposure assessment was performed.
	The risk assessment was performed with the EU ADI.	
	The calculations are indicative, because there is no sufficient number of residue trials to support the critical GAP for cyprodinil in soyabean.	
Results: Not relevant	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 56% of the ADI. The contribution of soybeans to the total intake accounted for up to 1% of the ADI.	Results: Long-term exposure: Max 70% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD).

Table 76: Summary of the consumer risk assessment

5.17. Pyraclostrobin (210) R/T

5.17.1. Background information

Table 77:	Background information
-----------	------------------------

		Comments, references	
JMPR assessment	JMPR meeting September 2019		
Type of JMPR evaluationFollow-up evaluationdue to concern form		Section 3.8 of JMPR report, the EU noted an error in a residue trial in spinaches and commented on the approach taken to se a group MRL for root and tuber vegetables.	
RMS	DE		
Approval status	Approved	Commission Implementing Regulation (EU) 2018/1796 ^(a)	
EFSA conclusion available	No	Peer-review ongoing	
MRL review performed	Yes, see comments	(EFSA, 2011I)	
MRL applications/ assessments	Yes, see comments	 (EFSA, 2019l) (sweet corn) (EFSA, 2018aa) (confirmatory data following Art.12) (EFSA, 2018y) (soyabean) (EFSA, 2018ac) (various crops and import tolerances) (EFSA, 2018ab) (rice) (EFSA, 2017b) (various crops) (EFSA, 2016o) (beet leaves) (EFSA, 2014o) (swedes and turnips) (EFSA, 2014e) (chicory roots) (EFSA, 2013a) (Jerusalem artichokes) (EFSA, 2012b) (leafy brassica and various cereals) (EFSA, 2011c) (various crops) 	
Classification of a.s. – cut-off criteria	Not assessed/not concluded		
Endocrine effects of a.s.	Not assessed/not concluded	ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) is ongoing; further data were requested to conclude on ED properties on non-target organisms (clock-stop).	

- (a): Commission Implementing Regulation (EU) 2018/1796 of 20 November 2018 amending Implementing Regulation (EU) No 540/2011 as regards the extension of the approval periods of the active substances amidosulfuron, bifenox, chlorpyrifos, chlorpyrifos-methyl, clofentezine, dicamba, difenoconazole, diflubenzuron, diflufenican, dimoxystrobin, fenoxaprop-p, fenpropidin, lenacil, mancozeb, mecoprop-p, metiram, nicosulfuron, oxamyl, picloram, pyraclostrobin, pyriproxyfen and tritosulfuron. C/2018/7577. OJ L 294, 21.11.2018, p. 15–17.
- (b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.17.2. Toxicological reference values

Table 78: Comparison of toxicological reference values (TRV derived by JMPR and at EU level)

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.03 mg/kg bw per day	JMPR (2003)	0.03 mg/kg bw per day	(European Commission, 2004) (2-year rat study, uncertainty factor of 100)	Yes
ARfD	0.7 mg/kg bw	JMPR (2018)	0.03 mg/kg bw	(European Commission, 2004) (Rabbit developmental study, with an uncertainty factor of 100)	No
Conclusion/ comment	(28 January 2020 The RMS provide JMPR and at EU reduced uncertai It is noted that h embryo and fetal withdrawn in 201 secondary to loca dietary risk asses on vomiting and studies), and app	The EU ARfD of 0.03 mg/kg was recently confirmed at the EFSA Pesticide peer review meeting (28 January 2020). The RMS provided detailed comments outlining the reason for the divergent ARfD derived by JMPR and at EU level and noted that the approach taken by JMPR to derive the ARfD using a reduced uncertainty factor was not consistent with JMPR assessments for other substances. It is noted that he previous JMPR ARfD of 0.05 mg/kg bw (JMPR, 2003), that was based on embryo and fetal toxicity in a developmental toxicity study in rabbits (SF 100), has been withdrawn in 2018. Based on additional studies, the meeting concluded that the effects secondary to local irritation following gavage dosing in rabbits were not relevant to human dietary risk assessment. Therefore, the meeting established a new ARfD of 0.7 mg/kg bw based on vomiting and diarrhoea seen during the first week of dosing of dogs (90-day and 1-year studies), and applying a safety factor of 8 since the critical effects are considered to be secondary to a direct local effect on the gastrointestinal tract, which is independent of			

5.17.3. Residue definitions

Table 79: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Pyraclostrobin	Reg. 396/2005: Pyraclostrobin	Yes	
	Animal products	Pyraclostrobin	Reg. 396/2005: Pyraclostrobin	Yes	
		The residue is fat soluble	The residue is fat soluble		
RD RA	Plant products	Pyraclostrobin	MRL review Art. 12 (EFSA, 2011I): Pyraclostrobin	Yes	
	Animal products	Pyraclostrobin	MRL review Art. 12 (EFSA, 2011I): Sum of pyraclostrobin and its metabolites containing the 1-(4-chlorophenyl)-1H- pyrazole moiety or the 1-(4-chloro-2- hydroxyphenyl)-1H-pyrazole	No	
Conclusion, comments	For plants, JMPR and EU residue definitions are similar (both enforcement and risk assessment). For animal only the residue definition for enforcement is identical, while the RA residue definition in EU is wider compared with JMPR. However, since no MRL proposals are under discussion for animal products, this difference is of no relevance. The process of renewal of the EU approval is ongoing; therefore, the EU residue definitions may be revised in the near future.				

5.17.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Root vegetables, Subgroup of	0.5 (W)		The existing CXL is proposed to be withdrawn and replaced by the group MRL for root vegetables group. See below.
Root vegetables, Subgroup of (includes all commodities in the subgroup except sugar beet)	0.5	0.5 (Carrots, celeriacs/turnip-rooted celeries and radishes); 0.09 (Swedes and turnips); 0.1 (salsifies and parsley roots, beet roots); 0.3 (Horseradishes, ginger and parsnips); 0.08 Chicory roots	cGAP: USA, 3×0.234 kg/ha, RTI 8 days, PHI 0 days Number of trials: 6 carrots (major crops), 5 radishes (minor crops). Sufficiently supported by data: Yes Specific comments/observations: The number of the trials is sufficient. Although, according to the extrapolation rules of Codex, trials on carrots, radishes and sugar beet or beetroot are required to derive a group MRL for root vegetables, the database is deemed sufficient to derive a group MRL for root vegetables, except sugar beet. Risk managers to discuss whether the interpretation of the extrapolation rules is acceptable. According to EU extrapolation guidance, 8 residue trials in carrots would be required to set an MRL for root and tuber vegetables (except sugar beets). However, extrapolation to chicory roots is not explicitly mentioned in the EU extrapolation guidance. Conclusion: It is recommended to discuss with MS whether the interpretation of the Codex extrapolation is acceptable. If so, the proposed Codex MRL would be acceptable. Follow-up action: None
Spinach	0.6	0.6	cGAP: EU (Italy and Germany), 2×0.1 kg/ha, PHI 14 days, RTI 7 days (IT) and 8 days (DE) Number of trials: 10 Sufficiently supported by data: Yes Specific comments/observations: The trials were conducted in France, Germany and Italy. JMPR combined NEU and SEU trials to support the MRL proposal. Last year the EU commented that the results for one residue trial was probably incorrect. JMPR reviewed the data, since the wrong result was expected to impact the MRL calculation and the HR. JMPR identified a typo and corrected the HR (0.31 mg/kg) and revised the MRL proposal. The existing EU MRL is derived from NEU residue data set. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None

Table 80.	Comparison of Codex MRL	proposals derived by 10	MPR with FILMRIS
	Companson of Codex Mike	proposais derived by Ji	IFK WILL LU MIKLS

5.17.5. Consumer risk assessment

Table 81: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal/HR is higher than the existing EU MRL. The risk assessment was performed with the EU ARfD.	performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2019I) were updated, including the STMR values derived by JMPR	
Results: No short-term consumer health risk was identified for the crops under assessment. Beetroots: 57% of ARfD Swedes: 52% of ARfD Carrots: 51% of ARfD Carrots: 51% of ARfD Spinaches: 45% of ARfD Parsnips: 36% of ARfD Turnips: 36% of ARfD Salsifies: 31% of ARfD Parsley roots: 4.5% of ARfD Horseradishes: 0.4% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 18% of the ADI. Among the crops under consideration, swedes and turnips were identified as the main contributors, accounting for up to 0.4% of the ADI.	Results: Long-term exposure: Max 7% of the JMPR ADI (JMPR, 2018). Short-term exposure: Highest result for turnip, swedes: 1% of ARfD

5.18. Boscalid (221) R/T

5.18.1. Background information

Table 82:Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	SK	
Approval status	Approved	Commission Implementing Regulation (EU) 2018/917 ^(a)
EFSA conclusion available	No	In progress
MRL review performed	Yes, see comments	(EFSA, 2014I)
MRL applications/ assessments	Yes, see comments	(EFSA, 2020o) (pomegranates) (EFSA, 2019o) (honey and other agriculture products) (EFSA, 2015f) (beans and peas with pods) (EFSA, 2010j) (various crops) (EFSA, 2009d) (gherkins and courgettes)
Classification of a.s. – cut- off criteria	Not assessed/not concluded	No harmonised classification
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

- (a): Commission Implementing Regulation (EU) 2018/917 of 27 June 2018 amending Implementing Regulation (EU) No 540/ 2011 as regards the extension of the approval periods of the active substances alpha-cypermethrin, beflubutamid, benalaxyl, benthiavalicarb, bifenazate, boscalid, bromoxynil, captan, carvone, chlorpropham, cyazofamid, desmedipham, dimethoate, dimethomorph, diquat, ethephon, ethoprophos, etoxazole, famoxadone, fenamidone, fenamiphos, flumioxazine, fluoxastrobin, folpet, foramsulfuron, formetanate, Gliocladium catenulatum strain: J1446, isoxaflutole, metalaxyl-m, methiocarb, methoxyfenozide, metribuzin, milbemectin, oxasulfuron, Paecilomyces lilacinus strain 251, phenmedipham, phosmet, pirimiphos-methyl, propamocarb, prothioconazole, pymetrozine and s-metolachlor. OJ L 163, 28.6.2018, p. 13–16.
- (b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.18.2. Toxicological reference values

Table 83:	Comparison of toxicological	reference values (TRV) derived by	JMPR and at EU level
-----------	-----------------------------	-----------------------	--------------	----------------------

	JMPF	JMPR evaluation		EU evaluation	
	Value	Comments	Value	Comments	comparable
ADI	0–0.4 mg/kg bw per day	JMPR (2006, 2019)	0.04 mg/kg bw per day	EFSA, in progress, (European Commission, 2008a) (rat, 2-year oral feed, 100 UF)	Yes
ARfD	Unnecessary	JMPR (2006, 2019)	Not applicable	EFSA, in progress, (European Commission, 2008a) (dog, 1-year feed, 100 UF)	Yes
Conclusion/ comment		·		ne. It is noted that the EFSA ae. No information on the to	

comment ongoing and setting of References Values might change. It is noted that the EFSA Peer Review is ongoing and setting of References Values might change. No information on the toxicological profile of the metabolites is available in (European Commission, 2008a). In JMPR, 2019 M510F47 metabolite was assessed by TTC and categorised in Cramer class III, therefore a TTC of 1.5 μ g/kg bw per day applies. For M510F49, the meeting was unable to conclude that this metabolite was of no concern but concluded that M510F49 would be covered by the ADI of the parent compound. Under the currently ongoing peer review, the toxicological profile of the metabolites is under discussion.

5.18.3. Residue definitions

Table 84: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products	Boscalid	Reg. 396/2005: Boscalid	Yes		
	Animal products	Boscalid The residue is fat soluble	Reg. 396/2005: Sum of boscalid and M 510F01, including its conjugates expressed as boscalid The residue is fat soluble	No		
RD RA	Plant products	Boscalid	MRL review (EFSA, 2014I): Boscalid	Yes		
	Animal products	Sum of boscalid, 2- chloro-N-(4'-chloro-5- hydroxybiphenyl-2-yl) nicotinamide (M 510F01) including its conjugate, expressed as boscalid.	MRL review (EFSA, 2014I): Muscle, fat: boscalid Kidney: Sum of boscalid and M 510F01 (2-chloro-N-(4'-chloro-5- hydroxybiphenyl-2-yl)nicotinamide) (free and conjugated), expressed as boscalid Liver: Sum of boscalid and M 510F01 (2-chloro-N-(4'-chloro-5- hydroxybiphenyl-2-yl)nicotinamide) (free and conjugated) and its bound residue (measured as M510F53 or M510F52), expressed as boscalid.	No for muscle, fat and liver		
Conclusion, comments		The different residue definitions for animal products are not of relevance for the current assessment, since no MRL proposals for animal products were derived by JMPR.				

5.18.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Apple	Withdrawn	2	See below (pome fruits (subgroup))
Cherries (subgroup)	5	cGAP: USA, Canada, 5×260 g a.s./ha, 7 days spray interval, PHI 0 days Number of trials: 14 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None	
Mango	2	0.01*	cGAP: Brazil, 2×240 g a.i./hL, 14 days interval, PHI 7 days (foliar spray). Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: In some trials the stone was removed already in the field and the 'whole fruit' residue values were calculated/estimated at the time of the analysis. JMPR considered that this procedure would not have an impact since boscalid is stable under freezing storage (metabolism study) and hydrolysis conditions. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Peaches (subgroup)	4	Peaches: 5 Apricots: 5	cGAP: USA, Canada, 5×260 g a.s./ha, 7 days spray interval, PHI 0 days Number of trials: 19 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Plums (subgroup)	1.5	3	cGAP: USA, Canada, 5×260 g a.s./ha, 7 days spray interval, PHI 0 days Number of trials: 15 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Pome fruits (subgroup)	2	Apples: 2; pears and quinces: 1.5; medlars, loquats: 0.01* Azaraoles: 15 Kaki/Japanese. persimmon: 0.01*	cGAP: CZ: 3 \times 200 g a.s./ha, 8 days spray interval, PHI 7 days Number of trials: 22 trials on apples, 8 trials on pears Sufficiently supported by data: Yes Specific comments/observations: EU pome fruit subgroup does not contain azaraoles and kaki/Japanese persimmon. It is noted that using the OECD MRL calculator a lower MRL of 1.5 mg/kg is derived. Conclusion: The proposed Codex MRL is not acceptable because a lower MRL of 1.5 mg/kg would be sufficient. Follow-up action: None
Prunes (dry)	5	_	Specific comments: processed commodity, no EU MRL.
Tea 40 0.01*		0.01*	cGAP: Japan, 2 \times 270 g a.i./ha, PHI 7 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: The trials were on dried green tea. JMPR proposed the MRL for tea (green, black fermented and dried) which is in line with current JMPR practice.

Table 85: (Comparison of	Codex MRL	proposals derived	by JMPR	with EU MRLs
--------------------	---------------	-----------	-------------------	---------	--------------

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
General comments	_		

*: Indicates that the MRL is proposed at the limit of quantification.

5.18.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated.	RA assumptions: The input values of the most recent long-term risk assessment (EFSA, 2020o) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL/STMR is higher than the corresponding EU value (i.e. mango, cherries, medlar, loquat, other pome fruits, kaki/Jap. persimmon and tea). The risk assessment was performed with the EU ADI.	Specific comments: -
Results: Not relevant	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 75% of the ADI (NL toddler). Among the crops under consideration, tea was identified as the main contributor, accounting for up to 2.2% of the ADI.	Results: Long-term exposure: Max 62.3% G09 diet of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD).

Table 86: Summary of the consumer risk assessment

5.19. Azoxystrobin (229) R

5.19.1. Background information

Table 87:Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	AT	
Approval status	Approved	Commission Implementing Regulation (EU) 2019/291 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2010e)
MRL review performed	Yes, see comments	(EFSA, 2013r)
MRL applications/ assessments	Yes, see comments	(EFSA, 2021b) (sugar beet roots) (EFSA, 2020m) (confirmatory data and modification of the existing MRLs) (EFSA, 2016d) (grapes) (EFSA, 2016j) (various crops)
		Ongoing: Import tolerance request for mango and oil palm fruits Ongoing (additional data requested): modification of the existing MRLs in oilseed rape and linseed
Classification of a.s. – cut- off criteria	No	

		Comments, references
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet.

(a): Commission Implementing Regulation (EU) 2019/291 of 19 February 2019 amending Implementing Regulation (EU) No 540/ 2011 as regards the extension of the approval periods of the active substances 1-naphthylacetamide, 1-naphthylacetic acid, acrinathrin, azoxystrobin, fluazifop p, fluroxypyr, imazalil, kresoxim-methyl, oxyfluorfen, prochloraz, prohexadione, spiroxamine, tefluthrin and terbuthylazine. OJ L 48, 20.2.2019, p. 17–1.

5.19.2. Toxicological reference values

Table 88: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPF	R evaluation	EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.2 mg/kg bw per day	JMPR (2008) (2-year rat carcinogenicity, safety factor 100)	0.2 mg/kg bw per day	(EFSA, 2010e) (2-year rat, safety factor 100) confirmed in (European Commission, 2011b)	Yes
ARfD	Unnecessary	JMPR (2008)	Not necessary	(EFSA, 2010e) confirmed in (European Commission, 2011b)	Yes
Conclusion/ comment	_				

5.19.3. Residue definitions

Table 89: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Azoxystrobin	Reg. 396/2005: Azoxystrobin	Yes	
	Animal products	Azoxystrobin	Reg. 396/2005: Azoxystrobin	Yes	
		The residue is fat soluble	The residue is not fat soluble		
RD RA	Plant products	Azoxystrobin	(EFSA, 2013r): Azoxystrobin	Yes	
	Animal products	Azoxystrobin	(EFSA, 2013r): Azoxystrobin	Yes	
Conclusion, comments	The data gap on general toxicity of the livestock metabolites L1, L4 an L9 identified in the framework of the MRL review has not yet been addressed adequately (EFSA, 2020m). Further risk management discussion and conclusion on the impact of the data gap are still pending. Since the metabolites were found only in liver and kidney of ruminants, the exposure related to the occurrence of metabolites L1, L4 and L9 was low.				

5.19.4. Codex MRL proposals

Table 90: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Guava	0.2	0.01*	cGAP: Egypt, 3 \times 0.01 kg a.i./hL, with a 7–14 days application interval and a PHI of 7 days Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: According to JMPR classification, 4 trials would be required (minor crop). In the EU, it is considered a minor crop.

⁽b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
General comments	-		

*: Indicates that the MRL is proposed at the limit of quantification.

5.19.5. Consumer risk assessment

Table 91: Summary of the consumer risk asse

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated.	RA assumptions: A long-term dietary risk assessment was performed in the framework of the most recent long-term assessment of (EFSA, 2021b) was updated, including the STMR values derived by JMPR for the guava.	Specific comments: -
	The risk assessment was performed with the EU ADI (same as JMPR ADI).	
Results: Not relevant	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 22% of the ADI (NL toddler). The contribution of guava is negligible.	Results: The JMPR ADI is the same as the EU ADI. The chronic exposure calculated by JMPR for existing CXLs and the proposed Codex MRL ranged from 2% to 20%.
		Short-term exposure: Not relevant (JMPR did not derive an ARfD).

5.20. Chlorantraniliprole (230) R

5.20.1. Background information

Table 92:Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	IE	
Approval status	Approved	Commission Implementing Regulation (EU) No 1199/2013 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2013c)
MRL review performed	Yes, see comments	(EFSA, 2020n)
MRL applications/ assessments	Yes, see comments	(EFSA, 2020t) (strawberries, pulses) (EFSA, 2019n) (oil palms fruits and oil palms kernels) (EFSA, 2018n) (hops and dried cones) (EFSA, 2015p) (various crops)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet.

(a): Commission Implementing Regulation (EU) No 1199/2013 of 25 November 2013 approving the active substance chlorantraniliprole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 315, 26.11.2013, p. 69–73.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.20.2. Toxicological reference values

	JMPR evaluation			TRV	
	Value	Comments	Value	Comments	comparable
ADI	0–2 mg/kg bw per day	JMPR (2008) (mouse, 18-month study; UF 100)	1.56 mg/kg bw per day	(EFSA, 2013c) (Rat, 2-year study, supported by the mouse, 18-month study and 100 UF) confirmed in (European Commission, 2018a)	No
ARfD	Not applicable	JMPR (2008) (unnecessary)	Not applicable	(EFSA, 2013c) (study not required) confirmed in (European Commission, 2018a)	Yes
Conclusion/ comment	The interpretation of the 2-year study in rats differed between the JMPR and the EU risk assessments, in particular regarding the interpretation of the liver and thyroid findings in this study. According to the EU assessment, the NOAEL for the 2-year study in rats is 156 mg/kg bw per day for increased liver weight and thyroid adenomas in females. The same conclusion is, however, reached between the two assessments for the 18-month study in mice (with an NOAEL of 158 mg/kg bw per day for liver eosinophilic foci, hepatocellular hypertrophy and increased liver weight in mice) leading to a similar point of departure between the two assessments to derive the ADI. The JMPR rounded the resulting ADI from 1.58 mg/kg bw per day to 2 mg/kg bw per day. The risk assessment will be performed according to the EU scenario. It was agreed during the peer review (EFSA, 2013c) that the toxicological reference values of chlorantraniliprole apply to the metabolites IN-HXH44 and IN-K9T00.				

Table 93:	Comparison of toxicological reference values (TRV) derived by JMPR and at EU level
-----------	--

5.20.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf			Reg. 396/2005: Chlorantraniliprole (DPX E-2Y45)	Yes	
			Peer review (EFSA, 2013c): Chlorantraniliprole		
	Animal products	Chlorantraniliprole The residue is fat soluble	Reg. 396/2005: Chlorantraniliprole (DPX E-2Y45) Peer review (EFSA, 2013c): Chlorantraniliprole The residue is fat soluble	Yes	
RD RA	Plant products	Chlorantraniliprole	Peer review (EFSA, 2013c): Chlorantraniliprole	Yes	
	Animal products Chlorantraniliprole MRL review (EFSA, 2020n): Poultry tissues and eggs: chlorantraniliprole Other animal products: Sum chlorantraniliprole and metabolites IN-HXH44 and IN-K9T00 expressed a chlorantraniliprole Peer review (EFSA, 2013c): Sum chlorantraniliprole and metabolites		tissues and eggs: chlorantraniliprole Other animal products: Sum chlorantraniliprole and metabolites IN-HXH44 and IN-K9T00 expressed as chlorantraniliprole Peer review (EFSA, 2013c): Sum chlorantraniliprole and metabolites IN-HXH44 and IN-K9T00 expressed as	No	
Conclusion, comments	The RA RDs for animals are not compatible. The metabolites IN-HXH44 and IN-K9T00 are included (highlighted in green) in the RA RD derived by EFSA, but not in the one derived by JMPR. Since no Codex MRLs are proposed for animal commodities this year, this difference has no impact on the assessment.				

Table 94: Comparison of the residue definitions derived by JMPR and at EU level

5.20.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Dry beans, Subgroup of (includes all commodities in this subgroup except soyabeans)	0.3	Pulses: 0.3	cGAP: USA, 2 × 0.11 kg a.i./ha, PHI 1 day (3 days Interval, max. seasonal rate 0.23 kg a.i./ha) Number of trials: 10, combined data set of dry beans (5) and dry peas (5) Sufficiently supported by data: Yes Specific comments/observations: Dry beans are major crop; since it is possible to combine dry beans and dry peas, 10 trials are available to support both uses. EU MRL for pulses was recently raised from 0.01* to 0.3 mg/kg, following an MRL application. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Dry peas, Subgroup of (includes all commodities in this subgroup)	0.3	Pulses: 0.3	cGAP: USA, 2 × 0.11 kg a.i./ha, PHI 1 day (3 days Interval, max. seasonal rate 0.23 kg a.i./ha) Number of trials: 10, combined data set of dry beans (5) and dry peas (5). Sufficiently supported by data: Yes Specific comments/observations: Dry peas are major crop; since it is possible to combine dry beans and dry peas, 10 trials are available to support both uses. EU MRL for pulses was recently raised from 0.01* to 0.3 mg/kg, following an MRL application. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Palm fruit (African oil palm)	0.8	0.8	cGAP: Malaysia, 2 × 0.03 kg a.i./ha, PHI 1 day (14-d interval) Number of trials: 4 Sufficiently supported by data: No Specific comments/observations: In our view, the use of chlorantraniliprole in palm trees (Elaeis guineensis Jacq.) would trigger the setting of an MRL for palm fruit (SO 3160) and palm nut (SO 0696). It is our understanding that palm nuts are a major crop at Codex level. Thus, the number of trials would not be sufficient to derive an MRL proposal. At EU level palm nuts are also considered as a major crop. The EU MRL for palm fruit was recently raised from 0.01* to 0.8 mg/kg, following an MRL application supported by 4 residue trials. For oil palm kernels a modification of the existing MRL of 0.01 mg/kg was not necessary (4 GAP compliant and 4 overdosed trials), since the data provided confirmed that no residues are expected in the kernel. See also comments on palm oil, crude. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Palm oil, crude	2		JMPR assessed 6 processing studies on oil palm fruit (mesocarp oil of SO 3160) which demonstrated that the residues are likely to accumulate in the oil (mean PF = 2.6). JMPR also assessed processing studies to estimate the transfer from oil palm fruits to the oil of kernels (SO 0696) and kernel cake. Since no residues were found in the kernel oil, no specific Codex MRL is required. It should be discussed if the setting of an MRL for palm nuts (SO 0696) is necessary. There might be also a need to re- consider the Codex and also the EU classification of palm

Table OF	Comparison of Co	day MDL proposals	darivad by	1MDD with ELLMDLC
Table 95.	Companson of Co	uex mine proposais	uenveu by	JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
			nuts and palm fruit; the portion of the commodity to which the MRL applies is specified as
			 Oilseeds (covering palm nuts): unless otherwise specified, seed or kernels, with shell or husk. Oil fruits (covering palm fruits): whole commodity.
General comments			

*: Indicates that the MRL is proposed at the limit of quantification.

5.20.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant	RA assumptions: The input values of the long-term risk assessment performed under the MRL review (EFSA, 2020n) were updated, including the STMR values derived in the most recent reasoned opinion of (EFSA, 2020t). Since the proposed Codex MRL proposals were at the same level as the existing EU MRLs, the EU risk assessment values are still valid. The risk assessment was performed with the EU ADI.	Specific comments: -
Results: Not relevant Unnecessary (no ARfD value)	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 0.08% of the ADI (NL toddler). Among the crops under consideration, dry beans were identified as the main contributor, accounting for less than 0.01% of the ADI.	Results: Long-term exposure: ax 1% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD).

5.21. Spirotetramat (234) R

5.21.1. Background information

Table 97:Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	AT	
Approval status	Approved	Commission Decision 2007/560/EC ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2013i) (EFSA, 2017k) (confirmatory data – potential for endocrine disruptor effects in birds and fish)
MRL review performed	Yes, see comments	(EFSA, 2020c)
MRL applications/ assessments	Yes, see comments	(EFSA, 2021f) ^(c) (leeks, spring onions and honey) (EFSA, 2019a) (various crops) (EFSA, 2019p) (small fruits and berries, kiwi fruits, garlic and fennel and rhubarb) (EFSA, 2017a) (various crops)
Classification of a.s. – cut-off criteria	No	

		Comments, references
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments.	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

 (a): Commission Decision of 2 August 2007 recognising in principle the completeness of the dossiers submitted for detailed examination in view of the possible inclusion of chlorantraniliprole, heptamaloxyglucan, spirotetramat and Helicoverpa armigera nucleopolyhedrovirus in Annex I to Council Directive 91/414/EEC (notified under document number C(2007) 3669). OJ L 213, 15.8.2007, p. 29–31.

(c): The assessment performed in the recently published reasoned opinion could not be taken into account for the assessment in this report.

5.21.2. Toxicological reference values

	JMPR ev	aluation	EU evaluation		TRV	
	Value	Comments	Value	Comments	comparable	
ADI	0.05 mg/kg bw per day	JMPR (2008)	0.05 mg/kg bw per day	(EFSA, 2013i) (1-year dog study and 100 UF) confirmed in (European commission, 2013a)	Yes	
ARfD	1 mg/kg bw	JMPR (2008)	1 mg/kg bw	(EFSA, 2013) (acute neurotoxicity rat study and 100 UF) confirmed in (European Commission, 2013a)		
Conclusion/ comment	-					

5.21.3. Residue definitions

Table 99: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Spirotetramat and its enol metabolite, expressed as spirotetramat.	Reg. 396/2005: Sum of spirotetramat, spirotetramat-enol expressed as spirotetramat (implemented in 2020) Previous RD: Spirotetramat and its 4 metabolites BYI08330-enol, BYI08330-ketohydroxy, BYI08330- monohydroxy and BYI08330 enol- glucoside, expressed as spirotetramat.	Yes, for RD recently implemented
			Peer review (EFSA, 2013i): Sum of spirotetramat, spirotetramat-enol expressed as spirotetramat	
	Animal products	Spirotetramat enol metabolite, expressed as spirotetramat.	Reg. 396/2005: Spirotetramat-enol, expressed as spirotetramat (EFSA, 2020c)	Yes
		The residue is not fat soluble	Peer review (EFSA, 2013i): Spirotetramat-enol expressed as spirotetramat.	
			The residue is not fat soluble	
RD RA	Plant products	Spirotetramat and its metabolites enol, ketohydroxy, enol glucoside	MRL review (EFSA, 2020c) and Peer review (EFSA, 2013i): Sum of spirotetramat, its -enol, -ketohydroxy,	Yes

⁽b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
		and monohydroxy, expressed as spirotetramat expressed as spirotetramat.	-monohydroxy and -enol-glucoside metabolites expressed as spirotetramat	
	Animal products	Spirotetramat enol metabolite, expressed as spirotetramat	MRL review (EFSA, 2020c) and Peer review (EFSA, 2013i): Sum of spirotetramat-enol and spirotetramat- enol-GA expressed as spirotetramat	No
Conclusion, comments	The EU RD enforcement for plant commodities and for animal products has been recently modified and is now comparable with the JMPR residue definition. The RDs RA for plant commodities are similar. The EU RD RA for animal commodities comprises an additional compound (BYI08330-enolglucuronide).			

5.21.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Carrot	0.04	0.07	cGAP: USA, 2 \times 0.09 kg/ha, 7 days interval, PHI 1 day Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: The EU GAP assessed in the MRL review is less critical GAP is registered (4 \times 0.075 kg/ ha, PHI 21 days). Conclusion: The proposed Codex MRL is acceptable.
Strawberry	0.3	0.3	cGAP: Spain, 2×0.1 kg/ha, PHI 14 days. Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: It is noted that for the Spanish GAP reported in the framework of the MRL review the PHI was not specified. The same residue data set conducted in Spain indoor, was submitted under the art 12 MRL review resulting in the same MRL. Conclusion: The proposed Codex MRL is acceptable.
Sugar beet	0.06	0.02*	cGAP: USA, Canada, 2×0.16 kg/ha, PHI 28 days. Number of trials: A total number of 17 trials were submitted, 6 were conducted in Canada and 11 in USA. Only 15 trials were considered independent. Sufficiently supported by data: Yes Specific comments/observations: Conclusion: The proposed Codex MRL is acceptable.
Sugar beet leaves or tops (dry)	8 (dw)		Conclusion: For feed crops, no MRLs are established in the EU.
Sugar beet molasses			The PF of 3.85 is proposed based on two studies. The proposal is acceptable
General comments	According to JMPR, the crops used as feed (sugar beet leaves or tops), do not contribute significantly to the dietary burden compared to the previous assessment on livestock assessment (JMPR, 2011). Therefore, there is no need to change the Codex MRL for animal commodities.		

Table 100: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

*: Indicates that the MRL is proposed at the limit of quantification.

Short-term exposure: It

shown to be less than

0.1% ARfD

5.21.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3 for strawberries and sugar beets only since the Codex MRL proposals are higher than or equal to the existing EU MRL. The risk assessment was performed with the EU ARfD.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3. The input values of the most recent long-term risk assessment (EFSA, 2020c) were updated, including the STMR value derived by JMPR for strawberries (proposed Codex MRL is higher than the EU MRL). The risk assessment was performed with the EU ADI.	Specific comments:
Results: No short-term consumer health risk was identified.	Results: No long-term consumer health risk was identified.	Results: Long-term exposure: Max 20% of the JMPR

27% of the ADI.

Table 101: Summary of the consumer risk assessment

Metaflumizone (236) R/T 5.22.

5.22.1. Background information

Table 102: Background information

Strawberry: 0.3% of ARfD.

Sugar beets: 0.6% (sugar)

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	SE	UK was RMS for the first approval
Approval status	Approved	Commission Implementing Regulation (EU) No 922/2014 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2013m)
MRL review performed	Yes, see comments	(EFSA, 2020j)
MRL applications/ assessments	Yes, see comments	(EFSA, 2013k) (various commodities)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

The overall chronic exposure accounted for ADI.

Strawberries has a minor contribution to

the overall chronic exposure, accounting

for up to 0.08% of the ADI (DE child).

(a): Commission Implementing Regulation (EU) No 922/2014 of 25 August 2014 approving the active substance metaflumizone, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011. OJ L 252, 26.8.2014, p. 6-10.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33-36.

5.22.2. Toxicological reference values

	JMPR evaluation		E	EU evaluation	
	Value	Comments	Value	Comments	comparable
ADI	0.01 mg/kg bw per day	JMPR (2009)	0.01 mg/kg bw per day	(EFSA, 2013m) (3-and 12-month dog study and 100 \times 6* UF)	Yes
ARfD	Unnecessary	JMPR (2009)	0.13 mg/kg bw	(EFSA, 2013m) (rat developmental study and 100 \times 3** UF)	No
Conclusion/ comment *: Additional factor of 2 (for the uncertainties related to oral absor uncertainties related to bioaccumulation in dogs) **: Additional factor of 3 (to cover the likely greater oral absorption levels likely to be encountered by consumers)					
	In the EU evaluation , the ARfD was derived from the rat developmental study where an adverse effect was already observed in the dams after 2 or 3 doses (reduced body weight gain) On the basis of the available data, it was also concluded that the E/Z-isomer ratio (9/1) has the same toxicological profile as the Z-isomer of metaflumizone. Metabolite M320I04 (4-{2-oxo-2-[3-(trifluoromethyl] phenyl]ethyl}benzonitrile): in the EU peer review no conclusion could be drawn regarding toxicological profile of the plant metabolite M320I04 (including its genotoxic potential). M320I23 and M320I29: The available data for the metabolites M320I23 and M320I29 did not allow to conclude on the toxicological profile. In the JMPR evaluations , M320I23 (4-{5-hydroxy-3-oxo-4-[4-(trifluoromethoxy)phenyl]-6-[3-(trifluoromethyl)phenyl]-2,3,4,5-tetrahydro-1,2,4-triazin-5-yl}benzonitrile) was concluded to be comilar or lower toxicity than metaflumizone, and therefore would be covered by its ADI. The metabolites M320I04 (4-{2-oxo-2-[3-(trifluoromethyl)phenyl]ethyl}benzonitrile) and M320I22 (m-trifluoromethyl benzoic acid) were considered unlikely to be genotoxic and could be assessed using the TTC value of 1.5 μ g/kg bw per day for chronic toxicity.				dy weight gain). o (9/1) has the n the EU peer metabolite 20129 did not 20129 did not

Table 103: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

5.22.3. Residue definitions

Table 104: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Metaflumizone, sum of metaflumizone E-isomer and metaflumizone Z-isomer.	Reg. 396/2005: Sum of metaflumizone E-isomer and metaflumizone Z-isomer	Yes
			Peer review (EFSA, 2013m): Sum of metaflumizone E-isomer and metaflumizone Z-isomer	
	Animal products	Metaflumizone, sum of metaflumizone E-isomer and metaflumizone Z-isomer	Reg. 396/2005: Sum of metaflumizone E-isomer and metaflumizone Z-isomer	Yes
		The residue is fat soluble	Peer review (EFSA, 2013m): Sum of metaflumizone E-isomer and metaflumizone Z-isomer	
			The residue is fat soluble	
RD RA	Plant products	Metaflumizone, sum of metaflumizone E-isomer and metaflumizone Z-isomer.	Peer review (EFSA, 2013m): Sum of metaflumizone E-isomer and metaflumizone Z-isomer	Yes
	Animal products	Metaflumizone, sum of metaflumizone E-isomer and metaflumizone Z-isomer.	Peer review (EFSA, 2013m): Sum of metaflumizone E-isomer and metaflumizone Z-isomer	Yes

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
Conclusion, comments	It is noted that sta (EFSA, 2020j), it v	was proposed to include a me	re not assessed by JMPR (2009); ir tabolite (M320I04) in the residue o g toxicological information on this	definition for

5.22.4. Codex MRL proposals

Table 105:	Comparison of Codex MRL	proposals derived by	y JMPR with EU MRLs
------------	-------------------------	----------------------	---------------------

Commodity	Codex MRL proposal	EU MRL/ proposal MRL review	Comment
Apple	0.9	0.05*/no use	cGAP: Brazil, 4 foliar applications with 0.24 kg a.i./ha; interval 7 days; PHI 3 days Number of trials: 12 Sufficiently supported by data: Yes Specific comments/observations: HR: 0.54; STMR: 0.275 Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Coffee bean	0.15	0.1*/no use	cGAP: Brazil, 2 foliar applications with 0.48 kg a.i./ha; interval 30 days; PHI 45 days Number of trials: 13 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Grape	5	0.05*/no use	cGAP: Brazil, 3 foliar applications with 0.24 kg a.i./ha; interval 7 days; PHI 3 days Number of trials: 12 Sufficiently supported by data: Yes Specific comments/observations: Trials on grapes conducted in Brazil; HR: 2.71; STMR = 0.98 mg/kg. Conclusion: The proposed Codex MRL is not acceptable because of an acute intake concern (see below). Follow-up action: None
Lemons and Limes, subgroup of (includes all commodities in this subgroup)	2	0.05*/no use	cGAP: Brazil, 3 foliar applications with 0.48 kg a.i./ha; interval 7 days; PHI 7 days Number of trials: 5 Sufficiently supported by data: Yes, since lemons and lime are not a major crop according to Codex classification. Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Maize	0.04	0.05*/no use	cGAP: Brazil, 5 foliar applications with 0.24 kg a.i./ha; interval 7 days; PHI 14 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Melons, except Watermelon	1	0.05*/no use	cGAP: Brazil, 5 foliar applications with 0.192 kg a.i./ha; interval 7 days; PHI 3 days Number of trials: 8 on melons Sufficiently supported by data: Yes Specific comments/observations: Three residue trials were reported in which residues in the pulp was below the LOQ of 0.02. JMPR derived a STMR of 0.02 mg/kg for melon

Commodity	Codex MRL proposal	EU MRL/ proposal MRL review	Comment
			 pulp. Meanwhile for the chronic and acute RA the results from the unpeeled melons (HR: 0.61; STMR 0.12) were used. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Oranges, Sweet, Sour, subgroup of (includes all commodities in this subgroup)	3	0.05*/o use	cGAP: Brazil, 3 foliar applications with 0.48 kg a.i./ha; interval 7 days; PHI 7 days Number of trials: 11 Sufficiently supported by data: Yes Specific comments/observations: STMR 0.66 mg/kg, HR 1.35 was derived. A peeling factor of 0.1 was considered appropriate, which was calculated from the lemon and orange trials in which data on pulp and whole fruit were reported. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Raisins	13		PF (derived from 3 processing studies: 2.6).
Soyabean (dry)	0.2	0.05*/no use	cGAP: Brazil, 3 foliar applications with 0.24 kg a.i./ha; interval 7 days; PHI 3 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Sugar cane	0.02*	0.05*/no use	cGAP: Brazil, 1 in-furrow application with 0.48 kg a.i./ha at the time of planting. Number of trials: 6 Sufficiently supported by data: Yes, noting that sugar cane is a major crop for Codex. Specific comments/observations: Six trials were made available which were conducted at an exaggerated rate of 1.2 kg a.i./ha. Sugar cane is not listed as major crop in Europe. Residues were all below LOQ of 0.02 mg/kg and a STMR of 0 mg/kg was derived. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Orange oil, edible	100		cGAP: Processed commodity – not applicable for MRL setting in EU.
Edible offal (mammalian)	0.02*	0.02/0.02*	Sufficiently supported by data: Yes Specific comments/observations: MRL proposal derived for Australian dietary burden for dairy cattle. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Eggs	0.02	0.02/-	Sufficiently supported by data: Yes Specific comments/observations: MRL proposal derived for US dietary burden for layers. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Mammalian fats (except milk fats)	0.15	0.02/0.02*	Sufficiently supported by data: Yes Specific comments/observations: see edible offal (mammalian) Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None

www.efsa.europa.eu/efsajournal

Commodity	Codex MRL proposal	EU MRL/ proposal MRL review	Comment
Meat (from mammals other than marine mammals)	0.02* (fat)	0.02/0.02*	Sufficiently supported by data: Yes Specific comments/observations: The MRL proposal by JMPR refers to fat whereby the value should be aligned with the MRL proposal for mammalian fat. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Milks	0.02	0.02/0.02*	Sufficiently supported by data: Yes Specific comments/observations: see edible offal (mammalian) Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Milk fats	0.6		Specific comments/observations: In the EU, specific MRLs are not set for milk fat; normally, a concentration factor of 25 is applied to recalculate the MRL from milk to milk fat (leading to a legal limit of 0.5 mg/kg).
Poultry, edible offal of	0.02*	0.02/-	Sufficiently supported by data: Yes Specific comments/observations: See comments on eggs Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Poultry fats	0.08	0.1/-	Sufficiently supported by data: Yes Specific comments/observations: See comments on eggs Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Poultry meat	0.02* (fat)	0.02/-	Sufficiently supported by data: Yes Specific comments/observations: The MRL proposal by JMPR refers to fat whereby the value should be aligned with the MRL proposal for mammalian fat. The Codex proposal should be revised to 0.08 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
General comments	The MRL prop	oosals derived in t	he MRL review are not yet implemented.

*: Indicates that the MRL is proposed at the limit of quantification.

5.22.5. Consumer risk assessment

Table 106: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. EFSA used the HR for pulp of melons and peeled citrus fruit (PF 0.1). The risk assessment was performed with the EU ARfD.	RA assumptions: The most recent risk assessment for metaflumizone performed was updated (EFSA, 2013k, 2020j), including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. For melons and citrus fruit input values refer to the peeled product. The previously derived input values and the new input values for the Codex MRL proposals were inserted in EFSA PRIMo rev. 3.1 The risk assessment was performed with the EU ADI which is similar to the Codex ADI.	Specific comments:

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: The calculated short-term exposure exceeded the ARfD for table grapes. Table grapes: 152% of ARfD Melons: 71%	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 65% of the ADI (NL toddler). Among the crops under consideration, wine grapes were identified as the main contributor, accounting for up to 36% of the ADI.	Results: Long-term exposure: Max 4% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD).

Dicamba (240) R/T 5.23.

5.23.1. Background information

Background information Table 107:

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	DK	
Approval status	Approved	Commission Directive 2008/69/EC ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2011b) (EFSA, 2016t) (confirmatory data on fate and behaviour)
MRL review performed	No	
MRL applications/assessments	Yes, see comments	(EFSA, 2013o) (soyabean) (EFSA, 2013p) (herbs)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed, see comments	ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/ 605 ^(a)) has not been performed yet.

(a): Commission Regulation (EU) 2017/1016 of 14 June 2017 amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for benzovindiflupyr, chlorantraniliprole, deltamethrin, ethofumesate, haloxyfop, Mild Pepino Mosaic Virus isolate VC1, Mild Pepino Mosaic Virus isolate VX1, oxathiapiprolin, penthiopyrad, pyraclostrobin, spirotetramat, sunflower oil, tolclofos-methyl and trinexapac in or on certain products. OJ L 159, 21.6.2017, p. 1–47. (b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out

scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33-36.

5.23.2. Toxicological reference values

Table 108:	Comparison of toxicological	reference values (TI	RV) derived by	/ JMPR and at EU level
------------	-----------------------------	----------------------	----------------	------------------------

	JMPR evaluation		EU ev	TRV	
	Value	Comments	Value	Comments	comparable
ADI	Dicamba: 0.3 mg/kg bw per day	JMPR (2010)	Dicamba, 5-OH- dicamba: 0.3 mg/kg bw per day	(EFSA, 2011b) (2 generation rat and 100 UF) (European Commission, 2008b)	Yes
	DCSA; DCGA; 5-OH-dicamba: 0.3 mg/kg bw per day	JMPR (2019)	DCSA; DCGA: 0.04 mg/kg	(EFSA, 2013o)	No

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ARfD	Dicamba: 0.5 mg/kg bw	JMPR (2010)	Dicamba, 5-OH- dicamba: 0.3 mg/kg bw	(EFSA, 2011b) (rabbit, teratology study and 100 UF) (European Commission, 2016a)	No
	DCSA; DCGA; 5-OH-dicamba: Same ARfD as for parent dicamba	JMPR (2019)	DCSA, DCGA: 0.3 mg/kg	(EFSA, 2013o)	No
Conclusion/ comment	2019 JMPR performed a toxicological assessment of DCSA, DCGA and 5-OH-dicamba. The EU ADI and ARfD for DCSA and DCGA are lower than the TRV derived by JMPR.				

5.23.3. Residue definitions

Table 109:	Comparison of the residue definitions derived by JMPR and at EU level
------------	---

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products	For soyabean, maize and cotton: Sum of dicamba and 3,6- dichloro-2-hydroxybenzoic acid (DCSA; free and conjugated), expressed as dicamba; (see comments) For other plant commodities: Dicamba	Reg. 396/2005: Dicamba Art. 10 (soybeans) (EFSA, 2013o): Sum of DCSA and its conjugates, expressed as DCSA (not implemented in EU MRL legislation) Peer review (under Council Directive 91/414/EEC): Dicamba, its salts and conjugated dicamba expressed as dicamba	Yes, for conventional crops; no for GM crops		
	Animal products	Sum of dicamba and DCSA, expressed as dicamba The residue is not fat soluble	Reg. 396/2005: Dicamba Peer review (EFSA, 2011b): Dicamba and its salts and conjugated dicamba expressed as dicamba The residue is not fat soluble	No		
RD RA	Plant products	For soyabean, maize and cotton: Sum of dicamba, 2,5-dichloro- 3-hydroxy-6-methoxybenzoic acid (5-OH dicamba), 3,6- dichloro-2-hydroxybenzoic acid (DCSA; free and conjugated) and 2,5-dichloro-3,6- dihydroxybenzoic acid (DCGA; free and conjugated), expressed as dicamba; (see comments) For other plant commodities: Sum of dicamba and 5-OH dicamba, expressed as dicamba	Peer review (EFSA, 2011b): Dicamba + 5-OH-dicamba, free and conjugated Art. 10 (soybeans) (EFSA, 2013o): Sum of DCSA, DGSA and their conjugates, expressed as DCSA	Yes, for conventional crops, no for GM crops		
	Animal products	Sum of dicamba and DCSA, expressed as dicamba	Peer review (EFSA, 2011b): Dicamba (free and conjugated)	No		
Conclusion, comments	JMPR derived a new residue definition for soyabean, maize and cotton on the basis of metabolism studies in GM crops. However, the residue definition is not restricted to GM crops, but applies also to conventional soyabeans, maize and cotton.					

Commodity group	JMPR evaluation	EU evaluation	RDs comparable
residue definit genetically mo not allow to co of action, EFS, order to cover Enforcement: decision was t	the framework of a previous MRL application (EFSA, 2013o), EFSA proposed a separate sidue definition for GM soybeans, as the metabolism pattern of the active substance in netically modified plants was shown to be different. In addition, as the available data do t allow to conclude whether dicamba and DCSA act through the same toxicological mode action, EFSA proposes to set the following additional residue definition for soybean, in der to cover the use of dicamba on dicamba-tolerant soybean: forcement: Sum of DCSA and its conjugates, expressed as DCSA (risk management cision was taken to not implement the RD in MRL legislation).		
 only parent di the current re- in compliance commodities)	ment decision was taken to main camba). Since in GM crops dicam sidue definition does not allow to with the GAP. The possible modif should be discussed at EU level. cotton and maize is not approved	ba is almost completely metab identify whether GM crops hav ication of the EU RD for enforce	olised to DCSA, ve been treated

5.23.4. Codex MRL proposals

Commodity	Codex MRL proposals ^(a)	EU MRL ^(b)	Comment
Cotton seed	3	0.05*	cGAP: US, GAP for genetically modified cotton tolerant to dicamba (MON 88701); 1×1.12 kg a.i./ha (pre-emergence) + 2×0.56 kg a.i./ha (post-emergence), 7 days apart, PHI 7 days. Number of trials: 13 Sufficiently supported by data: Yes Specific comments/observations: Only 2 trials were exactly matching the GAP, 11 trials with different retreatment interval (5–63 days), which according to JMPR did not have an influence on the final residues in cotton seed. It would be desirable if in the JMPR reports more details on the GM crop varieties are reported. Conclusion: The proposed Codex MRL is not compatible with the current EU residue definition. Furthermore, it is noted that import of GM-cotton tolerant to dicamba is approved in the EU. RM should be aware that the current EU RD is not appropriate for herbicide tolerant GM crops, because parent dicamba is not a suitable marker substance for this type of crops. Follow-up action: To verify that GM cotton tolerant to dicamba is approved.
Maize	0.01*	0.5	cGAP: Canada, GAP for genetically modified maize tolerant to dicamba (MON 87419); 1×0.58 kg/ha (pre-emergent) + 1×0.6 kg a.i./ha (post-emergent). Number of trials: no trials available. Sufficiently supported by data: No Specific comments/observations: JMPR withdrew the old CXL and replaced it with a new MRL proposal at the same level, for the new residue definition. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Maize fodder (dry)	0.6		In the EU, no MRLs are established for feed.
Soyabean (dry)	10	10/0.4 ^(c)	cGAP: US, GAP for genetically modified soyabean tolerant to dicamba (MON 87708); 1×1.12 kg a.i./ha (pre-emergence) + 2×0.56 kg a.i./ha (post-emergence), 7 days apart, last application not later than BBCH 60 (first flowers opened).

Commodity	Codex MRL proposals ^(a)	EU MRL ^(b)	Comment
			Number of trials: 22 Sufficiently supported by data: Yes Specific comments/observations: Dicamba-tolerant soyabean is approved in the EU (MON 87708). Only 5 trials were exactly matching the GAP, 17 trials with different retreatment interval (6–29 days), which according to JMPR did not have an influence on the final residues in the harvested soyabeans. The residue trials in the dicamba tolerant soyabeans would suggest an MRL of 0.5 mg/kg. Since this is lower than the existing CXL which was also taken over in the EU MRL legislation, JMPR proposed to withdraw the old CXL (derived for a desiccant use on conventional crops) and replace it with a new Codex MRL proposal for the new residue definition derived for GM crops at the same level as the old CXL. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Soyabean fodder (dry)	150		In the EU, no MRLs are established for feed.
Soyabean hulls	15		The Codex MRL proposal was derived using two processing studies on dicamba -tolerant soyabeans (median PF: 1.39). For dicamba-tolerant soyabean hulls the required MRL would correspond 0.7 mg/kg (0.5 (MRL proposal derived for GM soyabeans) \times 1.39 (PF). In 2013, a desiccant use in conventional soyabeans was assessed by JMPR (1 \times 0.56 kg a.i./ha, 14 d. prior to planting, 1.12 kg a.i./ha foliar use, when soyabean pods have reached mature brown colour and at least 75% leaf drop occurred, PHI 7 days). For this GAP data for soyabean hulls were available, that indicated that the expected residues in soyabean hulls were low (0.117 mg/ kg). Thus, the setting of a specific MRL for soyabean hulls was not considered necessary. It is not appropriate to apply the PF derived for the GAP in dicamba-tolerant soyabeans to the current Codex MRL which reflects a different use in conventional crops.
Soyabean meal	15		The Codex MRL proposal was derived using two processing studies on dicamba -tolerant soyabeans (median PF: 1.34). For dicamba- tolerant soyabean meal the required MRL would correspond 0.7 mg/kg (0.5 (MRL proposal derived for GM soyabeans) \times 1.34 (PF). It is not appropriate to apply the PF derived for the GAP in dicamba-tolerant soyabeans to the current Codex MRL which reflects a different use in conventional crops.
General comments	 (a): The Codex MRL proposals refer to the residue definition derived for GM crops, i.e. Sum of dicamba and 3,6-dichloro-2-hydroxybenzoic acid (DCSA; free and conjugated), expressed as dicamba. (b): The EU MRLs reported in this column refer to the EU enforcement RD for conventional crops (i.e. Dicamba). (c): In the framework of an IT application (EFSA, 2013o) an MRL proposal for GM soybeans w. derived which was legally implemented by Regulation (EU) 2015/401⁽¹⁾ in the form of a footnote. There are two values set in Regulation (EC) No 396/2005 for soybeans treated with dicamba: 10 mg/kg applies to conventional soybean and 0.4 mg/kg to GM soybean to address the occurrence of 3,6-dichloro-salicylic acid (DCSA). Currently, a GM soybean variety tolerant to dicamba is approved in Europe (MON 87708). 		

- *: Indicates that the MRL is proposed at the limit of quantification.
- (1): Commission Regulation (EU) 2015/401 of 25 February 2015 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acetamiprid, chromafenozide, cyazofamid, dicamba, difenoconazole, fenpyrazamine, fluazinam, formetanate, nicotine, penconazole, pymetrozine, pyraclostrobin, tau-fluvalinate and tebuconazole in or on certain products. OJ L 71, 14.3.2015, p. 114–156.

5.23.5. Consumer risk assessment

Table 111: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal were derived (cotton, soyabeans and maize). The risk assessment was performed with the EU ARfD.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The calculations were performed with the existing EU MRLs, including the STMR values derived by JMPR for the crops for which the proposed Codex were derived (cotton, soyabeans and maize). The calculations are affected by additional, non-standard uncertainties, related to the fact that the MRLs were used (which may lead to an overestimation) and because information on the magnitude of residues of metabolite(s) included in the risk assessment residue definition are not available (which may lead to an underestimation of the exposure). The risk assessment was performed with	Specific comments:
Desulter	the EU ADI assigned to dicamba.	Desulta
Results: No short-term consumer health risk was identified for the crops under assessment. For all crops assessed: < 0.1% of ARfD.	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 14% of the ADI. The crops under consideration were minor contributors to the total exposure (max. 0.07% of the ADI.	Results: Long-term exposure: Max 1% of the JMPR ADI. Short-term exposure: 0% of ARfD.

5.24. Penthiopyrad (253) R

5.24.1. Background information

Table 112:	Background information
------------	------------------------

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	SE	
Approval status	Approved	Commission Implementing Regulation (EU) No 1187/2013 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2013b)
MRL review performed	No	Ongoing
MRL applications/assessments	Yes, see comments	(EFSA, 2020r) (fennels and celeries) (EFSA, 2016s) (stone fruits and cereals) (EFSA, 2012j) (various crops)
Classification of a.s. – cut-off criteria	No	

		Comments, references
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/ 605 ^(b)) has not been performed yet

⁽a): Commission Implementing Regulation (EU) No 1187/2013 of 21 November 2013 approving the active substance penthiopyrad, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 313, 22.11.2013, p. 42–46.

5.24.2. Toxicological reference values

Table 113:	Comparison of toxicological	reference values (TRV	/ derived by JMPR and at EU level)
------------	-----------------------------	-----------------------	------------------------------------

,	JMPR evaluation			EU evaluation	TRV
	Value	Comments	Value	Comments	comparable
ADI for parent	0.1 mg/kg bw per day	JMPR (2011)	0.1 mg/kg bw per day	(EFSA, 2013b) (Two generation rat with safety factor 100)	Yes
ARfD for parent	1 mg/kg bw	JMPR (2011)	0.75 mg/kg bw	(EFSA, 2013b) (Rabbit developmental with safety factor 100)	No
Conclusion/ comment	Metabolite 753-A-OH is of a similar toxicity as the parent. During the peer review, the information was not sufficient to conclude on the toxicity of another metabolite, PAM . Based on the confirmatory data requested and assessed by EFSA, an ADI of 0.0024 mg/kg bw per day and an ARfD of 0.024 mg/kg bw were derived (EFSA, 2016s). This confirms that a separate assessment is needed for PAM. Further discussions on toxicity of PAM are ongoing in peer review expert meetings.				

5.24.3. Residue definitions

Table 114:	Comparison of the residue definitions derived by JMPR and at EU level
------------	---

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Penthiopyrad	Reg. 396/2005 and peer review (EFSA, 2013b): Penthiopyrad	Yes
	Animal products	Sum of penthiopyrad and 1-methyl-3-trifluoromethyl- 1H-pyrazole-4-carboxamide (PAM), expressed as penthiopyrad	Reg. 396/2005: Penthiopyrad Peer review (EFSA, 2013b): Penthiopyrad and PAM The residue is not fat soluble	No, compared to the current RD in Reg. 396/2005
RD RA	Plant products	The residue is not fat soluble Sum of penthiopyrad and 1- methyl-3-trifluoromethyl-1H- pyrazole-4-carboxamide (PAM), expressed as penthiopyrad	Peer review (EFSA, 2013b): Residue definition 1: Sum of penthiopyrad and metabolite 753-AOH, expressed as penthiopyrad; Residue definition 2: Metabolite PAM	No
	Animal products	Sum of penthiopyrad and 1- methyl-3-trifluoromethyl-1H- pyrazole-4-carboxamide (PAM), expressed as penthiopyrad	Peer review (EFSA, 2013b): Residue definition 1: Penthiopyrad Residue definition 2: PAM	No

⁽b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
Conclusion, comments	assessment is n a separate resid an additional me For animal prod comparable. Ho	ot comparable for plants betwee lue definition was established for etabolite, 753-AOH is also inclu- ucts both enforcement and resi	ame, but the residue definition for ten the EU and JMPR. In the Europ or PAM, as it has much lower refere ded in the residue definition. idue definitions for risk assessmen x MRL proposals for animal produc	ean evaluation ence values and t are not

5.24.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Cane berries, Subgroup of 004A	10	0.01* Blackberries, dewberries, raspberries	cGAP: Canada, foliar, 3 × 0.35 kg/ha, min. 7-day interval between applications, PHI 0 days Number of trials: 1 blackberry + 4 trials on raspberry Sufficiently supported by data: Yes Specific comments/observations: Individual levels of penthiopyrad and PAM were reported separately in the JMPR evaluation. Since metabolite 753-AOH is not included in the JMPR residue definition, information on the occurrence of this metabolite is not available. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable; the enforcement residue definitions are compatible. However, the risk assessment residue definitions are not fully compatible with the EU policy on setting MRLs. Follow-up action: None
Bush berries, Subgroup of	7	0.01* (blueberries, currants, gooseberries, rose hips)	cGAP: Canada, foliar, 3 × 0.35 kg/ha, min. 7-day interval between applications, PHI 0 days Number of trials: 7 Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL for whole group of bush berries covers blueberries, currants, gooseberries and rose hips. According to Codex extrapolation rules, blueberry trials are acceptable to derive the group MRL. In the EU additional trials on currants and/or on grapes would be needed. Individual levels of penthiopyrad and PAM were reported separately in the JMPR evaluation. Since metabolite 753-AOH is not included in the JMPR residue definition, information on the occurrence of this metabolite is not available. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable; the enforcement residue definitions are compatible. Follow-up action: None
Elderberries	7	0.01*	cGAP: Canada, foliar, 3×0.35 kg/ha, min. 7-day interval between applications, PHI 0 days Number of trials: 7 in blueberries Sufficiently supported by data: No Specific comments/observations: An extrapolation from blueberries to elderberries is not foreseen in the Codex extrapolation rules. In the EU, the data would not be accepted (either residue trials in elderberries or additional trials on currants and/or grapes would be required).

Table 115:	Comparison of Codex MRL pro	oposals derived by	/ JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment	
			Conclusion: The proposed Codex MRL is not acceptable.	
			Follow-up action: None	
Guelder rose (cranberries)	7	0.01*	See elderberries	
General comments	Information on the occurrence of PAM was reported in the detailed JMPR evaluations. However, information on metabolite 753-AOH, which is included in the EU residue definition for risk assessment, but not in the residue definition of JMPR is not available. Taking into account the metabolism studies and residue trials in fruits, metabolite 753-AOH is not expected to contribute significantly to the consumer exposure.			

 $\ast\colon$ Indicates that the MRL is proposed at the limit of quantification.

5.24.5. Consumer risk assessment

Table 116: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. The calculations are affected by additional, non-standard uncertainties, related to the levels of metabolites, PAM and 753-A-OH. Regarding the consumer exposure for the residue definition 1, the exposure may be underestimated as information was not available on the level of metabolite, 753- A-OH in the crops. However, this is not expected to significantly impact the risk assessment. The risk assessment was performed with the EU ARfD. The calculations are indicative, because there is no information on the specific level of all metabolites included in the EU RD. The consumer exposure for the residue definition 2 could not be performed as individual levels of PAM are not indicated in the JMPR Report.	RA assumptions: A long-term dietary risk assessment for both EU residue definitions were performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessments (EFSA, 2020r) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRLs are higher than the EU MRLs. The calculations are affected by additional, non-standard uncertainties, related to the levels of metabolite 753-A-OH. Regarding the consumer exposure for the residue definition 1, the exposure may be underestimated as information was not available on the level of metabolite, 753-A-OH in the crops. However, this is not expected to significantly impact the risk assessment. The risk assessment was performed with the EU ADI. The calculations are indicative, because not all metabolites were measured or reported. The consumer exposure for the residue definition 2 was updated with the levels of PAM which were derived from the JMPR evaluation.	Specific comments: Without data indicating the actual levels of metabolite PAM, the risk assessment in line with this residue definition could not be carried out. When the evaluation report will become available it has to be checked whether data is sufficient to carry out a risk assessment.
Results: RD 1: No short-term consumer health risk was identified for the crops under assessment. RD 1: highest result: Blackberries 6.86% of ARfD RD 2: highest result: Currants 1.4% of ARfD	Results: RD 1: No long-term consumer health risk was identified. RD 1: The overall chronic exposure accounted for 30% of the ADI; the overall contribution of the crops under consideration is max. 2% of the ADI Among the crops under consideration, raspberries was identified as the main contributor, accounting for up to 0.6% of the ADI.	Results: Long-term exposure: Max 8% of the JMPR ADI. Short-term exposure: Highest result up to 5% of ARfD.
	RD 2: The overall chronic exposure accounted for 60% of the ADI of PAM; the	

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
	overall contribution of the crops under consideration is max. 0.4% of the ADI Among the crops under consideration, currants were identified as the main contributor, accounting for up to 0.17% of the ADI.	

5.25. Fluxapyroxad (256) R/T

5.25.1. Background information

Table 117:	Background information
------------	------------------------

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	FR	
Approval status	Approved	Commission Implementing Regulation (EU) No 589/2012 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2012a)
MRL review performed	Yes, see comments	(EFSA, 2020e)
MRL applications/assessments	Yes, see comments	(EFSA, 2020a) (import tolerance for certain root crops) (EFSA, 2017i) (various crops) (EFSA, 2016c) (various crops) (EFSA, 2015q) (grapes and potatoes) (EFSA, 2011h) (various crops)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) No 589/2012 of 4 July 2012 approving the active substance fluxapyroxad, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 175, 5.7.2012, p. 7–10.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.25.2. Toxicological reference values

Table 118:	Comparison of toxicological	reference values (TRV	/ derived by JMPR and a	at EU level)
------------	-----------------------------	-----------------------	-------------------------	--------------

	JMPI	JMPR evaluation		EU evaluation		
	Value	Comments	Value	Comments	comparable	
ADI	0.02 mg/kg bw per day	JMPR (2012) Rat, 2-year study, UF of 100	0.02 mg/kg bw per day	(EFSA, 2012a) Rat, 2-year study, UF 100	Yes	
ARfD	0.3 mg/kg bw	JMPR (2012) Rat and rabbit developmental toxicity studies, UF of 100	0.25 mg/kg bw	(EFSA, 2012a) Rabbit (developmental effects), and rat (maternal effects) developmental toxicity studies; UF 100	No	

JMPR evaluation		EU	EU evaluation	
Value	Comments	Value	Comments	comparable
Parent: Regarding the derivation of the ADI, the JMPR and EU evaluations resulted in the same value, based on the same study. Regarding the derivation of the ARfD, both evaluations are based on the same NOAELs from the same studies, the difference being due to rounding.				
Metabolites: From the toxicological data available to the JMPR on metabolites M700F001 , M700F002 and M700F048 , the JMPR considered these metabolites are not more toxic than fluxapyroxad. The EU assessment conclusions are reported below: Metabolites M700F048 and M700F008 : The toxicological reference values of the parent are applicable to these 2 metabolites according				
 Metabolite M700F001: An ADI of 0.25 mg/kg bw per day was derived by the EU assessment based on a developmental toxicity study in rabbits and UF of 1,000 applied; an ARfD was not derived as not necessary. Metabolite M700F002: An ADI of 0.3 mg/kg bw per day was derived by the EU assessment based on a developmental 				
	Value Parent: Regarding the based on the Regarding the the same stud Metabolites: From the toxid M700F048, t The EU assess Metabolites The toxicologi to the EU asses Metabolite N An ADI of 0.2 developmenta not necessary Metabolite N An ADI of 0.3	ValueCommentsParent: Regarding the derivation of the ADI, t based on the same study. Regarding the derivation of the ARfD, the same studies, the difference being Metabolites: From the toxicological data available t M700F048, the JMPR considered the The EU assessment conclusions are reference values of t to the EU assessment. Metabolite M700F048 and M700 The toxicological reference values of t to the EU assessment.Metabolite M700F048 M700F048 The toxicological reference values of t to the EU assessment.Metabolite M700F001: An ADI of 0.25 mg/kg bw per day was developmental toxicity study in rabbits not necessary.Metabolite M700F002: An ADI of 0.3 mg/kg bw per day was	ValueCommentsValueParent: Regarding the derivation of the ADI, the JMPR and EU based on the same study. Regarding the derivation of the ARfD, both evaluation the same studies, the difference being due to roundir Metabolites: From the toxicological data available to the JMPR on M700F048, the JMPR considered these metabolites The EU assessment conclusions are reported below: Metabolites M700F048 and M700F008: The toxicological reference values of the parent are a to the EU assessment. Metabolite M700F01: An ADI of 0.25 mg/kg bw per day was derived by the developmental toxicity study in rabbits and UF of 1,00 not necessary. Metabolite M700F002: An ADI of 0.3 mg/kg bw per day was derived by the	Value Comments Value Comments Parent: Regarding the derivation of the ADI, the JMPR and EU evaluations resulted in based on the same study. Regarding the derivation of the ARfD, both evaluations are based on the same the same studies, the difference being due to rounding. Metabolites: From the toxicological data available to the JMPR on metabolites M700F001 M700F048, the JMPR considered these metabolites are not more toxic than The EU assessment conclusions are reported below: Metabolites M700F048 and M700F008: The toxicological reference values of the parent are applicable to these 2 met to the EU assessment. Metabolite M700F01: An ADI of 0.25 mg/kg bw per day was derived by the EU assessment based or developmental toxicity study in rabbits and UF of 1,000 applied; an ARfD was not necessary. Metabolite M700F002:

5.25.3. Residue definitions

Table 119:	Comparison of the residue definitions derived by JMPR and at EU level
------------	---

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Fluxapyroxad	Reg. 2018/685 ^(a) : Fluxapyroxad	Yes	
			Peer review (EFSA, 2012a): Fluxapyroxad (BAS 700F) – All crop categories		
	Animal products	Fluxapyroxad	Reg. 2018/685 ^(b) : Fluxapyroxad	Yes	
		The residue is fat soluble	Peer review (EFSA, 2012a): Fluxapyroxad (BAS 700F)		
			The residue is fat soluble		
RD RA	Plant products	Sum of fluxapyroxad and 3- difluoromethyl)-N-(3',4',5'- trifluoro[1,1'-biphenyl]-2-yl)- 1H-pyrazole-4-carboxamide (M700F008) and 3- (difluoromethyl)-1-(B-D- glucopyranosyl)-N-(3',4',5'- triflurobipheny-2-yl)-1H- pyrzaole-4-carboxamide (M700F048) and expressed as parent equivalents	Peer review (EFSA, 2012a): Fluxapyroxad (BAS 700F) – All crop categories	No	
	Animal products	Sum of fluxapyroxad and 3- (difluoromethyl)-N-(3',4',5'- trifluoro[1,1'-biphenyl]-2-yl)- 1H-pyrazole-4-carboxamide (M700F008) expressed as parent equivalents	Peer review (EFSA, 2012a): Fluxapyroxad (BAS 700F) and metabolite M700F008 expressed as parent equivalent	Yes	
Conclusion, comments					

Commodity group	JMPR evaluation	EU evaluation	RDs comparable
plant metabolites	(M700F008 and M700F048). the risk assessment values do	n, the JMPR, in contrast to EU, has i . The overall contribution of metabol erived by JMPR will lead to a slightly	ites is expected

⁽a): Commission Regulation (EU) 2018/685 of 3 May 2018 amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for abamectin, beer, fluopyram, fluxapyroxad, maleic hydrazide, mustard seeds powder and tefluthrin in or on certain products. OJ L 121, 16.5.2018, p. 1–29.

5.25.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment		
Citrus fruit, Group of 1 (W) 0.01* except grapefruit and oranges with 0.4 and 0.3 resp.		except grapefruit and oranges with 0.4 and	The Codex proposal of 1 mg/kg from the previous JMPR t meeting will be withdrawn, instead new Codex MRLs for the individual commodities of the citrus fruit group are proposed.		
Lemons and Limes 1 0.01		0.01* (lemon, lime, kumquat)	cGAP: USA, 4×138 g/ha, 10-day interval, PHI 0 days Number of trials: 7 Sufficiently supported by data: Yes Specific comments/observations: Residue trials were GAP compliant and analysed for fluxapyroxad and total fluxapyroxad. Residues of metabolites do not contribute significantly to the total residue. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None		
Mandarins, Subgroup of	1	0.01*	cGAP: USA, 4×138 g/ha, 10-day interval, PHI 0 days Number of trials: 7 trials on lemons, extrapolated to mandarins Sufficiently supported by data: No Specific comments/observations: Mandarins are a major crop; no residue trials are available for mandarins; extrapolation from lemon is not in accordance with the agreed Codex extrapolation rules r the extrapolation from Lemon to Mandarin is not included in the extrapolation document from Codex (CXG 84, adopted in 2012 and amended in 2017). Since only 1 trial is available for mandarin, more trials would be required to set an MRL for the mandarin subgroup as proposed in the previous CCPR comments. However, based on the EU guidance on extrapolation (SANCO 7525/VI/95, Rev. 10.3), extrapolation from lemon to mandarin is possible and vice versa. Furthermore, according to the analyses conducted by the JMPR concerning the potential residue in citrus, residue levels in mandarin and in lemons following foliar application are comparable. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable although it is not fully in compliance with the JMPR extrapolation rules. Follow-up action: None		

Table 120: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

⁽b): Commission Implementing Regulation (EU) No 589/2012 of 4 July 2012 approving the active substance fluxapyroxad, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 175, 5.7.2012, p. 7–10.

Commodity	Codex MRL proposal	EU MRL	Comment
Oranges, Sweet, Sour (including Orange- like hybrids), Subgroup of	1.5	0.3	cGAP: USA, 4×138 g/ha, 10-day interval, PHI 0 days Number of trials: 10 Sufficiently supported by data: Yes Specific comments/observations: Residue trials were GAP compliant and analysed in oranges for Fluxapyroxad and total Fluxapyroxad. Residues of metabolites do not contribute significantly to the total residue. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Pummelo and Grapefruits (including Shaddock-like hybrids, among other Grapefruit), Subgroup of		0.4	cGAP: USA, 4×138 g/ha, 10-day interval, PHI 0 days Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: Residue trials were GAP compliant and analysed in grapefruit for Fluxapyroxad and total Fluxapyroxad. Residues of metabolites do not contribute significantly to the total residue. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Citrus oil, edible	90	_	The proposal of 90 is derived from the PF of 59 from two processing studies. The previous proposal of 60 will be withdrawn. No EU MRLs are set for citrus oil.
Citrus pulp, dry	8	_	The PF of 4.8 is derived from two processing studies. No EU MRLs are set for citrus pulp.
General comments	_		

*: Indicates that the MRL is proposed at the limit of quantification.

5.25.5. Consumer risk assessment

Table 121: Comparison of Codex MRL proposals derived by JMPR with

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The acute exposure assessment was performed updating the most recent EFSA PRIMo rev. 3.1 which includes the MRL values which are already adopted. The HR values derived for total Fluxapyroxad were used for the citrus crops as input values. The risk assessment was performed with the EU ARfD.	RA assumptions: The chronic exposure assessment was performed using EFSA PRIMo rev. 3.1; the STMR values derived in the MRL review (EFSA, 2020e) and the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. For the citrus crops under assessment, the STMR values derived for total fluxapyroxad were used as input values.	exposure.
	The risk assessment was performed with the EU ADI (same as the JMPR ADI).	
Results: No short-term consumer health risk was identified for the crops under assessment. Oranges: 31% of ARfD Mandarins: 11% of ARfD Grapefruits: 8% of ARfD Lemons: 6% of ARfD Limes: 4% of ARfD Kumquat: 0.3% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 61% of the ADI. Among the crops under consideration, Oranges was identified as the main contributor, accounting for up to 8% of the ADI.	Results: _

5.26. Picoxystrobin (258)

5.26.1. Background information

Table 122: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	CZ	
Approval status	Not approved	Commission Implementing Regulation (EU) 2017/1455 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2016m)
MRL review performed	Yes, see comments	(EFSA, 2011o)
MRL applications/ assessments	Yes, see comments	(EFSA, 2014g) (sugar beet)
Classification of a.s. – cut-off criteria	Not assessed, not concluded	No harmonised classification.
Endocrine effects of a.s.	Not assessed/not concluded/ not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet.

(a): Commission Implementing Regulation (EU) 2017/1455 of 10 August 2017 concerning the non-renewal of approval of the active substance picoxystrobin, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. C/2017/5541. OJ L 208, 11.8.2017, p. 28–30.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.26.2. Toxicological reference values

Table 123:	Comparison of toxicological reference values (TRV derived by JMPR and at EU level)	
------------	--	--

	JMPR evaluationValueComments			EU evaluation	TRV comparable	
			Value	Comments		
ADI	0.09 mg/kg bw per day	JMPR (2013)	No toxicological reference values could be derived	Setting of reference values was postponed until conclusion on the genotoxic potential of picoxystrobin (EFSA, 2016m)	Not appropriate	
ARfD	0.09 mg/kg bw	JMPR (2013)	No toxicological reference values could be derived	Setting of reference values was postponed until conclusion on the genotoxic potential of picoxystrobin (EFSA, 2016m)	Not appropriate	
Conclusion/ comment	I During the EU renewal process, no toxicological references were proposed, since a genotoxic potential of picoxystrobin could not be excluded (picoxystrobin was positive in the in vitro mammalian gene mutation assay). In addition for several metabolites relevant for the risk assessment residue definition in plant, a conclusion on the toxicological profile could not be derived (IN-H8612 a clastogenic/aneugenic potential cannot be excluded, while for IN-K2122, IN-QGU64 no toxicological data were provided) (EFSA, 2016m). In 2012, JMPR established the ADI and ARfD listed above. However, no conclusion was reached on the toxicological relevance of IN-H8612 and IN-QGU64, both metabolites have structural alerts for genotoxicity. For IN-H8612, JMPR concluded in 2013, on the basis of a mouse micronucleus study and an estimate of the exposure using TTC that this metabolite is of no concern for dietary exposure.					

 JMPR evaluation		EU evaluation		TRV	
Value	Comments	Value	Comments	comparable	
In 2016, JMPR concluded that further information was required for IN-QGU64, because a possible interconversion of IN-H8612 and IN-QGU64 cannot be excluded. In 2017, JMPR assessed the new metabolism studies in soybeans, tomatoes and potatoes; IN-QGU64 was not observed. With this information, the meeting concluded that in the 2006 soybean metabolism study, IN-H8612 had been incorrectly characterised as IN-QGU64.					
 In 2019, the EU submitted a concern form to JMPR; JMPR responded to the concerns raised by the EU, concluding that JMPR and EFSA differ in their interpretations of the genotoxicity data for picoxystrobin and IN-H8612 (JMPR 2019). A reassessment of the available genotoxicity data or new genotoxicity data has not been taken place at EU since the EFSA conclusion on picoxystrobin (EFSA, 2016m).					

5.26.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Picoxystrobin	Reg. 396/2005: picoxystrobin	Yes	
			Peer review: Picoxystrobin (pending conclusion on the toxicological profile of picoxystrobin and its main plant metabolites) (EFSA, 2016m)		
	Animal products	Picoxystrobin The residue is fat soluble	Reg. 396/2005: picoxystrobin Peer review: Picoxystrobin (pending conclusion on the toxicological profile of picoxystrobin and its main plant metabolites) (EFSA, 2016m)	Yes	
			The residue is fat soluble		
RD RA	Plant products	Picoxystrobin	Not proposed , pending conclusion on the toxicological profile of picoxystrobin and its main plant metabolites (EFSA, 2016m)	Not applicable	
	Animal products	Picoxystrobin	Not proposed , pending conclusion on the toxicological profile of picoxystrobin and its main plant metabolites (EFSA, 2016m)	Not applicable	
Conclusion, comments	The EU residue definitions for enforcement derived under the peer review are provisional. For metabolites IN-K2122, IN-QGU64, (both relevant for risk assessment), insufficient toxicological information was available to conclude on their toxicological profile; for IN-H8612, a clastogenic potential cannot be exclude. Thus, no risk assessment residue definitions were derived.				

Table 124: Comparison of the residue definitions derived by JMPR and at EU level

5.26.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Sorghum Grain	0.02	0.01*	cGAP: USA, 3 \times 0.22 kg/ha, last application not to be applied after flowering. Number of trials: 11 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: Although a sufficient number of residue trials is available, the proposed Codex MRL is not acceptable since a consumer risk assessment cannot be conducted. Follow-up action: None
Cottonseed	2	0.01*	cGAP: USA, 3×0.22 kg/ha, PHI 7 days Number of trials: 12 Sufficiently supported by data: Yes Specific comments/observations: Results from trials performed at higher application rate were scaled-down according to the proportionality principle (scaling factor of 0.44). Conclusion: Although a sufficient number of residue trials are available, the proposed Codex MRL is not acceptable since a consumer risk assessment cannot be conducted. Follow-up action: None
Coffee bean	0.04	0.05*	cGAP: Brazil, 3×0.1 kg/ha, PHI 40 days Number of trials: 9 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: Although a sufficient number of residue trials are available, the proposed Codex MRL is not acceptable since a consumer risk assessment cannot be conducted. Follow-up action: None
Tea, Green, Black (black, fermented and dried)	15	0.05*	cGAP: China, 2 × 0.0225 kg/hL, PHI 10 days Number of trials: 6 Sufficiently supported by data: No Specific comments/observations: Tea is a major crop in the Codex; the number of trials required for major crops is not clearly specified in the JMPR rules. At EU level, at least 8 trials are required. Conclusion: Codex MRL is not acceptable since a consumer risk assessment cannot be conducted. In addition, the number of residue trials is insufficient to derive an MRL proposal. Follow-up action: None
Edible offal (Mammalian)	0.02	0.01*	The Codex MRL proposal was derived from a feeding study where at the estimated dietary burden residues at 0.01 mg/kg were calculated for liver. In kidney, no residues were found. The CXL proposal is not acceptable since a consumer risk assessment cannot be conducted.
Mammalian fats (except milk fats)	0.02	0.01*	The Codex MRL proposal was derived from a feeding study; at the calculated burden, residues of 0.015 mg/kg are expected in fat. The proposed Codex MRL is not acceptable since a consumer risk assessment cannot be conducted.
Meat (from mammals other than marine mammals)	0.02 (fat)	0.01*	Since picoxystrobin is fat soluble, the MRL proposal for fat is applied to meat (fat). The proposed Codex MRL is not acceptable since a consumer risk assessment cannot be conducted.

Table 125:	Comparison of Cod	ex MRL proposals	derived by JMPF	R with EU MRLs
------------	-------------------	------------------	-----------------	----------------

Commodity	Codex MRL proposal	EU MRL	Comment
Milks	0.01*	0.01	From the feeding study, it was concluded that at the expected dietary burden no quantifiable residues are expected in milk.
Alfalfa fodder	10 (dw)	_	-
Sorghum straw and fodder, dry	1 (dw)	_	-
General comments	_		

*: Indicates that the MRL is proposed at the limit of quantification.

5.26.5. Consumer risk assessment

Table 126: Summary of the consumer risk assess	ment
--	------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions: No short-term consumer intake exposure could be conducted since in the EU, no toxicological reference values and no residue definitions for risk assessment could be derived in the peer review process on the renewal of the approval.	RA assumptions: No long-term consumer intake exposure could be conducted since in the EU, no toxicological reference values and no residue definitions for risk assessment could be derived in the peer review process on the renewal of the approval.	Specific comments: JMPR updated the TTC calculations for the three metabolites IN-H8612, IN-QDK50 and IN-U3E08 performed in 2017, including the new uses. The exposure was found to be below the TTC threshold for Cramer Class III compounds.	
Results: _	Results: _	Results: 0–0.2% of ADI 0–2% of ARfD	

5.27. Benzovindiflupyr (261) R

5.27.1. Background information

Table 127: Bac	kground information
----------------	---------------------

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	FR	
Approval status	Approved	Commission Implementing Regulation (EU) 2016/177 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2015e)
MRL review performed	Not required	
MRL applications/assessments	Yes, see comments	(EFSA, 2016q) (Import tolerance request on various plant and animal commodities)
		Ongoing: modification of the existing MRLs in leek and spring onions, green onions and Welsh onions
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	

(a): Commission Implementing Regulation (EU) 2016/177 of 10 February 2016 approving the active substance benzovindiflupyr, as a candidate for substitution, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011. OJ L 35, 11.2.2016, p. 1–5.

5.27.2. Toxicological reference values

	ЈМР	R evaluation	EU	l evaluation	TRV
	Value	Comments	Value	Comments	comparable
ADI	0.05 mg/kg bw per day	JMPR (2013) Rat, 2-year study, UF of 100	0.05 mg/kg bw per day	(EFSA, 2015e) Rat, 2-year study, UF of 100	Yes
ARfD	0.1 mg/kg bw	JMPR (2013) Rat, acute neurotoxicity study, UF of 100	0.1 mg/kg bw	(EFSA, 2015e) Rat, acute neurotoxicity study, UF of 100	Yes
Conclusion/ comment	study, UF of 100 study, UF of 100				

Table 128:	Comparison of toxicologica	l reference values ((TRV derived by	/ 1MPR and at FU level)
	companison or conicologica			

5.27.3. Residue definitions

Table 129: Comparison of the residue definitions derived by JMPR and at EU leve
--

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Benzovindiflupyr	Reg. 396/2005: Benzovindiflupyr Peer review (EFSA, 2015e): Benzovindiflupyr	Yes
	Animal products	Benzovindiflupyr The residue is fat soluble	Reg. 396/2005: Benzovindiflupyr Peer review (EFSA, 2015e): Benzovindiflupyr	Yes
			The residue is not fat soluble	
RD RA	Plant products	Benzovindiflupyr	Peer review (EFSA, 2015e): Benzovindiflupyr	Yes
	Animal products	Benzovindiflupyr	Peer review (EFSA, 2015e): Benzovindiflupyr and mono- hydroxylated benzovindiflupyr, free and conjugated (SYN546039) expressed as benzovindiflupyr	No
Conclusion, comments	 Plant commodities: The residue definitions for enforcement and risk assessment set by J and at EU level are identical. Animal commodities: The residue definition for enforcement set by JMPR and at EU level identical. For risk assessment, the residue definition at EU level is more comprehensive and includes the mono-hydroxylated metabolite SYN546039 (free and conjugated). In the metabolism study in goats, the metabolite represented 22%–50% total radioactive residue 			

Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
assessment for animetabolite.	(TRR) in tissues and milk. A conversion factor of 2 was proposed to be used consumer ris assessment for animal commodities to account for the contribution of residues of this				

5.27.4. Codex MRL proposals

Table 130:	Comparison of Codex MRL proposals derived by JMPR with EU MRLs
------------	--

Commodity	Codex MRL proposal	EU MRL	Comment	
Bulb onion, Subgroup of (includes all commodities in this subgroup)	0.02	Garlic: 0.01* Onion: 0.01* Shallot: 0.01*	cGAP: US, foliar, 4 × 76 g a.i./ha, interval 7 days, PHI 7 days Number of trials: 8 on bulb onions Sufficiently supported by data: Yes Specific comments/observations: For bulb onions, 5 trials are sufficient according to JMPR rules. At EU level, 8 trials would be required. Extrapolation from onions to garlic and shallots is acceptable Conclusion: The proposed Codex MRL is acceptable and covers onions, garlic and shallots. Follow-up action: None	
Sugar cane	0.4	0.04	cGAP: US, foliar, 3 × 76 g a.i./ha, interval 14 days, PHI 30 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: see general comments below. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: –	
Sugar cane, molasses			2 processing trials. PF 0.04	
Sugar cane refined sugar			2 processing trials. PF 0.09	
General comments	According to the OECD guidance document, by-products of sugar cane are used as feed items (sugarcane tops, molasse and bagasse). JMPR reported that the previous dietary burden calculations were updated, including STMRs for sugar cane tops and molasses. However, in the calculations reported in Annex 6, these feed items are not listed. While, the contribution from residues in sugar cane molasse is irrelevant, the statement that the residues in sugar cane tops do not significantly increase the livestock burden and the potential contribution of residues in sugar can bagasse (both feed items in non-EU livestock diets) are not substantiated. JMPR concluded that there is no need for updating the MRLs for animal products. Follow-up action: To check in the JMPR evaluation the dietary burden calculation regarding the inclusion of sugar cane tops and molasses and to verify the conclusion that no modification of the MRLs for animal products are required.			

 $\ast:$ Indicates that the MRL is proposed at the limit of quantification.

5.27.5. Consumer risk assessment

Table 131: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 The calculation is based on the HR values for garlic, onions, shallots and sugar cane for which the Codex MRL proposal is higher than the existing EU MRL. To calculate the dietary exposure to cane sugar, the processing factor of 0.04 was used. The risk assessment was performed with the EU/JMPR ARfD.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The calculation is based on the STMR values for garlic, onions, shallots and sugar cane for which the Codex MRL proposal is higher than the existing EU MRL, and the STMR values derived in previous assessments (EFSA, 2016q; JMPR, 2016). To calculate the exposure to cane sugar, the processing factor of 0.04 was used. For products of animal origin, the conversion factor of 2 was used to take into consideration residues of SYN546039. For other commodities, EFSA assumed no uses are authorised. The risk assessment was performed with the EU/JMPR ADI.	Specific comments: −
Results: No short-term consumer health risk was identified for the crops under assessment. Garlic: 0.05% of ARfD Onions: 0.34% of ARfD Shallots: 0.04% of ARfD Sugar canes (raw): 0.05% of ARfD Sugar cane (sugar): 0.03% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 5% of the ADI. Among the crops under consideration, sugar cane was identified as the main contributor, accounting for up to 0.27% of the ADI (raw commodity).	Results: Long-term exposure: Max 2% of the JMPR ADI. Short-term exposure: Highest result for sugar cane: 1% of ARfD (children), 2% of ARfD (all general population)

5.28. Fluensulfone (265) R

5.28.1. Background information

Table 132:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	No RMS assigned	
Approval status	Not approved	Not assessed in the EU
EFSA conclusion available	No	
MRL review performed	No	
MRL applications/ assessments	No	
Classification of a.s. – cut-off criteria	Not assessed, not concluded	No harmonised classification
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific

Cor	nments, references
	eria (Commission Regulation (EC) No 2018/605 ^(a)) not been performed yet

(a): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.28.2. Toxicological reference values

Table 133:	Comparison of toxicological	reference values	(TRV derived by	y JMPR and at EU level)
------------	-----------------------------	------------------	-----------------	-------------------------

	JMPR evalua	tion	E	EU evaluation	TRV
	Value	Comments	Value	Comments	comparable
ADI	0.01 mg/kg bw per day	JMPR (2013)	-	No EU assessment	Not appropriate
ARfD	0.3 mg/kg bw	JMPR (2013)	-	No EU assessment	Not appropriate
Conclusion/ comment	In 2017, the EU made a reservation in the CCPR meeting, related to the questions on the residue definition (results of metabolism studies did not reflect results from the field trials) and concern over the genotoxic potential of the MeS metabolite. In response to the concern on genotoxicity of MeS, the JMPR outlined that though there was a weakly positive result in the Ames test, the absence of genotoxicity was supported by negative results in in-vivo studies (micronucleus and liver unscheduled DNA synthesis).				
	However, it is noted that the negative micronucleus assay with MeS must not be used as argument for the assumption that the metabolite was not genotoxic. Similarly, a negative assay is not considered sufficient for this purpose any longer. The appropriate tests to cla the mutagenic potential of MeS in vivo would have been either the Comet assay or a stu transgenic rodents. Since the original studies (Ames test and in vivo studies) are not ava in the EU for a detailed assessment, a final conclusion on the possible genotoxic potentia cannot be derived.				arly, a negative UDS ate tests to clarify assay or a study in s) are not available
	JMPR assessed MeS using A precondition for using the potential.	• •	•		nce of a genotoxic

5.28.3. Residue definitions

Table 134:	Comparison of the residue definitions derived by JMPR and at EU level
------------	---

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products Sum of fluensulfone and 3,4,4-trifluorobut-3-ene-1- sulfonic acid (BSA), expressed as fluensulfone equivalents		Default residue definition	No	
	Animal products	Fluensulfone Default residue The residue is fat soluble definition		Yes	
RD RA	Plant products	Fluensulfone	-	Not appropriate	
	Animal products	Fluensulfone	-	Not appropriate	
Conclusion, comments	 Animal products in Idensitione in the solution is indensitione in the active substance has never been assessed at EU level and no specific MRLs are established in Annex II or III, currently the default residue definition covering the parent compound only is applicable. A default MRL of 0.01 mg/kg according to Art. 18(1)(b) Reg. 396/2005 is applicable for all commodities. The JMPR residue definitions were proposed in 2014 and modified in 2016: According to the plant metabolism studies assessed by the JMPR in 2014, the main plant metabolites of fluensulfone following the soil/early foliar treatment are thiazole sulfonic acid (TSA, M3625) and butane sulfonic acid (BSA, M3627). Parent fluensulfone was present at trace levels only; TSA was also found to accumulate in rotational crops. In residue trials submitted in 2016, fluensulfone was found in significant concentrations, and therefore, JMPR decided to include also the parent compound in the residue definitions. 				

5.28.4. Codex MRL proposals

Table 135:	Comparison of Codex MRL	proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	Default EU MRL	Comment
Citrus fruit, Group of	0.2	0.01	cGAP: USA, $1 \times$ (soil, preflowering) 3.92 kg/ha, PHI 60 days Number of trials: 22 trials (8 on oranges, 3 on mandarins, 5 on lemons and 6 on grapefruit). Sufficiently supported by data: Yes Specific comments/observations: Since the application of a.s. takes place before flowering and the data sets are of the same population, the JMPR merged residue data on oranges, lemons, mandarins and grapefruits to derive group MRL. Since mandarins are a major crop in Codex, additional trials would be required. If the trials on the different citrus crops are assessed separately, the following MRL proposals would be derived: oranges 0.09 mg/kg, grapefruit 0.15 mg/kg and lemons 0.3 mg/kg. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions and the lack of residue trials in mandarins. Follow-up action: None

Commodity	Codex MRL proposal	Default EU MRL	Comment
Pome fruit, Group of (except Persimmon, Japanese)	0.2	0.01 (Pome fruits, kaki and azaroles)	cGAP: USA, 1 \times (soil, preflowering) 3.92 kg/ha Number of trials: Apples (16) and pears (8), trials from USA/CAN Sufficiently supported by data: Yes Specific comments/observations: Codex MRL proposal based on a merged residue data set on apples and pears (populations similar). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Stone fruit, Group of	0.09	0.01	cGAP: USA, $1 \times$ (soil, preflowering) 3.92 kg/ha Number of trials: Cherries (5), peaches (9), plums (5) Sufficiently supported by data: No Specific comments/observations: Cherries and plums are major crops in Codex. Hence, the number of trials is not be sufficient. The use on peaches is sufficiently supported and would require an MRL of 0.10 mg/kg. According to EU rules, all these crops are major crops for which 8 trials per each crop would be required. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions and the lack of residue trials for cherries and plums. Follow-up action: None
Small fruit vine climbing, Subgroup of	0.7	0.01 (table grapes and wine grapes)	cGAP: USA, $1 \times$ (soil, preflowering) 3.92 kg/ha Number of trials: 9 (grapes) Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Sugar cane	0.06	0.01	cGAP: USA, $1 \times$ (soil; at planting) 3.92 kg/ha Number of trials: sugar cane (11) (AUS/USA) Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Tree nuts, Group of	0.025*	0.01	cGAP: USA, $1 \times$ (soil, preflowering) 3.92 kg/ha Number of trials: Almonds (5), pecans (5) Sufficiently supported by data: Yes Specific comments/observations: Residues in all trials were below the LOQ. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Coffee bean	0.05	0.01	cGAP: Brazil, $1 \times$ (row soil treatment) 0.96 kg/ha Number of trials: 8 Sufficiently supported by data: Yes

Commodity	Codex MRL proposal	Default EU MRL	Comment
			Specific comments/observations: None Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Wheat, similar grains and pseudo cereals without husks, Subgroup of	0.08 (R)	0.01	cGAP: None. Rotational crop field trials: soil treatment with fluensulfone at 3.6–4.2 kg/ha, PBI 90 days. Number of trials: 15 (wheat) Sufficiently supported by data: Yes Specific comments/observations: The CXL MRL proposal based on the total fluensulfone residues in rotational crop wheat (grain) and takes into consideration the US fluensulfone label requirement to respect the PBI of 90 days for rotational crop wheat. The residues calculated using OECD MRL calculator. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Barley, similar grains and pseudo cereals with husks, Subgroup of	0.08 (R)	0.01	cGAP: None. Rotational crop field trials: soil treatment with fluensulfone at 3.6–4.2 kg/ha, PBI 90 days. Number of trials: 15 (wheat) Sufficiently supported by data: Yes Specific comments/observations: The CXL MRL proposal based on the total fluensulfone residues in rotational crop wheat (grain) and takes into consideration the US fluensulfone label requirement to respect the PBI of 90 days for rotational crop barley. The residues calculated using OECD MRL calculator. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Maize cereals, Subgroup of	0.15 (R)	0.01	cGAP: None. Rotational crop field trials: soil treatment with fluensulfone
Sweet corns, Subgroup of	0.15 (R)	0.01 (sweet corn and baby corn)	at 3.6–4.2 kg/ha, PBI 3 and 10 months. Number of trials: 18 (maize) Sufficiently supported by data: Yes Specific comments/observations: The CXL MRL proposal is based on the total fluensulfone residues in rotational crop maize (grain), extrapolated to maize and sweetcorn subgroups. The CXL MRL proposal is derived using the data from PBI of 10 months. The residues calculated using OECD MRL calculator. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Rice cereals, Subgroup of	0.04 (R)	0.01	cGAP: None. Rotational crop field trials: soil treatment with fluensulfone at 3.6–4.2 kg/ha, PBI 3 and 10 months Number of trials: 11 (rice)

Commodity	Codex MRL proposal	Default EU MRL	Comment
			Sufficiently supported by data: Yes Specific comments/observations: The CXL MRL proposal is based on the total fluensulfone residues in rotational crop rice (grain). The CXL MRL proposal is derived using the data from PBI of 10 months. The residues calculated using OECD MRL calculator. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Sorghum grain and millet, Subgroup of	0.04 (R)	0.01	cGAP: None. Rotational crop field trials: soil treatment with fluensulfone at 3.6–4.2 kg/ha, PBI 3 and 10 months Number of trials: 9 (sorghum) Sufficiently supported by data: Yes Specific comments/observations: The CXL MRL proposal is based on the total fluensulfone residues in rotational crop sorghum (grain). The CXL MRL proposal is derived using the data from PBI of 10 months. The residues calculated using OECD MRL calculator. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the previously raised reservation on the residue definitions. Follow-up action: None
Hay or fodder (dry) of grasses except maize fodder and rice straw and fodder, dry	15 (dw)	-	cGAP: None. Rotational crop field trials: soil treatment with fluensulfone at 3.6–4.2 kg/ha, PBI 3 and 10 months Number of trials: 15 (wheat) Sufficiently supported by data: Yes Specific comments/observations: The CXL MRL proposal is based on the total fluensulfone residues observed in wheat hay when wheat is grown as rotational crop (PBI 3 months). The CXL MRL proposal takes into consideration 88% DM content. The residues calculated using OECD MRL calculator. For feed, MRLs are not set in the EU. Follow-up action: None
Maize fodder	0.6 (dw)	-	cGAP: None. Rotational crop field trials: soil treatment with fluensulfone at 3.6–4.2 kg/ha, PBI 3 and 10 months Number of trials: 20 (maize) Sufficiently supported by data: Yes Specific comments/observations: For feed, MRLs are not set in the EU.
Rice straw and fodder, dry	0.06 (dw)	_	cGAP: None. Rotational crop field trials: soil treatment with fluensulfone at 3.6–4.2 kg/ha, PBI 3 and 10 months Number of trials: 11 (rice) Sufficiently supported by data: Yes Specific comments/observations: For feed, MRLs are not set in the EU.
Straw or fodder (dry) of cereal grains (except maize fodder and rice straw and fodder, dry)	6 (dw)	-	cGAP: None. Rotational crop field trials: soil treatment with fluensulfone at 3.6–4.2 kg/ha, PBI 3 and 10 months Number of trials: 15 (wheat) Sufficiently supported by data: Yes Specific comments/observations: For feed, MRLs are not set in the EU.

Commodity	Codex MRL proposal	Default EU MRL	Comment		
Almond hulls	7 (dw)	_	cGAP: USA, 1 \times (soil, preflowering) 3.92 kg/ha Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: MRL not set in EU for almond hulls.		
Citrus pulp, dry	1.5	_	Processing studies from the JMPR 2017. The CXL MRL proposal derived for the RAC (0.2 mg/kg), multiplied by the PF of 6.3 (derived from 2 processing studies; individual PF 12 and 0.72 (> 50% difference)) and rounded to nearest MRL class. See comments on the CXL MRL proposal for citrus fruits.		
Citrus oil, edible	1.5	-	Processing studies from the JMPR 2017. The CXL MRL proposal derived for the RAC (0.2 mg/kg), multiplied by the PF of 5.7 (derived from 2 processing studies) and rounded to nearest MRL class. See comments on the CXL MRL proposal for citrus fruits.		
Apple juice	0.4	_	The CXL MRL proposal derived for the RAC (0.2 mg/kg), multiplied by the PF of 1.7 (derived from 2 processing studies) and rounded to nearest MRL class. Supported.		
Apples, dried	1	_	The CXL MRL proposal derived for the RAC (0.2 mg/kg), multiplied by the PF of 4.8 (derived from 2 processing studies) and rounded to nearest MRL class. Supported.		
Prunes	0.3	_	The CXL MRL proposal derived for the RAC (0.09 mg/kg), multiplied by the PF of 2.9 (derived from 2 processing studies) and rounded to nearest MRL class. Supported.		
Dried grapes	2	_	The CXL MRL proposal derived for the RAC (0.7 mg/kg), multiplied by the PF of 2.4 (derived from 1 processing study) and rounded to nearest MRL class. Not fully supported (1 processing study only).		
Sugar cane molasses	0.5	_	The CXL MRL proposal derived for the RAC (0.06 mg/kg), multiplied by the PF of 7.4 (derived from 1 processing study) and rounded to nearest MRL class. Not fully supported (1 processing study only).		
General comments	396/2005. T The primary were analyse The JMPR 20 intervals (PB and spring w Fluensulfone 3-month PBI not analysed various cerea	hus, the defaul crop samples ed for fluensulf 19 also evaluat Is) were 3 mon heat. Samples residues were , whereas BSA for other comp al products, the	are established in Annex II or III of Regulation (EC) No It MRLs are applicable in the EU. derived from trials submitted for the JMPR 2019 assessment one and its metabolite BSA. ted rotational crop field studies with cereals. The plant-back ths for winter wheat and 10 months for maize, rice, sorghum were analysed for fluensulfone and metabolite BSA. detected only in wheat hay (0.02 mg/kg) in the was present above LOQ in all commodities. The samples were bounds (TSA, MeS). Based on total residues determined in JMPR proposed MRLs for cereal crops grown in crop rotation.		
	Pending a decision on reliable residue definitions, a conclusion on the acceptability of the proposed Codex MRLs is not possible.				
	identified in t residue defir	At EU level, risk managers should discuss the possibility to include the metabolites identified in the metabolism studies/residue trials performed with fluensulfone in the EU residue definition (e.g. BSA, TSA and MeS), considering that parent fluensulfone is not a reliable marker for use of fluensulfone.			
	This element	It is noted that MRLs derived from rotational crop studies are specifically labelled – (R). This element is increasing the transparency and should be considered for other substances as well.			
	(R): MRL pro	posal derived f	rom rotational crop field studies		

 $\ast:$ Indicates that the MRL is proposed at the limit of quantification.

5.28.5. Consumer risk assessment

Table 136: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. The risk assessment was performed with the JMPR ARfD. The calculations are indicative, because the residue definitions derived by the JMPR are not acceptable.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values were the STMR values as derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. The risk assessment was performed with the JMPR ADI. The calculations are indicative, because the residue definitions derived by the JMPR are not acceptable.	Specific comments: -
Results: No short-term consumer health risk was identified for the crops under assessment. Oranges: 3% of ARfD Sweet corn: 2% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 2% of the ADI.	Results: Long-term exposure: Max 3% of the JMPR ADI. Short-term exposure: 1% of ARfD

5.29. Tolfenpyrad (269) R

5.29.1. Background information

Table 137: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	First evaluated by JMPR in 2013 (toxicology and residues)
Type of JMPR evaluation	New use	
RMS	no RMS assigned	Not assessed at EU level
Approval status	Not approved	Not notified and not authorised in the EU
EFSA conclusion available	No	-
MRL review performed	No	_
MRL applications/ assessments	No	No MRL applications, but comments were prepared for previous Codex MRL proposals (CCPR 2014 and CCPR 2017); NL informed EFSA that an MRL application is under assessment.
Classification of a.s. – cut-off criteria	Not assessed/not concluded	No harmonised classification
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(a)) has not been performed yet

(a): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.29.2. Toxicological reference values

	JMPR evaluat	EU e	evaluation	TRV		
	Value	Comments	Value	Comments	comparable	
ADI	0–0.006 mg/kg bw per day	JMPR (2013)	-	_	Not appropriate	
ARfD	0.01 mg/kg bw	JMPR (2013)	-	_	Not appropriate	
Conclusion/ comment	and OH-PT, which showed sim 4- week dietary study. In addi	In 2013 JMPR concluded that the ADI and ARfD are also applicable to the metabolites PT-CA and OH-PT, which showed similar toxicity to tolfenpyrad in LD ₅₀ studies but lower toxicity in a 4- week dietary study. In addition, JMPR considered the ADI and ARfD applicable to all the livestock metabolites: OH-PT-CA, PT-CA conjugates and OH-PT-CA conjugates.				

Table 138: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

5.29.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Tolfenpyrad	Default residue definition under Art. 18(1)(b)	Yes	
	Animal products	Sum of tolfenpyrad, and free and conjugated PT-CA (4-[4-[(4-chloro-3- ethyl-1-methylpyrazol-5-yl) carbonylaminomethyl]phenoxy]benzoic acid and OH-PT-CA (4-[4-[[4-chloro-3(1- hydroxyethyl) -1-methylpyrazol-5-yl] carbonylaminomethyl]phenoxy] benzoic acid) (released with alkaline hydrolysis) expressed as tolfenpyrad The residue is not fat soluble	Default residue definition under Art. 18(1)(b)	No	
RD RA	Plant products	Tolfenpyrad	-	Not appropriate	
	Animal products	Sum of tolfenpyrad, and free and conjugated PT-CA (4-[4-[(4-chloro-3- ethyl-1-methylpyrazol-5-yl) carbonylaminomethyl]phenoxy]benzoic acid and OH-PT-CA (4-[4-[[4-chloro-3(1- hydroxyethyl) -1-methylpyrazol-5-yl] carbonylaminomethyl]phenoxy] benzoic acid) (released with alkaline hydrolysis) expressed as tolfenpyrad	_	Not appropriate	
Conclusion, comments	Since no specific MRLs are established in the EU, the default residue definition covering only parent compound are used for enforcement purposes. See also (EFSA, 2014i).				

5.29.4. Codex MRL proposals

Table 140: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment
Lemons and Limes, Subgroup of	0.9	0.01 Lemons, limes	cGAP: USA, 1 \times 0.31 kg/ha, PHI 3 days Number of trials: 8 trials on lemon Sufficiently supported by data: Yes Specific comments/observations: The STMR/HR were derived using a peeling processing factor of oranges (2 processing studies, PF 0.32).

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment
			Conclusion: The proposed Codex MRL is acceptable.However, see also general comment on processing. Follow-up action: None
Mandarins, Subgroup of	0.9	0.01	cGAP: USA, 1×0.31 kg/ha, PHI 3 days Number of trials: 8 trials on lemon Sufficiently supported by data: No Specific comments/observations: Residue trials on mandarins not available. Although not foreseen in the Codex principles for extrapolation, the JMPR proposed to extrapolate residues from lemon to mandarin. According to the EU guidelines, the number of trials on lemons would be sufficient for extrapolation to mandarins. See also Fluxapyroxad (256) proposed extrapolation of residues from lemons to Subgroup of Mandarins. The STMR/HR were derived using a peeling processing factor of oranges (2 processing studies, PF 0.32). Conclusion: The proposed Codex MRL is not acceptable because the estimated acute dietary exposure to residues of tolfenpyrad exceeds the toxicological reference value (ARfD). Follow-up action: None
Oranges, Sweet, Sour, Subgroup of	0.6	0.01	cGAP: USA, 1 \times 0.31 kg/ha, PHI 3 days Number of trials: 11 on orange Sufficiently supported by data: Yes Specific comments/observations: The STMR/HR were derived using a peeling processing factor of oranges (2 processing studies, PF 0.32). Conclusion: The proposed Codex MRL is not acceptable because the estimated acute dietary exposure to residues of tolfenpyrad exceeds the toxicological reference value (ARfD). Follow-up action: None
Pummelo and Grapefruits, Subgroup of	0.6	0.01	cGAP: USA, 1×0.31 kg/ha, PHI 3 days Number of trials: six trials on grapefruit Sufficiently supported by data: Yes Specific comments/observations: The STMR/HR were derived using a peeling processing factor of oranges (2 processing studies, PF 0.32). Conclusion: The proposed Codex MRL is acceptable.However, see also general comment on processing. Follow-up action: None
Bulb Onions, Subgroup of	0.09	0.01 Garlic, onions, shallots	cGAP: USA, 1×0.28 kg/ha, PHI 7 days Number of trials: 6 trials Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL proposal for Subgroup 009A, Bulb Onions, would be applicable to the EU classification for garlic (220010), onions (220020) and shallots (220030). Conclusion: The proposed Codex MRL is acceptable.However, see also general comment on processing. Follow-up action: None
Tomatoes, Subgroup of	0.7 ^(b)	0.01	cGAP: USA, 2×0.25 kg/ha, interval 14 days, PHI 1 day Number of trials: 12 trials on tomato (including cherry tomato) Sufficiently supported by data: Yes

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment
			Specific comments/observations: The JMPR concluded that the estimated acute dietary exposure to residues of tolfenpyrad for the consumption of tomatoes may present a public health concern. Conclusion: The proposed Codex MRL is not acceptable because the estimated acute dietary exposure to residues of tolfenpyrad exceeds the toxicological reference value (ARfD). Follow-up action: None
Peppers, Subgroup of (except okra, martynia and roselle)	0.5	0.01	cGAP: USA, 2×0.25 kg/ha, interval 14 days, PHI 1 day Number of trials: eleven trials on peppers (including chilli peppers, $n = 3$) Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL proposal for peppers (VO 0051) excluding martynia, okra and roselle, would be applicable to the EU classification for sweet peppers/bell peppers (0231020). Conclusion: The proposed Codex MRL is not acceptable because the estimated acute dietary exposure to residues of tolfenpyrad exceeds the toxicological reference value (ARfD). Follow-up action: None
Eggplants, Subgroup of	0.7 ^(b)	0.01	cGAP: USA, 2 × 0.25 kg/ha, interval 14 days, PHI 1 day Number of trials: twelve trials on tomato (including cherry tomato) Sufficiently supported by data: Yes Specific comments/observations: According to the Codex principles, residue trials on tomato are suitable for extrapolation to eggplants (VO 2046). The JMPR concluded that the estimated acute dietary exposure to residues of tolfenpyrad for the consumption of eggplants may present a public health concern. Conclusion: The proposed Codex MRL is not acceptable because the estimated acute dietary exposure to residues of tolfenpyrad exceeds the toxicological reference value. Follow-up action: None
Citrus pulp, dry	6	_	A concentration of residues occurs in citrus dried pomace and the JMPR evaluation derived a processing factor on the basis of a single value reviewed in 2013 (PF = 8.9). EU MRLs are not set for processed commodities/by-products, such as citrus dried pomace.
Citrus oil, edible	80	_	A concentration of residues occurs in citrus oil and the JMPR evaluation derived a processing factor on the basis of a single value reviewed in 2013 (PF = 83). EU MRLs are not set for processed commodities/by-products, such as citrus oil.
Peppers chilli, dried	5	_	A default concentration factor of 10 was used to derive the Codex MRL proposal for dried chilli peppers. EU MRLs are not set for processed products, such as dried chilli peppers.
Milks	0.01*	0.01	The JMPR calculated the dietary burden for livestock on the basis of residues in feed crops under assessment and their by-products (tomato wet pomace and dried citrus pulp), and residues in previously assessed feed crops and their by-products (potato, STMR and HR = 0; JMPR 2016). The max estimated burden for cattle was calculated for AUS dairy cattle. The MRL proposal was derived from the lactating-cattle feeding study.

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment		
			Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None		
Mammalian fats except milk fats	0.01*	0.01	See milks		
Meat (from mammals other than marine mammals)	0.01*	0.01	See milks		
Edible offal (mammalian)	0.4	0.01	At the expected dietary burden residues are expected in liver according to the feeding study of 0.38 mg/kg. The proposed Codex MRL is acceptable.		
Eggs	0.01*	0.01	No feed items in the livestock dietary burden for poultry for the crops under assessment and their by-products. The JMPR considered the dietary burden for poultry to be currently zero, and therefore, the JMPR estimated MRLs at the LOQ of 0.01 mg/kg for all poultry commodities. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None		
Poultry, edible offal of	0.01*	0.01	See eggs		
Poultry fats	0.01*	0.01	See eggs		
Poultry meat	0.01*	0.01	See eggs		
General comments	(a): Default MRL of 0.01 mg/kg according to Art. 18(1)(b) Reg 396/2005.(b): On the basis of the information provided the JMPR concluded that the estimated acute dietary exposure to residues of tolfenpyrad for the consumption of these commodities may present a public health concern.				
	Processing data: Data on the nature of residues in processed products has not be reported (neither in 2020 JMPR assessment nor in 2013 and 2016 assessment).				
*: Indicates that the MRL is p	roposed at the I	imit of quantifi	cation.		

5.29.5. Consumer risk assessment

Table 141:	Summary of the consumer risk assessment
------------	---

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities for which the Codex MRL proposal is higher than the existing EU default MRL of 0.01 mg/kg. The toxicological reference values have not been evaluated at EU level. The risk assessment was performed with the JMPR ARfD. The risk assessment is affected by additional non-standard uncertainties related to the use of processing factors derived for oranges which were extrapolated to other citrus crops. In addition, no information is available on the nature of residues in processed products (e.g. pasteurised citrus juices).	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The STMR values derived by JMPR were used. The toxicological reference values have not been evaluated at EU level. The risk assessment was performed with the JMPR ADI. The risk assessment is affected by additional non-standard uncertainties related to the use of processing factors derived for oranges which were extrapolated to other citrus crops. In addition, no information is available on the nature of residues in processed products (e.g. pasteurised citrus juices).	Specific comments: JMPR concluded that the estimated acute dietary exposure to residues of tolfenpyrad for the consumption of tomatoes and eggplants may present a public health concern.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: The calculated short-term exposure exceeded the ARfD for several crops under assessment. Commodities exceeding the ARfD in children and adult diets (IESTI calculation) Tomatoes: 291% of ARfD (BE toddler) Peppers: 190% of ARfD (DE child) Oranges: 172% of ARfD (UK infant) Eggplants: 135% of ARfD (NL general) and 125% of ARfD (UK child) Mandarins: 107% of ARfD (NL toddler)	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for up to 20% of the ADI (NL toddler). Among the crops under consideration, tomato was identified as the main contributor, accounting for up to 7.8% of the ADI (GEMS/Food G06 diet).	Results: Long-term exposure: Max 1–20% of the JMPR ADI. Short-term exposure: Highest result for eggplant: 240% of ARfD (CN child), and tomato: 190% of ARfD (CN child).
Commodities where IESTIs were below 100% ARfD in children and adult diets (rank order) Grapefruits: 78% of ARfD (child) Lemons: 62% of ARfD (child) Limes: 36% of ARfD (child) Bovine, Liver: 31% of ARfD (child) Bovine, Edible offals (other than liver and kidney): 28% of ARfD (child) Bovine, Kidney: 14% of ARfD (child)		

5.30. Mesotrione (277) R/T

5.30.1. Background information

Table 142:	Background	information
------------	------------	-------------

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	UK (BE co-RMS)	
Approval status	Approved	Commission Implementing Regulation (EU) 2017/725 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2016e) (EFSA, 2018ad) (confirmatory data)
MRL review performed	Yes, see comments	(EFSA, 2015b)
MRL applications/ assessments	No	
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) 2017/725 of 24 April 2017 renewing the approval of the active substance mesotrione in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 107, 25.4.2017, p. 24–28.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.30.2. Toxicological reference values

	JMPR evaluation			EU evaluation			
	Value	Comments	Value	Comments	TRV comparable		
ADI	0–0.5 mg/kg bw per day	JMPR (2014)	0.01 mg/kg bw per day	(EFSA, 2016e) (mouse multigeneration study and 200 UF) confirmed in (European Commission, 2017a)	No		
ARfD	Unnecessary	JMPR (2014)	0.02 mg/kg bw	(EFSA, 2016e) (mouse multigeneration study and 100 UF) confirmed in (European Commission, 2017a)	No		
Conclusion/ comment	 weights in pup applying an ind the NOAEL wh body weight ga applied. The di setting in the co mouse multige from the JMPR At the EU level bw per day (i.e effects may be not necessary to different NC 	s in the mouse m creased uncertain ereas JMPR set the ain and feed effici ifferences betwee critical study in the eneration study wa report how the re- the acute reference. NOAEL for offsp relevant to acute to set an ARfD. The DAEL setting in the	ultigeneration s ty factor (UF) o he ADI of 0.5 m ency in male m en EU peer revie as set by JMPR elevance of dec nce dose (ARfD) oring toxicity the exposure, star he differences to critical study in	ght (bw) per day, based on decrea study with an NOAEL of 2 mg/kg by of 200 to account for the increased g/kg bw per day based on decreas- ice in the 18-month mice study. An ew and JMPR can be allocated to d w (i.e. The NOAEL for offspring tox- at higher dose levels than in EU). I reased weights in pups was assess is 0.02 mg/kg bw, based on the N e mouse multigeneration study) as idard UF of 100 applied; whereas J between EU peer review and JMPR in the EU peer review (i.e. The NOA is set by JMPR at higher dose levels	w per day, tyrosinaemia at sed body weight o UF of 100 was ifferent NOAEL cicity in the it is not clear sed by JMPR. OAEL of 2 mg/kg developmental MPR considered can be allocated EL for offspring		
	At the EU level toxicological studies were submitted on metabolites MNBA and AMBA.						
	 MNBA is of low acute toxicity by the oral and dermal routes; it is unlikely to be genotoxic and presented a lower toxicity profile compared with mesotrione. 						
	– AMBA is of low acute oral toxicity and did not present mutagenic potential in an Ames test; however, AMBA gave positive results in an <i>in vitro</i> cytogenetic assay, and no <i>in vivo</i> genotoxicity follow up testing were available; repeated dose toxicity would also have to be addressed as this metabolite is relevant to consumer risk assessment.						
	conclude that i safety concern	netabolites MNBA . Additional data	and AMBA are available to JMF	netabolite MNBA and AMBA that all unlikely to be genotoxic and unlike PR have not been peer reviewed at MBA cannot be drawn.	ely to be of		

5.30.3. Residue definitions

Table 144: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Mesotrione	Reg. 396/2005: Mesotrione Peer review (EFSA, 2016e): Mesotrione (cereals and pulses/oilseeds only) MRL review Art. 12 (EFSA, 2015b): Mesotrione (cereals and pulses/oilseeds only)	Yes, considering the residue definition in legislation
	Animal products	Mesotrione The residue is not fat soluble	Reg. 396/2005: Mesotrione Peer review (EFSA, 2016e): Not required for the representative use (provisional)	Yes, considering the residue definition in the legislation

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
			MRL review Art. 12 (EFSA, 2015b): AMBA (free and conjugated) (ruminants)	
			The residue is not fat soluble	
RD RA	Plant products	Mesotrione	Peer review (EFSA, 2016e): Mesotrione (cereals and pulses/oilseeds only)	Yes, for cereals and pulses/ oilseeds only
			MRL review Art. 12 (EFSA, 2015b): Mesotrione (cereals and pulses/oilseeds only).	
	Animal products	Mesotrione	Peer review (EFSA, 2016e): Not required for the representative use (provisional)	No
			MRL review Art. 12 (EFSA, 2015b): AMBA (free and conjugated) (ruminants)	
Conclusion, comments				

5.30.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Citrus fruit, Group of (includes all commodities in this group)	0.01*	Citrus fruits: 0.01* Kumquat: 0.01*	cGAP: USA, 2 × 210 g a.i./ha, PHI of 1 day (application at the basis of the tree) Number of trials: 22 Sufficiently supported by data: Yes Specific comments/observations: Combined data set of trials performed on orange (11), grapefruit (6) and lemon (5), approximating the GAP but with a shorter interval between applications, extrapolated to the whole group of citrus fruit. Residues were always below the LOQ of 0.01 mg/kg. Results from the trials confirmed by 6 additional trials on fruit trees (including citrus) conducted at an exaggerated rate (3×) for the purpose of studying processing. At EU level, the discussion on the relevance of AMBA as regards inclusion in the residue definition and its toxicological properties is not yet finalised.

Table 145: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Pome fruits, group of (includes all commodities in this group)	0.01*	Pome fruits: 0.01* Azaroles, kaki: 0.01*	cGAP: USA, 2 \times 210 g a.i./ha, PHI of 30 days (application at the basis of the tree). Number of trials: 18 Sufficiently supported by data: Yes Specific comments/observations: Combined data set of trials performed on apples (12) and pears (6), approximating the GAP but with a shorter interval between applications, extrapolated to the whole group of pome fruits. Residues were always below the LOQ of 0.01 mg/kg. Results from the trials confirmed by 6 additional trials on fruit trees (including pome) conducted at an exaggerated rate (3 \times) for the purpose of studying processing. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Stone fruits, Group of (includes all commodities in this group)	0.01*	0.01*	cGAP: USA, 2 \times 210 g a.i./ha, PHI of 30 days (application at the basis of the tree). Number of trials: 21 Sufficiently supported by data: Yes Specific comments/observations: Combined data set of trials performed on cherries (6), peaches (9) and plums (6), approximating the GAP but with a shorter interval between applications, extrapolated to the whole group of stone fruit. Residues were always below the LOQ of 0.01 mg/kg. Results from the trials confirmed by 6 additional trials on fruit trees (including stone fruits) conducted at an exaggerated rate (3 \times) for the purpose of studying processing. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Tree nuts Group of (includes all commodities in this group)	0.01*	0.01*	cGAP: USA, 2×210 g a.i./ha, PHI of 30 days (application at the basis of the tree). Number of trials: 10 Sufficiently supported by data: Yes Specific comments/observations: Combined data set of trials performed on almonds (5) and pecans (5), approximating the GAP but with a shorter interval between applications, extrapolated to the whole group of stone fruit. Residues were always below the LOQ of 0.01 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Almond hulls	0.04 (dw)	-	
General comments	Due to differences in enforcement and risk assessment residue definitions between EU and the JMPR for plant commodities, in principle the derived Codex MRL proposals should not be taken over in EU legislation. However, considering that in the GAPs assessed by the JMPR, the application is done at the basis of the tree and the low to moderate persistence of mesotrione and AMBA in soil, significant residues of metabolite AMBA are not expected in the fruit crops under assessment. Nevertheless, it should be confirmed that the application is done by using a proper equipment to avoid spray drift of the crops.		

 $\ast\colon$ Indicates that the MRL is proposed at the limit of quantification.

5.30.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities under assessment. The calculations are affected by additional, non-standard uncertainties, related to the lack of residue trials analysing for metabolite AMBA and a firm conclusion on the toxicological profile of AMBA. The risk assessment was performed with the EU ARfD.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2015b) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. The calculations are affected by additional, non-standard uncertainties, related to the lack of residue trials analysing for metabolite AMBA and a firm conclusion on the toxicological profile of AMBA.	Specific comments: –
The calculations are indicative, since the consumer exposure to metabolite AMBA (relevant for the fruit crops) could not be assessed. However, if it is confirmed that the application is done by using a proper equipment to avoid spray drift of the crops, significant residues of metabolite AMBA are not expected in the fruit crops under assessment.	The risk assessment was performed with the EU ADI. The calculations are indicative, since the consumer exposure to metabolite AMBA (relevant for the fruit crops) could not be assessed. However, if it is confirmed that the application is done by using a proper equipment to avoid spray drift of the crops, significant residues of metabolite AMBA are not expected in the fruit crops under assessment.	
Results: No short-term consumer health risk was identified for the crops under assessment. Pears, oranges: 7% of ARfD Apples, peaches: 5% of ARfD Grapefruits: 4% of ARfD Mandarins: 3% of ARfD Plums, apricots, lemons: 2% of ARfD Quinces, limes: 1% of ARfD Cherries, medlar, loquats, tree nuts: < 1% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 3% of the ADI. Among the crops under consideration, apples were identified as the main contributor, accounting for up to 1% of the ADI.	Results: Long-term exposure: Max 0% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD).

Table 146: Summary of the consumer risk assessment

5.31. Acetochlor (280) R/T

5.31.1. Background information

Table 147:	Background informat	tion
------------	---------------------	------

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	ES	
Approval status	Not approved	Commission Implementing Regulation (EU) No 1372/2011 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2011d) Application for renewal of the approval has been withdrawn

		Comments, references
MRL review performed	Yes, see comments	(EFSA, 2013j)
MRL applications/ assessments	Yes, see comments	(EFSA, 2015r) (import tolerance application for soyabeans and cotton) Import tolerance request for soyabeans (ongoing, additional data requested)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) No 1372/2011, concerning the non-approval of the active substance acetochlor, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Decision 2008/934/EC. OJ L 341, 22.12.2011, p. 45–46.
 (b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out

scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.31.2. Toxicological reference values

Table 148:	Comparison of toxicological	reference values (TRV	') derived b	y JMPR and at EU level
------------	-----------------------------	-----------------------	--------------	------------------------

	JMPR evaluation			EU evaluation	TRV
	Value	Comments	Value	Comments	comparable
ADI	0–0.01 mg/kg bw per day	JMPR (2015)	0.0036 mg/kg bw per day	(EFSA, 2011d) (78-week mice study and 300* UF) confirmed in (European commission, 2011c)	No
ARfD	1 mg/kg bw	JMPR (2015)	1.5 mg/kg bw	(EFSA, 2011d) (acute neurotoxicity rat study and 100 UF) confirmed in (European Commission, 2011c)	No
Conclusion/ comment	*: Additional safety factor of 3 because of the use of an LOAEL. During the EU evaluations , the metabolites t-oxanilic acid, t-sulfinylacetic acid, t-sulfonic acid and N-oxamic acid were considered covered by the toxicological reference values of the parent (EFSA, 2011d). Additionally, an isomer ratio 1:1 for t-sulfonic acid and s-sulfonic acid was also considered covered by the parent. For the metabolite t-norchloro acetochlor, genotoxic and carcinogenic properties could not be excluded on the basis of the available data (EFSA, 2015r). However, in the metabolism study with soybeans t-norchloro acetochlor was not detected (ongoing IT application).				
	In the JMPR evaluation , the metabolites <i>tert</i> -sulfinyllactic acid and 1-hydroxyethyl sec-oxanilic acid were concluded unlikely to be genotoxic. For chronic toxicity, a threshold of toxicological concern (TTC) of 1.5 μ g/kg bw per day applies. However, the information provided in the JMPR report was insufficient to conclude definitive on the general toxicity of these metabolites relative to that of acetochlor.				a threshold of

5.31.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Sum of compounds hydrolysable with base to 2-ethyl-6-methylaniline (EMA) and 2-(1-hydroxyethyl)-6- methylaniline (HEMA),	Reg. 396/2005: Acetochlor MRL review Art. 12 (EFSA, 2013j): No final recommendation Peer review (EFSA, 2011d):	No (compared with current RD set in MRL Reg.)
	Animal products	expressed in terms of acetochlor The residue is not fat soluble	All compounds forming	No (compared with current RD set in MRL Reg.)
RD RA	Plant products Animal products	Sum of compounds hydrolysable with base to 2- ethyl-6-methylaniline (EMA) and 2-(1-hydroxyethyl)-6- methylaniline (HEMA), expressed in terms of acetochlor The residue is not fat soluble	EMA and HEMA on hydrolysis plus N-oxamic acid, expressed as acetochlor (applicable to cereal grains and rotational crops).	Yes
Conclusion, comments The residue definitions for enforcement for plants and animal products estable in the EU MRL legislation are not compatible. It is noted that the existing residue definition is acetochlor, which is unlikely to the set of the set o				e present due
		sive degradation. Therefore, at EL ed as recommended in the EFSA I		due definition

Table 149: Comparison of the residue definitions derived by JMPR and at EU level

5.31.4. Codex MRL proposals

Table 150: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Alfalfa hay	30 (dw)	_	cGAP: USA, preplant/at-planting/pre-emergence and post-emergence (up to or at the 4th-trifoliate stage – new stands – or following spring green-up – fall-planted or established stands – or between cuttings), with a max rate of 3.4 kg a.i./ha per year and a PHI of 20 days. Number of trials: 8 (forage and hay) Sufficiently supported by data: Yes Conclusion: EU MRLs are currently not set for animal feed items. Follow-up action: None
Legume animal feed, except alfalfa hay	3 (dw)	_	The old CXL for legume animal feed (3 mg/kg (dw) is replaced by a new Codex MRL proposal at the same level, excluding alfalfa hay, since a new Codex MRL is proposed for alfalfa (see above).
Soyabean (dry)	1.5	0.01*	cGAP: USA, preplant/pre-emergence and post-emergence (before the R2 growth stage, full flowering) at up to 1.7 kg a.i./ha (max. rate per year of 3.4 kg a.i./ha). Number of trials: 13 Sufficiently supported by data: Yes

Commodity	Codex MRL proposal	EU MRL	Comment
			Specific comments/observations: The number of residue trials would be sufficient to derive an MRL proposal. However, several deficiencies were noted in the ongoing import tolerance application for a comparable GAP which is currently on clock-stop. The following data were requested: - standard hydrolysis study; - fully validated analytical method for livestock). According to the data submitted in support of the EU import tolerance application, 8 more trials are available; based on the complete data set (13 + 8 trials) an MRL of 1 mg/kg would be sufficient (STMR of 0.19 mg/kg, HR is unaffected). Conclusion: The proposed Codex MRL is not acceptable because the residue definitions are currently not compatible. In addition, the nature of residues in processed products should be investigated, by providing standard hydrolysis studies. Follow-up action: None
Edible offal (mammalian)	0.05	0.01*	cGAP: Australian livestock dietary burden (highest max DB: 16.57 DM/kg beef cattle; Highest mean 6.29 DM/kg beef cattle) Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is not acceptable because the residue definitions are currently not compatible. In addition, deficiencies were identified for the Codex MRL proposal on soyabeans which would be also relevant for soya meal used as feed and consequently for food of animal origin. Follow-up action: None
General	_		Follow-up action: None

comments

*: Indicates that the MRL is proposed at the limit of quantification.

5.31.5. Consumer risk assessment

Table 151:	Summary of the consumer risk assessment
------------	---

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. The calculations are affected by additional, non-standard uncertainties, due to the different residue definitions established by JMPR and at EU level and the fact that the toxicological profile of certain metabolites was not fully characterised. Furthermore, the potential formation of additional degradation products which may be of toxicological relevance cannot be excluded. The risk assessment was performed with the EU ARfD.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The EU MRLs were used for the input values, and/or the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. The calculations are affected by additional, non-standard uncertainties; see acute exposure assessment. The risk assessment was performed with the EU ADI.	Specific comments:
Results: No short-term consumer health risk was identified for the commodities under assessment.	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted	Results: Long-term exposure: Max 4% of the JMPR ADI.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Bovine liver: 0.02% of ARfD Soybeans: 0.02% of the ARfD	for 35% of the ADI (NL toddler). Among the crops under consideration, soybeans were identified as the main contributor, accounting for up to 15.5% of the ADI (GEMS/Food G11).	Short-term exposure: Highest result: 0% of ARfD

5.32. Flonicamid (282) R

5.32.1. Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	FI	
Approval status	Approved	Commission Directive 2010/29/EU ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2010a)
MRL review performed	Yes, see comments	(EFSA, 2014j)
MRL applications/ assessments	Yes, see comments	(EFSA, 2020h) (Confirmatory data following Art. 12 review) (EFSA, 2020l) (import tolerances in various crops and animal products) (EFSA, 2019h) (strawberries and small fruits) (EFSA, 2018v) (various root crops) (EFSA, 2018u) (various crops) (EFSA, 2017d) (various commodities) (EFSA, 2016k) (herbs and edible flowers) (EFSA, 2015l) (several crops)
$\label{eq:classification of a.scut-off criteria} Classification of a.scut-off criteria$	No	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Directive 2010/29/EU of 27 April 2010 amending Council Directive 91/414/EEC to include flonicamid (IKI-220) as active substance. OJ L 106, 28.4.2010, p. 9–11.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.32.2. Toxicological reference values

Table 153:	Comparison of toxicological reference values (TRV) derived by JMPR and at EU level
------------	--

	JMPR e	valuation		TRV	
	Value	Comments	Value	Comments	comparable
ADI	0–0.07 mg/kg bw per day	JMPR (2015)	0.025 mg/kg bw per day	(European Commission, 2010a) (Rabbit developmental, and 100	No
ARfD	Unnecessary	JMPR (2015)	0.025 mg/kg bw	UF) confirmed in (EFSA, 2014j)	No
Conclusion/ comment	_				

5.32.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Flonicamid	Sum of flonicamid, TFNA and TFNG, expressed as flonicamid	No	
	Animal products	Flonicamid and the metabolite TFNA-AM, expressed as flonicamid	Sum of flonicamid and TFNA-AM, expressed as flonicamid	Yes	
		The residue is not fat soluble	The residue is not fat soluble		
RD RA	Plant products	Flonicamid	Sum of flonicamid, TFNA and TFNG, expressed as flonicamid	No	
	Animal products	Flonicamid and the metabolite TFNA-AM, expressed as flonicamid	Sum of flonicamid and TFNA-AM, expressed as flonicamid	Yes	
Conclusion, comments	The residue definitions derived by JMPR for plant commodities (enforcement and risk assessment) do not cover the metabolites TFNA and TFNG. These compounds were identified in metabolism studies in cereals, root crops and fruits (peach and pepper). The current EU MRLs include these compounds as they were considered relevant marker compounds. Since the ratios of parent, TFNA and TFNG are not stable enough, robust conversion factors could not be established. Therefore, the Codex MRL proposals derived are not compatible with the EU residue definitions.				

Table 154: Comparison of the residue definitions derived by JMPR and at EU level

5.32.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Lemons and Limes, 1.5 subgroup of (includes all commodities in this subgroup)		0.15	cGAP: 3×100 g a.s./ha; PHI 0 days (USA) Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is not acceptable because the residue definitions are not compatible. Follow-up action: None
Oranges, Sweet, Sour, subgroup of (includes all commodities in this subgroup)	0.4	0.15	cGAP: 3 \times 100 g a.s./ha; PHI 0 days (USA) Number of trials: 14 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is not acceptable because the residue definitions are not compatible. Follow-up action: None
Pumelo and grapefruit (including Shaddock-like hybrids) Subgroup of (including all commodities in this subgroup)		0.15	cGAP: 3×100 g a.s./ha; PHI 0 days (USA) Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: The EU rules for extrapolations allow extrapolating trials from oranges to grapefruits and vice versa. As the same GAP is authorised on both crops, it is not understood why a combined data set was not proposed. This would allow deriving a common robust MRL on both commodities. Conclusion: The proposed Codex MRL is not acceptable because the residue definitions are not compatible. Follow-up action: None

Table 155: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Citrus pulp, Dry	3 (dw)	_	The JMPR estimated a processing factor for flonicamid (parent only) of 1.8 for citrus dry pulp based on one processing study. The maximum residue level of 3 mg/kg for citrus pulp, dry was estimated on the basis of the processing factor of 1.8 for orange pulp, dry and the maximum residue level for lemon of 1.5 mg/kg.
General comments	The EMS noted that previously the EU has raised concerns for residue trials with PHI of 0 days, because residues may increase over time. In the current case however, considering that the trials were performed with performed with 3 applications, EFSA is of the opinion that residue trials with a short PHI are sufficient.		

5.32.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL (lemons and limes, oranges, pumelo and grapefruit). The consumer exposure was assessed considering the HR for each crop. No refinement was performed.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2020I) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (lemons and limes, oranges, pumelo and grapefruit).	Specific comments: Only long-term dietary exposure assessment was performed as JMPR (2015) decided that an ARfD for flonicamid was unnecessary.
The risk assessment was performed with the EU ARfD.	The risk assessment was performed with the EU ADI.	
The calculations are indicative, because information on the magnitude of metabolites TFNA and TFNG, expected to be a significant part of the residues, is not available.	The calculations are indicative, because information on the magnitude of metabolites TFNA and TFNG, expected to be a significant part of the residues, is not available.	
Results: The calculated short-term exposure exceeded the ARfD for one crop under assessment.	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted	Results: Long-term exposure: Max 10% of the JMPR ADI.
Oranges: 127% of ARfD Lemons: 97% of ARfD Limes: 57% of ARfD Grapefruits: 41% of ARfD	for 31% of the ADI. Among the crops under consideration, orange was identified as the main contributor, accounting for up to 1.9% of the ADI.	Short-term exposure: Not relevant (JMPR did not derive an ARfD).

5.33. Fluazifop-p-butyl (283) R

5.33.1. Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	FR	
Approval status	Approved	Commission Implementing Regulation (EU) No 201/2013 ^(a)

		Comments, references
EFSA conclusion available	Yes, see comments	(EFSA, 2010m)
MRL review performed	Yes, see comments	(EFSA, 2015s)
MRL applications/ assessments	Yes, see comments	(EFSA, 2018f) (tomato) (EFSA, 2017g) (various products of plant and animal origin) (EFSA, 2016l) (pumpkin seeds) (EFSA, 2015h) (several commodities)
Classification of a.s. – cut- off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) No 201/2013 of 8 March 2013 amending Implementing Regulations (EU) No 788/2011 and (EU) No 540/2011 as regards an extension of the uses for which the active substance fluazifop-P is approved. OJ L 67, 9.3.2013, p. 6–9.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.33.2. Toxicological reference values

Table 158:	Comparison of toxicologi	cal reference values (TRV derived h	/ 1MPR and at FU level)

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.004 mg/kg bw per day	JMPR (2016)	0.01 mg/kg bw per day	(EFSA, 2010m) (2-year rat study with fluazifop acid supported by 81-weeks mice and multigeneration studies in rats (uncertainty factor 100); the ADI expressed as fluazifop acid)	No
ARfD	0.4 mg/kg bw	JMPR (2016)	0.017 mg/kg bw	(EFSA, 2010m) (2-year rat study with fluazifop acid supported by 81-weeks mice and multigeneration studies in rats (uncertainty factor 100); ARfD expressed as fluazifop acid)	No
Conclusion/ comment	-				

5.33.3. Residue definitions

Table 159: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Sum of fluazifop-P-butyl, fluazifop-P-acid (II) and their conjugates, expressed as fluazifop-P-acid	Sum of all the constituent Yes isomers of fluazifop, its com esters and its conjugates, belo expressed as fluazifop		
	Animal products	Sum of fluazifop-P-butyl, fluazifop-P-acid (II) and their conjugates, expressed as fluazifop-P-acid The residue is fat soluble	Sum of all the constituent isomers of fluazifop, its esters and its conjugates, expressed as fluazifop The residue is fat soluble	Yes, see comments below	

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD RA	Plant products	Sum of fluazifop-P-butyl, fluazifop-P-acid (II), 2-[4-(3- hydroxy-5-trifluoromethyl-2- phenoxy)pyridyloxy] propionic acid (XL),5-trifluoromethyl-2- pyridone (X) and their conjugates, expressed as fluazifop-P-acid	esters and its conjugates, c expressed as fluazifop	
	Animal products	Sum of fluazifop-P-butyl, fluazifop-P-acid (II) and their conjugates, expressed as fluazifop-P-acid	Sum of all the constituent isomers of fluazifop, its esters and its conjugates, expressed as fluazifop	Yes, see comment below
Conclusion, comments	JMPR restricted the The analytical met fluazifop-S (and the considered compar- It is noted that JM plants which are n trifluoromethyl-2-p Since these metab derived from the n contribution to the 5-Trifluoromethyl-2 crop studies, repre- the EU residue def For animal commo	finition covers the R-enantiomer (e residue definition to fluazifop-P hods used for enforcement do no e related metabolites). Hence, th rable. PR included two metabolites in th ot covered by the EU residue def phenoxy)pyridyloxy] propionic acid olites were not analysed in the re- netabolism studies and molecular e risk exposure calculation (see als 2-pyridone (X) metabolite was fou esenting > 60% in most crop com finition should be considered. dities, although JMPR restricted t the residue definition at EU and J	butyl, fluazifop-P-acid and the ot discriminate between fluazi e EU and JMPR residue defini- ne risk assessment residue defini- inition (i.e. 2-[4-(3-hydroxy-5 d (XL) and 5-trifluoromethyl-2 esidue trials, JMPR used adjust weight correction factors to so the risk consumer section) and in significant amounts in modities. The inclusion of this he residue definitions to the	eir conjugates. fop-P and itions are finition for

5.33.4. Codex MRL proposals

Table 160:	Comparison of Codex MRL proposals derived by JMPR with EU MRLs		
C	Codex MRL		Comment

Commodity	Codex MRL proposal	EU MRL	Comment
Cane berries, Subgroup of	0.08	0.01* (blackberries, dewberries, raspberries)	cGAP: USA, 2 \times 0.42 kg/ha, RTI 14 days, PHI 1 day Number of trials: 3 (blackberry), 2 (raspberry) Sufficiently supported by data: Yes Specific comments/observations: All the residues were below 0.05 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Currants, black, red, white	0.01* (W)	0.1	The existing CXL will be replaced by the proposed Codex MRL for the Subgroup of bush berries. (See below, bush berries)
Gooseberry	0.01*(W)	0.1	The existing CXL will be replaced by the proposed Codex MRL for the Subgroup of bush berries. (See bush berries below)
Bush berries, Subgroup of	0.3	0.1 (blueberries, currants, gooseberries, rose hips)	cGAP: USA, 2×0.42 kg/ha, RTI 14 days, PHI 1 day Number of trials: 7 in blueberries Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL for whole group of bush berries covers blueberries, currants, gooseberries and rose hips. According to Codex extrapolation rules, blueberry trials are acceptable to derive the group MRL. In the EU additional trials on currants and/or on grapes would be needed. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None

Commodity	Codex MRL proposal	EU MRL	Comment
Elderberries	0.3	0.1	cGAP: USA, 2 × 0.42 kg/ha, RTI 14 days, PHI 1 day The USA GAP on bush berries covers also high bush cranberries and elderberry. No trials were submitted. JMPR extrapolated the residue trials from blueberries to elderberries. Sufficiently supported by data: No Specific comments/observations: An extrapolation from blueberries to elderberries is not foreseen in the Codex extrapolation rules. In the EU, the data would not be accepted either (residue trials in elderberries or additional trails on currants and/or grapes would be required) Conclusion: The proposed Codex MRL is not acceptable. Follow-up action: none
Guelder rose	0.3		See the elderberries
Strawberry	3	0.3	cGAP: USA: 1 × 0.28, PHI 14 days Number of trials: 6 Sufficiently supported by data: No Specific comments/observations: Strawberries are a major crop in Codex (crop for which refinement criteria applied). In the EU, strawberries are major crops and therefore 8 residue trials would be needed. Conclusion: The proposed Codex MRL is not acceptable because an acute risk to the European consumer has been identified (see below) and because the number of trials is insufficient. Follow-up action: None
General comments	_		

*: Indicates that the MRL is proposed at the limit of quantification.

5.33.5. Consumer risk assessment

 Table 161:
 Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. It should be noted that JMPR used additional factors to compensate the contribution of the metabolites included in the RA residue definition that were not analysed in the field trials. These factors were derived from the metabolism studies and the molecular weight. Since the metabolites are not included in the EU residue definition, the input values are slightly higher than required for the EU RD. The risk assessment was performed with the EU ARfD.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2018f) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. It should be noted that JMPR used additional factors to compensate the contribution of the metabolites included in the RA residue definition that were not analysed in the field trials. These factors were derived from the metabolism studies and the molecular weight. The risk assessment was performed with the EU ADI.	Specific comments:

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: The calculated short-term exposure exceeded the ARfD for one of crops under assessment. Strawberries: 144% of ARfD; Currants: 12% of ARfD Blueberries: 9% of ARfD Gooseberries: 9% of ARfD Blackberries: 5% of ARfD Raspberries: 4% of ARfD Dewberries: 0.8% of ARfD	Results: The calculated long-term exposure exceeded the ADI. The overall chronic exposure accounted for 142% of the ADI. It is noted that the exceedance is mainly attributed to soyabeans (GEMS diets). Further refinements of the exposure calculations might be possible. Among the crops under consideration, strawberries were identified as the main contributor, accounting for up to 3.4% of the ADI.	Results: Long-term exposure: Max 63% of the JMPR ADI. It is noted that JMPR decided to withdraw the CXL in sweet potato and yam since they resulted in a chronic risk to the consumer. Short-term exposure: Highest result for strawberry: 6% of ARfD

5.34. Flupyradifurone (285) R

5.34.1. Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	NL	
Approval status	Approved	Commission Implementing Regulation (EU) 2015/2084 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2015d) (EFSA, 2017l) (confirmatory data M-Tox and Phys/chem)
MRL review performed	Yes, see comments	In the framework of the EU pesticides peer review
MRL applications/ assessments	Yes, see comments	(EFSA, 2021g) ^(c) (okra/lady's finger) (EFSA, 2020s) (rapeseed mustard seeds) (EFSA, 2020k) (assessment of confirmatory data, import tolerances and MRL modifications) (EFSA, 2016g) (strawberries, blackberries and raspberries)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) 2015/2084 of 18 November 2015 approving the active substance flupyradifurone, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 302, 19.11.2015, p. 89–92.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

(c): The assessment performed in the recently published reasoned opinion could not be taken into account for the assessment in this report.

5.34.2. Toxicological reference values

	JMPR e	valuation	EU evaluation		TRV	
	Value	Comments	Value	Comments	comparable	
ADI	0–0.08 mg/kg bw per day	JMPR (2015)	0.064 mg/kg bw per day	(EFSA, 2015d) (rat two- generation study and 100 UF) confirmed in (European Commission, 2015)	No	
ARfD	0.2 mg/kg bw	JMPR (2015)	0.15 mg/kg bw	(EFSA, 2015d) (rabbit developmental toxicity study and 100 UF) confirmed in (European Commission, 2015)	No	
Conclusion/ comment	Reference valu	ues of the parent	are applicable	to the metabolite difluoroacetic a	icid (DFA).	

Table 163: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

5.34.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Flupyradifurone The residue is not fat soluble	Reg. 396/2005: 1) Flupyradifurone 2) Difluoroacetic (DFA) (expressed as DFA)	No	
	Animal products	Sum of flupyradifurone and difluoroacetic acid, expressed as parent equivalents.	Reg. 396/2005: 1) Flupyradifurone 2) Difluoroacetic (DFA) (expressed as DFA)	No	
			The residue is not fat soluble		
	Plant products	Sum of flupyradifurone, difluoroacetic acid and 6- chloronicotinic acid, expressed as parent equivalents.	Peer review (EFSA, 2015d): Sum flupyradifurone and DFA expressed as flupyradifurone	No	
	Animal products	Sum of flupyradifurone and difluoroacetic acid, expressed as parent equivalents.	Peer review (EFSA, 2015d): Sum of flupyradifurone and DFA, expressed in flupyradifurone	Yes	
Conclusion, comments	refers to a soil met	ate enforcement residue definit abolite difluoroacetic acid (DFA are not compatible.			
	Since detailed information on DFA residues in the crops assessed by JMPR was reported in the JMPR evaluation, Codex MRL proposals for DFA in plant commodities could be derived. The different residue definitions for animal commodities set in the EU and by JMPR are not relevant, since no Codex MRL proposals for animal products are under assessment.				
	metabolite, which exposure calculate	finition derived by the JMPR for was not considered relevant by d for this residue definition of J -CNA is minor metabolite.	the EU pesticides peer review	. Thus, the	

Table 164: Comparison of the residue definitions derived by JMPR and at EU level

5.34.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Avocado	0.6	0.01*	cGAP: USA, 2 \times 205 g/ha, 14-day interval, PHI 1 day Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: Information on DFA residues is not available from the JMPR report. If details are reported in the JMPR evaluation, the corresponding DFA MRL could be derived. Conclusion: The proposed Codex MRL for RD 1 is acceptable, but no MRL proposal was derived for the second EU RD (DFA). Follow-up action: To check details in JMPR evaluation.
Cocoa beans	0.01*	0.05*	cGAP: Ghana, 4×15 g/ha, PHI 7 days Number of trials: 9 Sufficiently supported by data: Yes Specific comments/observations: The same GAP and residue trials are assessed by EFSA under currently ongoing MRL application on import tolerances. The residue data on DFA indicate that existing EU MRL set at the LOQ of 0.1* can be modified to 0.06 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Cane berries	6	blackberries and raspberries: 1.5; dewberries: 0.01*	cGAP: USA, 2 × 205 g/ha, 7-day interval, PHI 10 days Number of trials: 10 (4 blackberries + 6 raspberries) Sufficiently supported by data: Yes Specific comments/observations: Information on DFA residues is not available from the JMPR report. If details are reported in the JMPR evaluation, the corresponding DFA MRL could be derived. Conclusion: The proposed Codex MRL for RD 1 is acceptable, but no MRL proposal was derived for the second EU RD (DFA). Follow-up action: To check details in JMPR evaluation.
Coffee beans	0.9	1	cGAP: Brazil, 1×600 g/a (drench)+ 3×200 g/ha (foliar), 15-day interval, PHI 21 days Number of trials: 16 Sufficiently supported by data: Yes Specific comments/observations: The same GAP and 13 residue trials were assessed by EFSA for setting an import tolerance. The residue data indicate that for flupyradifurone an MRL of 0.2 mg/kg required for DFA. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Hops, dry	10	4	cGAP: USA, 1×154 g/ha, PHI 21 day Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: Information on DFA residues is not available from the JMPR report. If details are reported in the JMPR evaluation, the corresponding DFA MRL could be derived. It is noted that the same GAP supported by only 3 residue trials was submitted to EFSA in an import tolerance application, EFSA concluded that since the number of trials is insufficient, no MRL proposal can be derived for the import tolerance application. Conclusion: The proposed Codex MRL for RD 1 is acceptable, but no MRL proposal was derived for the second EU RD (DFA). Follow-up action: To check details in JMPR evaluation.
General comments	report. Risk ma DFA for avocad The residue da	anagers to deci do, cane berries ita submitted fo	oncentrations on metabolite DFA is not available in the JMPR de if EFSA should be mandated with deriving MRL proposals for s, hops, if sufficient information is available in the JMPR evaluation. or coffee and cocoa beans for the EU assessment allow derivation nese commodities.

Table 165:	Comparison of Codex MRL proposals derived by JMPR with EU MRL	S
Table 103.	companison of couck fille proposals derived by sin it with to fille	3

*: Indicates that the MRL is proposed at the limit of quantification.

5.34.5. Consumer risk assessment

Acute exposure assessment	Acute exposure assessment Chronic exposure assessment	
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. The calculation can be slightly overestimated, considering the contribution of 6-CNA metabolite. The risk assessment was performed with the EU ARfD.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment performed for the ongoing MRL application (reasoned opinion on the import tolerances, EU uses and Article 12 confirmatory data), were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. The calculation can be slightly overestimated, considering the contribution of 6-CNA metabolite. The risk assessment was performed with the EU ADI.	
Results: No short-term consumer health risk was identified for the crops under assessment. Among the crops under assessment, the highest exposure was calculated for blackberries: 31% of the ARfD.	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 50% of the ADI. Among the crops under consideration, coffee beans were identified as the main contributor, accounting for up to 3% of the ADI.	Results: Long-term exposure: Max 20% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD).

Table 166: Summary of the consumer risk assessment

5.35. Isofetamid (290) R/T

5.35.1. Background information

Table 167:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	-
Type of JMPR evaluation	Follow-up evaluation due to an EU comment in 2018 CCPR	The EU noted that for bush berries an MRL of 4 instead of 5 mg/kg would be sufficient. For dry beans and dry peas the OECD MRL calculator would suggest an MRL of 0.09 mg/kg (instead of 0.05 mg/kg).
RMS	BE	-
Approval status	Approved	Commission Implementing Regulation (EU) 2016/ 1425 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2015w)
MRL review performed	No	Not foreseen, since MRLs were set in the framework of the first approval
MRL applications/ assessments	Yes, see comments	(EFSA, 2019i) (CCPR 51) (EFSA, 2018j) (tomatoes, peppers, aubergines, okra and cucurbits with edible peel)
		Ongoing: modification of the existing MRLs in blackberries, dewberries and raspberries

		Comments, references
Classification of a.s. – cut-off criteria	No	-
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) 2016/1425 of 25 August 2016 approving the active substance isofetamid in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/ 2011. C/2016/5398. OJ L 231, 26.8.2016, p. 30–33.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.35.2. Toxicological reference values

Table 168:	Comparison of toxicologica	I reference values	(TRV derived by	JMPR and at EU level)
------------	----------------------------	--------------------	-----------------	-----------------------

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.05 mg/kg bw per day	JMPR (2016)	0.02 mg/kg bw per day	(EFSA, 2015w) (1-year dog study, UF 100)	No
ARfD	3 mg/kg bw	JMPR (2016)	1 mg/kg bw	(EFSA, 2015w) (developmental toxicity study with rabbit, UF 100)	No
Conclusion/ comment	bw per day for uncertainty fa The EU evalua 1.57 mg/kg b toxicity study The ARfD esta anomalies in the The EU evalua bw per day ba applying an U According to (applicable. to metabolites	The ADI established by JMPR is 0.05 mg/kg bw per day, based on the NOAEL of 5.34 mg/kg bw per day for liver toxicity in the 90-day and 1-year toxicity studies in dog and applying an uncertainty factor (UF) of 100. The EU evaluation derived a different ADI (0.02 mg/kg bw per day) based on the NOAEL of 1.57 mg/kg bw per day for effects on body weight and body weight gain in the 1-year toxicity study in dog and applying an UF of 100. The ARfD established by JMPR is based on the NOAEL of 300 mg/kg bw per day for skeletal anomalies in the developmental toxicity study in rabbit and applying an UF of 100. The EU evaluation derived a different ARfD (1 mg/kg bw) based on the NOAEL of 100 mg/kg bw per day based on skeletal variations observed in the developmental study in rabbit and applying an UF of 100. According to (EFSA, 2015w), the reference values of parent compound (isofetamid) are applicable. to metabolites and therefore also for metabolite GPTC (<i>N</i> -{1-[4-(β -D-glucopyranosyloxy)-2-methylphenyl]-2-methyl-1-oxopropan-2-yl}-3-methylthiophene-2-carboxamide) which was			

5.35.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Isofetamid	EU Reg. 2018/1514 ^(a) : Isofetamid	Yes
	Animal products	Sum of isofetamid and 2-[3- methyl-4-[2-methyl-2-(3- methylthiophene-2- carboxamido) propanoyl] phenoxy] propanoic acid (PPA), expressed as isofetamid The residue is fat soluble	EU Reg. 2018/1514 ^(b) : Isofetamid Peer review (EFSA, 2015w): Isofetamid (provisional, not required) Fat solubility open (pending confirmation by livestock feeding study, not required at this stage)	No

Table 169: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD RA	Plant products	Isofetamid	Peer review (EFSA, 2015w) Art 10 MRL (EFSA, 2018j):	No	
			Sum isofetamid and <i>N</i> -{1-[4- (β-D-glucopyranosyloxy)-2- methylphenyl]-2-methyl-1- oxopropan-2-yl}-3- methylthiophene-2- carboxamide (GPTC), expressed as isofetamid		
	Animal products	Sum of isofetamid and 2-[3- methyl-4-[2-methyl-2-(3- methylthiophene-2- carboxamido) propanoyl] phenoxy] propanoic acid (PPA), expressed as isofetamid	Peer review (EFSA, 2015w): Sum isofetamid and 2-[3- methyl-4-[2-methyl-2-(3- methylthiophene-2- carboxamido)propanoyl] phenoxy]propanoic acid (PPA), expressed as isofetamid	Yes	
Conclusion, comments	Plant commodities: The plant residue definitions for enforcement are identical, as both refer to the parent isofetamid only. For the plant risk assessment residue definition, the JMPR, in contrast to the EU, does not include the plant metabolite GPTC. EFSA previously derived conversion factors (CF) for risk assessment for peaches, plums, grapes (CF 1.1) and lettuce (CF 1.3) (EFSA, 2015w). A conversion for risk assessment was not deemed necessary for strawberries, tomatoes, aubergines, peppers, okra and cucurbits with edible peel (CF 1.0 and/or GPTC < LOQ) (EFSA, 2015w, 2018j)). For apricots, cherries and rapeseed, CFs could not be derived in the framework of the EU peer review, because residue levels of parent and GPTC were < LOQ (EFSA, 2015w). For bush berries the CF derived for grapes could be used. For pulses, considering metabolism studies in French beans, GPTC is not expected to occur and therefore no CF is deemed necessary. Animal commodities: See (EFSA, 2019i).				

- (a): Commission Regulation (EU) 2018/1514 of 10 October 2018 amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for abamectin, acibenzolar-Smethyl, clopyralid, emamectin, fenhexamid, fenpyrazamine, fluazifop-P, isofetamid, Pasteuria nishizawae Pn1, talc E553B and tebuconazole in or on certain products. OJ L 256, 12.10.2018, p. 8–32.
- (b): Commission Implementing Regulation (EU) 2016/1425 of 25 August 2016 approving the active substance isofetamid in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. C/2016/5398. OJ L 231, 26.8.2016, p. 30–33.

5.35.4. Codex MRL proposals

Table 170:	Comparison of Codex MRL	proposals derived b	y JMPR with EU MRLs
------------	-------------------------	---------------------	---------------------

Commodity	Codex MRL proposal	EU MRL	Comment
Bush berries, Subgroup of	4	0.01* (blueberries, currants, gooseberries and rose hips)	cGAP: Canada, 3 × 496 g/ha, 7-day interval, PHI 7 days Number of trials: 10 trials on blueberry conducted at higher application rates of 650 g/ha (1.31N) and scaled using the proportionality approach. Sufficiently supported by data: Yes Specific comments/observations: The extrapolation from blueberries to bush berries (subgroup) is in line with the agreed Codex extrapolations. According to the EU classification, the number of trials would not be sufficient to support extrapolation to the group of small fruit and berries. Last year it was noted that one residue trial outlier value of 3 mg/kg (scaled value) affects the MRL calculation (without the outlier, the calculated MRL would be 1.5 mg/kg) (EFSA, 2019i).

Commodity	Codex MRL proposal	EU MRL	Comment
			The Codex MRL for bush berries (subgroup) would be applicable also to currants (154030), gooseberries (154040), rose hips (154050) and other small fruit and berries (154990). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Dry beans (except soyabeans), Subgroup of	0.09	0.01* Dry beans, dry lupins	cGAP: Canada and USA, 2 × 500 g/ha, 7-day interval, PHI 30 days Number of trials: 8 trials on beans and 11 trials on peas Sufficiently supported by data: Yes Specific comments/observations: Residues from dry beans and dry peas were similar (Mann–Whitney test) and data sets could be combined. The Codex MRL would be applicable also to dry lupin (300040) and other dry pulses (300990). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Dry peas, Subgroup of	0.09	0.01* Dry peas, dry lentils	cGAP: Canada and USA, 2 × 500 g/ha, 7-day interval, PHI 30 days (FAO, 2018) Number of trials: 11 trials on peas and 8 trials on beans Sufficiently supported by data: Yes Specific comments/observations: See comments on dry beans (except soyabeans), subgroup of (above). The MRL proposal for dry peas would be also applicable to dry lentils (300020) and other dry pulses (300990). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None

comments –

*: Indicates that the MRL is proposed at the limit of quantification.

5.35.5. Consumer risk assessment

Table 171:	Summary	of the cons	sumer risk	assessment
	Garmany	01 0110 00110		abbebbinterit

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities for which the Codex MRL proposal is under consideration, using HR/STMR values derived by JMPR. The calculations are affected by additional non-standard uncertainties due to the lack of information on residue levels of the plant metabolite GPTC measured in residue trials, which is included in the EU residue definition for risk assessment. CF for bush berries were used to compensate for this deficiency. For pulses a CF is not necessary. The risk assessment was performed with the EU ARfD.	performed using PRIMo rev. 3.1 (refined calculation mode). The input values of the most recent long-term risk assessment (EFSA, 2019i) are still applicable (including the STMR values	•

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
	EFSA applied the previously derived conversion factor (CF) for risk assessment (CF = 1.1) (EFSA, 2015w) to the STMR values derived by the JMPR for peaches (also used for apricots), cherries and plums. The same CF was applied for blueberries, currants, gooseberries, rose hips and other small fruit and berries. A conversion factor (CF) for risk assessment was not available for other commodities under consideration. The risk assessment was performed using the STMR values for isofetamid (only) derived by the JMPR for pome fruit, blackberries, dewberries, raspberries, other cane fruit, azarole, kaki, beans (with pods), peas (with pods), beans, lentils, peas, lupins and other pulses.	
Results: No short-term consumer health risk was identified for the crops under assessment. The commodities under consideration leading to highest exposure are: Currants: 2.60% of ARfD Blueberries: 1.97% of ARfD Gooseberries: 1.94% of ARfD Beans (dry): 0.02% of ARfD Lentils (dry): 0.01% of ARfD Peas (dry): 0.01% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 24% of the ADI. Among the crops under consideration, apples were identified as the main contributor, accounting for up to 8% of the ADI.	Results: Long-term exposure: Max 0–6% of the JMPR ADI (FAO, 2018). Short-term exposure: Highest result for peaches: 3% of the JMPR ARfD (FAO, 2018).

5.36. Pendimethalin (292) R

5.36.1. Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	SE	
Approval status	Approved	Commission Implementing Regulation (EU) 2017/1114 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2016f)
MRL review performed	Yes, see comments	(EFSA, 2012c)
MRL applications/ assessments	Yes, see comments	(EFSA, 2018w) (confirmatory data following Art.12 review) (EFSA, 2015u) (lettuce) (EFSA, 2014c) (various crops) (EFSA, 2013g) (various crops)
Classification of a.s. – cut-off criteria	No	

		Comments, references
Endocrine effects of a.s.	Not assessed/not concluded	

(a): Commission Implementing Regulation (EU) 2017/1114 of 22 June 2017 renewing the approval of the active substance pendimethalin, as a candidate for substitution, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 162, 23.6.2017, p. 32–37.

5.36.2. Toxicological reference values

Table 173:	Comparison of toxicological	reference values ((TRV) derived by JM	PR and at EU level
------------	-----------------------------	--------------------	---------------------	--------------------

	JMPR e	valuation	EU evaluation		TRV	
	Value	Comments	Value	Comments	comparable	
ADI	0–0.1 mg/kg bw per day	JMPR (2016)	0.125 mg/kg bw per day	(EFSA, 2016f) (dog, 2-year study and 100 UF) confirmed in (European Commission, 2017b)	No	
ARfD	1 mg/kg bw	JMPR (2016)	0.3 mg/kg bw	(EFSA, 2016f) (rabbit, developmental toxicity study and 100 UF) confirmed in (European Commission, 2017b)	No	
Conclusion/ comment	-	- -	•		-	

5.36.3. Residue definitions

Table 174:	Comparison of the residue definitions derived by JMPR and at EU level
------------	---

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Pendimethalin	Reg. 396/2005: Pendimethalin	Yes	
		The residue is	Peer review (EFSA, 2016f): Pendimethalin		
		fat soluble	MRL review Art. 12 (EFSA, 2012c): Pendimethalin		
	Animal products		Reg. 396/2005: Pendimethalin	Yes	
			Peer review (EFSA, 2016f): Pendimethalin		
			MRL review Art. 12 (EFSA, 2012c): Pendimethalin		
			The residue is fat soluble		
RD RA	Plant products		Peer review (EFSA, 2016f): Pendimethalin	Yes	
			MRL review Art. 12 (EFSA, 2012c): Pendimethalin		
	Animal products		Peer review (EFSA, 2016f): Pendimethalin	Yes	
			MRL review Art. 12 (EFSA, 2012c): Pendimethalin		
Conclusion, comments	The proposed residue definitions for enforcement and risk assessment are comparable between the JMPR and EU evaluations.				

5.36.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Cane berries, subgroup of (includes all commodities in this subgroup)	0.05*	0.05* (blackberries, raspberries, dewberries)	cGAP: US GAP, Soil application, 1x6.7 kg a.s./ha, PHI 30 days. Number of trials: 4 GAP-compliant residue trials on blackberries and 2 GAP-compliant residue trials on raspberries. Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL refers to blackberries, raspberries, dewberries. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Bush berries, Subgroup of (includes all commodities in this subgroup)	0.05*	0.05* (blueberries, currants, gooseberries, rose hips)	cGAP: US GAP, Soil application, 1x6.7 kg a.s./ha, PHI 30 days. Number of trials: 7 GAP-compliant residue trials on blueberries supported by acceptable storage stability data. According to the current EU guidelines on extrapolation, 4 trials on currants (black, red and white) and 2 trials on any representative of the 'other small fruits and berries' are in principle required to be extrapolated to the whole subgroup of 'other small fruits and berries'. Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL refers to blueberries, currants, gooseberries and rose hips. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Mints	0.2	Corresp. EU MRL: basil and edible flowers: 0.6	cGAP: US GAP, soil application, 1x2.24 kg a.s./ha, PHI of 90 days. Number of trials: 4 residue trials 'approximating' the US GAP. Sufficiently supported by data: Yes Specific comments/observations: It is noted that the EU MRL is higher compared to the Codex MRL proposal. This can be explained by the fact that this MRL supports an EU GAP (i.e. Foliar spray treatment, 1×1.59 kg a.s./ha, PHI 42 days) that is more critical compared to the US GAP. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Strawberries	0.05*	0.05*	cGAP: US GAP: soil application, 1x3.2 kg a.s./ha, PHI 35 days. Number of trials: 8 residue trials 'approximating' the US GAP are available. Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Peppermint Oil, edible	6	-	Codex MRL proposals for processed products are not taken over in the EU legislation.
General comments	None		

Table 175:	Comparison of Codex MRL	proposals derived by	JMPR with EU MRLs

*: Indicates that the MRL is proposed at the limit of quantification.

5.36.5. Consumer risk assessment

Table 176: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions:	RA assumptions:	Specific comments:
The most recent risk assessment performed in the framework of the assessment of Art. 12 confirmatory data (EFSA, 2018w) is still valid since the proposed Codex MRLs are all lower or at the same level as the EU MRLs.	The most recent risk assessment performed in the framework of the assessment of Art. 12 confirmatory data (EFSA, 2018w) is still valid since the	_

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
The risk assessment was performed with the EU ARfD.	The risk assessment was performed with the EU ADI.	
Results: No short-term consumer health risk was identified for the crops under assessment. IESTI for the crops under consideration: < 1% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 1.6% of the ADI.	Results: Long-term exposure: Max 0% of the JMPR ADI. Short-term exposure: Highest result for the crops under consideration: 0% of ARfD

5.37. Cyclaniliprole (296) R

5.37.1. Background information

Table 177: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	AT	
Approval status	Not approved	Commission Implementing Regulation (EU) 2017/357 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2016i)
MRL review performed	No	
MRL applications/assessments	No	
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) 2017/357 of 28 February 2017 concerning the non-approval of the active substance cyclaniliprole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. C/2017/1280. OJ L 54, 1.3.2017, p. 4–5.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.37.2. Toxicological reference values

Table 178: Comparison of toxicological reference values (TRV derived by JMPR and at EU level)

	JMPR e	JMPR evaluation		EU evaluation	TRV
	Value	Comments	Value	Comments	comparable
ADI	0.04 mg/kg bw per day	JMPR (2017)	0.0043 mg/kg bw per day	(EFSA, 2016i) (1-year dog study, uncertainty factor 300)	No
ARfD	Unnecessary	JMPR (2017)	-	Not allocated	Yes
Conclusion/ comment	ADI: In 2016, EFSA derived an ADI which is one order of magnitude lower than the ADI derived by JMPR.Tox info on NK-1375 is not available in the EU. Hence, it is not possible to conclude on whether the reference values of the parent can be used for NK-1375.				
	In the comments for the 2018 CCPR, EFSA noted that for establishing the ADI for cyclaniliprole, the EU assessment interpreted the effects observed in the toxicological studie differently: In general, an increase in relative liver weights above 20% is considered to be adverse in the European peer review. The overall LOAEL was based on increases in liver weights (above 20% in both studies) in combination of induction of ALP and reduction of				

JMPR evaluation			EU evaluation		
Value	Comments	Value	Comments	comparable	
 albumin in females. The basis of an LOAEL to set the ADI implied an additional uncertainty factor of 3 (overall 300).					
 YT-1284, NSY- toxicity study, ARfD: Not der	28 (present in th an Ames test an ived.	ne rat metabolis d structural cor	the parent applies also to the me sm) and NK-1375 (based on an a nparison with cyclaniliprole using proved in EU (not included in the	cute oral Toxtree).	

5.37.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Cyclaniliprole	Reg. 396/2005: Default residue definition Peer review: Cyclaniliprole (for RAC; For processed commodities, assessment not finalised)	Yes
	Animal products	Cyclaniliprole The residue is fat soluble	Reg. 396/2005: Default residue definition Peer review: Cyclaniliprole The residue is fat soluble	Yes
Animal	Plant products	Cyclaniliprole + 3-bromo-2 ((2-bromo-4H-pyrazolo[1,5d] pyrido[3,2-b]-[1,4]oxazin4- ylidene)amino)-5-chloro-N(1- cyclopropylethyl) benzamide (NK-1375), expressed as cyclaniliprole equivalents Note: The molecular weight conversion factor to express NK-1375 in cyclaniliprole equivalents = 1.064	Peer review (EFSA, 2016i): provisional RD for RAC: Cyclaniliprole and metabolite NK-1375 (pending information on the toxicity of metabolite NK-1375) Processed commodities: Assessment is not finalised; a separate residue definition for processed commodities may be proposed, possible inclusion of the compounds YT-1327, BCPBA and BPQO to be considered	Not appropriate since the EU is only provisional
	Animal products	Cyclaniliprole	Peer review (EFSA, 2016i): Cyclaniliprole and metabolites NSY-28 and NK-1375; provisionally and pending the submission of data to address the metabolism of NK-1375 in livestock and its toxicological properties. For NSY-28, reference values of parent may be used	No
Conclusion, comments	RD enf and RA (plant commodities): only comparable for RAC. RA RD in EU for RAC is only provisional. European assessment on processed commodities not finalised. RD RA (animal commodities): EU residue definition includes also two metabolites: NSY-28 and NK-1375. In the EU Peer Review of cyclaniliprole, several data gaps were identified (e.g. toxicological assessment, including genotoxic potential of metabolites NK-1375, YT-1327, BCPBA and BPQO relevant to the consumer risk assessment; the occurrence of YT-1327, BCPBA and BPQO in processed commodities and finalisation of the residue definition for processed commodities). Thus, the residue definitions for consumer risk assessment, and consequently, the consumer risk assessment could not be finalised. The data gaps regarding the toxicological studies and residue levels of metabolites are considered a serious concern which would be a sufficient reason to make a reservation for the proposed			

Table 179: Comparison of the residue definitions derived by JMPR and at EU level

Codex MRL proposals.

5.37.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment	
Almonds	0.03	0.01*	cGAP: Canada, 3x80 g a.i./ha, RTI 14 days, PHI 30 day Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3×100 g/ ha, RTI 12–15 days, PHI 30 day. Proportionality principle (0.8 scaling factor) applied. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None	
Almond hulls	6	-	No MRLs are set in the EU for processed commodities/by- products.	
Bush berries, Subgroup of	1.5	0.01* (blueberries, currants, gooseberries, rose hips)	cGAP: Canada, 3×80 g a.i./ha, RTI 5 days, PHI 1 day Number of trials: 10 (trials on blueberries) Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3×100 g/ha RTI 5 days, PHI 1 day. Proportionality principle (0.8 scaling factor) applied. According to EU extrapolation rules, trials on currants are needed to set MRL for the whole subgroup of other small fruits and berries (0154000). However, according to Codex, the extrapolation from blueberry to the subgroup of bush berries is possible. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: To discuss whether the extrapolation is acceptable.	
Elderberries	1.5	0.01*	cGAP: Canada, 3 × 80 g a.i./ha, RTI 5 days, PHI 1 day Number of trials: 10 (trials on blueberries) Sufficiently supported by data: No Specific comments/observations: JMPR suggests extrapolating from blueberries. According to Codex extrapolation rules, trials of elderberry are needed. Conclusion: The proposed Codex MRL is not acceptable becaus it is not sufficiently supported by data (lack of residue trials in elderberries) Follow-up action: None	
Guelder rose	1.5	(see elderberries)	cGAP: Canada, 3 \times 80 g a.i./ha, RTI 5 days, PHI 1 day	
Cane berries, Subgroup of	0.8	0.01* Blackberries, dewberries, raspberries	cGAP: Canada, 3×80 g a.i./ha, RTI 5 days, PHI 1 day Number of trials: 5 (trials on raspberries) Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3×100 g/ ha, RTI 5–6 days, PHI 1 day. Proportionality principle (0.8 scaling factor) applied. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None	

Table 180:	Comparison of Codex MRL	proposals derived by	JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment
Cherries, Subgroup of	0.7	0.01*	cGAP: Canada, 3×80 g a.i./ha, RTI 7 days, PHI 7 day Number of trials: 15 Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3×100 g/ha, RTI 7 days, PHI 7 day. Proportionality principle (0.7–0.8 scaling factor) applied. Residues measured in flesh, but it was considered that correction by the pit will leave to same MRL. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Cabbages, head	0.7	0.01*	cGAP: Canada, 3×60 g a.i./ha, RTI 7 days, PHI 1 day Number of trials: 10 (trials on cabbage with wrapper leaves) Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3×80 g/ha, RTI 6–8 days, PHI 1 day. Proportionality principle (0.6–0.98 scaling factor) applied. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Cherry Tomato	0.7 (W)	0.01* (tomatoes)	Specific comments/observations: JMPR proposed to withdraw the existing CXL. A new MRL (0.08 mg/kg) for subgroup of tomatoes is proposed
Citrus fruit, Group of	0.4	0.01*	cGAP: USA, 3x80 g a.i./ha, RTI 7 day, PHI 1 day Number of trials: 23 (combined data set on lemons (n = 5), oranges (n = 12) and grapefruit (n = 6). Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3×100 g/ ha, RTI 7 days, PHI 1 day. Proportionality principle (0.8 scaling factor) applied. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Citrus oil, edible	50	-	Specific comments/observations: 1 processing study available. No MRLs are proposed in EU for processed commodities.
Cucumbers and summer squashes, Subgroup of	0.05	0.01* (cucurbitis with edible peel, except Armenian cucumbers)	cGAP: Canada, 3×60 g a.i./ha, RTI 7 days, PHI 1 day Number of trials: 18 (combined data set on cucumbers (9) and summer squashes (9)) Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3x80 g/ha, RTI 7 days, PHI 1 day. Proportionality principle (0.75 scaling factor) applied. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Tomato, dried	0.35	-	Specific comments/observations: 5 processing studies available. No MRLs are proposed in EU for processed commodities.
Edible offal (mammalian)	0.2	0.01*	JMPR calculated the dietary burden for livestock on the basis of residues in feed crops under assessment and their by-products. In addition, residues in rotational crops (straw, forage) were taken into account. The calculations were performed for parent cyclaniliprole; the metabolite NK-1375 was not considered. According to EFSA's view, the dietary burden calculation should

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment
			be performed in accordance with the RD for risk assessment for plants (including metabolite NK-1375). Hence, it is expected that the overall dietary burden would be slightly higher than the one calculated by JMPR. Maximum DB (14.7 ppm DM) calculated for beef cattle not covered by the highest feeding study (11.6 ppm DM). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable. See also conclusion on residue definitions. Follow-up action: None
Subgroup of Eggplants	0.15	0.01*	cGAP: Canada, 3x60 g a.i./ha, RTI 7 days, PHI 1 day Number of trials: 12 (trials on bell peppers and non-bell peppers) Sufficiently supported by data: No Specific comments/observations: trials performed at 3x80 g/ha, RTI 6–8 days, PHI 1 day. Proportionality principle (0.74–0.99 scaling factor) applied. Since 2018 JMPR follows the approach to use residue trials from peppers or tomatoes (the data set leading to higher residues) to extrapolate to the subgroup Eggplant. The extrapolation from peppers to eggplants is not foreseen in EU. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Eggs	0.01*	0.01*	JMPR calculated the dietary burden for poultry on the basis of residues in feed crops under assessment and their by-products. In addition, residues in rotational crops (straw, forage) were taken into account. The calculations were performed for parent cyclaniliprole; the metabolite NK-1375 was not considered. According to EFSAs view, the dietary burden calculation should be performed in accordance with the RD for risk assessment for plants (including metabolite NK-1375). Hence, it is expected that the overall dietary burden would be slightly higher than the one calculated by JMPR. No feeding study with poultry. From metabolism study with laying hen, no residues expected in poultry eggs. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Flowerhead Brassicas, Subgroup of	0.8	0.01* (flowering brassica)	cGAP: Canada, 3 × 60 g a.i./ha, RTI 7 days, PHI 1 day (GAP for Brassica head and stem vegetables) Number of trials: 10 (trials on broccoli) Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3x80 g/ha, RTI 6–8 days, PHI 1 day. Proportionality principle (0.72–0.98 scaling factor) applied. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Grapes	0.6	0.01*	cGAP: Canada, 3×80 g a.i./ha, RTI 7 days, PHI 7 days. Number of trials: 15 Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3×100 g/ ha, RTI 6 days, PHI 6–7 days. Proportionality principle (0.8 scaling factor) applied.

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment
			Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Head Brassicas, Subgroup of	0.7 (W)	0.01*	Specific comments/observations: JMPR proposed to withdraw the existing CXL. An MRL of 0.7 mg/kg is proposed for head cabbage (see above).
Leafy greens, Subgroup of	7	0.01* (lamb's lettuces, lettuces, escaroles, spinaches and similar leaves subgroup of, chervil)	cGAP: Canada, 3×60 g a.i./ha, RTI 7 days, PHI 1 day Number of trials: 7 head lettuce, 10 leaf lettuce, 3 cos lettuce, 8 spinach Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3x80 g/ha, RTI 4–9 days, PHI 1 day. Proportionality principle (0.73–0.99 scaling factor) applied. JMPR indicated that residue levels from head lettuce, leaf lettuce, cos lettuce and spinach are not from the same population. JMPR proposed the MRL for the whole subgroup of leafy greens based on trials on spinach (n = 8) only. This is not fully matching EU extrapolations. Separated MRLs could be set for the individual crops. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable. See also conclusions on residue definitions. Follow-up action: None
Leaves of Brassicaceae, Subgroup of	10	0.01* (leafy brassica subgroup of, land cresses, cress and other sprouts and shoots, rucola and red mustards)	cGAP: Canada, 3 \times 60 g a.i./ha, RTI 7 days, PHI 1 day Number of trials: 5 (trials on mustard greens) Sufficiently supported by data: No Specific comments/observations: Chinese cabbage is a crop classified in the group of leaves of brassica, which is a major crop
Meat (from mammals other than marine mammals)	0.25 (fat)	0.01*	MRL derived from feeding study with cattle (see comments on edible offal). It is noted that EU MRL is derived for muscle, instead of meat. In muscle residues of 0.032 mg/kg were estimated from the max DB. Hence the MRL in muscle would be 0.05 mg/kg Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable (see edible offal). See also conclusion on residue definitions. Follow-up action: None
Low growing berries, Subgroup of (except cranberries)	0.4	0.01* (strawberries)	cGAP: Canada, 3×80 g a.i./ha, RTI 5 days, PHI 1 day. Number of trials: 9 Sufficiently supported by data: Yes Specific comments/observations: trials performed at $3x100$ g/ha, RTI 4–6 days, PHI 1 day. Proportionality principle (0.8 scaling factor) applied. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment
Melons, pumpkins and winter squashes, Subgroup of	0.1	0.01* (cucurbitis with inedible peel)	cGAP: Canada, 3 × 60 g a.i./ha, RTI 7 days, PHI 1 day Number of trials: 10 (trials on melons, whole fruit) Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3x80 g/ha, RTI 6–8 days, PHI 1 day. Proportionality principle (0.75 scaling factor) applied. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Mammalian fats (except milk fats)	0.25	0.01*	MRL proposal derived from feeding study with cattle (see comments on edible offal). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable (see edible offal). See also conclusion on residue definitions. Follow-up action: None
Milks	0.01	0.01*	MRL proposal derived from feeding study with cattle (see comments on edible offal). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable (see edible offal). See also conclusion on residue definitions. Follow-up action: None
Milk fats	0.2	-	No MRLs are proposed in EU for milk fats.
Peppers, Subgroup of (except Martynia, Okra and Roselle)	0.15	0.01*	cGAP: Canada, 3×60 g a.i./ha, RTI 7 days, PHI 1 day Number of trials: 12 (trials on bell peppers and non-bell peppers) Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3×80 g/ha, RTI 6–8 days, PHI 1 day. Proportionality principle (0.74–0.99 scaling factor) applied. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Peppers, chilli, dried	1.5	-	Specific comments/observations: Proposed MRL was derived from residue trials in peppers, applying the default processing factor of 10. At EU level, MRLs are set only for fresh products, but not for processed chilli peppers
Peaches (including Apricots and Nectarines), Subgroup of	0.3	0.01* (peaches, apricots)	cGAP: Canada, 3 × 80 g a.i./ha, RTI 7 days, PHI 7 day Number of trials: 13 (trials on peaches) Sufficiently supported by data: Yes Specific comments/observations: application rate did not match the cGAP; proportionality principle (0.8–1.1 scaling factor) applied. Residues measured in flesh, but it was considered that correction by the pit will leave to same MRL. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Pome fruits	0.3 (W)	0.01*	JMPR proposed to withdraw the existing CXL and replace it with a new MRL of 0.2 mg/kg (see pome fruits below).
Pome fruits, Group of (excluding Japanese persimmons)	0.2	0.01* (Pome fruits and azaroles)	cGAP: Canada, 3×80 g a.i./ha, RTI 14 days, PHI 7 day Number of trials: 24 (combined data set on apple (16) and pear (8) Sufficiently supported by data: No Specific comments/observations: trials performed at 3×100 g/ha, RTI 14 days, PHI 7 days (in the JMPR report it is erroneously reported that the trials were performed with a PHI of 1 day).

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment
			 Proportionality principle (0.8 scaling factor) applied. According to the RMS, the PHI reported in the 2019 report is a typo and should be corrected to 7 days. Conclusion: The proposed Codex MRL might not be acceptable because trials differ from GAP in two parameters (PHI and application rate). Hence, proportionality approach cannot be used to derive an MRL proposal. See also conclusion on residue definitions. Follow-up action: None
Plums, Subgroup of	0.15	0.01*	cGAP: Canada, 3×80 g a.i./ha, RTI 7 days, PHI 7 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: application rate did not match the cGAP; proportionality principle (0.8–1.2 scaling factor) applied. Residues measured in flesh, but it was considered that correction by the pit will leave to same MRL. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Poultry, edible offal	0.01*	0.01*	MRL proposal derived from feeding study with laying hens (see comments on eggs). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable (see eggs). See also conclusion on residue definitions. Follow-up action: None
Poultry, fats	0.01*	0.01*	MRL proposal derived from feeding study with laying hens (see comments on eggs). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable (see eggs). See also conclusion on residue definitions. Follow-up action: None
Poultry, meat	0.01*	0.01*	 MRL proposal derived from feeding study with laying hens (see comments on eggs). The corresponding MRL for poultry muscle is 0.01* Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable (see eggs). See also conclusion on residue definitions. Follow-up action: None
Tea, green, black (black, fermented and dried)	50	0.05*	cGAP: Japan, 1×4.5 g a.i./hL, PHI 3 days Number of trials: 6 (trials on tea, residues analysed in dried tea) Sufficiently supported by data: No; normally 8 trials would be required, but in exceptional cases 6 trials may be considered enough. Specific comments/observations: GAP compliant trials; Conclusion: Risk managers to discuss whether the number of trials is considered sufficient. See also conclusion on residue definitions. Follow-up action: None
Tomatoes, Subgroup of	0.08	0.01*	cGAP: Canada, 3×60 g a.i./ha, RTI 7 days, PHI 1 day Number of trials: 22 (combined data set on normal size and cherry tomato) Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3×80 g/ha, RTI 6–8 days, PHI 1 day. Proportionality principle (0.72–0.99 scaling factor) applied.

Commodity	Codex MRL proposal	EU MRL ^(a)	Comment
			Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Tuberous and corn vegetables, Subgroup of	0.01*	0.01* (potatoes, tropical root and tuber vegetables)	cGAP: Canada, 3 \times 60 g a.i./ha, RTI 5 days, PHI 7 days Number of trials: 25 (trials on potatoes) Sufficiently supported by data: Yes Specific comments/observations: trials performed at 3 \times 100 g/ha, RTI 4–6 days, PHI 6–7 days. All residues < 0.01 mg/kg. Conclusion: The proposed Codex MRL is sufficiently supported by data. However, a general concern was noted (see conclusion on residue definitions). Follow-up action: None
Prunes	0.6	-	Specific comments/observations: 1 processing study available. No MRLs are proposed in EU for processed commodities.
Tomato	0.1 (W)	0.01*	Specific comments/observations: JMPR proposed to withdraw the existing CXL and replace it with a new MRL of 0.08 mg/kg (see tomato above).
General comments	(a): substance included in Annex V to Regulation (EC) No 396/2005. In 2017, JMPR derived MRL proposals for many of the crops assessed again by 2019 JMPR; CCPR 2018 decided to keep the MRL proposals at step 4 because JMPR used an approach outlined in the general considerations of the 2017 JMPR report (2.4 Field use pattern anticipated residue comparison model), which was not found acceptable by CCPR. In 2019, the applicant submitted revised GAPs to JMPR. Although the trials did not fully match the revised cGAPs, the trials could be used following scaling.		

*: Indicates that the MRL is proposed at the limit of quantification.

5.37.5. Consumer risk assessment

Table 181:	Summary of the consumer risk assessment	
	uro	

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1 based on the existing EU MRLs (all at the LOQ) and the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. The risk assessment was performed with the EU ADI.	Specific comments: -
	The calculations are indicative, because final decision on RD at EU level is not yet taken.	
Results: Not relevant	Results: The calculated long-term exposure exceeded the ADI. The overall chronic exposure accounted for 125% of the EU ADI (NL toddler). Among the crops under consideration, tea and spinaches were identified as the main contributor, accounting for up to 40% of the ADI, respectively.	Results: Long-term exposure: Max 10% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD).

5.38. Fenazaquin (297) R

5.38.1. Background information

Table 182: Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	Other evaluation, see comment	Follow-up evaluation of additional uses
RMS	DE	
Approval status	Approved	Commission Implementing Directive 2011/39/EU ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2013e) (application for amendment of approval conditions) EFSA Conclusion ongoing (AIR IV)
MRL review performed	Yes, see comments	(EFSA, 2020b)
MRL applications/ assessments	Yes, see comments	(EFSA, 2018o) (import tolerance in almonds) (EFSA, 2010f) (dried or fermented leaves and stalks of Camellia sinensis)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/60510) has not been performed yet.

(a): Commission Implementing Directive 2011/39/EU of 11 April 2011 amending Council Directive 91/414/EEC to include fenazaquin as active substance and amending Commission Decision 2008/934/EC. OJ L 97, 12.4.2011, p. 30–33.

5.38.2. Toxicological reference values

Table 183:	Comparison of toxicological	reference values (TR)	V) derived by	y JMPR and at EU level
------------	-----------------------------	-----------------------	---------------	------------------------

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0–0.05 mg/kg bw per day	JMPR (2017)	0.005 mg/kg bw per day	(EFSA, 2013e) (2-year oral rat study and 100 UF) confirmed in (European Commission, 2018b)	No
ARfD	0.1 mg/kg bw	JMPR (2017)	0.1 mg/kg bw	(EFSA, 2013e) (developmental rat study and 100 UF) confirmed in (European Commission, 2018b)	Yes
Conclusion/ comment	The ADI set at EU level is 10 times lower than the JMPR ADI. In addition, at the EU level, TRV have been set for plant metabolite TBPE: ADI of 0.002 mg/kg bw. This metabolite has not been assessed by JMPR in 2017 where it was concluded that TBPE was unlikely to be of greater toxicity than fenazaquin. JMPR agreed that the ADI and ARfD of fenazaquin can be applied to TBPE.				

5.38.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant	Fenazaquin	Reg. 396/2005: Fenazaquin	Yes	
	products		Peer review (EFSA, 2013e): Fenazaquin (applicable to fruit crops)		
			Art. 10 (EFSA, 2018o): Fenazaquin (applicable to fruit crops)		
			Art. 12 review (EFSA, 2020b): Fenazaquin (tentative for leafy vegetables)		
	Animal	Sum of fenazaquin and the	Reg. 396/2005: Fenazaquin	No	
	products	metabolite 2-hydroxy- fenazaquin acid, expressed as fenazaquin equivalents	Peer review (EFSA, 2013e) and MRL review (EFSA, 2020b): Fenazaquin (ruminants)		
		The residue is fat soluble	The residue is fat soluble		
RD RA	Plant products	Fenazaquin	Peer review (EFSA, 2013e): Fenazaquin and TBPE (these RD are applicable to unprocessed and processed fruit).	No	
			Art 12 (EFSA, 2020b) Fruits, leafy vegetables (tentative for leafy vegetables): 1) fenazaquin and 2) TBPE		
	Animal products	Sum of fenazaquin and the metabolites 2-(4-{2-[(2- hydroxyquinazolin-4 yl)oxy] ethyl}phenyl)-2- methylpropanoic acid (2- hydroxy-fenazaquin acid) and quinazolin-4-ol and 3,4- dihydroquinazolin-4-one (tautomeric forms of 4- hydroxyquinazoline), expressed as fenazaquin equivalents	Peer review (EFSA, 2013e)and MRL review (EFSA, 2020b): Fenazaquin (ruminants)	No	
Conclusion, comments	n, The EU and JMPR enforcement residue definitions for plants are identical, covering only				
	For animals there is a slight difference in the residue definition for enforcement and RA, EFSA is proposing fenazaquin only (for ruminants), while JMPR proposes a wider RD wh includes also metabolites, i.e. tautomeric forms of 4-hydroxyquinazoline (only for risk assessment) and 2-hydroxy-fenazaquin acid (for enforcement and risk assessment).				

Table 184: Comparison of the residue definitions derived by JMPR and at EU level

5.38.4. Codex MRL proposals

Table 185: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Almonds hulls	4 (dw)	_	cGAP: see almonds Specific comments/observations: Almond hulls are not a feed item in the EU livestock diet.

www.efsa.europa.eu/efsajournal

Commodity	Codex MRL proposal	EU MRL	Comment
			In the EU, no MRLs are established for animal feed. Follow-up action: None
Edible offal (Mammalian)	0.02*	0.01*	JMPR calculated the dietary burden related to almonds hulls. In the feeding study in cattle performed at an exaggerated feeding level (100N), residues were below the LOQ in milk, muscle and kidney; low residues were found in liver and fat. At the calculated dietary burden, quantifiable residues are not expected. Sufficiently supported by data: Yes Specific comments/observations: The JMPR residue definition for enforcement and risk assessment differ from the EU RD for enforcement and RA. Currently, the EU MRLs and MRLs derived in the MRL review for livestock products are set at the LOQ of 0.01 mg/kg. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that it is not fully compatible with the EU residue definition. Follow-up action: None
Mammalian fats (except milk fats)	0.02*	0.01*	See comments on edible offal (Mammalian).
Meat (from mammals other than marine mammals)	0.02 * (fat)	0.01*	See comments on edible offal (Mammalian).
Milks	0.02*	0.01*	See comments on edible offal (Mammalian).
Milk fats	0.02*	-	In the EU, MRLs are established only for milk, but not for milk fat.
Tree nuts, Group of (except coconut)	0.02	Almonds 0.02; Other tree nuts: 0.01*	cGAP: US, 1 × 504 g a.s./ha; PHI 7 days Number of trials: 9 trials on almonds, 5 trials on pecan Sufficiently supported by data: Yes Specific comments/observations: The same MRL value was proposed in an Art 10 application for almonds (EFSA, 2018o); the data set assessed at the EU level was slightly different (8 trials). Results for metabolite TBPE were all below the LOQ: $8 \times < 0.01$ mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
General comments	MRL review (n	ot legally imple	tree nuts is equivalent to the MRL of 0.02 mg/kg proposed in the emented yet) for almonds (only authorised used for tree nuts). MRL 2020b) is fully supported by data and no risk to consumers is

*: Indicates that the MRL is proposed at the limit of quantification.

5.38.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: EFSA calculated the acute risk assessment for the proposed Codex MRL proposals that are higher than the existing EU MRLs (i.e. animal products and tree nuts). The calculation was	RA assumptions: The most recent EU risk assessment (EFSA, 2018o) was updated, including the STMR values derived by JMPR for animal products and for tree nuts.	Specific comments on risk assessment: –

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
performed with EFSA PRIMo rev. 2, using the HR/STMR values derived by JMPR. The risk assessment was performed for fenazaquin; for the second residue definition proposed in the MRL review (TBPE), information on the residue levels were reported in the JMPR assessment only for few trials in almonds (residues not detected). Hence, this leads to additional, non-standard uncertainties in the risk assessment.	The risk assessment is indicative, because only limited information on the residue concentrations related to the residue definition TBPE was reported in the JMPR evaluation. The risk assessment was performed with the EU ADI and the EFSA PRIMo rev. 2.	
The risk assessment is indicative, because only limited information on the residue concentrations related to the residue definition TBPE is available.		
The risk assessment was performed with the EU ARfD and the EFSA PRIMo rev. 2		
Results: No short-term consumer health risk was identified for the crops under assessment. Milk and milk products: 2.5% of the ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 88% of the ADI (DE child).	Results: Long-term exposure: Max 0% of the JMPR ADI for the 17 GEMS/Food Consumption Cluster Diets using the STMR or SMTR-p values estimated by JMPR.
		Short-term exposure: Highest result for children and for general population: 0% of ARfD, using the HR/HR-p or STMR/SMTR-p values estimated by JMPR.

5.39. Fosetyl-Al (302) R

5.39.1. Background information

		Comments, references
JMPR assessment	Extraordinary JMPR meeting May 2019	
Type of JMPR evaluation	New use	
RMS	FR	
Approval status	Approved	Commission Implementing Regulation (EU) 2019/168 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2006b) (corrigendum 2013) (EFSA, 2014f) (Statement dietary RA proposed temporary MRLs) (EFSA, 2018m) (corrigendum 2019)
MRL review performed	Yes, see comments	(EFSA, 2012k) Combined assessment of fosetyl and phosphonates is ongoing
MRL applications/ assessments	Yes, see comments	(EFSA, 2021d) ^(c) (potassium phosphonates in blueberries) (EFSA, 2020q) (potassium phosphonates in garlic, shallots, wine grapes, avocados, olives, horseradish) (EFSA, 2020i) (potassium phosphonates in flowering brassica, Chinese cabbages, kales and spinaches) (EFSA, 2020d) (fosetyl/phosphonic acid in various crops)

		Comments, references
		(EFSA, 2019d) (potatoes and wheat) (EFSA, 2018e) (tree nuts, pome fruit, peach and potato) (EFSA, 2015y) (in blackberry, celeriac and Florence fennel) Modification of the existing MRLs in table grapes and wine grapes (withdrawn) (2015) (EFSA, 2012l) (potato, kiwi and certain spices)
		Ongoing: modification of the existing MRLs in citrus Ongoing (additional data requested): modification of the existing MRLs in apricots, cherries and plums Ongoing: Art. 43 assessment
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Assessment ongoing	ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) is ongoing, further data were requested (clock-stop)

(a): Commission Implementing Regulation (EU) 2019/168 of 31 January 2019 amending Implementing Regulation (EU) No 540/2011 as regards the extension of the approval periods of the active substances abamectin, Bacillus subtilis (Cohn 1872) Strain QST 713, Bacillus thuringiensis subsp. Aizawai, Bacillus thuringiensis subsp. israeliensis, Bacillus thuringiensis subsp. kurstaki, Beauveria bassiana, benfluralin, clodinafop, clopyralid, Cydia pomonella Granulovirus (CpGV), cyprodinil, dichlorprop-P, epoxiconazole, fenpyroximate, fluazinam, flutolanil, fosetyl, Lecanicillium muscarium, mepanipyrim, mepiquat, Metarhizium anisopliae var. Anisopliae, metconazole, metrafenone, Phlebiopsis gigantea, pirimicarb, Pseudomonas chlororaphis strain: MA 342, pyrimethanil, Pythium oligandrum, rimsulfuron, spinosad, Streptomyces K61, thiacloprid, tolclofos-methyl, Trichoderma asperellum, Trichoderma atroviride, Trichoderma gamsii, Trichoderma harzianum, triclopyr, trinexapac, triticonazole, Verticillium albo-atrum and ziram. OJ L 33, 5.2.2019, p. 1–4.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

(c): The assessment performed in the recently published reasoned opinion could not be taken into account for the assessment in this report.

5.39.2. Toxicological reference values

Table 188: Comparison of toxicological reference values (TRV) derived b	y JMPR and at EU level
---	------------------------

	JMPR evaluation		E	U evaluation	TRV	
	Value	Comments	Value	Comments	comparable	
ADI	1 mg/kg bw per day (Applies to fosetyl- aluminium and phosphonic acid, expressed as	JMPR (2017)	1 mg/kg bw per day	(EFSA, 2018m) Rabbit, developmental. Developmental NOAEL and safety factor of 100) not been noted by the European Commission	No (yes, if new ADI will be adopted)	
	fosetyl- aluminium)		3 mg/kg bw per day phosphonic acid: 2.25 mg/kg bw per day	2006a)		
ARfD	Unnecessary	JMPR (2017)	Unnecessary	(European Commission, 2006a) and (EFSA, 2018m)	Yes	
Conclusion/ comment	-					

5.39.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products Sum of fosetyl, phosphonic acid and their salts, expressed as		Reg. 396/2005: Fosetyl-Al (sum of fosetyl, phosphonic acid and their salts, expressed as fosetyl)	No		
		phosphonic acid The residue is not fat soluble	Peer review (EFSA, 2018m): sum of fosetyl, phosphonic acid and their salts expressed as phosphonic acid			
	Animal products	Phosphonic acid	Reg. 396/2005: Fosetyl-Al (sum of fosetyl, phosphonic acid and their salts, expressed as fosetyl)	No		
			Peer review (EFSA, 2018m): phosphonic acid			
			The residue is not fat soluble			
RD RA	Plant products	Sum of fosetyl, phosphonic acid and their salts, expressed as phosphonic acid	Peer review (EFSA, 2018m): sum of fosetyl, phosphonic acid and their salts expressed as phosphonic acid	Yes		
	Animal products	Phosphonic acid	Peer review (EFSA, 2018m): phosphonic acid	Yes		
			MRL review Art. 12 (EFSA, 2012k): Phosphonic acid; risk managers to decide whether a separate residue definition for fosetyl should be established			
Conclusion, comments	The existing enforcement residue definitions set by JMPR and in the EU for plant and animal commodities are expressed differently, i.e. as fosetyl or as phosphonic acid. Conversion factors can be used to make the MRL proposals derived by JMPR compatible with the EU residue definitions. For animal products, different residue definitions for enforcement are established. In the EU RD, fosetyl is included while JMPR restricted the RD to phosphonic acid. However, fosetyl is rapidly degrading to phosphonic acid in plants and in animals. Thus, the difference of the enforcement residue definitions for animal products is of low practical relevance. The residue definitions of enforcement and risk assessment in commodities of plant and animal origin proposed by the EU peer review are the same as the ones derived by the JMPR. However, these residue definitions have not been enforced yet. Therefore, when CXLs for plant and animal commodities are taken over in the EU MRL legislation, they need to be converted to fosetyl by applying the molecular weight conversion factor of 1.34. Alternatively, if the EU residue definition is amended as proposed in the peer review, the CXLs can be taken over without recalculation, with a minor discrepancy for the MRLs for animal products.					
	For the risk assess	nent, the residue definitions	proposed by the peer review are a	pplicable.		

Table 189: Comparison of the residue definitions derived by JMPR and at EU level

5.39.4. Codex MRL proposals

Table 190:	Comparison of Codex MRL	proposals derived by JMPR with EU MRLs
------------	-------------------------	--

Commodity	Codex MRL proposal (as phosphonic acid)	EU MRL (expressed as fosetyl)	Comment
Blackberries	70	300	cGAP: DE, indoor, 2×1.78 kg/ha, interval 10–14 days, PHI 14 days Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: The indoor and outdoor residue trials were combined, justified by the fact that

Commodity	Codex MRL proposal (as phosphonic acid)	EU MRL (expressed as fosetyl)	Comment
			residue data sets were of similar populations and that properties of fosetyl-Al would not be affected by indoor/ outdoor conditions. No information was provided which trials were indoor and which outdoor. The Codex MRL proposal expressed as fosetyl would be 100 mg/kg, which is lower than the existing EU MRL. The existing EU MRL for blackberries was established in 2019, following an application submitted by a German growers' association. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Kiwifruit	150	150	cGAP: IT, 2×4 kg/ha, BBCH 69, 30-day interval, PHI 40 days Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: According to Codex classification, 5 trials are sufficient for kiwis. According to EU rules at least 8 residue trials would be required. The Codex MRL proposal expressed as fosetyl would be 200 mg/kg, which is higher than the existing EU MRL. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that the chronic exposure exceeded the ADI (see below). Follow-up action: None
Pineapple	15	50	cGAP: Costa Rica, preplant dip at 0.24 kg/hL + 3 (foliar) × 3.6 kg/ha, 90-day interval, PHI 90 days Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: According to Codex classification, 5 trials are sufficient. According to EU rules at least 8 residue trials would be required to support the import tolerance. The Codex MRL proposal expressed as fosetyl would be 20 mg/kg, which is lower than the existing EU MRL. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Head Brassicas (sub-group)	0.2 (*)	Head cabbage:10 Bru. sprouts: 10 Chinese cabbage: 10	cGAP: UK, soil treatment (drench) at 9.3 kg/ha, 10–14 days before transplanting Number of trials: 9 Sufficiently supported by data: Yes Specific comments/observations: Residue trials on cabbage. According to Codex food classification, the Codex MRL proposal applicable also to Brussels sprouts, Chinese cabbage. The Codex MRL proposal expressed as fosetyl would be 0.8* mg/kg, which is lower than the existing EU MRL Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Flowerhead Brassicas (sub- group)	0.2 (*)	10	cGAP: UK, soil treatment (drench) at 9.3 kg/ha, 10–14 days before transplanting Number of trials: 12 Sufficiently supported by data: Yes Specific comments/observations: Trials on cauliflower. The Codex MRL proposal expressed as fosetyl would be 0.8* mg/kg, which is lower than the existing EU MRL. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None

Commodity	Codex MRL proposal (as phosphonic acid)	EU MRL (expressed as fosetyl)	Comment
Kale	0.2 (*)	10	cGAP: UK, soil treatment (drench) at 9.3 kg/ha, 10–14 days before transplanting Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL proposal expressed as fosetyl would be 0.8* mg/kg, which is lower than the existing EU MRL Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Coffee beans	30	5*	cGAP: Brazil, foliar, 2 × 1.6 kg/ha, 30-day interval, PHI 30 days Number of trials: 5 Sufficiently supported by data: No Specific comments/observations: According to Codex rules, coffee bean is a major crop, therefore the number of trials on not sufficient. According to EU rules, at least 8 residue trials on coffee would be required. The Codex MRL proposal expressed as fosetyl would be 40 mg/kg, which is higher than the existing EU MRL. Conclusion: The proposed Codex MRL is not acceptable because it is not sufficiently supported by data. In addition, the long-term exposure exceeded the ADI Follow-up action: None
Mammalian fat (except milk fats)	0.3	1.5	Livestock exposure calculated by the JMPR 2017 was updated with intake of residues from head cabbage, kale and pineapple by-product (process waste). The highest calculated beef and dairy cattle dietary burden remains for Australian diet. In comparison with JMPR 2017 assessment, additional contribution of residues in from the intake of brassica and pineapple process waste indicate that a higher Codex MRL is necessary only for fat. The Codex MRL proposal expressed as fosetyl would be 0.4 mg/kg, which is lower than the existing EU MRL. Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable.
Poultry meat	0.05 (*)	0.7	In the previous JMPR evaluation of fosetyl-Al in 2017, no
Poultry, Edible offal of	0.05 (*)	0.7	intake was calculated for poultry due to the lack of uses in feed commodities. Now, based on the intake of kale or
Poultry fat	0.05 (*)	0.7	cabbage, the poultry dietary burden was estimated for EU diet (only). Since it was 200-fold lower than lowest feeding
Eggs	0.05 (*)	0.7	level from poultry feeding study, Codex MRLs at the LOQ of 0.05 mg/kg were proposed for all poultry matrices and eggs. Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable.
Edible offal (mammalian)	_	Swine liver: 0.8 Swine kidney: 6 Ruminant liver:1.5 Ruminant kidney: 8	
Meat (from mammals other than marine mammals)	_	0.7 (muscle)	unaffected.

Commodity	Codex MRL proposal (as phosphonic acid)	EU MRL (expressed as fosetyl)	Comment
General comments	The only crops for which the proposed Codex MRL is higher than existing EU MRL are kiwi and coffee beans. The Codex MRL proposals are derived for phosphonic acid and, in order to be taken over in the EU MRL legislation, they would need to be converted to fosetyl by applying the molecular weig conversion factor of 1.34. The Codex MRL proposal for coffee beans is not supported by sufficient number of residue data also according to Codex rules for minor/major crops.		ed for phosphonic acid and, in order to be taken over in the to be converted to fosetyl by applying the molecular weight beans is not supported by sufficient number of residue data

*: Indicates that the MRL is proposed at the limit of quantification.

5.39.5. Consumer risk assessment

Table 191:	Summary of the consumer risk assessment	

Acute exposure assessment	Chronic expositire assessment	
RA assumptions: Not relevant since currently no ARfD is allocated.	RA assumptions: The most recent long-term dietary risk assessment performed using EFSA with PRIMo rev. 3.1 (EFSA, 2020i) (scenario 2b) was updated with the STMR values (expressed as fosetyl) for kiwi and coffee beans.	Specific comments: None
	Two exposure scenarios were calculated: Scenario 1: The risk assessment was performed with the EU ADI of 2.25 mg/kg bw day (for phosphonic acid) (European Commission, 2006a).	
	Scenario 2: The risk assessment was performed with proposed ADI of 1 mg/kg bw day (for phosphonic acid) (EFSA, 2018m) The calculations under scenario 2 are indicative, because the proposed ADI is not yet formally taken note by European Commission.	
Results: Not relevant	Results: Scenario 1: No long-term consumer health risk was identified. The overall chronic exposure accounted for 43% of the ADI. Contribution from residues in kiwi 1.4% of the ADI and from coffee beans 2.2% of the ADI.	Results: Long-term exposure: Max 30% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did
	Scenario 2: No long-term consumer health risk was identified. The overall chronic exposure accounted for 98% of the ADI. Contribution from residues in kiwi accounted for 3% of the ADI and coffee beans 5% of the ADI.	not derive an ARfD).

5.40. Mandestrobin (307) T

5.40.1. Background information

Table 192:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New compound evaluation	

		Comments, references	
RMS	AT		
Approval status	Approved	Commission Implementing Regulation (EU) 2015/2085 ^(a)	
EFSA conclusion available	Yes, see comments	(EFSA, 2015k)	
MRL review performed	No	Not foreseen, since MRLs were set in the framework of the first approval	
MRL applications/ assessments	Yes, see comments	(EFSA, 2018r) (strawberry and grapes) (EFSA, 2018d) (apricot, cherry, peach and plum)	
Classification of a.s. – cut-off criteria	No		
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet	

(a): Commission Implementing Regulation (EU) 2015/2085 of 18 November 2015 approving the active substance mandestrobin, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/ 2011. OJ L 302, 19.11.2015, p. 93–96. (b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out

scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33-36.

5.40.2. Toxicological reference values

	JMPR e	JMPR evaluation		U evaluation	TRV
	Value	Comments	Value	Comments	comparable
ADI	0.2 mg/kg bw per day	JMPR (2018) (1- year toxicity study in dogs, safety factor 100)	0.19 mg/kg bw per day	(EFSA, 2015k) (52-week dog (uncertainty factor 100), supported by multigeneration rat (parental LOAEL, uncertainty factor 300)	Yes
ARfD	3 mg/kg bw	JMPR (2018) (developmental toxicity study in rats, safety factor 100)	Not required	(EFSA, 2015k)	No
Conclusion/ comment	The EU ADI is 0.19 mg/kg bw per day based on the 1-year dog study (applying an uncertainty factor of 100), supported by the parental LOAEL from the multigeneration rat study (applying an UF of 300). The 2018 JMPR proposed the same ADI also based on the 1-year dog study. The different ADI values are a result of different policies on rounding.				
	In the EU evaluation, the derivation of an ARfD was considered not necessary basis of the low acute toxicity profile of mandestrobin by the peer review exp 2018 JMPR proposed an ARfD of 3 mg/kg bw for women of childbearing age, an NOAEL of 300 mg/kg bw per day for malformations observed in a develop toxicity study in rats and using a safety factor of 100. The JMPR concluded the not necessary to establish an ARfD for the remainder of the population. The s developmental NOAEL from this study was set by the EU peer review (based findings) but was not considered appropriate for the ARfD derivation. Moreov is not a common practice to set separate ARfDs for the different populations. Metabolites assessed during the EU peer review: The plant metabolites 4-OH-S-2200 and De-Xy-S-2200 were considered to be the toxicological profile of mandestrobin.				experts. ge, based on clopmental d that it was he same ed on foetal eover, in EU it ns.

Table 193:	Comparison of toxicologica	al reference values	(TRV derived by	y JMPR and at EU level)
------------	----------------------------	---------------------	-----------------	-------------------------

JMPR evaluation		EU evaluation		TRV
Value	Comments	Value	Comments	comparable
The plant metabolite 2–CH ₂ OH-S-2200 (2–CH ₂ OH-mandestrobin), due to uncertainties with regard to its toxicological profile, was considered not covered by the toxicological studies. The toxicological properties of metabolite 2-CH2OH-S-2200 (conjugate) remains open.				
It is noted that in JMPR report (2019) a read-across approach was applied to 2-CH ₂ OH- mandestrobin, concluding its similarity with mandestrobin. The RMS supported the JMPR approach for read-across.				

5.40.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable			
RD enf	Plant products	Mandestrobin	Reg. 396/2005 and peer review (EFSA, 2015k): Mandestrobin	Yes			
	Animal products	Mandestrobin The residue is fat soluble	Reg. 396/2005 and peer review (EFSA, 2015k): Mandestrobin The residue is fat soluble	Yes			
RD RA	Plant products	Mandestrobin	Peer review (EFSA, 2015k): Sum of mandestrobin, De-Xy- S-2200 (De-XY- mandestrobin), 4-OH-S-2200 conjugate (4-OH- mandestrobin conjugate), 2-CH ₂ OH-S-2200 conjugate (2-CH ₂ OH-mandestrobin conjugate), expressed as mandestrobin	No			
	Animal products The sum of parent + (2 <i>RS</i>)-2-[2- (4-hydroxy-2,5- dimethylphenoxymethyl)phenyl)-2- methoxy- <i>N</i> -methylacetamide (4- OH-mandestrobin) + (2 <i>RS</i>)-2-(2- hydroxymethylphenyl)-2-methoxy- <i>N</i> -methylacetamide (De-XY- mandestrobin) + (2 <i>RS</i>)-2-[2-(2- hydroxymethyl-5- methylphenoxymethyl)phenyl]-2- methoxy- <i>N</i> -methylacetamide (2- CH ₂ OH-mandestrobin) + 2-({2- [(1 <i>RS</i>)-1-methoxy-2- (methylamino)-2-oxoethyl]benzyl} oxy)-4-methylbenzoic acid (2- COOH-mandestrobin) + 3-({2- [(1 <i>RS</i>)-1-methoxy-2- (methylamino)-2-oxoethyl]benzyl} oxy)-4-methylbenzoic acid (5- COOH-mandestrobin), and their conjugates, expressed as parent compound.		Peer review (EFSA, 2015k): Mandestrobin	No			
Conclusion, comments	· ·						

Commodity group	JMPR evaluation	EU evaluation	RDs comparable
products the E JMPR residue mandestrobin, mandestrobin However, since the LOQ of 0.0	t commodities were not assessed du EU residue definition for risk assessm definition for risk assessment is wide De-XY-mandestrobin, 2-CH ₂ OH-mar and their conjugates, expressed as p e for animal products the Codex MRL D1 and the input values for risk asses the residue definition is of minor re	ent is set as mandestrobin (only er and includes the metabolites idestrobin, 2-COOH-mandestrob parent compound. proposals under discussion are ssment are all proposed to be 0	y), whereas the 4-OH- in, 5-COOH- e proposed at mg/kg, this

5.40.4. Codex MRL proposals

Table 195:	Comparison of Codex MRL	proposals derived by JMPR with EU MRLs
------------	-------------------------	--

Commodity	Codex MRL proposal	EU MRL	Comment
Grapes	5	0.01*	cGAP: Canada and the USA, foliar application, 3×0.42 kg/ha, interval 10 days, PHI 10 days Number of trials: 11 trials Sufficiently supported by data: Yes Specific comments/observations: EU import tolerance MRLs for table and wine grapes have been proposed by ESFA at 5 mg/kg on the basis of the Canada GAP but is not yet implemented in EU legislation (EFSA, 2018r). In the JMPR evaluation, residue trials data reported for parent mandestrobin (only) in accordance with the JMPR RD RA, whereas the EU RD RA includes also the metabolites De-Xy-S-2200, 4-OH-S-2200 conjugate and 2-CH ₂ OH-S-2200 conjugate. A conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment is available (CF = 1.06) (EFSA, 2018r). The plant metabolite 2–CH ₂ OH-S-2200 (2–CH ₂ OH- mandestrobin), which is included as conjugate in the EU RD RA, is not covered by the available toxicological studies. However, this metabolite was not detected at levels at or above the LOQ in the supervised crop field trials of grapes assessed in the framework of a previous EU MRL application (EFSA, 2018r). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Grapes, dried (=Currents, Raisins and Sultanas)	10	-	A concentration of residues occurs in dried grapes (currants, raisins, sultanas) and the JMPR evaluation derived a processing factor of 2.0 on the basis of one trial. A tentative processing factor of 1.93 was previously derived by EFSA from one processing study (EFSA, 2018r).
Mammalian fats (except milk fats)	0.01*	0.01*	cGAP: Livestock are not significantly exposed and therefore residues in animal commodities are not expected and were not calculated by JMPR. Number of trials: N/A Sufficiently supported by data: No Specific comments/observations: The JMPR estimated MRLs for animal commodities since a validated analytical method is available for determination of parent mandestrobin in animal commodities. The JMPR recommended a Codex MRL at the LOQ of 0.01 mg/kg based on an estimated STMR and HR of 0 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Milks	0.01*	0.01*	cGAP: Livestock are not significantly exposed and therefore residues in animal commodities are not expected and were not calculated by JMPR. Number of trials: N/A

Commodity	Codex MRL proposal	EU MRL	Comment
			Sufficiently supported by data: No Specific comments/observations: The JMPR estimated MRLs for animal commodities since a validated analytical method is available for determination of parent mandestrobin in animal commodities. The JMPR recommended a Codex MRL at the LOQ of 0.01 mg/kg based on an estimated STMR and HR of 0 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Meat (from mammals other than marine mammals)	0.01*	0.01*	cGAP: Livestock are not significantly exposed and therefore residues in animal commodities are not expected and were not calculated by JMPR. Number of trials: N/A Sufficiently supported by data: No Specific comments/observations: The JMPR estimated MRLs for animal commodities since a validated analytical method is available for determination of parent mandestrobin in animal commodities. The JMPR recommended a Codex MRL at the LOQ of 0.01 mg/kg based on an estimated STMR and HR of 0 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Edible offal (mammalian)	0.01*	0.01*	cGAP: Livestock are not significantly exposed and therefore residues in animal commodities are not expected and were not calculated by JMPR. Number of trials: N/A Sufficiently supported by data: No Specific comments/observations: The JMPR estimated MRLs for animal commodities since a validated analytical method is available for determination of parent mandestrobin in animal commodities. The JMPR recommended a Codex MRL at the LOQ of 0.01 mg/kg based on an estimated STMR and HR of 0 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Eggs	0.01*	0.01*	cGAP: Livestock are not significantly exposed and therefore residues in animal commodities are not expected and were not calculated by JMPR. Number of trials: N/A Sufficiently supported by data: No Specific comments/observations: The JMPR estimated MRLs for animal commodities since a validated analytical method is available for determination of parent mandestrobin in animal commodities. The JMPR recommended a Codex MRL at the LOQ of 0.01 mg/kg based on an estimated STMR and HR of 0 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Poultry fats	0.01*	0.01*	cGAP: Livestock are not significantly exposed and therefore residues in animal commodities are not expected and were not calculated by JMPR. Number of trials: N/A Sufficiently supported by data: No Specific comments/observations: The JMPR estimated MRLs for animal commodities since a validated analytical method is available for determination of parent mandestrobin in animal commodities. The JMPR recommended a Codex MRL at the LOQ of 0.01 mg/kg based on an estimated STMR and HR of 0 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Poultry meat	0.01*	0.01*	cGAP: Livestock are not significantly exposed and therefore residues in animal commodities are not expected and were not calculated by JMPR.

Commodity	Codex MRL proposal	EU MRL	Comment
			Number of trials: N/A Sufficiently supported by data: No Specific comments/observations: The JMPR estimated MRLs for animal commodities since a validated analytical method is available for determination of parent mandestrobin in animal commodities. The JMPR recommended a Codex MRL at the LOQ of 0.01 mg/kg based on an estimated STMR and HR of 0 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Poultry, edible offal of	0.01*	0.01*	cGAP: Livestock are not significantly exposed and therefore residues in animal commodities are not expected and were not calculated by JMPR. Number of trials: N/A Sufficiently supported by data: No Specific comments/observations: The JMPR estimated MRLs for animal commodities since a validated analytical method is available for determination of parent mandestrobin in animal commodities. The JMPR recommended a Codex MRL at the LOQ of 0.01 mg/kg based on an estimated STMR and HR of 0 mg/kg. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Strawberry	3.0	0.05*	cGAP: Canada and the USA, foliar application, 4×0.42 kg/ha, interval 7 days, PHI 0 days Number of trials: 8 trials Sufficiently supported by data: Yes Specific comments/observations: An EU import tolerance MRL for strawberry has been proposed by ESFA at 3 mg/kg on the basis of the Canada GAP but is not yet implemented in EU legislation (EFSA, 2018r). In the JMPR evaluation, residue trials data reported for parent mandestrobin (only) in accordance with the JMPR RD RA, whereas the EU RD RA includes also the metabolites De-Xy-S-2200, 4-OH-S-2200 conjugate and 2-CH ₂ OH-S-2200 conjugate. A conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment is available (CF = 1.10) (EFSA, 2018r). The plant metabolite 2–CH ₂ OH-S-2200 (2–CH ₂ OH-mandestrobin), which is included as conjugate in the EU RD RA, is not covered by the available toxicological studies. However, this metabolite was not detected at levels at or above the LOQ in two trials of strawberries (including data from an overdosed plot) assessed in the framework of a previous EU MRL application (EFSA, 2018r). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Rape seed	0.2	0.01*	cGAP: Canada and the USA, 1×0.42 kg/ha, at BBCH 62–65, PHI 35 days Number of trials: 9 trials Sufficiently supported by data: Yes Specific comments/observations: An EU MRL for rapeseeds/canola seeds was previously assessed by ESFA in the framework of the first approval on the basis of EU GAPs (NEU and SEU, 1×0.20 kg/ha, BBCH 63–67, PHI defined by growth stage) and the EU MRL was proposed and set at the LOQ of 0.01 mg/kg (EFSA, 2015k). In the JMPR evaluation, residue trials data reported for parent mandestrobin (only) in accordance with the JMPR RD RA, whereas the EU RD RA includes also the metabolites De-Xy-S-2200, 4-OH-S-2200 conjugate and 2-CH ₂ OH-S-2200 conjugate. A conversion factor to recalculate residues according to the residue definition for monitoring to the EU residue definition for risk assessment is not available.

Commodity	Codex MRL proposal	EU MRL	Comment
			The plant metabolite 2–CH ₂ OH-S-2200 (2–CH ₂ OH-mandestrobin), which is included as conjugate in the EU RD RA, is not covered by the available toxicological studies. In case this metabolite is detected in rapeseeds, then additional studies addressing the toxicological properties may be required. The EU RMS informed EFSA that metabolism studies in rapeseed suggest that residues of max 0.02 mg/kg for 2-CH2OH-S-2200 are expected. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs. Follow-up action: None
General			

comments

*: Indicates that the MRL is proposed at the limit of quantification.

5.40.5. Consumer risk assessment

Table 196: Summary of the consumer	risk assessment
------------------------------------	-----------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. The calculations for rapeseed are affected by additional non-standard uncertainties due to the lack of information on the contribution of the plant metabolites De-Xy-S-2200, 4–OH-S-2200 conjugate and 2–CH ₂ OH-S-2200 conjugate, which are included in the EU residue definition for risk assessment. A conversion factor (CF) for risk assessment for rapeseed is not available. The risk assessment was performed using the STMR values for rapeseed derived by the JMPR for mandestrobin (only), which may lead to an underestimation of residue levels. For grapes and strawberry, EFSA applied the previously derived conversion factors (CFs) for risk assessment (EFSA, 2018r) to the STMR values derived by the JMPR. The EU peer review considered that an ARfD was not required; however, for indicative purposes, a risk assessment was performed with the JMPR ARfD for adults and children noting this was derived for women of childbearing age only. The calculations are indicative for rapeseed because the plant metabolite 2–CH ₂ OH-S-2200 (2–CH ₂ OH-mandestrobin), which is included as conjugate in the EU residue definition for risk assessment, is not covered by the available toxicological studies. For the purposes of the indicative risk assessment, EFSA assumed the toxicity of the plant metabolite 2–CH ₂ OH-S-	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2018r) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. The calculations are affected by additional non-standard uncertainties due to the lack of information for rapeseed on the contribution of the plant metabolites De–Xy-S-2200, 4–OH-S-2200 conjugate and 2–CH ₂ OH-S-2200 conjugate, which are included in the EU residue definition for risk assessment. A conversion factor (CF) for risk assessment for rapeseed is not available. The risk assessment was performed using the STMR values for rapeseed derived by the JMPR for mandestrobin (only), which may lead to an underestimation of residue levels. For grapes and strawberry, EFSA applied the previously derived conversion factors (CFs) for risk assessment was performed with the EU ADI. The risk assessment was performed with the EU ADI. The calculations are indicative because the plant metabolite 2–CH ₂ OH-S-2200 (2–CH ₂ OH-mandestrobin), which is included as conjugate in the EU residue definition for risk assessment, is not covered by the available toxicological studies. For the purposes of the indicative risk assessment, EFSA assumed the toxicity of the plant metabolite 2–CH ₂ OH-S-2200 (2–CH ₂ O	commodities covers mandestrobin (only) whereas the EU residue definition includes also the plant metabolites De–Xy-S- 2200, 4–OH-S-2200 conjugate and 2– CH_2OH -S-2200 conjugate.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
mandestrobin) to be comparable with that of the parent mandestrobin. The metabolite 2–CH ₂ OH-S-2200 was not detected at levels at or above the LOQ in the supervised crop field trials of grapes and in two trials of strawberries (including data from an overdosed plot) assessed in the framework of a previous EU MRL application (EFSA, 2018r), and therefore, further consideration is not required for these commodities. In case the metabolite 2- CH ₂ OH-S-2200 is detected in commodities assessed in future MRL applications, then additional studies addressing the toxicological properties of this metabolite may be required.	mandestrobin) to be comparable with that of the parent mandestrobin. The metabolite 2–CH ₂ OH-S-2200 was not detected at levels at or above the LOQ in the supervised crop field trials of grapes and in two trials of strawberries (including data from an overdosed plot) assessed in the framework of a previous EU MRL application (EFSA, 2018r), and therefore, further consideration is not required for these commodities. In case the metabolite 2-CH ₂ OH-S-2200 is detected in rapeseed or other commodities assessed in future MRL applications, then additional studies addressing the toxicological properties of this metabolite may be required.	
Results: No short-term consumer health risk was identified for the crops under assessment. Table grapes: 10% of ARfD Strawberries: 1% of ARfD Wine grapes: 3% of ARfD Rapeseeds: < 0.01% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 2% of the ADI. Among the crops under consideration, wine grapes and table grapes were identified as the main contributors, accounting for up to 2% and 1% of the ADI, respectively.	Results: Long-term exposure: Max 2% of the JMPR ADI. Short-term exposure: Highest result for grapes (all commodities): 4% of ARfD (CA women, 15–49 years). Table grapes (all commodities): 2% of ARfD (DE Women, 14–50 years) Wine grapes (all commodities): 1% of ARfD (PRIMO-UK adult).

5.41. Pydiflumetofen (309) R

5.41.1. Background information

Table 197:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	FR	
Approval status	Approval process ongoing	
EFSA conclusion available	Yes, see comments	(EFSA, 2019k)
MRL review performed	No	
MRL applications/ assessments	Yes, see comments	MRL application ongoing as part of the approval process for pome fruit, grapes, potatoes, tropical root and tuber vegetables, solanaceae, cucurbits, brassica and soybeans
Classification of a.s. – cut-off criteria	No	RAC (ECHA, 2019a)
Endocrine effects of a.s.	No	(EFSA, 2019k)

5.41.2. Toxicological reference values

	JMPR evalua	JMPR evaluation		EU evaluation	
	Value	Comments	Value	Comments	comparable
ADI	0.1 mg/kg bw per day	JMPR (2018) Rat, 2-year study, UF of 100	0.09 mg/kg bw per day	(EFSA, 2019k) Mouse, 18-month study, UF of 100	No
ARfD	0.3 mg/kg bw	JMPR (2018) Rat developmental toxicity study, UF of 100	0.3 mg/kg bw	(EFSA, 2019k) Rat, developmental toxicity study, UF of 100	Yes
Conclusion/ comment	due to roundir 9.9 and 9.2 m	erence between the ADI ng since the 2-year rat a g/kg bw per day, respec clusion was reached wit	and 18-month m ctively, values ag	ouse studies present si greed within the two as	milar NOAELs of
	The ADI/ARfD SYN547897.	derived by JMPR applie	s to pydiflumeto	ofen and the metabolite	s 2,4,6-TCP and
	 The EU as developmential is less performance of the second second	sessment derived an AE cy study in rat and apply evaluation concluded th d. SYN548263 and SYN insufficient information i ve toxicity with the pare evaluation noted that n	DI of 0.25 mg/kg 1000; An ARfD in hat the toxicolog ompound. DI and ARfD of 0 ving an UF of 10 hat the toxicity of 547897 : at these metabolis is available to co ent compound. to toxicological se at the metabolist notoxic potentia hat the toxicity of	was not derived as not gical profile of the meta 0.04 mg/kg bw per day 00. of the metabolite is cover lites are unlikely to be o porclude on their genera studies were provided o e showed evidence for o I is inconclusive (data go of the metabolite and its	needed. bolite indicate the based on a 28- ered by the paren genotoxic; I toxicity, or in these carcinogenic jap). s conjugates is

Table 198:	Comparison of toxicologica	reference values	(TRV derived by	/ JMPR and at EU level)
	companion of concologica			β in it and at to level

5.41.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Pydiflumetofen	Peer Review proposal (EFSA, 2019k): Pydiflumetofen	Yes
	Animal products	Pydiflumetofen The residue is fat soluble	Peer Review (EFSA, 2019k): Pydiflumetofen The residue is fat soluble	Yes

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD RA	Plant products	Pydiflumetofen	Peer Review (EFSA, 2019k): Pydiflumetofen (for all crops following foliar application)	Yes
	Animal products	Animal products other than mammalian liver and kidney: Sum of pydiflumetofen and 2,4,6-trichlorophenol (2,4,6- TCP) and its conjugates, expressed as pydiflumetofen	Peer Review (EFSA, 2019k): Pydiflumetofen and 2,4,6- TCP for all animal matrices (provisionally)	No
		For mammalian liver and kidney: Sum of pydiflumetofen, 2,4,6- trichlorophenol (2,4,6-TCP) and its conjugates and 3- (difluoromethyl)-N-methoxy- 1-methyl-N-[1-methyl-2- (2,4,6-trichloro-3-hydroxy- phenyl) ethyl]pyrazole-4- carboxamide(SYN547897) and its conjugates, expressed as pydiflumetofen		
Conclusion, comments	 The EU pesticides residue definition for enforcement in plant and animal products and for risk assessment in plant products is identical with the JMPR residue definition. As regards the residue definition for risk assessment (RA) in animal products (all matrices), a provisional residue definition as parent and 2,4,6-TCP was proposed in the peer review. The inclusion of SYN547897 for ruminant liver and SYN547897 and SYN548263 for ruminant kidney in the RA RD was discussed in an EFSA expert meeting, but it was supported by a minority of experts during the peer review only. In contrast, the JMPR residue definition for animal products for mammalian liver and kidney includes also conjugates of 2,4,6-TCP, and SYN547897 and its conjugates; for other products than mammalian liver and kidney the RD for RA includes 2,4,6-TCP and its conjugates. Thus, the JMPR residue definitions is wider than the provisional EU RD. The residue definitions for primary crops applies also to rotational crops. Pydiflumetofen is a very persistent compound (DT50=8540 days EU value), the accumulation of residue and consequently the uptake from the soil cannot be neglected (see also the general comment from the MRL assessment). 			

5.41.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL (default MRLs)	Comment
Barley, similar grains and pseudocereals with husks, Subgroup of	3	0.01* (barley, buckwheat and oats)	cGAP: USA, 1×0.2 /ha before BBCH 71 Number of trials: 14 barley and 24 oats Sufficiently supported by data: Yes Specific comments/observations: JMPR combined GAP compliant trials from barley and oat. The level of residues in relevant succeeding crops (wheat grains) was low (mean/highest residues < 0.02 mg/kg) compared to the residues following direct application (0.23 mg/kg), therefore the MRL was based only on direct treatment. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Barley straw and fodder, dry	50 (dw)	-	cGAP: USA: 1 \times 0.2 kg/ha (do not apply after BBCH 71) Number of trials: 81 Sufficiently supported by data: Yes

Table 200: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL (default MRLs)	
			Specific comments/observations: Residue data set in straw and hay of barley, oats and wheat. Residues uptake via sol were insignificant (succeeding crops) compared to the residues following direct application. Conclusion: In the EU no MRLs are set for feed items.
Brassica vegetables (except Brassica leafy vegetables), Group of	0.1	0.01* broccoli; cauliflower; Brussels sprouts, head cabbage, Kohlrabi)	The Codex MRL proposal was derived from rotational crop studies (spinach, lettuce and kale) Number of trials: 22 Specific comments/observations: MRL proposals derived in EU peer review: 0.07 mg/kg in cauliflower, 0.15 mg/kg in broccoli, 0.2 mg/kg in head cabbage and kohlrabi, 0.3 mg/kg in Brussels sprouts, 4 in Chinese cabbage (MRLs not yet discussed in PAFF). Conclusion: The proposed Codex MRL is acceptable. See also general comments. Follow-up action: None
Cotton seed	0.3	0.01*	The Codex MRL proposal was derived from rotational crop studies (wheat straw) Number of trials: 3 (wheat straw) Sufficiently supported by data: No Specific comments/observations: Rotational crop studies in wheat straw are not appropriate to derive an MRL proposal for oilseeds. At least 8 trials in oilseed rape or soybeans would be required). Conclusion: The proposed Codex MRL is not acceptable.See also general comments. Follow-up action: None
Dry beans, Subgroup of	0.4	0.01* (beans, lupins, soyabeans)	cGAP: Canada, 2 × 0.2 kg/ha, RTI 14 days, PHI 14 days Number of trials: 10 (beans), 21 (soyabeans), 10 (peas) Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL proposal is based on combined residue data set on dry beans, soyabeans and peas. Residues in succeeding crops via soil uptake were considered insignificant compared to residues following direct treatment. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Dry peas, Subgroup of	0.4	0.01* (Peas, Lentils)	cGAP: Canadian (2×0.2 kg/ha, RTI 14 days, PHI 14 days) Number of trials: 10 (beans), 21 (soyabeans), 10 (peas) Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL proposal is based on combined residue data set on dry beans, soyabeans and peas. Residues in succeeding crops via soil uptake were considered insignificant compared to residues following direct treatment. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Edible offal (Mammalian)	0.1	0.01*	The Codex MRL proposal is based on the maximum dietary burden calculated of 44 ppm (Australian diet). Residues in liver at the calculated dietary burden accounted for up to 0.05 mg/kg. The proposed Codex MRL is not acceptable because of open issues regarding the toxicological profile of 2,4,6-TCP. In addition, it is noted that a Codex MRL proposal of 0.05 mg/kg would be sufficient.

Commodity	Codex MRL proposal	EU MRL (default MRLs)	Comment
			Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the open issues regarding the toxicological profile of 2,4,6-TCP. In addition, it is noted that a Codex MRL proposal of 0.05 mg/kg would be sufficient.
Eggs	0.02	0.01*	The Codex MRL proposal is based on the maximum dietary burden calculated of 6.2 ppm (EU diet). The feeding studies covers the estimated dietary burden since were conducted at 3, 9 and 15 ppm. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the open issues regarding the toxicological profile of 2,4,6-TCP.
Fruiting vegetables, Cucurbits, Group of	0.4	0.01* (cucumbers, gherkins, courgettes, melons, pumpkins, watermelons)	cGAP: USA 2x0.13 kg/ha, PHI 0 days Number of trials: 21 (10 on cucumbers, 5 on summer squash, 6 on cantaloupe) Sufficiently supported by data: Yes Specific comments/observations: JMPR meeting combined trials on cucumber (3 indoor and 7 outdoor trials), summer squash and cantaloupe based on the similar population according to the statistical test (Kruskal–Wallis test). Residues in succeeding crops via soil uptake were considered insignificant compared to residues following direct treatment. MRL proposal derived in EU peer review: 0.15 mg/kg for cucumber and melons, Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Fruiting vegetables, other than Cucurbits, Group of (except Martynia, Okra and Roselle)	0.5	0.01* (tomatoes, sweet pepper/ bell pepper, aubergines/ eggplants)	cGAP: USA 2 \times 0.13 kg/ha, PHI 0 days Number of trials: 21 (10 tomatoes, 2 cherry tomatoes, 9 peppers). Sufficiently supported by data: Yes Specific comments/observations: The CXL is based on combined residue data set on tomatoes and peppers. Residues in succeeding crops via soil uptake were considered insignificant compared to residues following direct treatment. MRL proposal derived in EU peer review: 0.8 mg/kg for tomatoes, 0.5 mg/kg for pepper, 0.15 mg/kg aubergines. The manufacturer should be encouraged to submit the more critical EU GAP to JMPR. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Leafy greens, Subgroup of	40	0.01* Lamb lettuce/ corn salad, lettuce, endives, land cress, spinach, purslane, chards/beet leaves, chervil,	cGAP: USA 2 × 0.2 kg/ha, PHI 0 days Number of trials: 24 (8 on head lettuce, 8 leaf lettuce and 8 on spinach) Sufficiently supported by data: No Specific comments/observations: JMPR combined residue on lettuce (leaf and head) and spinach; although the data sets belonged to different statistical populations, considering that the medians did not differ by more than a factor of 5. Residues in succeeding crops via soil uptake were considered insignificant compared to residues following direct treatment Conclusion: The proposed Codex MRL is not acceptable because of an intake concern identified for several crops; JMPR also identified a public health concern. Follow-up action: None

Commodity	Codex MRL proposal	EU MRL (default MRLs)	Comment
Leaves of Brassicaceae, Subgroup of	0.1	0.01* hinese cabbage, kale, rucola, cress, land cress	The Codex MRL proposal was derived from rotational crop studies (spinach, lettuce and kale). Number of trials: 22 (spinach, lettuce and kale succeeding crops) Sufficiently supported by data: Yes Specific comments/observations: In the peer review an MRL of 4 mg/kg was proposed for kale and Chinese cabbage based on the NEU GAP (2×70 g/ha, PHI 14 days). Conclusion: The proposed Codex MRL is acceptable.Considering that EU uses would require higher MRLs, the manufacturer should be encouraged to submit label information on EU uses to JMPR. See also general comment. Follow-up action: None
Leaves of root and tuber vegetables, Subgroup of (except leaves of tuber vegetables)	0.07	No corresponding crops in EU food classification (part A)	The Codex MRL proposal was derived from rotational crop studies (radish and carrots tops). Number of trials: 15 (radish and carrots top, succeeding crops) Sufficiently supported by data: Yes Specific comments/observations: Only few crops classified in the Codex classification in this group are all classified in part B of the EU food classification under spinaches, for which a higher Codex MRL proposal was derived (see Leafy greens, Subgroup of). Conclusion: The proposed Codex MRL is acceptable. See also general comments. Follow-up action: None
Legume animal feeds	30 (dw)	-	JMPR meeting derived the Codex MRL proposal from trials on peas hay (5), peanut hay (11). Sufficiently supported by data: Yes Specific comments/observations: Residues in succeeding crops via soil uptake were considered insignificant compared to residues following direct treatment. No MRLs are set for feed items in the EU.
Legume vegetables, Group of	0.02	0.01* (beans with pods, beans without pods, peas with pods, peas without pods, other legume vegetables)	The Codex MRL proposal was derived from rotational crop studies (fresh beans). Number of trials: 3 (all < 0.02 mg/kg) Sufficiently supported by data: No Specific comments/observations: The number of trials is not sufficient; according to OECD guidance nr 279, four residue trials from the succeeding crops would be needed. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the limited number of trials. See also general comments. Follow-up action: None
Maize cereals, Subgroup of	0.04	0.01* mg/kg (maize/corn)	cGAP: Canada and USA: 1×0.2 kg/ha, PHI 30 days Number of trials: 22 Sufficiently supported by data: Yes Specific comments/observations: Residues in succeeding crops via soil uptake were taken into account for deriving the MRL proposal and the STMR/HR (for deriving the MRL the highest residue observed in rotational crop studies (Scaled value) was added to the MRL calculated from the primary crop residue trials; the HR was calculated by adding HR (primary crop) to HR (rotational crop). For the STMR the mean residue from rotational crops was added

Commodity	Codex MRL proposal	EU MRL (default MRLs)	Comment
			to the STMR derived from primary crop studies). Conclusion: It is recommended to discuss with MS whether the approach taken by JMPR to derive the Codex MRL is acceptable. See also general comments. Follow-up action: none.
Maize flour	0.07	_	JMPR proposed processing factors of 1.6 (dry milled) and < 0.42 (wet milled). No EU MRLs are set for processed maize.
Maize fodder	18 (dw)	-	cGAP: Canada and USA: 1×0.2 kg/ha, PHI 30 days Number of trials: 23 Sufficiently supported by data: Yes Specific comments/observations: 23 independent trials from Canada were submitted. The level of residues in succeeding crops (stover maize) accounted for up to 13 mg/kg. No MRLs are set for feed items in the EU.
Maize oil, edible	0.08	_	JMPR proposed processing factors of 1.9 (wet milled) and < 0.42 (dry milled). No EU MRLs are set for processed maize.
Martynia	0.02	-	The Codex MRL proposal was derived from rotational crop studies (tomatoes). Number of trials: 4 (tomatoes, all < 0.02 mg/kg) Sufficiently supported by data: Yes Specific comments/observations: Martynia is not listed in the EU food classification. Conclusion: The proposed Codex MRL is acceptable.It is noted that the Codex MRL proposal should be labelled with an asterisk, considering that in all residue trials the results were below the LOQ. Follow-up action: None
Mammalian fats (except milk fats)	0.1	0.01*	See edible offal.
Meat (from mammals other than marine mammals)	0.1 (fat)	0.01*	See edible offal.
Milks	0.01*	0.01*	The proposed Codex MRL is not acceptable because of open issues regarding the toxicological profile of 2,4,6-TCP.
Millet fodder, dry	0.3 (dw)	_	The Codex MRL proposal was derived from rotational crop studies (wheat straw). Conclusion: No MRLs are set for feed items in the EU.
Oat straw and fodder, dry	50 (dw)	_	See barley straw and fodder.
Okra	0.02	0.01*	The Codex MRL proposal was derived from rotational crop studies (tomatoes). Number of trials: 4 (all < 0.02 mg/kg) Sufficiently supported by data: Yes Specific comments/observations: In EU peer review, an MRL of 0.5 mg/kg was proposed for okra based on the indoor GAP on pepper (GAP: 2×70 g/ha, PHI 3 days). Conclusion: The proposed Codex MRL is acceptable.It is noted that the Codex MRL proposal should be labelled with an asterisk, considering that in all residue trials the results were below the LOQ. Follow-up action: None
Peanut	0.05	0.01*	cGAP: USA, 4 \times 0.05 kg/ha, PHI 14 days Number of trials: 12

Commodity	Codex MRL proposal	EU MRL (default MRLs)	Comment
			Sufficiently supported by data: Yes Specific comments/observations: Residues in succeeding crops via soil uptake were taken into account for deriving the MRL proposal (5 rotational crop studies in soyabean seeds and dry beans, all results < 0.02 mg/kg). JMPR added the mean residue found in rotational crop studies to the STMR from primary crops to derive the risk assessment values for peanuts. The MRL was derived by adding the highest residue found in succeeding crop field trials to the calculated MRL derived from primary crop trials. Conclusion: It is recommended to discuss with MS whether the approach taken by JMPR to derive the Codex MRL is acceptable. See also general comments. Follow-up action: None
Peanut oil, edible	0.15	-	JMPR propose a PF of 2.4 derived from one study. In EU no MRL is in place for processed commodities.
Peppers, chilli, dried	5	_	Proposed MRL was derived from residue trials in peppers, applying the default dehydration factor of 10. At EU level, MRLs are set only for fresh products.
Potato, dried	0.5	-	Proposed MRL was derived from residue trials in potatoes by applying a processing factor of 4.3.
Poultry, Edible offal of	0.01*	0.01*	The Codex MRL proposal is based on the maximum dietary burden of 6.2 ppm calculated for the EU. The feeding studies cover the max DB where the residues were < 0.01 mg/kg. Conclusion: The proposed Codex MRL is acceptable.
Poultry fats	0.01*	0.01*	See poultry edible offal.
Poultry meat	0.01*	0.01*	See poultry edible offal.
Rice cereals, Subgroup of	0.03	0.01*	The Codex MRL proposal was derived from rotational crop studies (wheat, barely grain). Number of trials: 3 wheat and 4 on barley (all below LOQ of 0.02/0.03 mg/kg). Sufficiently supported by data: yes Specific comments/observations: - Conclusion: The proposed Codex MRL is acceptable. See also general comments. Follow-up action: None
Rice straw and fodder, dry	0.3 (dw)	_	See millet straw and fodder.
Root vegetables, Subgroup of	0.1	0.01* (carrot, beetroot, celeriac, chicory roots, ginseng, horseradish, parsley roots, parsnip, radish, salsify, swedes, sugar beet, swedes, turnip)	The Codex MRL proposal was derived from rotational crop studies (carrots, radishes). Number of trials: 15 Sufficiently supported by data: Yes Specific comments/observations: - Conclusion: The proposed Codex MRL is acceptable. See also general comments. Follow-up action: None
Roselle	0.02	0.01*	The Codex MRL proposal was derived from rotational crop studies (tomatoes). Number of trials: 4 (tomatoes, all < 0.02 mg/kg) Sufficiently supported by data: Yes Specific comments/observations: In the EU food classification no commodity corresponding to the roselle (fruit) is listed.

Commodity	Codex MRL proposal	EU MRL (default MRLs)	Comment
			Conclusion: The proposed Codex MRL is acceptable, but no corresponding commodity in EU food classification. It is noted that the Codex MRL proposal should be labelled with an asterisk, considering that in all residue trials the results were below the LOQ. Follow-up action: None
Rye straw and fodder, dry	50 (dw)	-	See barley straw and fodder.
Small seed oilseeds, Subgroup of	0.9	0.01* (borage seed, rapeseed, linseed, mustard seed, poppy seed, radish seed, sesame seed)	cGAP: Canada and USA: 1x0.2 kg/ha, PHI 30 days Number of trials: 18 Sufficiently supported by data: Yes Specific comments/observations: Residues in succeeding crops via soil uptake were considered insignificant compared to residues following direct treatment. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Sorghum Grain and Millet, Subgroup of	0.03	0.01* (millet, sorghum)	See rice cereals.
Sorghum straw and fodder, dry	0.3 (dw)	_	See millet straw and fodder.
Stems and petioles, Subgroup of	15	0.01* (cardoons, celery, rhubarb, fennel)	cGAP: USA 2 \times 0.2 kg/ha, PHI 0 days Number of trials: 8 (celery) Sufficiently supported by data: Yes Specific comments/observations: Rotational crop data are not available for stalk and stem vegetables. Considering data from Brassica and leafy crops, residues in succeeding crops via soil uptake were considered insignificant compared to residues following direct treatment. Conclusion: The proposed Codex MRL is not acceptable because of an acute intake concern identified for celeries and rhubarbs (see below results of risk assessment). For cardoons and fennels the proposed Codex MRL proposal would be acceptable. Follow-up action: None
Sunflower seeds, Subgroup of	0.3	0.01* (sunflower seeds)	The Codex MRL proposal was derived from rotational crop studies (wheat straw) Number of trials: 3 (wheat straw) Sufficiently supported by data: No Specific comments/observations: Rotational crop studies in wheat straw are not appropriate to derive an MRL proposal for oilseeds. At least 8 trials in oilseed rape or soybeans would be required). Conclusion: The proposed Codex MRL is not acceptable.See also general comments. Follow-up action: None
Sweet Corns, Subgroup of	0.03	0.01* sweet corn	cGAP: USA 2 × 0.1 kg/ha, PHI 7 days Number of trials: 12 (< 0.01 mg/kg) Sufficiently supported by data: Yes Specific comments/observations: Residues in succeeding crops via soil uptake were taken into account for deriving the MRL proposal. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable. See general comments. Follow-up action: none.
Tomato, dried	7		JMPR proposed processing factors of 10.5 for dried tomatoes. No EU MRLs are set for processed commodities.

Commodity	Codex MRL proposal	EU MRL (default MRLs)	Comment
Triticale straw and fodder, dry	50 (dw)	-	See barley straw and fodder.
Tuberous and corm vegetables, Subgroup of	0.1	0.01 (arrowroots, cassava, Jerusalem artichoke, potatoes, sweet potato, yam)	cGAP: USA 3 \times 0.38 kg/ha PHI of 7 days Number of trials: 22 Sufficiently supported by data: Yes Specific comments/observations: 22 GAP compliant residue trials on potatoes were submitted. The level of residues from the succeeding crops were taken into account for deriving the risk assessment values for potatoes (mean residue and highest residue of succeeding crops was added to median and highest residue in potatoes, respectively). For deriving the MRL proposal the highest residue found in succeeding crop trials was added to the MRL proposal derived for potatoes (0.07 km/kg + 0.03 mg/kg). Conclusion: It is recommended to discuss with MS whether the approach taken by JMPR to derive the Codex MRL is acceptable. Follow-up action: None
Wheat bran, processed	1	_	JMPR proposed processing factor of 2.25 for wheat bran. No EU MRLs are set for processed commodities.
Wheat germ	0.6	_	JMPR proposed processing factors of 1.45 for wheat germ. No EU MRLs are set for processed commodities.
Wheat, similar grains and pseudocereals without husks, Subgroup of	0.4	0.01* (wheat, rye, amaranth, quinoa)	cGAP: USA, 1 \times 0.2kg/ha (application before BBCH 71) Number of trials: 29 Sufficiently supported by data: Yes Specific comments/observations: Residues in succeeding crops via soil uptake were considered insignificant compared to residues following direct treatment. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Wheat straw and fodder, dry	50 (dw)	_	See barley straw and fodder.
General comments	Pydiflumetofen is very high persistent compound in the soil and therefore the uptake from the soil of residues into the cultivated crops was considered by JMPR. JMPR calculated the DT50 (geometric mean) of 603 days, which was used to estimate the plateau level in soil (591 g a.i./ha). In the EU peer review a different DT50 (geometric mean) (1334 days) and soil plateau concentration (3174 g a.i./ha; plateau not yet reached after 100 years). It is recommended to discuss with risk managers whether Codex MRL proposals are acceptable despite the different methodology to calculate the soil plateau levels.		

*: Indicates that the MRL is proposed at the limit of quantification.

5.41.5. Consumer risk assessment

Table 201: Summary of the consumer risk asset

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. The risk assessment is indicative, since the JMPR residue definition for animal products differs from the EU	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The calculation was performed using the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL (MRL proposals derived in the peer review.	Specific comments: JMPR concluded that the estimated acute dietary exposure to residues of pydiflumetofen for the consumption of Leafy greens may present a public health concern.

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RD (proposed in the peer review). Considering that the residue definition derived by JMPR for animal products is wider than the EU residue definition, the exposure is likely to be overestimated for animal products. The risk assessment is affected by additional, non-standard uncertainties due to the provisional residue definition for animal products The risk assessment was performed with the EU ARfD.	RD (proposed in the peer review). Considering that the residue definition derived by JMPR for animal products is wider than the EU residue definition, the exposure is likely to be overestimated for animal products	
	The risk assessment was performed with the EU ADI.	
Results: The calculated short-term exposure exceeded the ARfD for several crops under assessment. 228% Escaroles 216% Lettuces 128% Spinaches 116% Celeries 115% Rhubarbs 107% Chards/beet leaves 55% Globe artichokes 50% Florence fennels < 50% for remaining crops	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 17% of the ADI. Among the crops under consideration, spinach was identified as the main contributor, accounting for up to 10% of the ADI.	Results: Long-term exposure: Max 20% of the JMPR ADI. Short-term exposure: Highest result for lettuce: 300% of ARfD. An acute risk consumer was identified for several commodities classified under green leaves (i.e. spinach, lettuce, endive).

5.42. Pyriofenone (310) R

5.42.1. Background information

Table 202: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New use	
RMS	LV	
Approval status	Approved	Commission Implementing Regulation (EU) No 833/2013 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2013d)
MRL review performed	Yes, see comments	(EFSA, 2019f)
MRL applications/assessments	Yes, see comments	(EFSA, 2015i) (table grapes) (EFSA, 2013l) (cereals, grapes and animal products)
Classification of a.s. – cut-off criteria	No	RAC, (ECHA, 2019b)
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

- (a): Commission Implementing Regulation (EU) No 833/2013 of 30 August 2013 approving the active substance pyriofenone, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011. OJ L 233, 31.8.2013, p. 7–10.
- (b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.42.2. Toxicological reference values

Table 203: Comparison of toxicological reference values (TRV derived by JMPR and at EU level)

	JMPR evaluation		EU	EU evaluation	
	Value	Comments	Value	Comments	comparable
ADI	0.09 mg/kg bw per day	JMPR (2018)	0.07 mg/kg bw per day	(EFSA, 2013d) (2-year rat study with safety factor 100)	No
ARfD	Unnecessary	JMPR (2018)	Not applicable	(EFSA, 2013d)	Yes
Conclusion/ comment	n/ Although ADI derived by EFSA is slightly lower than JMPR, the values are in the same ord magnitude.				
	The acceptable daily intake (ADI) of pyriofenone is 0.07 mg/kg bw per day, based on the NOAEL of 7.25 mg/kg bw per day from the rat, 2-year study based on liver effects, applying the standard uncertainty factor (UF) of 100. The same 2-year rat study was considered by JMPR for the ADI derivation and the NOAEL is set at 9.13 mg/kg bw per day for chronic nephropathy in females. Actually, the NOAEL retained is the same (200 ppm) but JMPR considers the corresponding concentration expressed in mg/kg bw per day in females while the EU peer review considered that of males. In the EU peer review, 4HDPM did not present mutagenic potential and it was concluded that the reference values of the parent are applicable to the metabolite. No other information on other metabolites available.				

5.42.3. Residue definitions

Table 204: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Pyriofenone	EU Reg. 2016/1 ^(a) : Pyriofenone	Yes	
	Animal	Pyriofenone	EU Reg. 2016/1 ^(a) : Pyriofenone	Yes	
	products	No conclusion on fat solubility, due to the low residues in muscle and fat found in the metabolism study	Peer review (EFSA, 2013d): Not required, considering the representative uses; Provisional RD proposed for ruminant products: pyriofenone The residue is not fat soluble		
RD RA	Plant products	Pyriofenone	MRL review (EFSA, 2019f) and peer review (EFSA, 2013d): Pyriofenone	Yes	
	Animal	Pyriofenone	MRL review (EFSA, 2019f): Pyriofenone	Yes	
	products		Peer review (EFSA, 2013d): Not required, considering the representative uses.		
Conclusion, comments	For plant commodities, the EU and JMPR residue definitions are the same. 2018 JMPR proposed the parent compound as the residue definition for animal products. The same RD is proposed in the current meeting. In the MRL review, pyriofenone was also considered to be the appropriate RD.				

(a): Commission Regulation (EU) 2016/1 of 3 December 2015 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for bifenazate, boscalid, cyazofamid, cyromazine, dazomet, dithiocarbamates, fluazifop-P, mepanipyrim, metrafenone, picloram, propamocarb, pyridaben, pyriofenone, sulfoxaflor, tebuconazole, tebufenpyrad and thiram in or on certain products. OJ L 2, 5.1.2016, p. 1–62.

5.42.4. Codex MRL proposals

Table 205: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Mammalian fats (except milk fats)	0.01*	0.01*	In 2018, JMPR calculated the dietary burden considering the use in grapes. Since no new Codex MRL proposals were derived in 2019 JMPR, the DB of 0.61 ppm calculated in 2018 remains unchanged. No livestock feeding studies were available. Based on the goat metabolism study performed with 10 ppm (nominal; actual levels 7.8–13 ppm; 13–21 N), pyriofenone is not expected to be present at levels higher than the LOQ of 0.01 mg/kg in any of the animal matrices. Therefore, the JMPR recommended an MRL of 0.01 mg/kg for mammalians tissues and milk. STMR of 0 mg/kg in mammalian meat (muscle, fat), mammalian fat, mammalian edible offal and milk were used. Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Milks	0.01*	0.01*	See comments on Mammalian fats (except milk fats).
Meat (from mammals other than marine mammals)	0.01*	0.01*	See comments on Mammalian fats (except milk fats).
Edible offal (mammalian)	0.01*	0.01*	See comments on Mammalian fats (except milk fats).
Eggs	0.01*	0.01*	JMPR considered that since poultry is not exposed and residues of pyriofenone are not expected in eggs and poultry, JMPR recommend the MRL at the LOQ of 0.01 mg/kg for eggs, poultry (meat/muscle), fat and poultry edible offal. STMR of 0 mg/kg in eggs, poultry meat (muscle, fat), poultry fat and poultry edible offal. Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Poultry fats	0.01*	0.01	See comments on eggs.
Poultry meat	0.01*	0.01	See comments on eggs.
Poultry, edible offal of	0.01*	0.01	See comments on eggs.
General comments	The 2019 JMPR meeting noted that pyriofenone is registered in the USA for use on fruiting vegetables. The critical GAP is of 3 applications at 0.11 kg a.i./ha, with a minimum re-treatment interval of 7 days and a PHI of 0 days. Trials were conducted in the USA on tomatoes and peppers. None of these trials matched the critical GAP since all trials were conducted at a lower dose rate of 0.090 kg a.i./ha and a highe number of applications (4 applications). The Meeting was unable to estimate maximum residue levels for tomatoes and		
			r plant commodities are recommended in the current estock commodities.

*: Indicates that the MRL is proposed at the limit of quantification.

5.42.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was not performed as no ARfD is deemed necessary	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2015i) were updated, including the Codex MRL proposals derived by JMPR for the animal products. The risk assessment was performed with the EU ADI. The calculations are indicative, because a final decision on the appropriate RD for animal commodities for risk assessment has not been derived. However, considering the low dietary burden and the fact that no significant residues are expected in animal products, the open issue regarding the residue definition is not expected to have a major impact on the results of the exposure calculation.	Specific comments: In 2018 The JMPR used the established ADI of 0–0.09 mg/kg to estimate an IEDI ranging from 0–0.5% of the maximum ADI. Since no MRL for plant commodities are recommended in the current meeting, JMPR concluded that the IEDI ranging from 0 to 0.5% of the maximum ADI remain unchanged.
Results: Not relevant since no ARfD was allocated.	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 1% of the ADI (Dutch toddler). Among the commodities under consideration, milk (cattle) was identified as the main contributor, accounting for up to 0.9% of the ADI.	Results: The long-term dietary exposure is unlikely to present a public health concern. Short-term exposure: Not relevant (JMPR did not derive an ARfD). Therefore, the acute dietary exposure to residues of pyriofenone from the uses assessed was considered unlikely to present a public health concern.

Table 206: Summary of the consumer risk assessment

5.43. Afidopyropen (312) R/T

5.43.1. Background information

Table 207: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New compound evaluation	
RMS	no RMS assigned	The a.s. has not been assessed at EU level
Approval status	Not approved	
EFSA conclusion available	No	
MRL review performed	No	
MRL applications/assessments	No	MRL application under assessment in the Netherlands
Classification of a.s. – cut-off criteria	Not assessed/not concluded	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(a)) has not been performed yet.

(a): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.43.2. Toxicological reference values

,	JMPR evalu	ation	EU e	evaluation			
	Value	Comments	Value	Comments	TRV comparable		
ADI	0.08 mg/kg bw per day	JMPR (2019)	-	_	Not appropriate		
ARfD	0.2 mg/kg bw (for women of child-bearing age) 0.3 mg/kg bw (for general population)	JMPR (2019)			Not appropriate		
Conclusion/ comment	M007 and CPCA, express products). As regards metabolite M report (p. 53, 1st para) t metabolite observed in r occurrence of this metab performed by JMPR no n	JMPR concluded that the ADI derived for afidopyropen also applies to the metabolites M001, M007 and CPCA, expressed as afidopyropen (metabolites included in RD for plants and animal products). As regards metabolite M017 (included in the residue definition for liver) it is reported in the JMPR report (p. 53, 1st para) that its toxicity is covered by the toxicity of the parent, since it is a major metabolite observed in rats. However, in the summary of the rat metabolism study the occurrence of this metabolite was not reported; in addition, the toxicological assessment performed by JMPR no mention of this metabolite was found. Hence, further evidence is needed to verify that M017 is covered by the toxicological reference values derived for the parent					

Table 208: Comparison of toxicological reference values (TRV derived by JMPR and at EU level)

5.43.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf Plant products		Afidopyropen	_	Not appropriate
	Animal products	Afidopyropen The residue is not fat soluble	No EU assessment.	Not appropriate
RD RA Plant products	Plant products	Sum of afidopyropen + M007 (dimer of [(3R,6R,6aR,12S,12bR)-3-[(cyclopropanecarbonyl) oxy]-6,12-dihydroxy-4,6a,12b-trimethyl-11-oxo-9- (pyridin-3-yl)-1,3,4,4a,5,6,6a,12,12a,12b- decahydro-2H,11Hnaphtho[2,1-b]pyrano[3,4-e] pyran-4-yl]methyl rac-cyclopropanecarboxylate), expressed as afidopyropen	Default residue definition (parent compound)	Not appropriate
	Animal products	Animal commodities, except liver: Afidopyropen + M001 ((3S,4R,4aR,6S, 6aS, 12R,12aS,12bS)-3,6,12-trihydroxy-4- (hydroxymethyl)-4,6a, 12btrimethyl–9-(pyridin-3- yl)-1, 3,4,4a,5,6,6a,12, 12a,12b-decahydro- 2H,11H-benzo- [<i>f</i>]pyrano[4,3-b]chromen-11-one) + CPCA (M061) (cyclopropane carboxylic acid) and its carnitine conjugate (CPCA-carnitine conjugate) (M060) ((2R)-3-carboxy-2- [(cyclopropyIcarbonyI)oxy]-N,N,N- trimethylpropan-1- aminium chloride), expressed as afidopyropen		Not appropriate
		Liver: Afidopyropen + M001 ((3S,4R,4aR,6S, 6aS, 12R,12aS,12bS)-3,6,12-trihydroxy-4- (hydroxymethyl)-4,6a, 12b-trimethyl–9-(pyridin-3- yl)-1, 3,4,4a,5,6,6a,12, 12a,12b-decahydro- 2H,11H-benzo- [f]pyrano[4,3-b]chromen-11-one)		

 Table 209:
 Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
		+ M017 ([(3S,4R,4aR,6S,6aS,12R,12aS,12bS)-3- (cyclopropylcarbonyl)oxy]-6,12-dihydroxy- 4,6a,12b-trimethyl-9-(1-oxidopyridin-3-yl)-11-oxo- 1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H, 11H- benzo[f]pyrano[4,3-b]chromen-4-yl]methyl cyclopropane-carboxylate) + CPCA (M061) (cyclopropane carboxylic acid) and its carnitine conjugate (CPCA-carnitine conjugate) (M060) ((2R)-3-carboxy-2-[(cyclopropyIcarbonyI)oxy]-N, N,N-trimethylpropan-1- aminium chloride), expressed as afidopyropen			
Conclusion, comments	Plant products: In metabolism studies, parent afidopyropen was the major compound in the majority of primary crop commodities (up to 61% TRR). However, in soyabean, parent afidopyropen was detected at very low concentrations in dry soyabean seed (0.4% TRR, 0.001 mg/kg). The metabolite trigonelline (M031) identified in soyabean seeds (47% TRR) is a a naturally occurring alkaloid in many plants. The dimer M007 was found in dry soyabean seed at 1% TRR and 12% TRR, depending on the study. Animal products: Parent afidopyropen was the major compound in animal tissues, ranging from 17% TRR in goat kidney to 97% TRR in egg yolk and up to 6.8% TRR in milk. The ester cleavage metabolite M001 was a major metabolite in milk, liver, kidney and muscle, ranging from 24 to 66% TRR, and was also a minor metabolite in fat (4.6% TRR). M017 was a major metabolite in hen liver. The metabolic pathways in goat and hens are similar to that which is reported in rat.				
	moieties from livestock and one or both C compound) se molecules of C CPCA to afido	Tabolite that is formed by cleavage of the cyclopropa the parent molecule. Parent afidopyropen contains rat metabolism studies it is known that metabolism PCA ester moieties. Including CPCA in the residue d teems problematic, since one molecule of afidopyrope CPCA. Hence the molecular weight conversion factor pyropen equivalents could be either 6.9 or 3.45. He lso comments on feeding study.	two CPCA grou can lead to the efinition (expre- en may genera to recalculate	ups. From e cleavage of only essed as parent te 1 or 2 the amount of	

5.43.4. Codex MRL proposals

Table 210:	Comparison of Codex MRL pro	oposals derived by JMPR with EU MRLs
------------	-----------------------------	--------------------------------------

Commodity	Codex MRL proposal	EU MRL (default)	Comment
Almond hulls	0.6 (dw)	-	The JMPR evaluation derived a Codex MRL proposal for almond hulls on the basis of the same residue trials that were evaluated for tree nuts. EU MRLs are not set for processed commodities/ by-products, such as almond hulls.
Apple, dried (peeled)	0.02	_	A reduction of residues occurs in apple, dried (peeled) and the JMPR evaluation derived processing factors on the basis of two processing studies (PF enf = < 0.46 and PF RA = < 0.64). EU MRLs are not set for processed products, such as dried apple.
Cabbages, Head	0.5	0.01	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. JMPR assumed cGAP is 1×25 g/ha + 2×50 g/ha. Number of trials: 19 trials on head cabbage (with wrapper leaves) in Australia and the USA performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials were

Commodity	Codex MRL proposal	EU MRL (default)	Comment
			considered representative for the cGAP; the splitting of the first application is expected to influence the final residues by less than 25%. Residues in head cabbage (with wrapper leaves) used for MRL estimation (parent afidopyropen only). Residues in head cabbage (without wrapper leaves) used for estimating STMR and HR for consumer risk assessment (parent afidopyropen and M007). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Cherries, Subgroup of	0.03	0.01	cGAP: Canada and the USA, foliar application, 2×11 g/ha, interval 7 days, PHI 7 days. Number of trials: 8 trials Sufficiently supported by data: Yes Specific comments/observations: Residues in five trials were below the LOQs of 0.01 mg/kg (RD enf) and 0.02 mg/kg (RD RA). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Citrus Fruit, Group of	0.15	0.01	cGAP: USA, foliar application, 2×51 g/ha, interval 7 days, PHI 0 days, seasonal maximum rate 103 g/ha. Number of trials: Trials on oranges (n = 11), grapefruits (n = 6) and lemons (n = 8) performed at 1×25 g/ha + 2×50 g/ha, interval mean 7 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials are not fully GAP compliant; however, the additional application of 1×25 g/ha at 14 days before harvest is not expected to contribute to more than 25% of the residues at harvest. Therefore, the residue trials are deemed acceptable. According to the Codex principles, trials on mandarins would be also required to derive a group MRL for citrus. JMPR considered that trials on lemons would be sufficient to cover also mandarins. According to the EU guidelines, the number of trials would be sufficient for extrapolation to the whole group Citrus fruits (0110000). The Codex MRL proposal for the Group of Citrus Fruit (FC 0001) would be applicable to the EU classification whole group Citrus fruits (0110000) and also to kumquats (0161040). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Citrus oil (based on processing studies on oranges)	0.7	-	A concentration of residues occurs in citrus oil and the JMPR evaluation derived processing factors on the basis of three processing studies on oranges (PF enf = 4.6 and PF RA = 4.2). EU MRLs are not set for processed commodities/by-products, such as citrus oil.
Citrus pulp, dry (based on processing studies on oranges)	0.4	_	A concentration of residues occurs in citrus dried pomace and the JMPR evaluation derived processing factors on the basis of three processing studies on oranges (PF enf = 2.5 and PF RA = 2.4). EU MRLs are not set for processed commodities/by- products, such as citrus dried pomace.
Coriander, leaves	5	0.01 (classified under celery leaves)	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. Number of trials: 7 trials on mustard greens; no residue trials were submitted on herbs. Sufficiently supported by data: No Specific comments/observations: The JMPR considered mustard greens to be more representative for herbs than the trials in

Commodity	Codex MRL proposal	EU MRL (default)	Comment
			 leaf lettuce or spinach. According to the agreed extrapolations (Appendix VIII of REP18/PR) trials on basil, mint, leaf lettuce or spinach could be used to derive an MRL for coriander leaves. Using residue trials in leaf lettuce and spinach a lower MRL proposal of 2 mg/kg is derived. According to the EU classification, coriander leaves (0256030- 004) are classified under celery leaves (0256030). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that MRL was derived on the basis of a non-standard extrapolation. Follow-up action: None
Cotton gin trash	1.5	_	The JMPR evaluation derived a Codex MRL proposal for cotton gin trash on the basis of the same residue trials that were evaluated for cotton seed. EU MRLs are not set for processed commodities/by-products, such as cotton gin trash.
Cotton seed	0.08	0.01	cGAP: USA, foliar application, 2 × 51 g/ha, interval 7 days, PHI 7 days. Number of trials: 15 trials approximating the cGAP Sufficiently supported by data: Yes Specific comments/observations: Details on residue trial details were reported in JMPR evaluation. Conclusion: The proposed Codex MRL seems acceptable. Follow-up action: None
Cucumber	0.7	0.01	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. JMPR assumed cGAP is 1×25 g/ha + 2×50 g/ha. Number of trials: 9 trials performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials are not fully GAP compliant; however, the application of 2×12.5 g at $21-14$ days before harvest is not expected to contribute to more than 25% of the residues at harvest. Therefore, the residue trials are within 25% of the cGAP. The number of trials is sufficient to support the Codex MRL proposal for cucumbers (0232010). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Dill, leaves	5	0.01 (classified under celery leaves)	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. Number of trials: 7 trials on mustard greens; no residue trials were submitted on herbs or celery leaves. Sufficiently supported by data: No Specific comments/observations: The JMPR considered mustard greens to be more representative for herbs than leaf lettuce or spinach. According to the agreed extrapolations (Appendix VIII of REP18/PR) trials on basil, mint, leaf lettuce or spinach could be used to derive an MRL for coriander leaves. Using residue trials in leaf lettuce and spinach a lower MRL proposal of 2 mg/kg is derived. According to the EU classification, dill leaves (0256030-006) are classified under celery leaves (0256030). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that MRL was derived on the basis of a non-standard extrapolation.

Commodity	Codex MRL proposal	EU MRL (default)	Comment
Edible offal (mammalian)	0.2	0.01	JMPR calculated the dietary burden for livestock on the basis of residues in feed crops under assessment and their by-products. Max estimated burden for cattle: 12.9 ppm dry matter (dairy cattle, Australia) (parent + M007 (dimer)). Feeding study available that covers the estimated burden for afidopyropen; samples were analysed for parent, M001, M003 (tissues only), M005 (milk only), CPCA-carnitine; tissues and milk were not analysed for M017; for liver a correction factor was applied to account for the occurrence of M017 (correction factor derived from metabolism study). Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Eggs	0.01*	0.01	JMPR calculated the dietary burden for livestock on the basis of residues in feed crops under assessment and their by-products. Max estimated burden for poultry, layer: 0.15 ppm dry matter (EU) (parent + M007 (dimer)). Feeding study available that covers the estimated burden for afidopyropen; samples were analysed for parent, M001, M003, CPCA-carnitine and M017 (liver only). Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Eggplants, Subgroup of	0.15	0.01	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. JMPR assumed cGAP is 1×25 g/ha + 2×50 g/ha. Number of trials: 28 trials on tomato (n=25) and cherry tomato (n=3) in Brazil and the USA performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials are not fully GAP compliant; however, the application of 2×12.5 g at $21-14$ days before harvest is not expected to contribute to more than 25% of the residues at harvest. Therefore, the residue trials seem acceptable. Extrapolation form tomatoes to eggplants is acceptable. However, trials on cherry tomatoes should be excluded from the data set. However, this approach would not have an impact on the MRL proposal. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Flowerhead Brassicas, Subgroup of	0.4	0.01 Broccoli and cauliflowers	cGAP: Canada, foliar application, up to 4 applications at

Commodity	Codex MRL proposal	EU MRL (default)	Comment
			extrapolation to the whole subgroup (a) flowering brassica (0241000). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Fruiting vegetables, Cucurbits – Melon, Pumpkins and Winter squashes, Subgroup of	0.05	0.01 (cucurbits with inedible peel subgroup of)	1×25 g/ha + 2 \times 50 g/ha.
Ginger, rhizome (fresh)	0.01*	0.01	cGAP: Canada, foliar application, two applications at maximum rate 50 g/ha, interval 7 days, PHI 7 days. Number of trials: no residue trials were submitted on ginger rhizome; trials on potatoes (see tuberous and corm vegetables) Sufficiently supported by data: No Specific comments/observations: Residue trials data are available for potato. The JMPR considered that afidopyropen is not systemic and residue levels in potato tubers were below the LOQ. The JMPR decided to extrapolate the proposed Codex MRL and risk assessment values from potato tubers to ginger rhizome, considering that in trials performed on potatoes at exaggerated application rates (6.25N cGAP for ginger rhizome, residues were below the LOQs of 0.01 mg/kg (RD enf) and 0.02 mg/kg (0.01 mg/kg for each analyte) (RD RA)). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL which was derived from non-standard extrapolation is acceptable. Follow-up action: None
Leafy greens, Subgroup of	2	0.01 (lamb's lettuces, escaroles, spinaches and similar leaves subgroup of, chervil)	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. JMPR assumed cGAP is 1×25 g/ha + 2×50 g/ha. Number of trials: Trials on lettuce, head (with wrapper leaves) (n = 9), lettuce, leaf (n = 7), cos lettuce (n = 1) and spinach (n = 8) performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials are not fully GAP compliant; however, the deviation is not expected to have a major impact on the residue levels. Statistical analysis of variance reported populations for head lettuce, leaf lettuce and cos lettuce to be similar (Kruskal–Wallis H test) and the combined lettuces data set to be similar to the spinaches data set. Therefore, data on lettuces and spinaches were combined for MRL estimation and derivation of risk assessment values.

Commodity	Codex MRL proposal	EU MRL (default)	Comment
			According to the Codex principles, head lettuce and/or leaf lettuce and spinach are suitable for extrapolation to the subgroup of Leafy greens (VL 2050). According to the EU guidelines, the number of trials would be sufficient for extrapolation to the EU crop groups of lettuces and salad plants (0251000) and spinaches and similar leaves. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Leaves of Brassicaceae, Subgroup of	5	0.01 (leafy brassica, cress, land cress, rucola, red mustards, baby leaf crops (including brassica species)	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. JMPR assumed cGAP is 1×25 g/ha + 2×50 g/ha. Number of trials: 7 trials on mustard greens performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials are not fully GAP compliant; however, the deviation is not expected to have a major impact on the residue levels. According to the Codex principles, mustard greens are a suitable commodity for extrapolation to the subgroup of Leaves of Brassicaceae (VL 0054), and the proposed extrapolation is acceptable. The estimated acute dietary exposure to residues of afidopyropen in leafy brassica kales (243020) exceeds the toxicological reference value (ARfD) (see below). Conclusion: The proposed Codex MRL is not acceptable due to intake concerns. Follow-up action: None
Mammalian fats (except milk fats)	0.01*	0.01	See comments on edible offal (mammalian). Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Meat (from mammals other than marine mammals)	0.01*	0.01	See comments on edible offal (mammalian). Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Milks	0.001*	0.01	See comments on edible offal (mammalian). Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Parsley, leaves	5	0.01	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. Number of trials: 7 trials in mustard greens; no residue trials were submitted on herbs. Sufficiently supported by data: No Specific comments/observations: The JMPR considered mustard greens to be more representative for herbs than leaf lettuce or spinach. According to the agreed extrapolations (Appendix VIII of REP18/PR) trials on basil, mint, leaf lettuce or spinach could be used to derive an MRL for coriander leaves. Using residue trials in leaf lettuce and spinach a lower MRL proposal of 2 mg/kg is derived.

Commodity	Codex MRL proposal	EU MRL (default)	Comment
			Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that MRL was derived on the basis of a non-standard extrapolation. Follow-up action: None
Peaches, Subgroup of	0.015	0.01 (peaches, apricots)	cGAP: Canada and the USA, foliar application, 2×11 g/ha, interval 7 days, PHI 7 days. Number of trials: Eleven trials on peaches in Canada and the USA Sufficiently supported by data: Yes Specific comments/observations: Residues in ten trials were below the LOQs of 0.01 mg/kg (RD enf) and 0.02 mg/kg (0.01 mg/kg for each analyte) (RD RA). The Codex MRL proposal for Peaches (FS 2001) would be applicable to the EU classification for apricots (0140010) and peaches (0140030). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Peppers, Subgroup of, excluding okra, martynia and roselle	0.1	0.01	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. JMPR assumed cGAP is 1×25 g/ha + 2×50 g/ha. Number of trials: 8 trials on bell peppers and 3 on chilli peppers performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials are not fully GAP compliant; however, deviation is not expected to have a major impact on the residue levels. The highest residue values were observed in the trials performed on chilli peppers. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Peppers, chilli dried	1	_	A concentration of residues occurs in dried chilli peppers, and the JMPR evaluation derived a Codex MRL proposal of 1 mg/kg for peppers chilli, dried, on the basis of a drying factor of 10. Processing studies were not reported in the JMPR evaluation and processing factors were not derived for chilli peppers, dried. EU MRLs are not set for processed products, such as dried chilli peppers.
Pome fruit, Group of, excluding persimmon	0.03	0.01 (Pome fruits and azaroles)	cGAP: USA, foliar application, 2 × 25 g/ha, interval 7 days, PHI 7 days, seasonal maximum rate 51 g/ha. Number of trials: 13 trials on apples and 7 on pears Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL proposal for pome fruit (FP 0009) excluding persimmon, would be applicable to the EU classification for the Group of Pome fruits and azaroles/Mediterranean medlars. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Plums, Subgroup of	0.01*	0.01 (plums except Prunus Nadia)	cGAP: Canada and the USA, foliar application, 2×11 g/ha, interval 7 days, PHI 7 days. Number of trials: Nine trials in Canada and the USA Sufficiently supported by data: Yes Specific comments/observations: Residues in all trials were below the LOQs of 0.01 mg/kg (RD enf) and LOQ of 0.02 mg/kg (0.01 mg/kg for each analyte) (RD RA). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None

Commodity	Codex MRL proposal	EU MRL (default)	Comment	
Poultry, edible offal of	0.01*	0.01	See comments on eggs. Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None	
Poultry, fats	0.01*	0.01	See comments on eggs. Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None	
Poultry, meat	0.01*	0.01	See comments on eggs. Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None	
Soyabean (dry)	0.01*	0.01	cGAP: USA, foliar application, 2×11 g/ha, interval 7 days, PHI 7 days. Number of trials: 23 trials Sufficiently supported by data: Yes Specific comments/observations: Residues in all trials were below the LOQ of 0.01 mg/kg (RD enf) and LOQ of 0.02 mg/kg (0.01 mg/kg for each analyte) (RD RA). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None	
Stem and Petioles, Subgroup of	3	0.01 (cardoons, celeries, Florence fennels and rhubarbs)	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. JMPR assumed cGAP is 1×25 g/ha $+ 2 \times 50$ g/ha. Number of trials: 9 trials on celery performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials are not fully GAP compliant; however, deviation is not expected to have a major impact on the residue levels. According to the Codex principles, celery is a suitable commodity for extrapolation to the subgroup of Stems and petioles (VS 2080), and the proposed extrapolation is acceptable. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None	
Summer squash	0.07	0.01 (Courgettes)	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. JMPR assumed cGAP is 1×25 g/ha + 2×50 g/ha. Number of trials: 5 trials on summer squash in the USA performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials are not fully GAP compliant; however, deviation is not expected to have a major impact on the residue levels. According to the EU guidelines, summer squashes (courgettes) are a major crop in SEU and world productions and at least 8 trials would be required. According to the Codex criteria, summer squash (VC 0431) are classified as consumption category 3, and a minimum of five trials are required. Therefore, the number of trials on summer squash (n = 5) is acceptable.	

Commodity	Codex MRL proposal	EU MRL (default)	Comment
			Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Tomatoes, Subgroup of	0.15	0.01	cGAP: Canada, foliar application, up to four applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 0 days. JMPR assumed cGAP is 1×25 g/ha + 2×50 g/ha. Number of trials: 25 trials performed on normal sized tomatoes and 3 in cherry tomatoes performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The residue trials are not fully GAP compliant; however, deviation is not expected to have a major impact on the residue level. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Tomatoes, dried	0.7	-	A concentration of residues occurs in dried tomatoes, and the JMPR evaluation derived processing factors on the basis of three processing studies on oranges (PF enf = 4.3 and PF RA = 5.8). EU MRLs are not set for processed products, such as dried tomatoes.
Tree nuts, Group of	0.01*	0.01	cGAP: USA, foliar application, 2×11 g/ha, interval 7 days, PHI 7 days. Number of trials: 13 trials (5 in almond, 5 in pecan and 3 in pistachio). Sufficiently supported by data: Yes Specific comments/observations: Residues in all trials were below the LOQs of 0.01 mg/kg (RD enf) and 0.02 mg/kg (0.01 mg/kg for each analyte) (RD RA). The JMPR considered the combined data set for the available trials on tree nuts suitable for extrapolation to the group of Tree nuts. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Tuberous and corm vegetables, Subgroup of	0.01*	0.01 (potatoes, tropical root and tuber vegetables)	cGAP: Canada, foliar application, up to 4 applications at maximum rate 50 g/ha with seasonal maximum rate 125 g/ha, interval 7 days, PHI 7 days. JMPR assumed cGAP is 1×25 g/ha + 2×50 g/ha. Number of trials: 23 trials on potatoes in Canada and the USA performed at 2×12.5 g/ha + 2×50 g/ha, interval 7 days, PHI 0 days. Sufficiently supported by data: Yes Specific comments/observations: The metabolism of afidopyropen in root crops was not reported in the JMPR evaluation but in three other crop groups. The residue trials are not fully GAP compliant, deviating in the PHI and the application rate. The deviation of in the application rates is expected to have a minor impact on the residue levels. The Codex MRL proposal for the subgroup Tuberous and corm vegetables (VR 2071) would be applicable to the EU classification subgroups (a) potatoes (0211000) and (b) tropical root and tuber vegetables (0212000). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that the trials were not fully compliant with the GAP, considering that the MRL proposal is at the LOQ. Follow-up action: To check details on the residue trials in JMPR evaluation.

Commodity	Codex MRL proposal	EU MRL (default)	Comment
Turmeric, root (fresh)	0.01*	0.01	cGAP: Canada, foliar application, 2 applications at maximum rate 50 g/ha, interval 7 days, PHI 7 days. Number of trials: no residue trials were submitted on turmeric root, but trials on potatoes. Sufficiently supported by data: No Specific comments/observations: The metabolism of afidopyropen in root crops was not reported in the JMPR evaluation. Residue trials data are available for potato (details see tuberous and corm vegetables). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable. Follow-up action: None
General comments	Default MRL of 0.01 mg/kg according to Art. 18(1)(b) Reg 396/2005 for all commodities.		

*: Indicates that the MRL is proposed at the limit of quantification.

5.43.5. Consumer risk assessment

Table 211:	Summary of the consumer risk assessment
------------	---

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the Codex MRL proposals. The risk assessment was performed with the JMPR ARfD derived for women of child-bearing age.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The STMR values derived by JMPR were used for the risk assessment. The risk assessment was performed with the JMPR ADI.	Specific comments: The short-term risk assessment is reported based on the ARfD for general population of 0.3 mg/kg bw. The ARfD is lower for women of child-bearing age 0.2 mg/kg bw. The highest result for Chinese cabbages (raw)
Results: The calculated short-term exposure exceeded the ARfD for one crop under assessment. Kales: 106% of ARfD (DE child) Chinese cabbages/pe-tsai: 77% of ARfD (child) Escaroles/broad-leaved endives: 52% of ARfD (child) Lettuces: 49% of ARfD (child) Celeries: 41% of ARfD (child) Rhubarbs: 41% of ARfD (child) Spinaches: 29% of ARfD (child) Chards/beet leaves: 25% of ARfD (adult; child 20%) Florence fennels: 21% of ARfD (adult; child 18%) Cucumbers: 20% of ARfD (child) Cardoons: 11% of ARfD (adult) Cauliflowers: 10% of ARfD (child) Broccoli: 7% of ARfD (child) Oranges: 6% of ARfD (child) Lamb's lettuce/corn salads: 4% of ARfD (child) Melons: 4% of ARfD (child)	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 5% of the ADI. Among the commodities under consideration, bovine milk and muscle/meat and spinaches and Chinese cabbages were identified as the main contributors, accounting for 0.6% to 1% of the ADI.	Results: Long-term exposure: Max 4% of the JMPR ADI. Short-term exposure: Highest result for Chinese cabbages (raw): 100% of ARfD (CN child; 50% general population).

5.44. Metconazole (313) R/T

5.44.1. Background information

Table 212:	Background information
------------	------------------------

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New compound evaluation	In 2008 JMPR assessed triazole metabolites
RMS	BE	
Approval status	Approved	Commission Directive 2006/74/EC ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2006c)
MRL review performed	Yes, see comments	(EFSA, 2011n)
MRL applications/ assessments	Yes, see comments	(EFSA, 2016h) (various crops) (EFSA, 2013f) (barley and oats) (EFSA, 2010d) (various crops)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Assessment ongoing, see comments	Assessment not finalised: following ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)), additional data are requested for ecotox assessment; no endocrine effects for humans. ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605) is ongoing, further data were requested (clock-stop)

(a): Commission Directive 2006/74/EC of 21 August 2006 amending Council Directive 91/414/EEC to include dichlorprop-P, metconazole, pyrimethanil and triclopyr as active substances. OJ L 235, 30.8.2006, p. 17–22.
(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.44.2. Toxicological reference values

Table 213:	Comparison of toxicologica	reference values	(TRV derived by	y JMPR and at EU level)
------------	----------------------------	------------------	-----------------	-------------------------

	JMPR e	evaluation	EU	EU evaluation		
	Value	Comments	Value	Comments	comparable	
Metconaz	ole					
ADI	0.04 mg/kg bw per day	JMPR (2019)	0.01 mg/kg bw per day	(EFSA, 2006c) (developmental rabbit with 400 uncertainty factor)	No	
ARfD	0.04 mg/kg bw	JMPR (2019)	0.01 mg/kg bw	(EFSA, 2006c) (developmental rabbit with 400 uncertainty factor)	No	
Triazole a	lanine					
ADI	1 mg/kg bw per day	JMPR (2008, 2019)	0.3 mg/kg bw	(EFSA, 2018q) (rabbit developmental with 100 uncertainty factor)	No	
ARfD	Unnecessary	JMPR (2008, 2019)	0.3 mg/kg bw	(EFSA, 2018q) (rabbit developmental with 100 uncertainty factor)	No	

	JMPR e	valuation	EU	l evaluation	TRV
	Value	Comments	Value	Comments	comparable
Triazole acet	ic				
ADI	1 mg/kg bw per day	JMPR (2008, 2019)	1 mg/kg bw	(EFSA, 2018q) (2-generation and rabbit developmental with 100 uncertainty factor)	Yes
ARfD	Unnecessary	JMPR (2008, 2019)	1 mg/kg bw	(EFSA, 2018q) (2-generation and rabbit developmental with 100 uncertainty factor)	No
1,2,4-triazole	9				
ADI	0.2 mg/kg bw per day	JMPR (2008, 2019)	0.023 mg/kg bw per day	(EFSA, 2018q) (rat 12- month study with 300 uncertainty factor)	No
ARfD	0.3 mg/kg bw	JMPR (2008, 2019)	0.1 mg/kg bw per day	(EFSA, 2018q) (rabbit developmental study with 300 uncertainty factor)	No
	JMPR based the Al uncertainty factor also to M1 (CL 359 M11 had an acute M21 and M30 we TTC approach (Cra For unidentified were potential can concluded that the and therefore the For triazole alani ADI (alone or in cc for developmental the basis of delaye UF of 100. JMPR cc For 1,2,4-triazole based on NOAEL of sperm counts) with based on an NOAE setting the LOAEL that occurred at th (EFSA, 2018q) der (1) triazole alani taking into accoun newly submitted ra endpoint and the se ARfD derived for the were derived by JN (2) for triazole acounts mucosal erosions of endpoint and the se (3) 1,2,4-triazole level (NOAEL) of 6 newly submitted 1	(JMPR, 2019). JMPR (2451) and M12 (CL 3 c) oral LD ₅₀ > 5000 mg re negative in in-vitro mer class III) can be hydroxylated meta didates to be included addition of a hydrox TTC approach (Crame ne and triazole ace ombination) of 0–1.0 toxicity in a study of d ossification seen in onsidered unnecessar a , JMPR (JMPR, 2008, f 16 mg/kg bw per d n 100 uncertainty fact SL of 30 mg/kg bw. JM and identified the NC te LOAEL of 45 mg/kg ived the following TR ne : ADI of 0.3 mg/kg t the increased incide abbit developmental s ame UF was conside iazole alanine is also APR. cetic acid : ADI of 1 m ty submitted rat two- and food consumption or ulceration for devel ame UF was conside i: ADI of 0.0023 mg/l .9 mg/kg bw per day 2-month rat study wit	ame study but d concluded that th 359138). g/kg bw and was genotoxicity stu- e applied. bolites which w d in the residue ylated group is u er class III) was etic acid, JMPR (mg/kg bw based developmental t rats at the LOAI ry the establishm , 2019) establish ay on the basis of tor. JMPR est	id not consider the inclusion of TRVs derived for metcon s not mutagenic in an Amer udies, JMPR therefore conc vere found in residue studie definition for risk assessme unlikely to add any alerts for considered appropriate. (JMPR, 2008, 2019) establi on an NOAEL of 100 mg/l oxicity in rats given triazole EL 300 mg/kg bw per day,	hazole apply s test. luded that the es and which ent, JMPR or genotoxicity shed a group kg bw per day e alanine, on and using an v per day abnormalities, g bw per day weight for enital system or. per day, erved in the ed, the same D; the ADI and ch no TRV 100 mg/kg bw es (decreased plus stomach the same D. dverse-effect- ain in the

	JMPR evaluation		EU evaluation		TRV
v	alue	Comments	Value	Comments	comparable
of Ir 01 ui	f 30 mg/kg bw pe n the peer review 7 experts' meeting nlikely to be geno	r day from a rabbit of for renewal (EFSA co g), it was concluded	levelopmental stu onclusion not yet that the hydroxyl general toxicity is	body weight gain observe udy with 300 uncertainty f finalised, but discussed ir lated metabolites (and M3 covered by the parent co	factor. n MamTox PREV 80 ketone) are

5.44.3. Residue definitions

Table 214:	Comparison of the residue definitions derived by JMPR and at EU leve	4
	comparison of the residue definitions derived by shirt and de Eoreve	- I

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Metconazole (sum of cis and trans isomer)	Reg. 396/2005: Metconazole (sum of isomers)	Yes
	Animal products Sum of metconazole (cis and trans-isomer) The residue is not fat soluble		Reg. 396/2005: Metconazole (sum of isomers) The residue is fat soluble	Yes
RD RA	Plant products	Metconazole (sum of cis and trans isomer)	MRL review Art. 12 (EFSA, 2011n): Metconazole (sum of isomers) Peer review (EFSA, 2006c): Metconazole (sum of isomers) (cereals and oilseed crops only) Separate RDs for TDMs	Yes
	Animal products	Sum of metconazole (cis and trans-isomer) and metabolites (1SR,2SR,5RS)-5-(4- chlorobenzyl)-2-(hydroxymethyl)- 2-methyl-1-(1H-1,2,4-triazol-1- ylmethyl)cyclopentanol (M1) and (1RS,2SR,3RS)-3-(4- chlorobenzyl)-2-hydroxy-1- methyl-2-(1H-1,2,4-triazol-1- ylmethyl)cyclopentanecarboxylic acid (M12), expressed as metconazole	MRL review Art. 12 (EFSA, 2011n): Metconazole (sum of isomers) Peer review (EFSA, 2006c): Metconazole (sum of isomers) Separate RDs for TDMs	No
Conclusion, comments	and cereals (v except, wheat metconazole r Triazole met rape seed and M11, M21 ar in cereals. In exposure and Individually th bw per day). Significant res conjugates we 67% TRRs. Al the TTC for Cr JMPR calculate to these meta metconazole r	Ad M30 were identified in metaboli order to decide whether they need compared it with the TTC for Cram e long-term exposure was below the idues of unidentified hydroxylate are detected in mandarin fruit, pea so for these compounds JMPR estinater ramer class III compounds. Since n ed the estimated concentration, tak bolites observed in metabolism stu netabolites was 0.75 μg/kg bw per rall results, JMPR proposed for plan	dominant residues (19–96% TRRs) addition, significant residues of hyd ere found in. in significant amounts in wheat gr sm studies; in residue trials they w to be included in the RD, JMPR ca- er Class III (see toxicological refer ne TTC of 1.5 μ g/kg bw per day (i. d metconazole metabolites and seed and oilseed rape seed, rangin mated the long-term exposure and o residue data from treated crops sing into account the ratio of paren dies. The exposure for the group of day. ts, the enforcement and risk asses	in all crops iroxylated rain, oilseed rere only found lculated the rence values). e. 0.81 μg/kg I their ng from 19% to compared it to were available, it metconazole f hydroxylated

 Commodity group	JMPR evaluation	EU evaluation	RDs comparable			
products) are In the ongoing discussion, i.e conjugates). Triazole metat proposed to b (TLA) as they For animal pro one from EU (For risk assess monohydroxyl In the ongoing	similar with what JMPR proposed. g EU peer review process a new re metconazole (sum of isomers) ar polites were also considered for the e included separately in the RA RE share the same toxicity, 2) triazole <u>oducts</u> , the enforcement residue do the existing and the agreed under sment the proposed JMPR residue ated compounds M01 and M12 of	definition is wider covering also the metconazole. ssidue definition for risk assessmen	t is under (free and ly, it was ble lactic acid e (T). imilar with the e two			
plant products	In the EU also the separate TDM residue definitions are relevant for risk assessment (/animal and plant products), 1) triazole alanine (TA) and triazole lactic acid (TLA) as they share the same toxicity; 2) triazole acetic acid (TAA); 3) 1,2,4-triazole (T).					
	e fat solubility JMPR consider the ed as fat soluble.	residue of metconazole as not fat s	oluble while in			

5.44.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Banana	0.1*	0.1	cGAP: Mexico, 3×90 g/ha, RTI 14 days, PHI 0 days Number of trials: 12 overdosed trials Sufficiently supported by data: Yes Specific comments/observations: The trials were conducted with 7x150 g/ha, RTI 11–15 days and harvested at 0 DALA in South and Central America. All the trials were below LOQ. Conclusion: The proposed Codex MRL is acceptable. See general comments Follow-up action: None
Blueberries	0.5	0.4	cGAP: Canada, 3×90 g a.i./ha, PHI 7 days Number of trials: 11 Sufficiently supported by data: Yes Specific comments/observations: 11 GAP compliant trials conducted in Canada and USA were submitted. Conclusion: The proposed Codex MRL is sufficiently supported. See also general comments. Follow-up action: None
Beans with pods (Phaseolus spp.) immature pods and succulent seeds)	0.05*	0.02*	cGAP: Brazil, 3×14 g a.i./ha, RTI 7 days and PHI 15 days Number of trials: 4 overdosed trials Sufficiently supported by data: No Specific comments/observations: The submitted trials were performed at higher rates (45–180 g/ha, RTI 7 days and PHI 14–15 days) with all residues < LOQ. The number of the trials is not sufficient according to JMPR rules; at least one additional trial is needed. In the EU, beans with pods are a major crop and therefore 4 additional trials would be needed. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable despite an incomplete data set, considering that the trials were all below the LOQ. See general comments Follow-up action: None

 Table 215:
 Comparison of Codex MRL proposals derived by JMPR with EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Cotton seed	0.3	0.3	cGAP: USA, 3×92 g a.i./ha, RTI 7 days, PHI 30 days Number of trials: 12 Sufficiently supported by data: Yes Specific comments/observations: The existing EU MRL is based on the same residue data set. Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None
Edible offal (mammalian)	0.04*	0.02*	The Codex MRL proposal is based on the maximum dietary burden calculated for the Australian diet. The feeding studies covers the estimated dietary burden. Specific comments/observations: At max feeding levels of 50 ppm (approx. 3N of max. dietary burden), residues of metconazole in milk and tissues were all < LOQ (0.04 mg/kg). Conclusion: The proposed Codex MRL are sufficiently supported. Follow-up action: None
Eggs	0.04*	0.02*	CXL is based on the max dietary burden calculated for the EU. At max feeding levels of 20 ppm, residues of metconazole in eggs and poultry tissues were < 0.04 mg/kg. Conclusion: The proposed Codex MRL are sufficiently supported. Follow-up action: None
Garlic	0.05*	0.02*	cGAP: Brazil, 3×90 g a.i./ha, RTI 7 days, PHI 14 days Number of trials: 6 (3 in bulb onion, 3 in garlic) Sufficiently supported by data: No Specific comments/observations: According to the JMPR rules five trials in garlic would be required. Using a combined data set with trials in garlic and bulb onion to derive an MRL for garlic is not fully in line with the agreed Codex extrapolation rules. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable considering that residues were below the LOQ in all trials.See general comments. Follow-up action: None
Tree nuts, Group of	0.04*	0.05* Almonds Brazil nuts Cashew nuts Chestnuts Coconuts Hazelnuts/ cobnuts Macadamia Pecans Pine nut kernels Pistachios Walnuts	cGAP: USA, 4×123 g a.i./ha, RTI 7 days, PHI 25 days Number of trials: 10 overdosed trials (3 in pecan nuts and 7 in almonds) Sufficiently supported by data: Yes Specific comments/observations: Residues level were below LOQ in all trials. Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None
Maize	0.015	0.1	cGAP: USA, 4 \times 92 g a.i./ha, RTI 7 days, PHI 20 days Number of trials: 20 (highest residue 0.018 mg/kg) Sufficiently supported by data: Yes Specific comments/observations: The CXL is based on 20 GAP compliant trials conducted in USA. The same USA GAP and the same residue data set as examined by JMPR have been considered in the framework of EU MRL review (EFSA, 2011n), where an MRL proposal of

Commodity	Codex MRL proposal	EU MRL	Comment
			0.02 mg/kg was derived. The adoption of the higher EU MRL of 0.1 mg/kg seems to be an error. Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Proposed follow-up action at EU level: reduction of EU MRL for maize grain to 0.02 mg/kg (or alternatively, to CXL level 0.015 mg/kg).
Mammalian fats (except milk fats)	0.04*	0.02*	see edible offal (mammalian)
Meat (from mammals other than marine mammals)	0.04*	0.02*	See edible offal (mammalian)
Milks	0.04*	0.02*	See edible offal (mammalian)
Onion, bulb	0.05*	0.02*	cGAP: Brazil, 3×90 g a.i./ha, RTI 7 days, PHI 14 days Number of trials: 6 (3 on bulb onions and 3 on garlic). Sufficiently supported by data: No Specific comments/observations: Bulb onions are a major crop in Codex. Hence, the number of trials in onions would not be sufficient. Using a combined data set of residue trials in garlic and bulb onion to derive an MRL for bulb onions is not fully in line with the agreed Codex extrapolation rules. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable considering that residues were below the LOQ Follow-up action: None
Peanut	0.04*	0.05*	cGAP: USA, 4 × 140 g a.i./ha, RTI 14 days, PHI 14 days Number of trials: 14 Sufficiently supported by data: Yes Specific comments/observations: The submitted trials were conducted with 2x270-290 g/ha, and 13–15 DALA. Since residue levels were below LOQ, JMPR assumed that also from trials conducted according with the GAP the level will be below the LOQ. From additional trials performed at a 4X or 10X application rate were < LOQ or only slightly above. Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None
Poultry, Edible offal	0.04*	0.02*	See eggs.
of Poultry fate	0.04*	0.02*	Soo ogge
Poultry fats Poultry meat	0.04*	0.02* 0.02*	See eggs. See eggs.
Rape seed	0.15	0.2	See eggs. cGAP: UK, 2 × 72 g a.i./ha, BBCH 71, RTI 14 days Number of trials: 11 Sufficiently supported by data: Yes Specific comments/observations: - Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None
Cherries, Subgroup of	0.3	0.2 Cherries	cGAP: USA, 3 \times 140 g a.i./ha PHI 14 days, Number of trials: 7 Sufficiently supported by data: Yes Specific comments/observations: The number of trials is in line with the JMPR rules. In the EU one additional trial would be needed. The same USA GAP as examined by JMPR has been considered in the framework of EU MRL review (EFSA, 2011n), and an import tolerance of 0.2 mg/kg was

Commodity	Codex MRL proposal	EU MRL	Comment
			derived on the basis of 9 trials. The JMPR report mentions only seven trials and as a consequence, a higher CXL (0.3 mg/kg) is derived. It may need to be verified why some trials were omitted (and/or not submitted to JMPR), as those additional trials could result in a lower CXL proposal (= EU MRL (IT)). Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: It should be verified why some trials were omitted (and/or not submitted to JMPR), as those additional trials could result in a lower CXL proposal.
Subgroup of dry beans except soyabeans	0.04*	0.15 (beans, cowpea, lupin)	cGAP: Canada and USA, 2 × 140 g a.i./ha, RTI 7 days, PHI 21 days Number of trials: 18 Sufficiently supported by data: Yes Specific comments/observations: In all residue trials, the residues were below LOQ. Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None
Dry peas, Subgroup of	0.15	0.15 (peas and lentils)	cGAP: Canada and USA, 2 × 140 g a.i./ha, RTI 7 days, PHI 21 days Number of trials: 14 Sufficiently supported by data: Yes Specific comments/observations: The same residue data set was submitted to support the current EU MRL for beans and peas. Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None
Peaches, Subgroup of	0.2	0.1 (peaches, apricots)	cGAP: USA, 3×140 g a.i./ha (foliar application), PHI 14 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: The residue trials are sufficient according with the JMPR rules. In the EU trials in apricots would be requested too. According to OECD calculator an MRL of 0.15 mg/kg is sufficient. The same USA GAP as examined by JMPR has been considered in the framework of EU MRL review (EFSA, 2011n). The HR derived by JMPR for metconazole only is the same as the one derived by (EFSA, 2011n), although the residue data set seems different. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that a slightly lower value would be sufficient for the critical GAP assessed by JMPR. Follow-up action: None
Plums, Subgroup of	0.1	0.02* (plums)	cGAP: USA, PHI 14 days, 3×140 g a.i./ha Number of trials: 5 Sufficiently supported by data: No Specific comments/observations: According to JMPR rules, plums are a major crop for which refinement criteria applied. The number of submitted trials is therefore not sufficient. Conclusion: The proposed Codex MRL is not acceptable because the number of trials is not sufficient. See also

Commodity	Codex MRL proposal	EU MRL	Comment	
			general comments. Follow-up action: None	
Sunflower seeds, Subgroup of	1.5	0.7 (sunflower seeds) 0.05* (safflower seed)	cGAP: Canada and USA, 2×140 g a.i./ha, RTI 7 days, 21 daysNumber of trials: 7Sufficiently supported by data: YesSpecific comments/observations: The number of trials is line with the JMPR rules. In the EU sunflowers are a mat crop and one additional trial would be required. The sar GAP as examined by JMPR has been considered in the framework of the setting of an import tolerance request (EFSA, 2016h); an IT of 1 mg/kg was derived on the bar of 9 trials, but the IT was eventually set at 0.7 mg/kg (= tolerance in CA). The JMPR report mentions only 7 tr and as a consequence, a higher CXL (1.5 mg/kg) is deri Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: It should be verified why some trials w omitted (and/or not submitted to JMPR), as those additi trials could result in a lower CXL proposal.cGAP: USA, 4×140 g a.i./ha, RTI 7 days, PHI 1 day	
Tuberous and corm vegetables, Subgroup of	0.04*	0.04* (arrowroots potatoes, cassava, Jerusalem artichoke, sweet potato, yams	Number of trials: 14 trials in potatoes Sufficiently supported by data: Yes Specific comments/observations: - Conclusion: The proposed Codex MRL is sufficiently supported. See general comments.	
Sugar beet	0.07	0.06	cGAP: Canada, 2 \times 113 g a.i./ha, RTI 14 days, PHI 14 days Number of trials: 11 Sufficiently supported by data: Yes Specific comments/observations: The same GAP as examined by JMPR has been considered in the framework of EU MRL review (EFSA, 2011n). On the basis of a data set of 12 trials (instead of 11 trials mentioned by JMPR), an import tolerance of 0.06 mg/kg was derived, which is slightly below the CXL derived by JMPR (0.07 mg/kg). Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None	
Soyabean (dry)	0.04	0.05*	cGAP: USA, 2 \times 63 g a.i./ha, RTI 10 days, PHI 30 days Number of trials: 21 overdosed trials (scaling factor of 0.8) Sufficiently supported by data: Yes Specific comments/observations: - Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None	
Sugar cane	0.06	0.02*	cGAP: USA, 4 \times 91 g a.i./ha, RTI 14 days, PHI 14 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None	
Sweet corn (Corn- on-the-cob)	0.015*	0.02* (sweet corn and baby corn)	cGAP: USA, 4 \times 92 g a.i./ha, RTI 7 days, PHI 7 days Number of trials: 12 Sufficiently supported by data: Yes Specific comments/observations: According to the OECD	

Commodity	Codex MRL proposal	EU MRL	Comment	
			calculator an MRL of 0.015 mg/kg is derived; the asterisk should be deleted. Conclusion: The proposed Codex MRL is sufficiently supported. See general comments. Follow-up action: None	
Prunes, dried	0.5	-	JMPR propose a PF of 2.3 based on one study.	
General comments	additional EU r According to JR and liver, while M1 is stable du tissues; M12 is The RMS BE cla feeding studies main uncertain The broader re EU level in the consumer to th account as wel conducted by E (and conservat AIR peer review	a were reported isk assessment 4PR, in animal for fat stability ring the storag stable in liver a arified that in the are fully reliable ties related to sidue definition framework of the monohydrow l in the future. EFSA (which or ive) conversion w framework (4)	d for the TDMs. Hence, a risk assessment according to the tresidue definitions for TDMs cannot be performed. commodities, metconazole residues were not stable in muscle y was demonstrated only for 3 months during storage at -20° C. ge for 9 months in liver and for at least 8 months in the other and kidney for at least 8 and 9 months, respectively. he framework of the AIR peer review, it was concluded that the ole with respect to reported residue results for metconazole; the stability and analytical recovery of metabolites. In for risk assessment for products of plant origin agreed upon at the AIR EU peer review implies that the exposure of the cylated derivatives of metconazole will have to be taken into This has not been the case in the consumer risk assessment new considered metconazole). Unfortunately, only a few tentative in factors could be derived from the metabolism studies in the e.g. 1.4 for whole fruits, 3.3 for oilseeds, 1.0 for cereal grains), exposure according to the newly agreed EU RD for RA.	

 $\ast:$ Indicates that the MRL is proposed at the limit of quantification.

5.44.5. Consumer risk assessment

Table 216:	Comparison of Codex MRL proposals derived by JMPR with EU MRLs
	companion of codex fine proposals derived by shift with Eo fines

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. EFSA used the HR/STMR values derived by JMPR; however, for crops where JMPR suggested the HR/STMR being 0, in accordance with the EU practice, EFSA used the proposed Codex MRLs (at the LOQ).	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1 (normal mode calculation). The input values of the most recent long-term risk assessment (EFSA, 2016h) were updated, including the STMR values derived by JMPR for the crops for which the proposed Codex MRL is higher than the EU MRL. For crops/ commodities for which JMPR proposed an STMR of 0, EFSA used the proposed Codex MRL (LOQ).	Specific comments:	
Additional uncertainty of the assessment (lack of reported residue values for the metabolites included in the EU RD for RA and open issues related to storage stability.	Additional uncertainty of the assessment (lack of reported residue values for the metabolites included in the EU RD for RA and open issues related to storage stability.		
The risk assessment was performed with the EU ARfD.	The risk assessment was performed with the EU ADI.		
No risk assessment can be performed for TDMs since no information on the occurrence of TDMs in the crops under consideration are provided.	No risk assessment can be performed for TDMs since no information on the occurrence of TDMs in the crops under consideration are provided.		

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results:The calculated short-term exposureexceeded the ARfD for one underassessment.Bananas: 97% of the ARfDPeaches: 81% of the ARfDPotatoes: 62% of the ARfDMilk: 50% of the ARfDApricots: 30% of the ARfDPlums: 19% of the ARfDBlueberries: 20% of the ARfDBlueberries: 20% of the ARfDCherries: 17% of ARfDOther crops/commodities: < 15% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 44% of the ADI. Among the crops under consideration, Milk: Cattle was identified as the main contributor, accounting for up to 24% of the ADI., followed by bananas (5% of the ADI) and potatoes (2% of ADI)	assessment Results: Long-term exposure: Max 2% of the JMPR ADI. Short-term exposure: Highest result for Banana: 20% of ARfD
managers should discuss a general reservation to the proposed CXLs.		

5.45. Pyflubumide (314) R/T

5.45.1.	Background	information
---------	------------	-------------

Table 217:	Background	information
------------	------------	-------------

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New compound evaluation	
RMS	no RMS assigned	
Approval status	Not approved	No application for approval submitted in the EU.
EFSA conclusion available	No	
MRL review performed	No	
MRL applications/assessments	No	

		Comments, references
Classification of a.s. – cut-off criteria	Not assessed/not concluded	No harmonised classification
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(a)) has not been performed yet.

(a): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.45.2. Toxicological reference values

Table 218:	Comparison of toxicological	reference values (TR)	RV derived by JMPR and at EU level)
------------	-----------------------------	-----------------------	-------------------------------------

	JMPR evaluation		EU evaluation		TRV
	Value	Comments	Value	Comments	comparable
ADI	0.0007 mg/kg bw per day	JMPR (2019)	—	_	Not appropriate
ARfD	0.008 mg/kg bw	JMPR (2019)	-	-	Not appropriate
Conclusion/ comment	The ADI value proposed by a based on the findings in liver carcinogenicity in rats, using parental and offspring NOAE day) and by the NOAEL in the active substance is not regist has not been reviewed by Ef- made by JMPR. The ARfD value proposed by bw/day for lung lesions occur safety factor of 100. This act available toxicological data s specific comments on the eve EFSA notes that based on JN Disrupting properties relevan <i>increase or follicular cell hypp peroxidase (TPO) resulting ir circulation triiodothyronine (regulation, an increase in thy JMPR concluded that the AD NH (P-NH, metabolite B) and Regarding metabolites relevan administered dose in either of excreta might refer to both the exceeding 10% in plasma or faeces. Therefore, uncertaint covered by the parent comp Regarding metabolites P-aa and P-NH-5-CH2OH, no to</i>	r, hearth and adre a safety factor o iLs in the two-ger he one-year study tered in EU and t FSA. EFSA does n y JMPR was derive inred as acute effet tive substance is et has not been r valuation made by APR assessment, nt for human heal <i>erplasia could be</i> <i>n a lower availabii</i> <i>T3) and thyroxine</i> <i>yroid stimulating J</i> I and ARfD are a d pyflubumide - ant for residues, b potentially conside dicates that this is excreta or plasma urine and faeces, urine and to exc ty is identified if to ound. miline isobutyr	enals in the f 100. The herefore f in dogs (herefore f in the ed from the ed from the ed from the not regist reviewed (y JMPR. the active the 'Thyro clearly at lity of iod e (T4) and hormone pplicable RfOH (P- based on dered cover metabolita in ADME EFSA car clude that this metabolita (metabolita) at (metabolita)	ne 2-year study e ADI was supp tudy in rats (0. (1.1 mg/kg bw the available to specific commer ne offspring NC two-generation ered in EU and by EFSA. EFSA e substance mig- bid effects such tributed to inhi- line, reduced cc d, because of h (TSH) release.' to the metaboli- the JMPR repor- rered by the pa- e exceeded 109 5 studies. Consis- not evaluate if this metabolite polite can be co- polite L), P-acic ailable in the JN	of toxicity and borted by the 8 mg/kg bw per per day). This xicological data set its on the evaluation AEL of 0.8 mg/kg in rat study, using a therefore the does not have ght have Endocrine <i>as organ weight</i> <i>bition of thyroid</i> <i>orcentrations of</i> <i>ormonal feedback</i> ites pyflubumide - ite U). t, metabolite rent compound. % of the dering that the term this metabolite was is excreted in insidered fully I (metabolite H) <i>I</i> PR report.

5.45.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf RD RA	Plant products	Pyflubumide (only fruits and leafy crops)	No specific residue definition is set in the EU; the default	Not appropriate
	Animal products	No information available	residue definition as pyflubumide is applicable	Not appropriate
	Plant products	Sum of pyflubumide and 3'- isobutyl-1,3,5-trimethyl-4'- [2,2,2-trifluoro-1-methoxy-1- (trifluoromethyl)ethyl] pyrazole-4-carboxanilide (P- NH), expressed as pyflubumide.		Not appropriate
	Animal products	No information available		Not appropriate
	apples, up to 92 pyflubumide-NH spinach pyflubu investigated, th parts. Based on this d For RA, conside definitions as re The use of pyflu triggering the a would be requir Hydrolysis studi pasteurisation con brewing/boiling, 19% and 10% of 12% of AR. A to	es under standard conditions w conditions, pyflubumide remains ditions, parent degraded up to , P-NH (metabolite H) and P-a of the AR, respectively. Under th oxicological assessment of P-an ide on the toxicological relevance	were found in insignificant amo enforcement in plant as pyflub ered by the parent, JMPR prop lefinitions cover only fruit and I to lead to a significant dietary al products. Hence, metabolism ere provided for pyflubumide re stable, whereas under baking/ 71% of applied radioactivity (AF niline isobutyryl (metabolite le sterilisation condition P-NH i iline-isobutyryl (metabolite L ce of the degradation products of	the parent, RRs at 51 DAT); in In the three crops unt in the edible umide. osed the residue eafy crops. burden for livestock, studies for livestock sidues; under brewing/boiling and R). Under baking/ L) is formed up to s also formed up to) should be made

Table 219: Comparison of the residue definitions derived by JMPR and at EU level

5.45.4. Codex MRL proposals

Table 220:	Comparison of Co	dex MRL proposals	derived by JMPR	with EU MRLs
------------	------------------	-------------------	-----------------	--------------

Commodity	Codex MRL proposal	EU MRL Default MRLs apply	Comment
Apple	1 (ft)	*	cGAP: Japan: 1x10 g/hL, PHI 1 day Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: The number of trials is sufficient to support the Codex MRL proposal. However, the use in apples would trigger a dietary burden calculation for livestock and an assessment of residues in animal products, which were not reported in the JMPR report. Conclusion: The proposed Codex MRL is not acceptable

Commodity	Codex MRL proposal	EU MRL Default MRLs apply	Comment	
			because an acute risk consumer was identified. Follow-up action: None	
Tea, Green, Black (black, fermented and dried)	80 (ft)	0.01*	cGAP: Japan: 1x10 g/hL, PHI 7 days Number of trials: 6 (matching GAP), 2 (with application of 5g/hL) Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL proposal was derived by combining the 6 GAP compliant trials with the two underdosed trials which were scaled up with a factor of 2. Conclusion: The proposed Codex MRL is not acceptable because an acute risk consumer was identified. Follow-up action: None	
General comments	Default MRL of	⁻ 0.01 mg/kg ad	ccording to Art. 18(1)(b) Reg 396/2005 for all the commodities.	

*: Indicates that the MRL is proposed at the limit of quantification.

5.45.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for the commodities, for which the Codex MRL proposal is higher than the existing EU MRL. The calculations are affected by additional, non-standard uncertainties, related to missing information on livestock assessment and toxicological information on the metabolite P-NH-isobutyryl. The risk assessment was performed with the JMPR ARfD. The calculations are indicative, because underestimate the	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1, by using the default EU-MRLs and including the STMR values derived by JMPR for the evaluated crops with higher the proposed Codex MRL than the EU MRL. The calculations are affected by additional, non-standard uncertainties, related to missing information on livestock assessment and toxicological information on the metabolite P-NH-isobutyryl. The risk assessment was performed with the EU ADI. The calculations are indicative,	Specific comments: JMPR concluded that the estimated acute dietary exposure to residues of pyflubumide for the consumption of apple and tea may present a public health concern.
contribution of the toxicity of P-NH- isobutyryl metabolite.	because underestimate the contribution of the toxicity of P-NH- isobutyryl metabolite.	
Results: The calculated short-term exposure exceeded the ARfD for both crops under assessment. Apples: 741% of ARfD; Tea leaves: 258% of ARfD	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 82% of the ADI. Among the crops under consideration, tea leaves were identified as the main contributor, accounting for up to 27% of the ADI.	Results: Long-term exposure: Max 20% of the JMPR ADI. Short-term exposure: Also for JMPR an acute risk was identified for both crops; apples 160% of ARfD and tea (dried leaf) 230% ARfD

5.46. Pyridate (315) T

5.46.1. Background information

Table 222: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New compound evaluation	
RMS	AT	
Approval status	Approved	Commission Implementing Regulation (EU) 2015/1115 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2014m)
MRL review performed	Yes, see comments	(EFSA, 2012e)
MRL applications/assessments	Yes, see comments	(EFSA, 2012g) (celery leaves)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded/not finalised, see comments	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/ 605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) 2015/1115 of 9 July 2015 renewing the approval of the active substance pyridate in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 182, 10.7.2015, p. 22–25.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.46.2. Toxicological reference values

Table 223: Comparison of toxicological reference values (TRV derived by JMPR and at EU level)

	JMPR evaluation			TRV	
	Value	Comments	Value	Comments	comparable
ADI	0.2 mg/kg bw per day	JMPR (2019)	0.036 mg/kg bw per day	(EFSA, 2014m) (3-generation study with uncertainty factor 100)	No
ARfD	2 mg/kg bw	JMPR (2019)	0.4 mg/kg bw	(EFSA, 2014m) (developmental study in rats with uncertainty factor 400)	No
Conclusion/ comment	factor 400)				8.6 mg/kg bw at NOAEL for icrease relative 5 mg/kg bw per the acute 5 in the EU the dy based on ame range, in ect (i.e. exposure is dafol, CL 9673- nilar ridate were

5.46.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Not assessed	Reg. 396/2005, peer review (EFSA, 2014m) and MRL review (EFSA 2012e): Pyridate (sum of pyridate, its hydrolysis product CL 9673 (6-chloro-4-hydroxy-3-phenylpyridazin) and hydrolysable conjugates of CL 9673 expressed as pyridate)	Not appropriate
	Animal products	Not assessed	Reg. 396/2005, peer review (EFSA, 2014m) and MRL review (EFSA, 2012e): Pyridate (sum of pyridate, its hydrolysis product CL 9673 (6-chloro-4-hydroxy-3-phenylpyridazin) and hydrolysable conjugates of CL 9673 expressed as pyridate) The residue is not fat soluble	Not appropriate
RD RA	Plant products	Not assessed	Peer review (EFSA, 2014m) and MRL review Art. 12 (EFSA, 2012e) Pyridate (sum of pyridate, its hydrolysis product CL 9673 (6-chloro-4-hydroxy-3-phenylpyridazin) and hydrolysable conjugates of CL 9673, expressed as pyridate)	Not appropriate
	Animal products	Not assessed	Peer review (EFSA, 2014m): CL 9673 (Pyridafol), expressed as Pyridate MRL review Art. 12 (EFSA, 2012e): Sum of pyridate, its hydrolysis product 6-chloro- 4-hydroxy-3-phenylpyridazin and hydrolysable conjugates of 6-chloro-4-hydroxy-3- phenylpyridazin, expressed as pyridate	Not appropriate
Conclusion, comments	-			

Table 224:	Comparison of the residue definitions derived b	y JMPR and at EU level

5.46.4. Codex MRL proposals

Not relevant, no MRL proposals were derived by JMPR.

5.46.5. Consumer risk assessment

Not relevant, no MRL proposals were derived by JMPR.

5.47. Pyrifluquinazon (316) R/T

5.47.1. Background information

Table 225: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New compound evaluation	
RMS	no RMS assigned	
Approval status	Not approved	Never notified and authorised in the EU
EFSA conclusion available	No	
MRL review performed	No	
MRL applications/assessments	No	
Classification of a.s. – cut-off criteria	No	

		Comments, references
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(a)) has not been performed yet

(a): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.47.2. Toxicological reference values

Table 226:	Comparison of toxicological	reference values	(TRV derived by JMPF	R and at EU level)
------------	-----------------------------	------------------	----------------------	--------------------

	JMPR evaluation EU evaluation			evaluation	TRV
	Value	Comments	Value	Comments	comparable
ADI	0.005 mg/kg bw per day	JMPR (2019)	-	-	Not appropriate
ARfD	1 mg/kg bw	JMPR (2019)	-	_	Not appropriate
Conclusion/ comment	The ADI and ARfD derived The JMPR could not conclu in radish roots), IV-03 (four (predominant residue in mi liver), IV-17 (goat fat) and In view of the absence of r on the toxicity of these me For IV-03, IV-04 and IV-15 (genotoxicity); the estimate potential DNA-reactive mut For IV-02, IV-17 and IV-20	de on the toxicolo nd in goat milk ar lk), IV-15 (found IV-208 (milk, mu epeated dose tox tabolites. , JMPR used the T ed exposure was agens and/or car	ogical rele nd tissues in goat k scle, fat, kicity stud ITC of 0.0 above the cinogens.	evance of metal , and in chicker idney and liver, liver, kidney, eg ies, no conclusi 2025 µg/kg bw e threshold for a	polites IV-02 (found n liver), IV-04 in eggs and chicken ggs). on could be drawn per day compounds that are

5.47.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products	Sum of pyrifluquinazon and 1,2,3,4-tetrahydro-3-[(3- pyridylmethyl)amino]-6-[1,2,2,2-tetrafluoro-1- (trifluoromethyl)ethyl]quinazolin-2-one (IV-01) expressed as pyrifluquinazon	No EU residue definitions derived	Not appropriate		
	Animal products	Tissues: Sum of 1,2,3,4-tetrahydro-3-[(3- pyridylmethyl)amino]-6-[1,2,2,2-tetrafluoro-1- (trifluoromethyl)ethyl]quinazolin-2-one (IV-01) and 1,2,3,4-tetrahydro-6-[1,2,2,2-tetrafluoro-1- (trifluoromethyl)ethyl] quinazolin-2,4-dione (IV-203) and their conjugates (expressed as pyrifluquinazon). Milk: 1,2,3,4-tetrahydro-3-[3-(1-oxy- pyridylmethylene)amino]-6-[1,2,2,2-tetrafluoro-1- (trifluoromethyl)ethyl]quinazolin-2-one (IV-04). The residue is not fat soluble	_	Not appropriate		
RD RA	Plant products	Sum of pyrifluquinazon and 1,2,3,4-tetrahydro-3-[(3- pyridylmethyl)amino]-6-[1,2,2,2-tetrafluoro-1- (trifluoromethyl)ethyl]quinazolin-2-one (IV-01) expressed as pyrifluquinazon	_	Not appropriate		
	Animal products	A conclusion could not be reached	-	Not appropriate		
Conclusion, comments	Because JMPR could not conclude on the toxicological relevance of metabolites IV-03, IV-04 and IV-15, no conclusion on a residue definition for dietary risk assessment could be reached. The JMPR approach, not to derive residue definitions for risk assessment as long as the toxicological relevance of metabolites is not clarified, is supported.					

5.47.4. Codex MRL proposals

Not relevant, no Codex MRL proposals were derived.

5.47.5. Consumer risk assessment

Not relevant, no Codex MRL proposals were derived.

5.48. Triflumuron (317) R/T

5.48.1. Background information

Table 228:Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New compound evaluation	
RMS	IT	
Approval status	Not approved	expiry of approval: 31/03/2021, no application to renew approval
EFSA conclusion available	Yes, see comments	(EFSA, 2011a)
MRL review performed	Yes, see comments	(EFSA, 2017e)
MRL applications/assessments	Yes, see comments	(EFSA, 2014d) (peaches, plums, oranges and mandarins)
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(a)) has not been performed yet.

(a): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.48.2. Toxicological reference values

	JMF	JMPR evaluation		EU evaluation	
	Value	Comments	Value	Comments	comparable
Triflumur	ron				
ADI	0.008 mg/kg bw per day	JMPR (2019) (based on 2-year rat study, with safety factor of 100) See	0.014 mg/kg bw per day	(EFSA, 2011a) (based on 1-year dog study supported by 2-year rat study, with uncertainty factor of 100) confirmed in (European Commission, 2011a)	No
ARfD	Unnecessary	JMPR (2019)	Not necessary	(EFSA, 2011a) confirmed in (European Commission, 2011a)	Yes
Metabolit	tes M02 and M03				
ADI	Same ADI as for parent		M02: Same ADI as for parent M03: not relevant, not included in RD.		No
ARfD	Unnecessary		M02: Not necessary M03: not relevant, not included in RD		Yes

	JMPR evaluation		EU evaluation		TRV		
	Value	Comments	Value	Comments	comparable		
Metabolites	6 M01 and M04						
ADI	No conclusion	No toxicity information available		lue as for parent ssed in the peer review	Not appropriate		
ARfD	No conclusion	No toxicity information available	M01: Not nece M04: not asses	ssary ssed in the peer review	Not appropriate		
Metabolites N	407 and M08 (ex	pressed as M07)					
ADI	0.02 mg/kg bw per day	JMPR (2019) (based on single oral gavage dose in rats, with safety factor 25)	Same value as	for parent	No		
ARfD	0.02 mg/kg bw per day	JMPR (2019) (based on single oral gavage dose in rats, with safety factor 25)	M07: 0.005 mg/kg bw per day M08: not necessary	(EFSA, 2011a) confirmed in (European Commission, 2011a) (based on 6-day single dose toxicity study in rat, with uncertainty factor of 100)	No		
Conclusion	were equally s supported by t study, i.e. 1.42 The JMPR asse rat study (sam During the EU to the metabo derived only fo standard unce The JMPR asse the metabolite basis of appar safety factor o JMPR also repu- data were ava It is noted tha the EU peer re						

5.48.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Triflumuron	Reg. 396/2005: Triflumuron Peer review (EFSA, 2011a): Triflumuron MRL review Art. 12 (EFSA, 2017e): Triflumuron (for fruit crops only)	Yes
	Animal products	Triflumuron The residue is fat soluble	Reg. 396/2005: Triflumuron Peer review (EFSA, 2011a): Triflumuron MRL review Art. 12 (EFSA, 2017e): Triflumuron The residue is fat soluble	Yes
RD RA	Plant products	A conclusion cannot be reached	Peer review (EFSA, 2011a): Fruit crops: Triflumuron Oilseed and tuber crops: Sum of triflumuron, M07 and M08 expressed as triflumuron (provisional)	Not appropriate

Table 230: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
			MRL review Art. 12 (EFSA, 2017e): Triflumuron (for fruit crops only)		
	Animal products	A conclusion cannot be reached	Peer review (EFSA, 2011a): Triflumuron (provisional) MRL review Art. 12 (EFSA, 2017e): Triflumuron	Not appropriate	
Conclusion, comments	, JMPR assessed metabolism studies in apples, tomatoes, soyabeans and potatoes and metabol				

5.48.4. Codex MRL proposals

Residue data were submitted to JMPR to support a use in soyabeans (Colombian GAP), but since no residue definitions for risk assessment could be derived, the JMPR did not derive MRL proposals.

In the EU, a number of MRLs are established for fruit crops (apples, pears: 0.5 mg/kg, apricots: 1 mg/kg, peaches: 0.4 mg/kg, plums: 0.1 mg/kg).

Considering the recent toxicological assessment of JMPR, risk managers should discuss the possible re-evaluation of the active substance in the EU.

5.48.5. Consumer risk assessment

Not relevant, since no Codex MRL proposal was derived.

5.49. Valifenalate (318) R/T

5.49.1. Background information

Table 231: Background information

		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	New compound evaluation	
RMS	HU	
Approval status	Approved	Commission Implementing Regulation (EU) No 144/2014 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2013i)
MRL review performed	Yes, see comments	(EFSA, 2021i) ^(c)
MRL applications/ assessments	Yes, see comments	(EFSA, 2018l) (various crops) (EFSA, 2009e) (tomatoes and aubergines)
Classification of a.s. – cut- off criteria	Not assessed/not concluded	
Endocrine effects of a.s.	Not assessed/not concluded	Not assessed: ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) No 144/2014 of 14 February 2014 approving the active substance valifenalate, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 45, 15.2.2014, p. 7–11.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

(c): The assessment performed in the recently published reasoned opinion could not be taken into account for the assessment in this report.

5.49.2. Toxicological reference values

	JMPR e	JMPR evaluation		EU evaluation		
	Value	Comments	Value	Comments	comparable	
ADI	0.2 mg/kg bw per day	JMPR meeting September 2019	0.07 mg/kg bw per day	(EFSA, 2013i) (1-year dog study and 100 UF) confirmed in (European Commission, 2013b)	No	
ARfD	Unnecessary	JMPR meeting September 2019	Not necessary	(EFSA, 2013i) confirmed in (European Commission, 2013b)	Yes	
Conclusion/ comment	ADI from JMPR was derived from the 78-week mouse study supported by the 90-day mouse study, while ADI in EU was derived from the 1-year dog study. The ADI derived by JMPR applies also to valifenalate acid and valifenalate acid (IR 5839) glucosyl ester, expressed as valifenalate.					

Table 232: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

5.49.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Valifenalate	Reg. 396/2005: Valifenalate Peer review (EFSA, 2013i): Valifenalate	Yes	
	Animal products	Valifenalate The residue is not fat soluble	Reg. 396/2005: Valifenalate Peer review (EFSA, 2013i) Valifenalate and its metabolite IR5839 (valifenalate acid, R2) The residue is not fat soluble	Yes, compared with the RD in Reg. 396/2005	
RD RA	Plant products	Valifenalate and 3-(4- chlorophenyl)-3-[[N- (isopropoxycarbonyl)-L- valyl]amino]propionic acid (valifenalate-acid), (free and conjugated) expressed as valifenalate	Peer review (EFSA, 2013i): Valifenalate	No	
	Animal products	Valifenalate and 3-(4- chlorophenyl)-3-[[N- (isopropoxycarbonyl)-L- valyl]amino]propionic acid (valifenalate-acid), expressed as valifenalate	Peer review (EFSA, 2013i): Valifenalate and its metabolite IR5839 (valifenalate acid, R2)	Yes	
Conclusion, comments	 JMPR assessed metabolism studies in fruits (grapes), roots (potatoes) and leafy (lettuce) following foliar treatment. Valifenalate was the major residues in all investigated crops accounting between 66 and 99% of TRRs. For plants, JMPR proposed the enforcement resi definition as valifenalate. For the risk assessment, valifenalate acid was also included in the In the EU, based on the same metabolism studies, the residue definition for enforcement arisk assessment was derived as valifenalate. The RDs for enforcement (plant and animal products) derived by JMPR are comparable with EU residue definitions implemented in Reg. 396/2005. The RD for risk assessment (animal products) is also comparable. However, the residue definite for RA derived by JMPR for plants is wider than the EU RD. Hence the input values for RA a likely to be more conservative. 				

Table 233: Comparison of the residue definitions derived by JMPR and at EU level

5.49.4. Codex MRL proposals

Table 234:	Comparison of Codex MRL	proposals derived by JMPR with EU MRLs
------------	-------------------------	--

Commodity	Codex MRL proposal	EU MRL	Comment
Eggplants	0.4	0.8	cGAP: France, 3×150 g a.i./ha, RTI 7 days, PHI 3 daysNumber of trials: 9 (tomatoes) Sufficiently supported by data: Yes Specific comments/observations: Nine GAP compliant residue trials conducted in tomatoes were submitted, which were used to derive the MRL proposal by extrapolation. The existing EU MRL is higher and is based on indoor use on tomatoes. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Grapes	0.3	0.2 (table and wine grapes)	cGAP: Italy, 3×120 g a.i./ha, RTI 10–14 days, PHI 28 days for wine grapes, 70 days for table grapes. Number of trials: 16 Sufficiently supported by data: Yes Specific comments/observations: The setting of separate MRLs for table and wine grapes might be considered, since the PHI differ significantly. However, it is acknowledged that JMPR has a different policy on the setting MRLs for grapes (usually the setting of separate MRLs for table and wine grapes is not the usual JMPR practice). Conclusion: The proposed Codex MRL is acceptable. Follow-up action: To check in JMPR evaluation whether the residue trials assessed were compliant with the GAP for table or for wine grapes.
Onion, bulb	0.5	0.5	cGAP: Bulgaria, 3×150 g a.i./ha, RTI 7 days, PHI 3 days Number of trials: 12 Sufficiently supported by data: Yes Specific comments/observations: The existing EU MRL is based on the same GAP. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Shallot	0.5	0.5	cGAP: Bulgaria, 3 × 150 g a.i./ha, RTI 7 days, PHI 3 days Number of trials: 12 trials in onions Sufficiently supported by data: Yes Specific comments/observations: Extrapolation from onions. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Tomato	0.4	0.8	cGAP: France, 3 × 150 g a.i./ha, RTI 7 days, PHI 3 days Number of trials: 9 Sufficiently supported by data: Yes Specific comments/observations: Nine GAP compliant residue trials conducted in tomatoes were submitted. The existing EU MRL is higher and is based on indoor use on tomatoes. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Edible offal (mammalian)	0.01*	0.01*	Grape and tomato pomace are potential feed items in Australia for livestock. Since valifenalate is not registered in Australia, JMPR proposed a default CXL

Commodity	Codex MRL proposal	EU MRL	Comment
			of 0.01 mg/kg. The proposal is acceptable.
Eggs	0.01*	0.01*	The crops under consideration are not feed for poultry. The CXL proposal is acceptable.
Milks	0.01*	0.01*	See edible offal (mammalian)
Meat (from mammals other than marine mammals)	0.01*	0.01*	See edible offal (mammalian)
Mammalian fats (except milk fats)	0.01*	0.01*	See edible offal (mammalian)
Poultry edible offal	0.01*	0.01*	See eggs
Poultry fat	0.01*	0.01*	See eggs
Poultry meat	0.01*	0.01*	See eggs.
General comments			

 \ast : Indicates that the MRL is proposed at the limit of quantification.

5.49.5. Consumer risk assessment

_

Table 235:	Summary of the	consumer risk	assessment
------------	----------------	---------------	------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated.	RA assumptions: A long-term dietary risk assessment was performed using PRIMo rev. 3.1. The input values of the most recent long-term risk assessment (EFSA, 2018I) were updated, including the STMR values for grapes.	Specific comments: _
Results: Not relevant	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 2% of the ADI. Among the crops under consideration, wine grapes were identified as the main contributor, accounting for up to 0.28% of the ADI.	Results: Long-term exposure: Max 0% of the JMPR ADI. Short-term exposure: Not relevant (JMPR did not derive an ARfD).

5.50. Acetamiprid (246), carbendazim (072) – Codex MRL proposals for spices (seeds)

5.50.1. Background information

Table 236:Background information

Acetamiprid		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	Other evaluation, see comment	Review of monitoring data to derive MRL proposal for spices
RMS	NL	
Approval status	Approved	Commission Implementing Regulation (EU) 2018/113 ^(a)
EFSA conclusion available	Yes, see comments	(EFSA, 2016p)
MRL review performed	Yes, see comments	(EFSA, 2011j)
MRL applications/assessments	Yes, see comments	(EFSA, 2018h) (Art.43 assessment and modification of the existing MRLs in table olives, olives for oil production, barley and oats)

Acetamiprid		Comments, references
		(EFSA, 2016a) (various crops) (EFSA, 2015t) (leafy brassicas) (EFSA, 2014n) (bananas) (EFSA, 2013s) (apricots and tree nuts) (EFSA, 2012m) (purslane, legume vegetables and pulses) (EFSA, 2011g) (flowering brassica and figs) (EFSA, 2010) (various commodities) (EFSA, 2010i) (various commodities) (EFSA, 2010i) (land cress and red mustard) (EFSA, 2009f) (beet leaves) (EFSA, 2009c) (cress, spinach and herbs) Ongoing (additional data requested): modification of the existing MRLs in poppy seeds and in various crops
Classification of a.s. – cut-off criteria	No	
Endocrine effects of a.s.	Not assessed, see comments	ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet
Carbendazim		Comments, references
JMPR assessment	JMPR meeting September 2019	
Type of JMPR evaluation	Other evaluation, see comment	Review of monitoring data to derive MRL proposal for spices
RMS	DE	
Approval status	Not approved	Non-approval due classification Reg. 1272/2008 ^(c) (see cut- off criteria Max. period of grace: 31/05/2016
EFSA conclusion available	Yes, see comments	(EFSA, 2010g)
MRL review performed	Yes, see comments	(EFSA, 2014q)
MRL applications/assessments	Yes, see comments	(EFSA, 2012d) Ongoing: Art. 43 assessment
Classification of a.s. – cut-off criteria	Yes, see comments	Mutagen cat. 1B Toxic for reproduction cat. 1B
Endocrine effects of a.s.	Not assessed, see comments	ED assessment according to ECHA and EFSA guidance (ECHA and EFSA, 2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)) has not been performed yet

(a): Commission Implementing Regulation (EU) 2018/113 of 24 January 2018 renewing the approval of the active substance acetamiprid in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 20, 25.1.2018, p. 7–10.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

(c): Commission Implementing Regulation (EU) 2019/677 of 29 April 2019 concerning the non-renewal of the approval of the active substance chlorothalonil, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. OJ L 114, 30.4.2019, p. 15–17.

5.50.2. Toxicological reference values

	JMPR evalu	JMPR evaluation		EU evaluation	
	Value	Comments	Value	Comments	comparable
Acetamip	orid				
ADI	0.07 mg/kg bw per day	JMPR (2011)	0.025 mg/kg bw per day	Reg. (EU) 2018/113 ^(b)	No
ARfD	0.1 mg/kg bw	JMPR (2011)	0.025 mg/kg bw	Reg. (EU) 2018/113 ^(b)	No
Carbenda	azim				
ADI	0.03 mg/kg bw per day	JMPR (1995)	0.02 mg/kg bw per day	Commission Directive 2006/135/EC ^(a)	No
ARfD	0.1 mg/kg bw for women of child- bearing age) 0.5 mg/kg bw (for the general population)	JMPR (1995)	0.02 mg/kg bw	Commission Directive 2006/135/EC ^(a)	No

Table 237: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

(a): Commission Directive 2006/135/EC of 11 December 2006 amending Council Directive 91/414/EEC to include carbendazim as active substance. OJ L 349, 12.12.2006, p. 37–41.

(b): Commission Implementing Regulation (EU) 2018/113 of 24 January 2018 renewing the approval of the active substance acetamiprid in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 20, 25.1.2018, p. 7–10.

5.50.3. Residue definitions

Table 238:	Comparison of the residue defini	tions derived by JMPR and at EU level
------------	----------------------------------	---------------------------------------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
Acetamiprid				
RD enf	Plant products	Acetamiprid	Reg. 396/2005: Acetamiprid	Yes
RD RA	Plant products	Sum of acetamiprid and its desmethyl (IM-2-1) metabolite, expressed as acetamiprid	sum of acetamiprid and N- desmethyl-acetamiprid, expressed as acetamiprid sum of acetamiprid and N- desmethyl-acetamiprid, expressed as acetamiprid Reg. 396/2005: Sum of acetamiprid and N- desmethyl-acetamiprid, expressed as acetamiprid	Yes
Carbendazim				
RD enf	Plant products	Sum of benomyl, carbendazim and thiophanate-methyl, expressed as carbendazim	Reg. 396/2005: Carbendazim and benomyl (sum of benomyl and carbendazim expressed as carbendazim)	No
RD RA	Plant products	Sum of benomyl, carbendazim and thiophanate-methyl, expressed as carbendazim	Art. 12 (EFSA, 2014q): carbendazim	No
Conclusion, comments	-			

5.50.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Acetamiprid			
Spices, seeds, Subgroup of	2	0.05*	Number of monitoring results: 357 samples of cumin (123 samples with quantifiable residues) Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Spices, seeds, Subgroup of	5	0.1*	Number of monitoring results: 357 samples of cumin (172 samples with quantifiable residues) Sufficiently supported by data: Yes Specific comments/observations: The samples were analysed in compliance with the Codex residue definition. Conclusion: The proposed Codex MRL is acceptable. Follow-up action: None
Comments	-		

Table 239: Comparison of Codex MRL proposals derived by JMPR with EU MRLs

*: Indicates that the MRL is proposed at the limit of quantification.

5.50.5. Consumer risk assessment

Table 240: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was performed using PRIMo rev. 3.1 for spices, seeds only. EFSA used the STMR values, since it is likely that the spices are bulked and blended before they are consumed by European consumers. The risk assessment was performed with the EU ARfD values for acetamiprid and carbendazim, respectively.	RA assumptions: EFSA calculated a focussed long-term dietary risk assessment for spices seeds only using PRIMo rev. 3.1 for spices, seeds only. The risk assessment was performed with the EU ADI values derived for acetamiprid and carbendazim, respectively.	Specific comments: -
Acetamiprid		
Posults	Posults	Posults

Results: No short-term consumer health risk was identified for the crops under assessment.		Results: No long-term consumer health risk was identified. The contribution of spices to the chronic	Results: Long-term exposure: Max 0% of the JMPR ADI. Short-term exposure: IESTI
1.76%	Fennel seed	exposure accounted for 0.1% of the ADI.	0% of ARfD
0.23%	Black caraway/black cumin		
0.23%	Nutmeg		
0.23%	Fenugreek		
0.23% Coriander seed			
0.23%	Anise/aniseed		

Acute exposure assessment		Chronic exposure assessment	Comments on JMPR exposure assessment			
Carbend	Carbendazim					
Results: No short-term consumer health risk was identified for the crops under assessment.		Results: No long-term consumer health risk was identified. The contribution to the overall chronic	Results: Long-term exposure: Max 0% of the JMPR ADI. Short-term exposure: IESTI			
2.02%	Fennel seed	exposure accounted for 0.1% of the ADI.	0% of ARfD			
0.26%	Black caraway/black cumin					
0.26%	Nutmeg					
0.26%	Fenugreek					
0.26% Coriander seed						
0.26%	Anise/aniseed					

References

- ECHA (European Chemicals Agency), 2019a. Committee for Risk Assessment (RAC) Opinion proposing harmonised classification and labelling at EU level of N-methoxy-N-[1-methyl-2-(2,4,6-trichlorophenyl)-ethyl]-3- (difluoromethyl)-1-methylpyrazole-4-carboxamide; pydiflumetofen. CLH-O-0000001412-86-271/F. Adopted 15 March 2019.
- ECHA (European Chemicals Agency), 2019b. Committee for Risk Assessment (RAC) Opinion proposing harmonised classification and labelling at EU level of (5-chloro-2-methoxy-4-methyl-3-pyridyl)(4,5,6- trimethoxy-o-tolyl) methanone; pyriofenone. CLH-O-0000001412-86-287/F. Available online: www.echa.europa.eu [Accessed: 13 June 2019]
- ECHA and EFSA (European Chemicals Agency and European Food Safety Authority) with the technical support of the Joint Research Centre (JRC), Andersson N, Arena M, Auteri D, Barmaz S, Grignard E, Kienzler A, Lepper P, Lostia AM, Munn S, Parra Morte JM, Pellizzato F, Tarazona J, Terron A and Van der Linden S, 2018. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA Journal 2018;16(6):5311, 135 pp. https://doi.org/10.2903/j.efsa.2018.5311. ECHA-18-G-01-EN.
- EFSA (European Food Safety Authority), 2006a. Conclusion regarding the peer review of the pesticide risk assessment of the active substance cyprodinil. EFSA Journal 2006;4(1):RN-51, 78 pp. https://doi.org/10.2903/j.efsa.2006.51r
- EFSA (European Food Safety Authority), 2006b. Conclusion on the peer review of the pesticide risk assessment of the active substance fosetyl. EFSA Journal 2006;4(1):54r, 79 pp. https://doi.org/10.2903/j.efsa.2006.54r
- EFSA (European Food Safety Authority), 2006c. Conclusion regarding the peer review of the pesticide risk assessment of the active substance metconazole. EFSA Journal 2006;4(2):RN-64, 71 pp. https://doi.org/ 10.2903/j.efsa.2006.64r
- EFSA (European Food Safety Authority), 2008a. Conclusion regarding the peer review of the pesticide risk assessment of the active substance tebuconazole. EFSA Journal 2008;6(10):176r, 109 pp. https://doi.org/ 10.2903/j.efsa.2008.176r
- EFSA (European Food Safety Authority), 2008b. Conclusion regarding the peer review of the pesticide risk assessment of the active substance bifenthrin. EFSA Scientific Report 2008;186, 109 pp. https://doi.org/ 10.2903/j.efsa.2009.186r
- EFSA (European Food Safety Authority), 2009a. Reasoned opinion of EFSA: MRLs of concern for the active substances dimethoate and omethoate. EFSA Journal 2009;7(1):172, 63 pp. https://doi.org/10.2903/j.efsa. 2009.172r
- EFSA (European Food Safety Authority), 2009b. Conclusion regarding the peer review of the pesticide risk assessment of the active substance zeta-cypermethrin. EFSA Journal 2009;7(1):RN-196, 119 pp. https://doi.org/10.2903/j.efsa.2009.196r
- EFSA (European Food Safety Authority), 2009c. Reasoned opinion on the modification of the existing MRLs for acetamiprid in cress, spinach and herbs. EFSA Scientific Report 2009;247, 24 pp. https://doi.org/10.2903/j.efsa.2009.247r
- EFSA (European Food Safety Authority), 2009d. Reasoned opinion on the modification of the existing MRLs for boscalid in gherkins and courgettes. EFSA Journal 2009;335, 28 pp. https://doi.org/10.2903/j.efsa.2009.335r
- EFSA (European Food Safety Authority), 2009e. Reasoned opinion on the modification of the existing MRLs for valifenalate (valiphenal) in tomatoes and aubergines. EFSA Journal 2009;7(11):1388, 20 pp. https://doi.org/ 10.2903/j.efsa.2009.1388

www.efsa.europa.eu/efsajournal

- EFSA (European Food Safety Authority), 2009f. Reasoned opinion on the modification of the existing MRL for acetamiprid in beet leaves (chard). EFSA Journal 2009;7(12):1443, 22 pp. https://doi.org/10.2903/j.efsa.2009. 1443
- EFSA (European Food Safety Authority), 2010a. Conclusion on the peer review of the pesticide risk assessment of the active substance flonicamid. EFSA Journal 2010;8(5):1445, 63 pp. https://doi.org/10.2903/j.efsa.2010.1445
- EFSA (European Food Safety Authority), 2010b. Reasoned opinion on the modification of the existing MRLs for dimethoate in cauliflower, broccoli, Brussels sprouts and lettuce. EFSA Journal 2010;8(1):1456, 34 pp. https://doi.org/10.2903/j.efsa.2010.1456
- EFSA (European Food Safety Authority), 2010c. Reasoned opinion on the modification of the existing MRLs for dimethoate in various crops. EFSA Journal 2010;8(3):1528, 35 pp. https://doi.org/10.2903/j.efsa.2010.1528
- EFSA (European Food Safety Authority), 2010d. Reasoned opinion on the modification of the existing MRLs for metconazole in various crops. EFSA Journal 2010;8(3):1534, 29 pp. https://doi.org/10.2903/j.efsa.2010.1534
- EFSA (European Food Safety Authority), 2010e. Conclusion on the peer review of the pesticide risk assessment of the active substance azoxystrobin. EFSA Journal 2010;8(4):1542, 110 pp. https://doi.org/10.2903/j.efsa.2010. 1542
- EFSA (European Food Safety Authority), 2010f. Reasoned opinion on the modification of the existing MRL for fenazaquin in tea (dried or fermented leaves and stalks of Camellia sinensis). EFSA Journal 2010;8(5):1581, 25 pp. https://doi.org/10.2903/j.efsa.2010.1581
- EFSA (European Food Safety Authority), 2010g. Conclusion on the peer review of the pesticide risk assessment of the active substance carbendazim. EFSA Journal 2010;8(5):1598, 76 pp. https://doi.org/10.2903/j.efsa.2010. 1598
- EFSA (European Food Safety Authority), 2010h. Conclusion on the peer review of the pesticide risk assessment of the active substance buprofezin. EFSA Journal 2010;8(6):1624, 77 pp. https://doi.org/10.2903/j.efsa.2010. 1624
- EFSA (European Food Safety Authority), 2010i. Reasoned opinion on the modification of the existing MRLs for acetamiprid in land cress and red mustard. EFSA Journal 2010;8(6):1643, 23 pp. https://doi.org/10.2903/j.efsa.2010.1643
- EFSA (European Food Safety Authority), 2010j. Reasoned opinion on the modification of the existing MRLs for boscalid in various crops. EFSA Journal 2010;8(9):1780, 51 pp. https://doi.org/10.2903/j.efsa.2010.1780
- EFSA (European Food Safety Authority), 2010k. Conclusion on the peer review of the pesticide risk assessment of the active substance kresoxim-methyl. EFSA Journal 2010;8(11):1891, 88 pp. https://doi.org/10.2903/j.efsa. 2010.1891
- EFSA (European Food Safety Authority), 2010I. Reasoned opinion on the modification of the existing MRLs for acetamiprid in various commodities. EFSA Journal 2010;8(11):1898, 60 pp. https://doi.org/10.2903/j.efsa. 2010.1898
- EFSA (European Food Safety Authority), 2010m. Conclusion on the peer review of the pesticide risk assessment of the active substance fluazifop-P (evaluated variant fluazifop-P-butyl). EFSA Journal 2010;8(11):1905, 76 pp. https://doi.org/10.2903/j.efsa.2010.1905
- EFSA (European Food Safety Authority), 2010n. Reasoned opinion on the modification of the existing MRLs for kresoxim-methyl in blueberries and cranberries. EFSA Journal 2010;8(12):1933, 25 pp. https://doi.org/ 10.2903/j.efsa.2010.1933
- EFSA (European Food Safety Authority), 2011a. Conclusion on the peer review of the pesticide risk assessment of the active substance triflumuron. EFSA Journal 2011;9(1):1941, 81 pp. https://doi.org/10.2903/j.efsa.2011. 1941
- EFSA (European Food Safety Authority), 2011b. Conclusion on the peer review of the pesticide risk assessment of the active substance dicamba. EFSA Journal 2011;9(1):1965, 52 pp. https://doi.org/10.2903/j.efsa.2011.1965
- EFSA (European Food Safety Authority), 2011c. Reasoned opinion on the modification of the existing MRLs for pyraclostrobin in various crops. EFSA Journal 2011;9(3):2120, 41 pp. https://doi.org/10.2903/j.efsa.2011.2120
- EFSA (European Food Safety Authority), 2011d. Conclusion on the peer review of the pesticide risk assessment of the active substance acetochlor. EFSA Journal 2011;9(5):2143, 109 pp. https://doi.org/10.2903/j.efsa.2011. 2143
- EFSA (European Food Safety Authority), 2011e. Reasoned opinion on the modification of the existing MRLs for dimethoate in various crops. EFSA Journal 2011;9(4):2146, 33 pp. https://doi.org/10.2903/j.efsa.2011.2146
- EFSA (European Food Safety Authority), 2011f. Conclusion on the peer review of the pesticide risk assessment of the active substance bifenthrin. EFSA Journal 2011;9(5):2159, 101 pp. https://doi.org/10.2903/j.efsa.2011. 2159
- EFSA (European Food Safety Authority), 2011g. Reasoned opinion on the modification of the current MRLs for acetamiprid in flowering brassica and figs. EFSA Journal 2011;9(5):2166, 27 pp. https://doi.org/10.2903/j.efsa. 2011.2166
- EFSA (European Food Safety Authority), 2011h. Reasoned opinion on the setting of new MRLs for fluxapyroxad (BAS 700 F) in various commodities of plant and animal origin. EFSA Journal 2011;9(6):2196, 68 pp. https://doi.org/10.2903/j.efsa.2011.2196

- EFSA (European Food Safety Authority), 2011i. Reasoned opinion on the modification of the existing MRLs for cypermethrin in various crops. EFSA Journal 2011;9(6):2280, 30 pp. https://doi.org/10.2903/j.efsa.2011.2280
- EFSA (European Food Safety Authority), 2011j. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for acetamiprid according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2011;9 (7):2328, 59 pp. https://doi.org/10.2903/j.efsa.2011.2328
- EFSA (European Food Safety Authority), 2011k. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for tebuconazole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2011;9 (8):2339, 96 pp. https://doi.org/10.2903/j.efsa.2011.2339
- EFSA (European Food Safety Authority), 2011I. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for pyraclostrobin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2011;9 (8):2344, 92 pp. https://doi.org/10.2903/j.efsa.2011.2344
- EFSA (European Food Safety Authority), 2011m. Conclusion on the peer review of the pesticide risk assessment of the active substance clethodim. EFSA Journal 2011;9(10):2417, 95 pp. https://doi.org/10.2903/j.efsa.2011. 2417
- EFSA (European Food Safety Authority), 2011n. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for metconazole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2011;9 (10):2422, 47 pp. https://doi.org/10.2903/j.efsa.2011.2422
- EFSA (European Food Safety Authority), 2011o. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for picoxystrobin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2011;9 (12):2488, 35 pp. https://doi.org/10.2903/j.efsa.2011.2488
- EFSA (European Food Safety Authority), 2012a. Conclusion on the peer review of the pesticide risk assessment of the active substance fluxapyroxad (BAS 700 F). EFSA Journal 2012:10(1):2522, 90 pp. https://doi.org/10.2903/j.efsa.2012.2522
- EFSA (European Food Safety Authority), 2012b. Reasoned opinion on the modification of the existing MRLs for pyraclostrobin in leafy brassica and various cereals. EFSA Journal 2012;10(3):2606, 36 pp. https://doi.org/ 10.2903/j.efsa.2012.2606
- EFSA (European Food Safety Authority), 2012c. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for pendimethalin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2012;10 (4):2683, 57 pp. https://doi.org/10.2903/j.efsa.2012.2683
- EFSA (European Food Safety Authority), 2012d. Reasoned opinion on the modification of the existing MRLs for thiophanate-methyl and carbendazim in apples and pears. EFSA Journal 2012;10(4):2685, 36 pp. https://doi.org/10.2903/j.efsa.2012.2685
- EFSA (European Food Safety Authority), 2012e. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for pyridate according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2012;10 (4):2687, 47 pp. https://doi.org/10.2903/j.efsa.2012.2687
- EFSA (European Food Safety Authority), 2012f. Reasoned opinion on the modification of the existing MRLs for dimethoate in olives for oil production and table olives. EFSA Journal 2012;10(5):2709, 31 pp. https://doi.org/ 10.2903/j.efsa.2012.2709
- EFSA (European Food Safety Authority), 2012g. Reasoned opinion on the modification of the existing MRL for pyridate in celery leaves (dill leaves). EFSA Journal 2012;10(9):2892, 25 pp. https://doi.org/10.2903/j.efsa. 2012.2892
- EFSA (European Food Safety Authority), 2012h. Reasoned opinion on the modification of the existing MRLs for tebuconazole in citrus (except oranges), lettuce and other salad plants, parsley and chives. EFSA Journal 2012;10(9):2898, 37 pp. https://doi.org/10.2903/j.efsa.2012.2898
- EFSA (European Food Safety Authority), 2012i. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for chlorothalonil according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2012;10 (10):2940, 87 pp. https://doi.org/10.2903/j.efsa.2012.2940
- EFSA (European Food Safety Authority), 2012j. Reasoned opinion on the setting of new MRLs for penthiopyrad in various crops. EFSA Journal 2012;10(10):2948, 96 pp. https://doi.org/10.2903/j.efsa.2012.2948
- EFSA (European Food Safety Authority), 2012k. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for fosetyl according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2012;10 (11):2961, 65 pp. https://doi.org/10.2903/j.efsa.2012.2961
- EFSA (European Food Safety Authority), 2012I. Reasoned opinion on the modification of the existing MRLs for fosetyl in potato, kiwi and certain spices. EFSA Journal 2012;10(12):3019, 43 pp. https://doi.org/10.2903/j.efsa.2012.3019
- EFSA (European Food Safety Authority), 2012m. Reasoned opinion on the modification of the existing MRLs for acetamiprid in purslane, legume vegetables and pulses (beans and peas). EFSA Journal 2012;10(12):3051, 28 pp. https://doi.org/10.2903/j.efsa.2012.3051
- EFSA (European Food Safety Authority), 2013a. Reasoned opinion on the modification of the existing MRLs for pyraclostrobin in cucumbers and Jerusalem artichokes. EFSA Journal 2013;11(2):3109, 27 pp. https://doi.org/ 10.2903/j.efsa.2013.3109

www.efsa.europa.eu/efsajournal

- EFSA (European Food Safety Authority), 2013b. Conclusion on the peer review of the pesticide risk assessment of the active substance penthiopyrad. EFSA Journal 2013;11(2):3111, 144 pp. https://doi.org/10.2903/j.efsa. 2013.3111
- EFSA (European Food Safety Authority), 2013c. Conclusion on the peer review of the pesticide risk assessment of the active substance chlorantraniliprole. EFSA Journal 2013;11(6):3143, 107 pp. https://doi.org/10.2903/j.efsa. 2013.3143
- EFSA (European Food Safety Authority), 2013d. Conclusion on the peer review of the pesticide risk assessment of the active substance pyriofenone. EFSA Journal 2013;11(4):3147, 84 pp. https://doi.org/10.2903/j.efsa.2013. 3147
- EFSA (European Food Safety Authority), 2013e. Conclusion on the peer review of the pesticide risk assessment of the active substance fenazaquin. EFSA Journal 2013;11(4):3166, 80 pp. https://doi.org/10.2903/j.efsa.2013. 3166
- EFSA (European Food Safety Authority), 2013f. Reasoned opinion on the modification of the existing MRLs for metconazole in barley and oats. EFSA Journal 2013;11(4):3185, 38 pp. https://doi.org/10.2903/j.efsa.2013.3185
- EFSA (European Food Safety Authority), 2013g. Reasoned opinion on the modification of the existing MRLs for pendimethalin in various crops. EFSA Journal 2013;11(5):3217, 27 pp. https://doi.org/10.2903/j.efsa.2013.3217
- EFSA (European Food Safety Authority), 2013h. Reasoned opinion on the modification of the existing MRL for tebuconazole in poppy seed. EFSA Journal 2013;11(5):3248, 31 pp. https://doi.org/10.2903/j.efsa.2013.3248
- EFSA (European Food Safety Authority), 2013i. Conclusion on the peer review of the pesticide risk assessment of the active substance valifenalate. EFSA Journal 2013;11(6):3253, 58 pp. https://doi.org/10.2903/j.efsa.2013. 3253
- EFSA (European Food Safety Authority), 2013j. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for acetochlor according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2013;11 (7):3315, 25 pp. https://doi.org/10.2903/j.efsa.2013.3315
- EFSA (European Food Safety Authority), 2013k. Reasoned opinion on the modification of the existing MRLs for metaflumizone in various commodities. EFSA Journal 2013;11(7):3316, 50 pp. https://doi.org/10.2903/j.efsa. 2013.3316
- EFSA (European Food Safety Authority), 2013l. Reasoned opinion on the setting of new MRLs for pyriofenone in cereals, grapes and animal products. EFSA Journal 2013;11(7):3342, 23 pp. https://doi.org/10.2903/j.efsa. 2013.3342
- EFSA (European Food Safety Authority), 2013m. Conclusion on the peer review of the pesticide risk assessment of the active substance metaflumizone. EFSA Journal 2013;11(10):3373, 98 pp. https://doi.org/10.2903/j.efsa. 2013.3373
- EFSA (European Food Safety Authority), 2013n. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for cyprodinil according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2013;11 (10):3406, 81 pp. https://doi.org/10.2903/j.efsa.2013.3406
- EFSA (European Food Safety Authority), 2013o. Reasoned opinion on the modification of the MRL for dicamba in genetically modified soybean. EFSA Journal 2013;11(10):3440, 38 pp. https://doi.org/10.2903/j.efsa.2013.3440
- EFSA (European Food Safety Authority), 2013p. Reasoned opinion on the modification of the existing MRLs for dicamba in herbs and herbal infusions (leaves and flowers). EFSA Journal 2013;11(11):3470, 25 pp. https://doi.org/10.2903/j.efsa.2013.3470
- EFSA (European Food Safety Authority), 2013q. Reasoned opinion on the modification of the existing MRLs for pyriproxyfen in stone fruits and tea. EFSA Journal 2013;11(12):3489, 26 pp. https://doi.org/10.2903/j.efsa. 2013.3489
- EFSA (European Food Safety Authority), 2013r. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for azoxystrobin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2013;11 (12):3497, 97 pp. https://doi.org/10.2903/j.efsa.2013.3497
- EFSA (European Food Safety Authority), 2013s. Reasoned opinion on the modification of the existing maximum residue level (MRL) for acetamiprid in apricots and tree nuts. EFSA Journal 2013;11(12):3506, 30 pp. https://doi.org/10.2903/j.efsa.2013.3506
- EFSA (European Food Safety Authority), 2014a. Conclusion on the peer review of the pesticide risk assessment of the active substance tebuconazole. EFSA Journal 2014;12(1):3485, 98 pp. https://doi.org/10.2903/j.efsa.2014. 3485
- EFSA (European Food Safety Authority), 2014b. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for kresoxim-methyl according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2014;12(1):3549, 70 pp. https://doi.org/10.2903/j.efsa.2014.3549
- EFSA (European Food Safety Authority), 2014c. Reasoned opinion on the modification of the existing MRLs for pendimethalin in various crops. EFSA Journal 2014;12(4):3620, 36 pp. https://doi.org/10.2903/j.efsa.2014. 3620
- EFSA (European Food Safety Authority), 2014d. Reasoned opinion on the modification of the existing MRL for triflumuron in peaches, plums, oranges and mandarins. EFSA Journal 2014;12(5):3684, 24 pp. https://doi.org/ 10.2903/j.efsa.2014.3684

- EFSA (European Food Safety Authority), 2014e. Reasoned opinion on the modification of the existing MRL for pyraclostrobin in chicory roots. EFSA Journal 2014;12(5):3685, 23 pp. https://doi.org/10.2903/j.efsa.2014.3685
- EFSA (European Food Safety Authority), 2014f. Statement on the dietary risk assessment for proposed temporary maximum residue levels (t-MRLs) for fosetyl-Al in certain crops. EFSA Journal 2014;12(5):3695, 22 pp. https://doi.org/10.2903/j.efsa.2014.3695
- EFSA (European Food Safety Authority), 2014g. Reasoned opinion on the modification of the existing MRL for picoxystrobin in sugar beet. EFSA Journal 2014;12(5):3716, 26 pp. https://doi.org/10.2903/j.efsa.2014.3716
- EFSA (European Food Safety Authority), 2014h. Conclusion on the peer review of the pesticide risk assessment of the active substance beta-cypermethrin. EFSA Journal 2014;12(6):3717, 90 pp. https://doi.org/10.2903/j.efsa. 2014.3717
- EFSA (European Food Safety Authority), 2014i. Scientific support for preparing an EU position in the 46th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2014;12(7):3737, 182 pp. https://doi.org/ 10.2903/j.efsa.2014.3737
- EFSA (European Food Safety Authority), 2014j. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for flonicamid according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal2014;12 (6):3740, 49 pp. https://doi.org/10.2903/j.efsa.2014.3740
- EFSA (European Food Safety Authority), 2014k. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for thiabendazole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2014;12 (7):3750, 54 pp. https://doi.org/10.2903/j.efsa.2014.3750
- EFSA (European Food Safety Authority), 2014l. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for boscalid according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2014;12 (7):3799, 127 pp. https://doi.org/10.2903/j.efsa.2014.3799
- EFSA (European Food Safety Authority), 2014m. Conclusion on the peer review of the pesticide risk assessment of the active substance pyridate. EFSA Journal 2014;12(8):3801, 84 pp. https://doi.org/10.2903/j.efsa.2014.3801
- EFSA (European Food Safety Authority), 2014n. Reasoned opinion on the modification of the existing MRL for acetamiprid in bananas. EFSA Journal 2014;12(9):3824, 20 pp. https://doi.org/10.2903/j.efsa.2014.3824
- EFSA (European Food Safety Authority), 2014o. Reasoned opinion on the modification of the existing MRLs for pyraclostrobin in swedes and turnips. EFSA Journal 2014;12(10):3872, 19 pp. https://doi.org/10.2903/j.efsa. 2014.3872
- EFSA (European Food Safety Authority), 2014p. Conclusion on the peer review of the pesticide risk assessment of the active substance thiabendazole. EFSA Journal 2014;12(11):3880, 57 pp. https://doi.org/10.2903/j.efsa. 2014.3880
- EFSA (European Food Safety Authority), 2014q. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for thiophanate-methyl and carbendazim according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2014;12(12):3919, 118 pp. https://doi.org/10.2903/j.efsa.2014.3919
- EFSA (European Food Safety Authority), 2014r. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for tolclofos-methyl according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2014;12(12):3920, 42 pp. https://doi.org/10.2903/j.efsa.2014.3920
- EFSA (European Food Safety Authority), 2015a. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for propiconazole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2015;13 (1):3975, 72 pp. https://doi.org/10.2903/j.efsa.2015.3975
- EFSA (European Food Safety Authority), 2015b. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for mesotrione according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2015;13 (1):3976, 36 pp. https://doi.org/10.2903/j.efsa.2015.3976
- EFSA (European Food Safety Authority), 2015c. Reasoned opinion on the modification of the existing MRLs for tebuconazole in cucumbers and courgettes. EFSA Journal 2015;13(1):4000, 24 pp. https://doi.org/10.2903/j.ef sa.2015.4000
- EFSA (European Food Safety Authority), 2015d. Conclusion on the peer review of the pesticide risk assessment of the active substance flupyradifurone. EFSA Journal 2015;13(2):4020, 106 pp. https://doi.org/10.2903/j.efsa. 2015.4020
- EFSA (European Food Safety Authority), 2015e. Conclusion on the peer review of the pesticide risk assessment of the active substance benzovindiflupyr. EFSA Journal 2015;13(3):4043, 88 pp. https://doi.org/10.2903/j.efsa. 2015.4043
- EFSA (European Food Safety Authority), 2015f. Reasoned opinion on the modification of the existing maximum residue levels (MRLs) for boscalid in beans and peas with pods. EFSA Journal 2015;13(3):4045, 19 pp. https://doi.org/10.2903/j.efsa.2015.4045
- EFSA (European Food Safety Authority), 2015g. Reasoned opinion on the modification of the existing MRL for cyprodinil in celery. EFSA Journal 2015;13(3):4046, 24 pp. https://doi.org/10.2903/j.efsa.2015.4046
- EFSA (European Food Safety Authority), 2015h. Reasoned opinion on the modification of the existing maximum residues levels (MRLs) for fluazifop-P in several commodities. EFSA Journal 2015;13(3):4059, 28 pp. https://doi.org/10.2903/j.efsa.2015.4059

www.efsa.europa.eu/efsajournal

- EFSA (European Food Safety Authority), 2015i. Reasoned opinion on the modification of the existing maximum residue level (MRL) for pyriofenone in table grapes. EFSA Journal 2015;13(3):4071, 16 pp. https://doi.org/10. 2903/j.efsa.2015.4071
- EFSA (European Food Safety Authority), 2015j. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for bifenthrin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2015;13 (4):4081, 61 pp. https://doi.org/10.2903/j.efsa.2015.4081
- EFSA (European Food Safety Authority), 2015k. Conclusion on the peer review of the pesticide risk assessment of the active substance mandestrobin. EFSA Journal 2015;13(5):4100, 72 pp. https://doi.org/10.2903/j.efsa.2015.4100
- EFSA (European Food Safety Authority), 2015I. Reasoned opinion on the modification of the existing MRLs for flonicamid in several crops. EFSA Journal 2015;13(5):4103, 26 pp. https://doi.org/10.2903/j.efsa.2015.4103
- EFSA (European Food Safety Authority), 2015m. Reasoned opinion on the setting of an import tolerance for chlorothalonil in cranberries. EFSA Journal 2015;13(7):4193, 21 pp. https://doi.org/10.2903/j.efsa.2015.4193
- EFSA (European Food Safety Authority), 2015n. Conclusion on the peer review of the pesticide risk assessment for the active substance buprofezin in light of confirmatory data. EFSA Journal 2015;13(8):4207, 24 pp. https://doi.org/10.2903/j.efsa.2015.4207
- EFSA (European Food Safety Authority), 2015o. Reasoned opinion on the modification of the existing maximum residue level for kresoxim-methyl in leeks. EFSA Journal 2015;13(8):4215, 18 pp. https://doi.org/10.2903/j.ef sa.2015.4215
- EFSA (European Food Safety Authority), 2015p. Reasoned opinion on the modification of MRLs and the setting of import tolerances for chlorantraniliprole in various crops. EFSA Journal 2015;13(9):4216, 20 pp. https://doi.org/10.2903/j.efsa.2015.4216
- EFSA (European Food Safety Authority), 2015q. Reasoned opinion on the modification of the existing maximum residue levels for fluxapyroxad in grapes and potatoes. EFSA Journal 2015;13(9):4223, 25 pp. https://doi.org/ 10.2903/j.efsa.2015.4223
- EFSA (European Food Safety Authority), 2015r. Reasoned opinion on the setting of import tolerances for acetochlor in soya beans and cotton seeds. EFSA Journal 2015;13(9):4224, 26 pp. https://doi.org/10.2903/j.ef sa.2015.4224
- EFSA (European Food Safety Authority), 2015s. Reasoned opinion on the review of the existing maximum residue levels for fluazifop-P according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2015;13(9):4228, 74 pp. https://doi.org/10.2903/j.efsa.2015.4228
- EFSA (European Food Safety Authority), 2015t. Reasoned opinion on the modification of the existing maximum residue levels for acetamiprid in leafy brassicas. EFSA Journal 2015;13(10):4229, 20 pp. https://doi.org/10. 2903/j.efsa.2015.4229
- EFSA (European Food Safety Authority), 2015u. Reasoned opinion on the modification of the existing maximum residue level for pendimethalin in lettuce. EFSA Journal 2015;13(9):4249, 18 pp. https://doi.org/10.2903/j.efsa. 2015.4249
- EFSA (European Food Safety Authority), 2015v. Reasoned opinion on the modification of the existing maximum residue levels for tebuconazole in rye and wheat. EFSA Journal 2015;13(10):4262, 20 pp. https://doi.org/10. 2903/j.efsa.2015.4262
- EFSA (European Food Safety Authority), 2015w. Conclusion on the peer review of the pesticide risk assessment of the active substance isofetamid. EFSA Journal 2015;13(10):4265, 130 pp. https://doi.org/10.2903/j.efsa.2015. 4265
- EFSA (European Food Safety Authority), 2015x. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA Journal 2015;13(11):4302, 107 pp. https://doi.org/10.2903/j.efsa.2015. 4302
- EFSA (European Food Safety Authority), 2015y. Reasoned opinion on the modification of the existing maximum residue level for fosetyl in blackberry, celeriac and Florence fennel. EFSA Journal 2015;13(12):4327, 20 pp. https://doi.org/10.2903/j.efsa.2015.4327
- EFSA (European Food Safety Authority), 2016a. Reasoned opinion on the modification of the existing maximum residue levels for acetamiprid in various crops. EFSA Journal 2016;14(2):4385, 25 pp. https://doi.org/10.2903/j.efsa.2016.4385
- EFSA (European Food Safety Authority), 2016b. Reasoned opinion on the modification of the existing maximum residue level for pyriproxyfen in bananas. EFSA Journal 2016;14(2):4387, 18 pp. https://doi.org/10.2903/j.efsa. 2016.4387
- EFSA (European Food Safety Authority), 2016c. Reasoned opinion on the setting of import tolerances for fluxapyroxad in various crops. EFSA Journal 2016;14(3):4404, 28 pp. https://doi.org/10.2903/j.efsa.2016.4404
- EFSA (European Food Safety Authority), 2016d. Reasoned opinion on the modification of the existing maximum residue levels for azoxystrobin in grapes. EFSA Journal 2016;14(2):4415, 17 pp. https://doi.org/10.2903/j.efsa. 2016.4415
- EFSA (European Food Safety Authority), 2016e. Conclusion on the peer review of the pesticide risk assessment of the active substance mesotrione. EFSA Journal 2016;14(3):4419, 103 pp. https://doi.org/10.2903/j.efsa.2016.4419

- EFSA (European Food Safety Authority), 2016f. Conclusion on the peer review of the pesticide risk assessment of the active substance pendimethalin. EFSA Journal 2016;14(3):4420, 212 pp. https://doi.org/10.2903/j.efsa. 2016.4420
- EFSA (European Food Safety Authority), 2016g. Reasoned opinion on the setting of new maximum residue levels for flupyradifurone in strawberries, blackberries and raspberries. EFSA Journal 2016;14(3):4423, 19 pp. https://doi.org/10.2903/j.efsa.2016.4423
- EFSA (European Food Safety Authority), 2016h. Reasoned opinion on the modification of the existing maximum residue levels for metconazole in various crops. EFSA Journal 2016;14(4):4451, 23 pp. https://doi.org/10.2903/j.efsa.2016.4451
- EFSA (European Food Safety Authority), 2016i. Conclusion on the peer review of the pesticide risk assessment of the active substance cyclaniliprole. EFSA Journal 2016;14(4):4452, 103 pp. https://doi.org/10.2903/j.efsa.2016.4452
- EFSA (European Food Safety Authority), 2016j. Reasoned opinion on the modification of the existing maximum residue levels for azoxystrobin in various crops. EFSA Journal 2016;14(5):4459, 17 pp. https://doi.org/10.2903/j.efsa.2016.4459
- EFSA (European Food Safety Authority), 2016k. Reasoned opinion on the modification of the existing maximum residue level for flonicamid in herbs and edible flowers. EFSA Journal 2016;14(4):4467, 19 pp. https://doi.org/ 10.2903/j.efsa.2016.4467
- EFSA (European Food Safety Authority), 2016l. Reasoned opinion on the modification of the existing maximum residue levels for fluazifop-P in pumpkin seeds. EFSA Journal 2016;14(5):4486, 14 pp. https://doi.org/10.2903/j.efsa.2016.4486
- EFSA (European Food Safety Authority), 2016m. Conclusion on the peer review of the pesticide risk assessment of the active substance picoxystrobin. EFSA Journal 2016;14(6):4515, 26 pp. https://doi.org/10.2903/j.efsa.2016. 4515
- EFSA (European Food Safety Authority), 2016n. Reasoned opinion on the revision of the review of the existing maximum residue levels for thiabendazole. EFSA Journal 2016;14(6):4516, 45 pp. https://doi.org/10.2903/j.ef sa.2016.4516
- EFSA (European Food Safety Authority), 2016o. Reasoned opinion on the modification of the existing maximum residue level for pyraclostrobin in beet leaves (chards). EFSA Journal 2016;14(8):4552, 14 pp. https://doi.org/ 10.2903/j.efsa.2016.4552
- EFSA (European Food Safety Authority), 2016p. Conclusion on the peer review of the pesticide risk assessment of the active substance acetamiprid. EFSA Journal 2016;14(11):4610, 26 pp. https://doi.org/10.2903/j.efsa.2016.4610
- EFSA (European Food Safety Authority), 2016q. Reasoned opinion on the setting of import tolerances for benzovindiflupyr in various plant and animal origin commodities. EFSA Journal 2016;14(12):4644, 30 pp. https://doi.org/10.2903/j.efsa.2016.4644
- EFSA (European Food Safety Authority), 2016r. Reasoned opinion on the prioritised review of the existing maximum residue levels for dimethoate and omethoate according to Article 43 of Regulation (EC) No 396/ 2005. EFSA Journal 2016;14(11):4647, 50 pp. https://doi.org/10.2903/j.efsa.2016.4647
- EFSA (European Food Safety Authority), 2016s. Reasoned opinion on the modification of the existing maximum residue levels for penthiopyrad in stone fruits and cereals. EFSA Journal 2016;14(12):4648, 19 pp. https://doi.org/10.2903/j.efsa.2016.4648
- EFSA (European Food Safety Authority), 2016t. Technical report on the outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for dicamba in light of confirmatory datadata. EFSA supporting publication 2016;EN-1008, 9 pp. https://doi.org/10.2903/sp.efsa.2016.EN-1008
- EFSA (European Food Safety Authority), 2017a. Reasoned opinion on the setting of maximum residue levels for spirotetramat in pomegranates and various vegetables. EFSA Journal 2017;15(1):4684, 19 pp. https://doi.org/ 10.2903/j.efsa.2017.4684
- EFSA (European Food Safety Authority), 2017b. Reasoned opinion on the modification of the existing maximum residue levels for pyraclostrobin in various crops. EFSA Journal 2017;15(1):4686, 19 pp. https://doi.org/ 10.2903/j.efsa.2017.4686
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017c. Reasoned opinion on the modification of the existing maximum residue level for tolclofos-methyl in potatoes. EFSA Journal 2017;15(2):4730, 19 pp. https://doi.org/10.2903/j.efsa.2017.4730
- EFSA (European Food Safety Authority), 2017d. Reasoned opinion on the modification of the existing maximum residue levels for flonicamid in various commodities. EFSA Journal 2017;15(3):4748, 20 pp. https://doi.org/ 10.2903/j.efsa.2017.4748
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017e. Reasoned opinion on the review of the existing maximum residue levels for triflumuron according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2017;15(4):4769, 32 pp. https://doi.org/10.2903/j.efsa.2017.4769

- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017f. Reasoned opinion on the modification of the existing maximum residue level for tebuconazole in beans with pods. EFSA Journal 2017;15(6):4870, 23 pp. https://doi.org/10.2903/j.efsa.2017.4870
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017g. Reasoned opinion on the modification of the existing maximum residue levels for fluazifop-P in various products of plant and animal origin. EFSA Journal 2017;15(7):4871, 31 pp. https://doi.org/10.2903/j.efsa.2017.4871
- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Bellisai G, Brancato A, Brocca D, Bura L, Byers H, Chiusolo A, Court Marques D, Crivellente F, De Lentdecker C, De Maglie M, Egsmose M, Erdos Z, Fait G, Ferreira L, Goumenou M, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Magrans JO, Medina P, Miron I, Molnar T, Nougadere A, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017h. Conclusion on the peer review of the pesticide risk assessment of the active substance propiconazole. EFSA Journal 2017;15(7):4887, 28 pp. https:// doi.org/10.2903/j.efsa.2017.4887
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Janossy J, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017i. Reasoned opinion on the modification of the existing maximum residue levels for fluxapyroxad in various crops. EFSA Journal 2017;15(9):4975, 30 pp. https://doi.org/10.2903/j.efsa.2017.4975
- EFSA (European Food Safety Authority), 2017j. Conclusion on the peer review of the pesticide risk assessment of the potential endocrine disrupting properties of glyphosate. EFSA Journal 2017;15(9):4979, 20 pp. https://doi.org/10.2903/j.efsa.2017.4979
- EFSA (European Food Safety Authority), 2017k. Technical report on the outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for spirotetramat in light of confirmatory data. EFSA supporting publication 2017:EN-1156, 9 pp. https://doi.org/10.2903/sp.efsa.2017.en-1156
- EFSA (European Food Safety Authority), 2017l. Technical report on the outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for flupyradifurone in light of confirmatory data. EFSA supporting publication 2017;EN-1233, 13 pp. https://doi.org/10.2903/sp.efsa.2017.EN-1233
- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Bellisai G, Brancato A, Brocca D, Bura L, Byers H, Chiusolo A, Court Marques D, Crivellente F, De Lentdecker C, Egsmose M, Erdos Z, Fait G, Ferreira L, Goumenou M, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Magrans JO, Medina P, Miron I, Molnar T, Nougadere A, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2018a. Conclusion on the peer review of the peer review of the pesticide risk assessment of the active substance chlorothalonil. EFSA Journal 2018;16(1):5126, 40 pp. https://doi.org/ 10.2903/j.efsa.2018.5126
- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Bellisai G, Brancato A, Brocca D, Bura L, Byers H, Chiusolo A, Court Marques D, Crivellente F, De Lentdecker C, Egsmose M, Erdos Z, Fait G, Ferreira L, Goumenou M, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Magrans JO, Medina P, Miron I, Molnar T, Nougadere A, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2018b. Conclusion on the peer review of the pesticide risk assessment of the active substance tolclofos-methyl. EFSA Journal 2018;16(1):5130, 25 pp. https://doi.org/10.2903/j.efsa.2018.5130
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Ferreira L, Greco L, Jarrah S, Leuschner R, Medina P, Miron I, Nougadere A, Pedersen R, Reich H, Santos M, Stanek A, Tarazona J, Theobald A and Villamar-Bouza L, 2018c. Guidance on use of EFSA Pesticide Residue Intake Model (EFSA PRIMo revision 3). EFSA Journal 2018;16(1):5147, 43 pp. https://doi.org/10.2903/j.efsa.2018.5147
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2018d. Reasoned opinion on the modification of the existing maximum residue levels for mandestrobin in apricots, cherries, peaches/nectarines and plums. EFSA Journal 2018;16(1):5148, 21 pp. https://doi.org/ 10.2903/j.efsa.2018.5148
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2018e. Reasoned opinion on the modification of the existing maximum residue levels for fosetyl-Al in tree nuts, pome fruit, peach and potato. EFSA Journal 2018;16(2):5161, 36 pp. https://doi.org/10.2903/j.efsa.2018.5161

- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018f. Reasoned opinion on the modification of the existing maximum residue level for fluazifop-P in tomato. EFSA Journal 2018;16(4):5253, 21 pp. https://doi.org/10.2903/j.efsa.2018.5253
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018g. Reasoned opinion on the modification of the existing maximum residue levels for tebuconazole in olives, rice, herbs and herbal infusions (dried). EFSA Journal 2018;16(6):5257, 27 pp. https://doi.org/10.2903/j.efsa.2018.5257
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018h. Reasoned opinion on the focussed assessment of certain existing MRLs of concern for acetamiprid and modification of the existing MRLs for table olives, olives for oil production, barley and oats. EFSA Journal 2018;16(5):5262, 39 pp. https://doi.org/10.2903/j.efsa.2018.5262
- EFSA (European Food Safety Authority), 2018i. Reasoned opinion on the review of the existing maximum residue levels for glyphosate according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2018;16(5):5263, 230 pp. https://doi.org/10.2903/j.efsa.2018.5263
- EFSA (European Food Safety Authority), 2018j. Reasoned opinion on the modification of the existing maximum residue levels for isofetamid in tomatoes, peppers, aubergines, okra and cucurbits with edible peel. EFSA Journal 2018;16(5):5264, 24 pp. https://doi.org/10.2903/j.efsa.2018.5264
- EFSA (European Food Safety Authority), 2018k. Scientific Report on evaluation of the impact of glyphosate and its residues in feed on animal health. EFSA Journal 2018;16(5):5823, 22 pp. https://doi.org/10.2903/j.efsa.2018. 5283.
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018l. Reasoned opinion on the modification of the existing maximum residue levels for valifenalate in various crops. EFSA Journal 2018;16(6):5289, 20 pp. https://doi.org/10.2903/j.efsa.2018.5289
- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Brancato A, Brocca D, Bura L, Carrasco Cabrera L, Chiusolo A, Civitella C, Court Marques D, Crivellente F, Ctverackova L, De Lentdecker C, Egsmose M, Erdos Z, Fait G, Ferreira L, Goumenou M, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Magrans JO, Medina P, Mineo D, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Van Dijk J and Villamar-Bouza L, 2018m. Conclusion on the peer review of the pesticide risk assessment of the active substance fosetyl. EFSA Journal 2018;16(7):5307, 25 pp. https://doi.org/10.2903/j.efsa.2018.5307
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018n. Reasoned opinion on the setting of an import tolerance for chlorantraniliprole in hops. EFSA Journal 2018;16(6):5312, 21 pp. https://doi.org/10.2903/j.efsa.2018.5312
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018o. Reasoned opinion on the setting of an import tolerance for fenazaquin in almonds. EFSA Journal 2018;16(7):5330, 23 pp. https://doi.org/10.2903/j.efsa.2018.5330
- EFSA (European Food Safety Authority), 2018p. Peer review of the pesticide risk assessment for the triazole derivative metabolites in light of confirmatory data submitted. EFSA Journal 2018;16(7):5376, 20 pp. https://doi.org/10.2903/j.efsa.2018.5376
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, Chiusolo A, Civitella C, Court Marques D, Crivellente F, De Lentdecker C, Erdös Z, Ferreira L, Goumenou M, Greco L, Istace F, Jarrah S, Kardassi D, Leuschner R, Medina P, Mineo D, Miron I, Molnar T, Nave S, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Terron A, Theobald A, Vagenende B and Villamar-Bouza L, 2018q. Conclusion on the peer review of the pesticide risk assessment for the triazole derivative metabolites in light of confirmatory data submitted. EFSA Journal 2018;16(7):5376, 20 pp. https://doi.org/10.2903/j.efsa.2018.5376
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018r. Reasoned opinion on the setting of import tolerances for mandestrobin in strawberries and table and wine grapes. EFSA Journal 2018;16(8):5395, 22 pp. https://doi.org/10.2903/j.efsa. 2018.5395

- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Brancato A, Brocca D, Bura L, Carrasco Cabrera L, Chiusolo A, Civitella C, Court Marques D, Crivellente F, Ctverackova L, De Lentdecker C, Egsmose M, Erdos Z, Fait G, Ferreira L, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Magrans JO, Medina P, Mineo D, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Van Dijk J and Villamar-Bouza L, 2018s. Conclusion on the peer review of the pesticide risk assessment of the active substance cypermethrin. EFSA Journal 2018;16(8):5402, 28 pp. https://doi.org/ 10.2903/j.efsa.2018.5402
- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Brancato A, Brocca D, Bura L, Carrasco Cabrera L, Chiusolo A, Civitella C, Court Marques D, Crivellente F, Ctverackova L, De Lentdecker C, Egsmose M, Erdos Z, Fait G, Ferreira L, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Magrans JO, Medina P, Mineo D, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Van Dijk J and Villamar-Bouza L, 2018t. Conclusion on the peer review of the pesticide risk assessment of the active substance alpha-cypermethrin. EFSA Journal 2018;16(9):5403, 30 pp. https://doi.org/ 10.2903/j.efsa.2018.5403
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018u. Reasoned opinion on the modification of the existing maximum residue level for flonicamid in various crops. EFSA Journal 2018;16(9):5410, 25 pp. https://doi.org/10.2903/j.efsa.2018.5410
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018v. Reasoned opinion on the modification of the existing maximum residue levels for flonicamid in various root crops. EFSA Journal 2018;16(9):5414, 26 pp. https://doi.org/10.2903/j.efsa.2018. 5414
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018w. Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review for pendimethalin. EFSA Journal 2018;16(10):5426, 22 pp. https://doi.org/10.2903/j.efsa.2018.5426
- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Brancato A, Brocca D, Bura L, Carrasco Cabrera L, Chiusolo A, Civitella C, Court Marques D, Crivellente F, Ctverackova L, De Lentdecker C, Egsmose M, Erdos Z, Fait G, Ferreira L, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Magrans JO, Medina P, Mineo D, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Van Dijk J and Villamar-Bouza L, 2018x. Conclusion on the peer review of the pesticide risk assessment of the active substance dimethoate. EFSA Journal 2018;16(10):5454, 29 pp. https://doi.org/ 10.2903/j.efsa.2018.5454
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018y. Reasoned opinion on the modification of the existing maximum residue levels for pyraclostrobin in soyabean. EFSA Journal 2018;16(11):5466, 26 pp. https://doi.org/10.2903/j.efsa.2018.5466
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018z. Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review for kresoxim-methyl. EFSA Journal 2018;16(11):5471, 18 pp. https://doi.org/10.2903/j.efsa.2018.5471
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Zoltan E, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018aa. Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review for pyraclostrobin. EFSA Journal 2018;16(11):5472, 21 pp. https://doi.org/10.2903/j.efsa.2018. 5472
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018ab. Reasoned opinion on the setting of an import tolerance for pyraclostrobin in rice. EFSA Journal 2018;16(11):5483, 21 pp. https://doi.org/10.2903/j.efsa.2018.5483

- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Nave S, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018ac. Reasoned opinion on the modification of the existing maximum residue levels and setting of import tolerances for pyraclostrobin in various crops. EFSA Journal 2018;16 (11):5488, 42 pp. https://doi.org/10.2903/j.efsa.2018.5488
- EFSA (European Food Safety Authority), 2018ad. Technical report on the outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for mesotrione in light of confirmatory data. EFSA supporting publication 2018;EN-1527, 22 pp. https://doi.org/10.2903/sp.efsa.2018.EN-1527
- EFSA (European Food Safety Authority), Abdourahime H, Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Nave S, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2019a. Reasoned opinion on the modification of the existing maximum residue levels for spirotetramat in various crops. EFSA Journal 2019;17 (1):5589, 28 pp. https://doi.org/10.2903/j.efsa.2019.5589
- EFSA (European Food Safety Authority), 2019b. Statement on the pesticide active substances that do not require a review of the existing maximum residue levels under Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2019;17(12):5954, 12 pp. https://doi.org/10.2903/j.efsa.2019.5591
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Lostia A, Magrans JO, Medina P, Miron I, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Tarazona J, Theobald A and Verani A, 2019c. Reasoned opinion on the modification of the existing maximum residue level for cyprodinil in Florence fennel. EFSA Journal 2019;17(3):5623, 22 pp. https://doi.org/10.2903/j.efsa.2019.5623
- EFSA (European Food Safety Authority) Anastassiadou M, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Tarazona J, Theobald A and Verani A, 2019d. Reasoned opinion on the modification of the existing maximum residue level for fosetyl/phosphonic acid for potatoes and wheat. EFSA Journal 2019;17 (5):5703, 31 pp. https://doi.org/10.2903/j.efsa.2019.5703
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Tarazona J, Theobald A and Verani A, 2019e. Reasoned opinion on the review of the existing maximum residue levels for clethodim according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2019;17(5):5706, 85 pp. https://doi.org/10.2903/j.efsa.2019.5706
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019f. Reasoned opinion on the existing maximum residue levels for pyriofenone according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2019;17(6):5711, 32 pp. https://doi.org/10.2903/j.efsa.2019.5711
- EFSA (European Food Safety Authority), Abdourahime H, Anastassiadou M, Arena M, Auteri D, Barmaz S, Brancato A, Bura L, Carrasco Cabrera L, Chaideftou E, Chiusolo A, Court Marques D, Crivellente F, De Lentdecker C, Egsmose M, Fait G, Ferreira L, Gatto V, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Messinetti S, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Raczyk M, Reich H, Ruocco S, Saari KE, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Terron A, Tiramani M, Vagenende B, Vainovska P and Villamar-Bouza L, 2019g. Conclusion on the peer review of the pesticide risk assessment of the active substance pyriproxyfen. EFSA Journal 2019;17(7):5732, 26 pp. https://doi.org/10.2903/j.efsa.2019.5732
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019h. Reasoned opinion on the modification of the existing maximum residue levels for flonicamid in strawberries and other berries. EFSA Journal 2019;17(8):5745, 24 pp. https://doi.org/10.2903/j.efsa.2019.5745
- EFSA (European Food Safety Authority), 2019i. Scientific Report on scientific support for preparing an EU position in the 51st Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2019;17(7):5797, 243 pp. https://doi.org/10.2903/j.efsa.2019.5797
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019j. Reasoned opinion on the modification of the existing maximum residue level for cyprodinil in rhubarbs. EFSA Journal 2019;17(9):5813, 24 pp. https://doi.org/10.2903/j.efsa.2019.5813

- EFSA (European Food Safety Authority), Arena M, Auteri D, Brancato A, Bura L, Carrasco Cabrera L, Chaideftou E, Chiusolo A, Court Marques D, Crivellente F, De Lentdecker C, Egsmose M, Fait G, Ferreira L, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Mangas I, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Reich H, Santos M, Serafimova R, Sharp R, Stanek A, Sturma J, Szentes C, Terron A, Tiramani M, Vagenende B and Villamar-Bouza L, 2019k. Conclusion on the peer review of the pesticide risk assessment of the active substance pydiflumetofen. EFSA Journal 2019;17(10):5821, 25 pp. https://doi.org/10. 2903/j.efsa.2019.5821
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Leuschner R, Miron I, Nave S, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019l. Reasoned opinion on the modification of the existing maximum residue level for pyraclostrobin in sweet corn. EFSA Journal 2019;17(10):5841, 24 pp. https://doi.org/10.2903/j.efsa.2019.5841
- EFSA (European Food Safety Authority), 2019m. Reasoned opinion on the review of the existing maximum residue levels for glyphosate according to Article 12 of Regulation (EC) No 396/2005 revised version to take into account omitted data. EFSA Journal 2019;17(10):5862, 211 pp. https://doi.org/10.2903/j.efsa.2019.5862
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019n. Reasoned opinion on the setting of import tolerances for chlorantraniliprole in oil palms fruits and oil palms kernels. EFSA Journal 2019;17(11):5877, 23 pp. https://doi.org/10.2903/j.efsa.2019.5877
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019o. Reasoned opinion on the modification of the existing maximum residue level for boscalid in honey. EFSA Journal 2019;17(11):5897, 25 pp. https://doi.org/10.2903/j.efsa.2019.5897
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019p. Reasoned opinion on the modification of the existing maximum residue levels for spirotetramat in small fruits and berries. EFSA Journal 2019;17(11):5904, 24 pp. https://doi.org/10.2903/j.efsa.2019.5904
- EFSA (European Food Safety Authority), 2019q. Updated statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos-methyl. EFSA Journal 2019;17(11):5908, 21 pp. https://doi.org/10.2903/j.efsa.2019.5908
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Tarazona J, Theobald A and Verani A, 2019r. Pesticide Residue Intake Model- EFSA PRIMo revision 3.1 (update of EFSA PRIMo revision 3). EFSA supporting publication 2019;EN-1605, 15 pp. https://doi. org/10.2903/sp.efsa.2019.EN-1605
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020a. Reasoned opinion on the setting of import tolerances for fluxapyroxad in certain root crops and coffee beans. EFSA Journal 2020;18(1):5950, 28 pp. https://doi.org/10.2903/j.efsa.2020.5950
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020b. Reasoned opinion on the review of the existing maximum residue levels for fenazaquin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2020;18(1):5955, 43 pp. https://doi.org/10.2903/j.efsa.2020.5955
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020c. Reasoned opinion on the review of the existing maximum residue levels for spirotetramat according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2020;18(1):5960, 124 pp. https://doi.org/10.2903/j.efsa.2020.5960
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020d. Reasoned opinion on the modification of the existing maximum residue levels for fosetyl/phosphonic acid in various crops. EFSA Journal 2020;18 (1):5964, 33 pp. https://doi.org/10.2903/j.efsa.2020.5964
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020e. Reasoned opinion on the review of the existing maximum residue levels for fluxapyroxad according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2020;18(1):5984, 99 pp. https://doi.org/10.2903/j.efsa.2020.5984

- EFSA (European Food Safety Authority), Craig PS, Dujardin B, Hart A, Hernández-Jerez AF, Hougaard Bennekou S, Kneuer C, Ossendorp B, Pedersen R, Wolterink G and Mohimont L, 2020f. Scientific report on the cumulative dietary risk characterisation of pesticides that have acute effects on the nervous system. EFSA Journal 2020;18 (4):6087, 79 pp. https://doi.org/10.2903/j.efsa.2020.6087
- EFSA (European Food Safety Authority), Craig PS, Dujardin B, Hart A, Hernandez-Jerez AF, Hougaard Bennekou S, Kneuer C, Ossendorp B, Pedersen R, Wolterink G and Mohimont L, 2020g. Scientific report on the cumulative dietary risk characterisation of pesticides that have chronic effects on the thyroid. EFSA Journal 2020;18 (4):6088, 71 pp. https://doi.org/10.2903/j.efsa.2020.6088
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020h. Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review for flonicamid. EFSA Journal 2020;18(5):6117, 29 pp. https://doi.org/10.2903/j.efsa.2020.6117
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020i. Reasoned opinion on the modification of the existing maximum residue levels for potassium phosphonates in flowering brassica, Chinese cabbages, kales and spinaches. EFSA Journal 2020;18(5):6122, 31 pp. https://doi.org/10.2903/j.efsa.2020.6122
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020j. Reasoned opinion on the review of the existing maximum residue levels for metaflumizone according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2020;18(6):6123, 60 pp. https://doi.org/10.2903/j.efsa.2020.6123
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020k. Reasoned opinion on the setting of import tolerances, modification of the existing maximum residue levels and evaluation of confirmatory data following the Article 12 MRL review for flupyradifurone and DFA. EFSA Journal 2020;18(6):6113, 141 pp. https://doi.org/ 10.2903/j.efsa.2020.6133
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020l. Reasoned opinion on the setting of import tolerances for flonicamid in various crops and products of animal origin. EFSA Journal 2020;18(6):6136, 37 pp. https://doi.org/10.2903/j.efsa.2020.6136
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2020m. Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review and modification of the existing maximum residue levels for azoxystrobin. EFSA Journal 2020;18(8):6231, 42 pp. https://doi.org/10.2903/j.efsa.2020.6231
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Theobald A, Vagenende B and Verani A, 2020n. Reasoned opinion on the review of the existing maximum residue levels for chlorantraniliprole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2020;18(9):6235, 143 pp. https://doi.org/10.2903/j.efsa.2020.6235
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Theobald A, Vagenende B and Verani A, 2020o. Reasoned opinion on the modification of the existing maximum residue level for boscalid in pomegranates. EFSA Journal 2020;18(9):6236, 22 pp. https://doi.org/10.2903/j.efsa.2020.6236
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Theobald A, Vagenende B and Verani A, 2020p. Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review for chlorothalonil, including assessments for import tolerances for banana, papaya and peanuts. EFSA Journal 2020;18(9):6239, 48 pp. https://doi.org/10.2903/j.ef sa.2020.6239
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Theobald A, Vagenende B and Verani A, 2020q. Reasoned opinion on the modification of the existing maximum residue levels for potassium phosphonates in various crops. EFSA Journal 2020;18 (9):6240, 37 pp. https://doi.org/10.2903/j.efsa.2020.6240

- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Theobald A, Vagenende B and Verani A, 2020r. Reasoned opinion on the modification of the existing maximum residue levels for penthiopyrad in Florence fennels and celeries. EFSA Journal 2020;18 (9):6259, 33 pp. https://doi.org/10.2903/j.efsa.2020.6259
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Theobald A, Vagenende B and Verani A, 2020s. Reasoned opinion on the modification of the existing maximum residue levels for flupyradifurone and DFA in rapeseeds/canola seeds and mustard seeds. EFSA Journal 2020;18(11):6298, 33 pp. https://doi.org/10.2903/j.efsa.2020.6298
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Theobald A, Vagenende B and Verani A, 2020t. Reasoned opinion on the setting of import tolerances for chlorantraniliprole in strawberries and pulses. EFSA Journal 2020;18(11):6300, 30 pp. https://doi.org/10.2903/j.efsa.2020.6300
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2020u. Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review and setting of import tolerances for bifenthrin in maize grain and sweet corn. EFSA Journal 2020;18(12):6361, 37 pp. https://doi.org/10.2903/j.efsa.2020.6361
- EFSA (European Food Safety Authority), Anastassiadou M, Choi J, Coja T, Dujardin B, Hart A, Hernandez-Jerrez AF, Jarrah S, Lostia A, Machera K, Mangas I, Mienne A, Schepens M, Widenfalk A and Mohimont L, 2021a. Scientific report on the cumulative dietary risk assessment of chronic acetylcholinesterase inhibition by residues of pesticides. EFSA Journal 2021;19(2):6392, 151 pp. https://doi.org/10.2903/j.efsa.2021.6392
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021b. Reasoned opinion on the setting of import tolerance for azoxystrobin in sugar beet roots. EFSA Journal 2021;19(2):6401, 29 pp. https://doi.org/10.2903/j.efsa.2021.6401
- EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021c. Reasoned opinion on the evaluation of confirmatory data following the Article 12 MRL review for propiconazole. EFSA Journal 2021;19 (2):6405, 12 pp. https://doi.org/10.2903/j.efsa.2021.6405
- EFSA (European Food Safety Authority), Anastassiadou M, Bellisai G, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021d. Reasoned opinion on the setting of an import tolerance for potassium phosphonates in blueberries. EFSA Journal 2021;19(3):6478, 28 pp. https://doi.org/10.2903/j.efsa.2021.6478
- EFSA (European Food Safety Authority), Anastassiadou M, Bellisai G, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021e. Reasoned opinion on the modification of the existing maximum residue levels for cyprodinil in blueberries, cranberries, currants and gooseberries. EFSA Journal 2020;19(3):6499, 24 pp. https://doi.org/10.2903/j.efsa.2021.6499
- EFSA (European Food Safety Authority), Anastassiadou M, Bellisai G, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021f. Reasoned opinion on the modification of the existing maximum residue levels for spirotetramat in leeks, spring onions and honey. EFSA Journal 2021;19 (3):6517, 34 pp. https://doi.org/10.2903/j.efsa.2021.6517
- EFSA (European Food Safety Authority), Anastassiadou M, Bellisai G, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021g. Reasoned opinion on the modification of the existing maximum residue levels for flupyradifurone and DFA in okra/lady's finger. EFSA Journal 2021;19 (5):6581, 37 pp. https://doi.org/10.2903/j.efsa.2021.6581
- EFSA (European Food Safety Authority), Anastassiadou M, Bellisai G, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021h. Reasoned opinion on the modification of the existing maximum residue levels and setting of import tolerances for thiabendazole in various crops. EFSA Journal 2021;19(5):6586, 57 pp. https://doi.org/10.2903/j.efsa.2021.6586

- EFSA (European Food Safety Authority), Anastassiadou M, Bellisai G, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021i. Reasoned opinion on the review of the existing maximum residue levels for valifenalate according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2021;19(5):6591, 34 pp. https://doi.org/10.2903/j.efsa.2021.6591
- EFSA AFC Panel (EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food), 2007. Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on the food colour Red 2G (E128) based on a request from the Commission related to the reevaluation of all permitted food additives. EFSA Journal 2007;5(7):515, 28 pp. https://doi.org/10.2903/j.efsa. 2007.515
- EFSA Scientific Committee, 2011. Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA Journal 2011;9(9):2379, 69 pp. https://doi.org/10.2903/j.efsa.2011.2379
- EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen KH, More S, Mortensen A, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Silano V, Solecki R, Turck D, Aerts M, Bodin L, Davis A, Edler L, Gundert-Remy U, Sand S, Slob W, Bottex B, Abrahantes JC, Marques DC, Kass G and Schlatter JR, 2017a. Update: Guidance on the use of the benchmark dose approach in risk assessment. EFSA Journal 2017;15(1):4658, 41 pp. https://doi.org/10.2903/j.efsa.2017.4658
- EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger M, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Silano V, Solecki R, Turck D, Younes M, Aquilina G, Crebelli R, Gürtler R, Hirsch-Ernst KI, Mosesso P, Nielsen E, van Benthem J, Carfi M,Georgiadis N, Maurici D, Parra Morte J and Schlatter J, 2017b. Scientific opinion on the clarification of some aspects related to genotoxicity assessment. EFSA Journal 2017;15(12):5113, 25 pp. https://doi.org/10.2903/j.efsa.2017.5113
- EFSA Scientific Committee, More S, Bampidis V, Benford D, Boesten J, Bragard C, Halldorsson T, Hernandez-Jerez A, Hougaard-Bennekou S, Koutsoumanis K, Naegeli H, Nielsen SS, Schrenk D, Silano V, Turck D, Younes M, Aquilina G, Crebelli R, Gürtler R, Hirsch-Ernst KI, Mosesso P, Nielsen E, Solecki R, Carfi M, Martino C, Maurici D, Parra Morte J and Schlatter J, 2019a. Statement on the genotoxicity assessment of chemical mixtures. EFSA Journal 2019;17(1):5519, 11 pp. https://doi.org/10.2903/j.efsa.2019.5519
- EFSA Scientific Committee, More SJ, Bampidis V, Benford D, Bennekou SH, Bragard C, Halldorsson TI, Hern_andez-Jerez AF, Koutsoumanis K, Naegeli H, Schlatter JR, Silano V, Nielsen SS, Schrenk D, Turck D, Younes M, Benfenati E, Castle L, Cedergreen N, Hardy A, Laskowski R, Leblanc Jc, Kortenkamp A, Ragas A, Posthuma L, Svendsen C, Solecki R, Testai E, Dujardin B, Kass GEN, Manini P, Jeddi MZ, Dorne J-LCM and Hogstrand C, 2019b. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA Journal 2019;17(3):5634, 77 pp. https:// doi.org/10.2903/j.efsa.2019.5634

European Commission, 1996. Appendix G. Livestock feeding studies. 7031/VI/95-rev 4, 22 July 1996.

European Commission, 1997a. Appendix A. Metabolism and distribution in plants. 7028/VI/95-rev.3, 22 July 1997.

- European Commission, 1997b. Appendix B. General recommendations for the design, preparation and realization of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/ EEC. 7029/VI/95-rev. 6, 22 July 1997.
- European Commission, 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95rev. 2, 22 July 1997.

European Commission, 1997d. Appendix E. Processing studies. 7035/VI/95-rev. 5, 22 July 1997.

- European Commission, 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev. 3, 22 July 1997.
- European Commission, 1997f. Appendix H. Storage stability of residue samples. 7032/VI/95-rev. 5, 22 July 1997.
- European Commission, 1997g. Appendix I. Calculation of maximum residue level and safety intervals. 7039/VI/95 22 July 1997. As amended by the document: classes to be used for the setting of EU pesticide maximum residue levels (MRLs). SANCO 10634/2010, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.
- European Commission, 2000. Residue analytical methods. For pre-registration data requirements for Annex II (part A, section 4) and Annex III (part A, section 5) of Directive 91/414. SANCO/3029/99-rev. 4. 11 July 2000.
- European Commission, 2004. Review report for the active substance pyraclostrobin. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 28 November 2003 in view of the inclusion of pyraclostrobin in Annex I of Council Directive 91/414/EEC. SANCO/1420/2001-Final, 8 September 2004.
- European Commission, 2006a. Review report for the active substance fosetyl. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 4 April 2006 in view of the inclusion of fosetyl in Annex I of Council Directive 91/414/EEC. SANCO/10015/06-Final, 4 April 2006.
- European Commission, 2006b. Review report for the active substance chlorothalonil. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 15 February 2005 in view of the inclusion of chlorothalonil in Annex I of Council Directive 91/414/EEC. SANCO/4343/2000 final (revised), 28 September 2006.
- European Commission, 2006c. Review report for the active substance cyprodinil. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 4 April 2006 in view of the inclusion of cyprodinil in Annex I of Council Directive 91/414/EEC. SANCO/10014/2006-final-rev.1, 9 July 2010.

- European Commission, 2008a. Review report for the active substance boscalid. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 22 January 2008 in view of the inclusion of boscalid in Annex I of Council Directive 91/414/EEC. SANCO/3919/2007-rev.5, 21 January 2008.
- European Commission, 2008b. Review report for the active substance dicamba. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 14 March 2008 in view of the inclusion of dicamba in Annex I of Council Directive 91/414/EEC. SANCO/829/08 -rev.2, 7 March 2008.
- European Commission, 2008c. Review report for the active substance tebuconazole. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 28 October 2008 in view of the inclusion of tebuconazole in Annex I of Council Directive 91/414/EEC. SANCO/171/08-rev.1, 9 September 2008.
- European Commission, 2010a. Review report for the active substance flonicamid (IKI-220). Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 12 March 2010 in view of the inclusion of flonicamid in Annex I of Council Directive 91/414/EEC. SANCO/10479/2010-Final, 12 March 2010.
- European Commission, 2010b. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010-rev. 0, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010. SANCO – D1 (2010) 410502, 3 pp.
- European Commission, 2011a. Review report for the active substance triflumuron. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 28 January 2011 in view of the inclusion of triflumuron in Annex I of Council Directive 91/414/EEC. SANCO/13544/2010, 28 January 2011.
- European Commission, 2011b. Review report for the active substance azoxystrobin. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 17 June 2011 in view of the approval of azoxystrobin as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/11027/2011-rev.2, 17 June 2011.
- European Commission, 2011c. Review report for the active substance acetochlor. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 11 October 2011 in view of the non-approval of acetochlor as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/11703/ 2011-rev.1, 11 October 2011.
- European Commission, 2013a. Review report for the active substance spirotetramat. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 3 October 2013 in view of the approval of spirotetramat as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/12026/2013-rev.1, 3 October 2013.
- European Commission, 2013b. Final Review report for the active substance valifenalate. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 13 December 2013 in view of the approval of valifenalate as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/12600/2013-rev.2, 13 December 2013.
- European Commission, 2015. Final Review report for the active substance flupyradifurone. Finalised in the Standing Committee on Plants, Animals, Food and Feed as its meeting on 9 October 2015 in view of the approval of flupyradifurone as active substance in accordance with Regulation (EC) No 1107/2009. SANTE/ 11649/2015-rev.1, 9 October 2015.
- European Commission, 2016a. Review report for the active substance dicamba. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 14 March 2008 in view of the inclusion of dicamba in Annex I of Council Directive 91/414/EEC. SANCO/829/08-rev.2, 12 July 2016.
- European Commission, 2016b. Review report for the active substance thiabendazole. Finalised in the Standing Committee on Plants, Animals, Food and Feed as its meeting on in view of the renewal of the approval of thiabendazole as active substance in accordance with Regulation (EC) No 1107/2009. SANTE/10315/2015-rev.3, 7 December 2016.
- European Commission, 2017a. Final Review report for the active substance mesotrione. Finalised in the Standing Committee on Plants, Animals, Food and Feed as its meeting on 23 March 2017 in view of the renewal of the approval of mesotrione as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/11654/ 2016, 23 March 2017.
- European Commission, 2017b. Final Review report for the active substance pendimethalin. Finalised in the Standing Committee on Plants, Animals, Food and Feed as its meeting on 18 May 2017 in view of the renewal of the approval of pendimethalin as active substance in accordance with Regulation (EC) No 1107/2009. SANTE/11656/2016-rev.2, 18 May 2017.
- European Commission, 2017c. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev. 10.3, 13 June 2017.
- European Commission, 2017d. Review report for the active substance glyphosate. Finalised in the Standing Committee on Plants, Animals, Food and Feed as its meeting on 9 November 2017 in view of the renewal of the approval of glyphosate as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/ 10441/2017-rev.2, 9 November 2017.
- European Commission, 2018a. Review report for the active substance chlorantraniliprole. Finalised in the Standing Committee on the Food Chain and Animal Health as its meeting on 3 October 2013 in view of the approval of chlorantraniliprole as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/12081/2013-rev.2, 26 January 2018.

- European Commission, 2018b. Addendum to the Review report for the active substance fenazaquin. Finalised in the Standing Committee on Plant, Animals, Food and Feed as its meeting on 23 March 2018 in view if amending conditions of the approval of fenazaquin as active substance in accordance with Regulation (EC) No 1107/2009. SANTE/11781/2017-rev.1, 23 March 2018.
- European Commission, 2019a. Final Renewal report for the active substance chlorothalonil. Finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 22 March 2019 in view of the non-renewal of the approval of chlorothalonil as active substance in accordance with Regulation (EC) No 1107/2009. SANTE/10186/2018-rev.1, 22 March 2019.
- European Commission, 2019b. Final Renewal report for the active substance tolclofos-methyl. Finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 20 and 21 May 2019 in view of the renewal of the approval of tolclofos-methyl as active substance in accordance with Regulation (EC) No 1107/2009. SANTE/11272/2018-rev.4, 21 May 2019.
- European Commission, 2020. Final Renewal report for the active substance pyriproxyfen. Finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting 19 May 2020 in view of the renewal of the approval of pyriproxyfen as active substance in accordance with Regulation (EC) No 1107/2009. SANTE/11426/ 2019-rev.2, 19 May 2020.
- FAO (Food and Agriculture Organization of the United Nations), 2016. Submission and evaluation of pesticide residues data for the estimation of Maximum Residue Levels in food and feed. Pesticide Residues. 3rd Edition. FAO Plant Production and Protection Paper 225, 298 pp.
- FAO (Food and Agriculture Organization of the United Nations), 2018. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. Berlin, Germany, 18–27 September 2018. Pesticide residue in food 2018, 668 pp.
- FAO (Food and Agriculture Organization of the United Nations), 2019. Report of the extra Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. Ottawa, Canada, 7-17 May 2019. Pesticide residue in food 2019, 360 pp.
- FAO (Food and Agriculture Organization of the United Nations), 2020. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues. Geneva, Switzerland, 17–26 September 2019. Pesticide residue in food 2019. 680 pp.
- OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: www.oecd.org
- OECD (Organisation for Economic Co-operation and Development), 2013. Guidance document on residues in livestock. In: Series on Pesticides No 73. ENV/JM/MONO(2013)8, 4 September 2013.

Abbreviations

ADI	acceptable daily intake
-----	-------------------------

- a.i. active ingredient
- ARfD acute reference dose
- a.s. active substance
- bw body weight
- BBCH growth stages of mono- and dicotyledonous plants
- CCPR Codex Committee on Pesticide Residues
- CF conversion factor for enforcement residue definition to risk assessment residue definition
- CXL Codex Maximum Residue Limit (Codex MRL)
- DALA days after last application
- DAR Draft Assessment Report (prepared under Council Directive 91/414/EEC)
- DAT days after treatment
- DB dietary burden
- DM dry matter
- DNT developmental neurotoxicity
- dw dry weight
- EMS evaluating Member State
- EU European union
- FAO Food and Agriculture Organization of the United Nations
- GAP Good Agricultural Practice
- GM genetically modified
- ha hectare
- hL hectolitre
- HR highest residue
- IEDI international estimated daily intake

IESTIInternational estimated of short-term intakeJMPRJoint FAO/WHO Meeting on Pesticide ResiduesLD50lethal dose, medianLOAELlowest observed adverse effect levelLOQlimit of quantification (determination)MRLmaximum residue limitMSMember StatesNEUnorthern European UnionNOAELno observed adverse effect levelOECDOrganisation for Economic Co-operation and DevelopmentPBIplant back intervalPFprocessing factorPHIpreharvest intervalppmparts per million (10-6)Powpartition coefficient between n-octanol and waterPRIMo(EFSA) Pesticide Residues Intake Model	t
PRIMo (EFSA) Pesticide Residues Intake Model RA risk assessment	
RACraw agricultural commodityRARrenewal assessment reportRDresidue definitionRD-RAresidue definition for risk assessmentRD-RAresidue definition for enforcement practiceRMSrapporteur Member StateRTIre-treatment intervalSEUSouthern European UnionSTMRsupervised trials median residueTDMstriazole-derivative metabolitesTTCthreshold of toxicological concernTRRtotal radioactive residuesTRVtoxicological reference valuesWHOWorld Health OrganizationUFuncertainty factor	

Appendix A – Calculations of Consumer exposure with Pesticide Residue Intake Model (Primo)

The second se		Ac	etamiprid			Input	values		
efsa	LOQs (r	mg/kg) range from:	to:		Details – chror	nic risk	Supplementary	results –	
			gical reference values		assessmer	nt	chronic risk ass	sessment	
European Food Safety Authority		g/kg bw per day):	0.025 ARfD (mg/kg bv	-	Details – acut	e risk	Details – acu	ute risk	
EFSA PRIMo revision 3.1; 2019/03/19	Source Year of	of ADI: evaluation:	Source of ARfD Year of evaluation		assessment/ch		assessment/		
nments:									
			Normal mode						
		Chronic	risk assessment: JMPR meth	odology (IEDI/TMDI)					
	No of di	ets exceeding the ADI :						Exposure MRLs set at	commoditi
Calculated exposure (% of ADI) MS Diet	(µg/kg bw per	t contributor to MS diet Commodity/ % of ADI) group of commodities	2nd contributo MS diet (in % of AD	Commodity/		contributor to MS diet (in % of ADI)	Commodity/ group of commodities	(in % of ADI)	(in % of
0.1% DE child 0.0% DE child 0.0% GEMS/Food G06 0.0% GEMS/Food G07 0.0% GEMS/Food G07 0.0% GEMS/Food G07 0.0% GEMS/Food G10 0.0% GEMS/Food G10 0.0% FR todler 2 3 yr 0.0% DE general 0.0% FR todler 3 yr 0.0% FR todler 3 yr	0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.0% Nutmeg 0.0% Anie/anised 0.0% Other spices (seeds) 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Fennel Seed Nutmeg Nutmeg Nutmeg Nutmeg Orrinder seed Black carawayblack cumin Black carawayblack cumin Black carawayblack cumin FRUIT AND TREE NUTS Anise/aniseed FRUIT AND TREE NUTS		0.0%	Corriander seed Corriander seed Corriander seed Corriander seed Corriander seed		

Acute risk assessment/children

Acute risk assessment/adults/general population

Details - acute risk assessment/children

Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

			Sho	ow result	s for all crops	5		
Unprocessed commodities	Results for children No. of commodities f exceeded (IESTI):	1 or which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
S p	IESTI				IESTI			
processed	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
'n	2% 0.05% 0.05% 0.02% 0.01% 0.01% 0.01%	Fennel seed Coriander seed Anise/aniseed Nutmeg Fenugreek Dill seed Cumin seed	2/0.57 2/0.57 2/0.57 2/0.57 2/0.57 2/0.57 2/0.57 2/0.57	0.44 0.01 0.01 0.01 0.00 0.00 0.00	0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%	Black caraway/black cumin Nutmeg Fenugreek Coriander seed Fennel seed Anise/aniseed Dill seed	2/0.57 2/0.57 2/0.57 2/0.57 2/0.57 2/0.57 2/0.57	0.06 0.06 0.06 0.06 0.06 0.06 0.00
	Expand/collapse list Total number of co children and adult c (IESTI calculation)	mmodities exceeding the AF liets	RfD/ADI in		0.00%	Cumin seed	2/0.57	0.00
Processed commodities	Results for children No of processed con is exceeded (IESTI):	n nmodities for which ARfD/ADI			Results for adults No of processed cor is exceeded (IESTI):	nmodities for which ARfD/ADI		
umo	IESTI				IESTI			
essed c	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Pro	Expand/collapse list				0.1%	Cumin seed / processed (not	2/0.57	0.02
	Conclusion:							

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Acetamiprid is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

-	efsa			Ac	etochlor				Inpu	t values		
	+ otca		LOQs (mg/kg) range			to:	0.05	Details – c	hronic risk	Supplementar		
				-	cal reference va			assess	sment	chronic risk as	sessment	
	Surangan Food Safety Authority		ADI (mg/kg bw per da	iy):	0.0036	ARfD (mg/kg bw):	1.5	Details –	acute risk	Details – ac	ute risk	
			Source of ADI:		EFSA	Source of ARfD:	EFSA	assessmen		assessment		
	EFSA PRIMo revision 3.1; 2019/03/19		Year of evaluation:		2011	Year of evaluation:	2011					
nen	IIS:											
					Norma	l mode						
				Chronic ris	sk assessment:	JMPR methodo	ology (IEDI/TMDI)					
			No of diets exceeding	the ADI :							Exposure	
											MRLs set at the LOQ	commod under ass
	Calculated exposure	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI)	(in % o
	(% of ADI) MS Diet	(µg/kg bw per day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	. ,	
Τ	35% NL toddler	1.27	17%	Milk: Cattle		3%	Apples		2%	Maize/corn	34%	0.9
	26% GEMS/Food G11	0.94	15%	Soyabeans		2%	Milk: Cattle		1%	Potatoes	11%	1
	23% GEMS/Food G10	0.83	14%	Soyabeans Milk: Cattle		2% 2%	Milk: Cattle		1% 2%	Wheat	9%	1. 1.
	19% NL child 18% GEMS/Food G08	0.69	7% 8%	Milk: Cattle Soyabeans		2%	Sugar beet roots Milk: Cattle		2%	Apples Wheat	18% 10%	1.
	18% DE child	0.64	5%	Milk: Cattle		3%	Apples		1%	Wheat	18%	0.
	18% GEMS/Food G07	0.63	7%	Soyabeans		2%	Milk: Cattle		1%	Wheat	10%	5
	17% GEMS/Food G15	0.63	7%	Soyabeans		2%	Milk: Cattle		1%	Wheat	10%	7
	17% UK infant	0.61	11%	Milk: Cattle		0.9%	Potatoes		0.7%	Wheat	17%	0
	16% FR toddler 2 3 yr	0.57	8%	Milk: Cattle		0.9%	Apples		0.9%	Wheat	16%	0.
	16% FR child 3 15 yr	0.56	6%	Milk: Cattle		1%	Wheat		1%	Sugar beet roots	15%	0.
	15% GEMS/Food G06	0.55	5%	Soyabeans		2%	Wheat		1.0%	Tomatoes	10%	5
	12% UK toddler	0.45	6%	Milk: Cattle		1%	Wheat		1.0%	Potatoes	12%	0.
	11% DK child	0.41	4%	Milk: Cattle		2%	Rye		1%	Wheat	11%	0.
	10% RO general	0.38	3%	Milk: Cattle		1%	Wheat		1%	Potatoes	10%	
	10% DE women 14-50 yr 10% ES child	0.38	3% 3%	Milk: Cattle Milk: Cattle		1% 1%	Sugar beet roots Wheat		0.7%	Apples	10% 10%	0.
	10% ES child 10% SE general	0.38	3%	Milk: Cattle		1%	wneat Bovine: Muscle/meat		0.7%	Cocoa beans Potatoes	10%	0.
	10% DE general	0.37	3%	Milk: Cattle		1%	Sugar beet roots		0.7%	Apples	10%	0.
	10% Fl adult	0.35	8%	Coffee beans		0.3%	Potatoes		0.2%	Rve	10%	0.
	9% IE adult	0.34	1%	Milk: Cattle		1.0%	Sweet potatoes		0.6%	Wheat	9%	0
	9% NL general	0.32	2%	Milk: Cattle		0.8%	Sugar beet roots		0.7%	Potatoes	8%	0
	8% FR infant	0.29	5%	Milk: Cattle		0.5%	Potatoes		0.5%	Apples	8%	0
	7% PT general	0.25	1%	Potatoes		1%	Soyabeans		1%	Wheat	6%	
	6% FR adult	0.22	1%	Milk: Cattle		0.6%	Wine grapes		0.6%	Wheat	6%	0
	6% ES adult	0.21	1%	Milk: Cattle		0.7%	Wheat		0.4%	Oranges	6%	0
	5% FI 3 yr 5% IT toddler	0.18	1%	Potatoes		0.4%	Bananas Other cereals		0.3%	Wheat	5% 5%	0
	5% IT toddler 5% DK adult	0.17	2% 1%	Wheat Milk: Cattle		0.4%	Other cereals Potatoes		0.4%	Tomatoes Wheat	5% 5%	0.
	5% LT adult	0.16	1%	Milk: Cattle		0.9%	Potatoes		0.5%	Apples	4%	0.
	4% UK vegetarian	0.15	0.9%	Milk: Cattle		0.6%	Wheat		0.4%	Potatoes	4%	0.
	4% FI 6 yr	0.14	1%	Potatoes		0.3%	Cocoa beans		0.3%	Wheat	4%	0.
	4% UK adult	0.14	0.8%	Milk: Cattle		0.5%	Wheat		0.4%	Potatoes	4%	0.
	3% IT adult	0.12	1%	Wheat		0.3%	Tomatoes		0.2%	Apples	3%	0.
- 1	3% PL general 2% IE child	0.10	1.0%	Potatoes Milk: Cattle		0.6%	Apples Wheat		0.2%	Tomatoes	3% 2%	0.
- 1	2% IE child	0.08	1.0%	WIIK. Udttle		0.3%	VVIIddi		U.2%	Potatoes	∠70	1

Acute risk assessment/children

Acute risk assessment/adults/general population

Details - acute risk assessment/children

Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

Show results of IESTI calculation only for crops with GAPs under assessment Unprocessed commodities Results for children Results for adults No. of commodities for which ARfD/ADI is No. of commodities for which ARfD/ADI is exceeded (IESTI): exceeded (IESTI): IESTI IESTI MRL/input MRL/input Highest % of for RA Exposure Highest % of for RA Exposure ARfD/ADI ARfD/ADI Commodities (mg/kg) (µg/kg bw) Commodities (mg/kg) (µg/kg bw) 0.02% Soyabeans Bovine: Liver Soyabeans 0.01/0.15 0.35 0.06% 0.01/0.15 0.83 0.02% Bovine: Liver 0.01/0.04 0.34 0.01% 0.01/0.04 0.17 0.02% Bovine: Edible offals (other 0.01/0.04 0.30 0.01% Bovine: Edible offals (other 0.01/0.04 0.14 0.01% Bovine: Kidney Swine: Edible offals (other 0.01/0.04 0.16 0.01% Swine: Other products 0.01/0.04 0.14 0.01% 0.01% 0.01/0.04 0.01/0.04 Sheep: Liver 0.12 0.13 0.00% Swine: Kidney 0.01/0.04 0.05 0.01% Swine: Edible offals (other 0.01/0.04 0.11 0.00% Swine: Liver 0.01/0.04 0.05 0.01% Swine: Kidney 0.01/0.04 0.09 0.01% Bovine: Kidney 0.01/0.04 0.09 0.01% Bovine: Other products 0.08 0.01/0.04 0.00% Swine: Liver 0.01/0.04 0.06 Sheep: Edible offals (other 0.00% 0.03 0.01/0.04 0.00% Sheep: Kidney 0.01/0.04 0.00 Expand/collapse list Total number of commodities exceeding the ARfD/ADI in children and adult diets IESTI calculation) Results for children Results for adults Processed commodities No of processed commodities for which ARfD/ADI No of processed commodities for which ARfD/ADI is exceeded (IESTI): is exceeded (IESTI): IESTI IESTI MRL/input MRL/input Highest % of ARfD/ADI for RA Exposure Highest % of ARfD/ADI for RA Exposure (mg/kg) 0.01/0.15 (µg/kg bw) 0.63 Processed commodities Processed commodities (mg/kg) (µg/kg bw) 0.0% Soyabeans / soya drink 0.0% Soyabeans / boiled 0.01/0.06 0.22 Expand/collapse list Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Acetochlor is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

-	****				Afidopy	/ropen				Inpu	t values		
-	K. *			LOQs (mg/kg) range f		0.001 to	D:	5.0	Details – ch	ronic risk	Supplementary r	oculte -	
	*••P	fsa a			Toxicological ref		es		assessi		chronic risk asse		
				ADI (mg/kg bw per da	y):	0.08 A	RfD (mg/kg bw):	0.2	<u> </u>		·		
E	uropean Food	d Safety Authority		Source of ADI:		JMPR	ource of ARfD:	JMPR	Details – a		Details – acut		
		vision 3.1; 2019/03/19		Year of evaluation:			ear of evaluation:	2019	assessment	/children	assessment/a	dults	
nen		131011 3.1, 2013/03/13											,
					Norn	nal mode							
					Chronic risk assessme	ent: JMPR me	ethodology (IE	DI/TMDI)					
				No of diets exceeding	the ADI :							Exposure	e resulting fr
Τ												MRLs set at the LOQ	commoditi under asse
	Calculated exposure		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI)) (in % of
	(% of ADI)	MS Diet	(pg/kg bw per dav)	(in % of ADI)	aroup of commodities			aroup of commodities		(in % of ADI)	aroup of commodities		
1	5%	NL toddler	3.77	1%	Milk: Cattle		0.8%	Spinaches		0.3%	Apples	0.5%	4
	3%	SE general	2.55	1.0%	Bovine: Muscle/meat			Chinese cabbages/pe-tsai		0.4%	Lettuces	0.2%	3
	3%	NL child	2.15	0.6%	Milk: Cattle		0.3%	Spinaches		0.2%	Swine: Muscle/meat	0.3%	2
	3%	GEMS/Food G10	2.07	0.5%	Chinese cabbages/pe-tsai			Lettuces		0.2%	Bovine: Muscle/meat	0.2%	2
	2%	DE child	1.96	0.5%	Milk: Cattle		0.3%	Apples		0.3%	Oranges	0.2%	2
	2%	FR child 3 15 yr	1.78	0.6%	Milk: Cattle			Bovine: Muscle/meat		0.3%	Swine: Muscle/meat	0.2%	2
	2%	IE adult	1.74	0.6%	Other leafy brassica		0.2%	Rhubarbs		0.1%	Spinaches	0.2%	2
	2%	FR toddler 2 3 yr	1.72	0.7%	Milk: Cattle		0.3%	Bovine: Muscle/meat		0.3%	Swine: Muscle/meat	0.2%	2
	2%	ES child	1.70	0.5%	Lettuces		0.3%	Bovine: Muscle/meat		0.3%	Milk: Cattle	0.1%	29
	2%	DK child	1.69	0.5%	Swine: Muscle/meat		0.3%	Cucumbers		0.3%	Milk: Cattle	0.2%	29
	2%	GEMS/Food G11	1.59	0.3%	Swine: Muscle/meat		0.2%	Milk: Cattle		0.2%	Celeries	0.2%	29
	2%	GEMS/Food G07	1.51	0.3%	Lettuces		0.3%	Swine: Muscle/meat		0.2%	Bovine: Muscle/meat	0.2%	29
	2%	GEMS/Food G08	1.51	0.4%	Swine: Muscle/meat		0.2%	Lettuces		0.1%	Milk: Cattle	0.2%	29
	2%	UK infant	1.43	1.0%	Milk: Cattle		0.3%	Bovine: Muscle/meat		0.1%	Oranges	0.2%	29
	2%	NL general	1.34	0.2%	Swine: Muscle/meat			Milk: Cattle		0.2%	Kales	0.2%	2
	2%	GEMS/Food G06	1.33	0.1%	Tomatoes			Cucumbers		0.1%	Lettuces	0.3%	1
	2%	ES adult	1.29	0.6%	Lettuces		0.2%	Bovine: Muscle/meat		0.2%	Swine: Muscle/meat	0.1%	29
	2%	GEMS/Food G15	1.28	0.3%	Swine: Muscle/meat		0.2%	Milk: Cattle		0.1%	Lettuces	0.2%	1
	1%	UK toddler	1.16	0.5%	Milk: Cattle			Bovine: Muscle/meat		0.1%	Oranges	0.2%	1
	1%	DE general	1.14	0.3%	Milk: Cattle		0.2%	Swine: Muscle/meat		0.1%	Lettuces	0.2%	1
	1%	DE women 14-50 yr	1.13	0.3%	Milk: Cattle		0.2%	Swine: Muscle/meat		0.1%	Oranges	0.2%	19
	1%	FR infant	1.02	0.4%	Milk: Cattle		0.3%	Spinaches		0.1%	Swine: Muscle/meat	0.1%	1
	1%	RO general	0.93	0.3%	Milk: Cattle		0.3%	Swine: Muscle/meat		0.1%	Tomatoes	0.2%	1
	1%	IT adult	0.92	0.4%	Lettuces		0.1%	Spinaches		0.1%	Other leafy brassica	0.1%	1
	1%	PT general	0.86	0.6%	Kales		0.1%	Lettuces		0.1%	Potatoes	0.2%	0.9
	1%	IT toddler	0.81	0.3%	Lettuces		0.1%	Wheat		0.1%	Chards/beet leaves	0.1%	0.9
I	0.9%	DK adult	0.72	0.2%	Swine: Muscle/meat			Milk: Cattle		0.1%	Bovine: Muscle/meat	0.1%	0.8
	0.9%	FR adult	0.71	0.1%	Swine: Muscle/meat			Bovine: Muscle/meat		0.1%	Milk: Cattle	0.1%	0.8
	0.8%	LT adult	0.60	0.2%	Swine: Muscle/meat			Milk: Cattle		0.1%	Cucumbers	0.1%	0.7
ļ	0.7%	FI 3 yr	0.56	0.2%	Cucumbers			Spinaches		0.1%	Chinese cabbages/pe-tsai	0.2%	0.6
ļ	0.6%	FI 6 yr	0.51	0.2%	Cucumbers			Chinese cabbages/pe-tsai		0.1%	Lettuces	0.1%	0.6
ļ	0.6%	UK adult	0.50	0.1%	Bovine: Muscle/meat		0.1%	Lettuces		0.1%	Milk: Cattle	0.1%	0.6
1	0.6%	UK vegetarian	0.50	0.2%	Lettuces			Milk: Cattle		0.1%	Oranges	0.1%	0.5
	0.5%	FI adult	0.43	0.2%	Lettuces			Cucumbers		0.1%	Coffee beans	0.1%	0.4
	0.3%	PL general	0.27	0.1%	Chinese cabbages/pe-tsai			Apples Swine: Muscle/meat		0.0%	Potatoes Swine: Fat tissue	0.1%	0.3
	0.3%	IE child		0.1%	Milk: Cattle								0.2

The estimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI. The long-term intake of residues of Afidopyropen is unlikely to present a public health concern.

Acute risk assessment/children	Acute risk assessment/adults/general population
Details – acute risk assessment/children	Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for childre No. of commodities	en for which ARfD/ADI is exceeded (IESTI):		1	Results for adults No. of commodities (IESTI):	for which ARfD/ADI is exceeded		
IESTI				IESTI			
Highest % of ARfD/ADI	Commodifies	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodifies	MRL/input for RA (mg/kg)	Exposur (µg/kg bv
106%	Kales	5/4.8	211	61%	Chinese cabbages/pe-tsai	5/4.8	122
77%	Chinese cabbages/pe-tsai	5/4.8	154	46%	Kales	5/4.8	92
52%	Escaroles/broad-leaved endives	2/2.6	104	26%	Escaroles/broad-leaved	2/2.6	52
49%	Lettuces	2/2.6	99	25%	Chards/beet leaves	2/2.6	49
41%	Celeries	3/2.2	82	21%	Florence fennels	3/2.2	41
41%	Rhubarbs	3/2.2	82	18%	Celeries	3/2.2	35
29%	Spinaches	2/2.6	59	16%	Lettuces	2/2.6	32
20%	Chards/beet leaves	2/2.6	41	13%	Red mustards	5/4.8	25
20%	Cucumbers	0.7/0.6	39	11%	Cardoons	3/2.2	23
18%	Florence fennels	3/2.2	36	10%	Rhubarbs	3/2.2	20
10%	Cauliflowers	0.4/0.34	20	8%	Cucumbers	0.7/0.6	17
7%	Broccoli	0.4/0.34	14	5%	Spinaches	2/2.6	10
6%	Roman rocket/rucola	5/4.8	13	4%	Broccoli	0.4/0.34	8.1
6%	Oranges	0.15/0.09	11	4%	Cauliflowers	0.4/0.34	7.9
4%	Lamb's lettuce/corn salads	2/2.6	7.3	3%	Parsley	5/4.8	5.7
Expand/collapse lis	t						
Total number of co diets (IESTI calculation)	ommodities exceeding the ARfD/ADI in chi	ldren and adult	1				

IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bv
86%	Escaroles/broad-leaved endives/boiled	2/2.6	172	37%	Celeries/boiled	3/2.2	74
66%	Kales/boiled	5/4.8	132	27%	Escaroles/broad-leaved	2/2.6	53
50%	Florence fennels/boiled	3/2.2	100	21%	Florence fennels/boiled	3/2.2	43
41%	Rhubarbs/sauce/puree	3/2.2	82	16%	Chards/beet leaves/boiled	2/2.6	33
40%	Chards/beet leaves/boiled	2/2.6	81	16%	Rhubarbs/sauce/puree	3/2.2	32
18%	Spinaches/frozen; boiled	2/2.6	36	13%	Cardoons/boiled	3/2.2	27
13%	Broccoli/boiled	0.4/0.34	27	11%	Spinaches/frozen; boiled	2/2.6	22
12%	Cauliflowers/boiled	0.4/0.34	24	7%	Cauliflowers/boiled	0.4/0.34	14
2%	Pumpkins/boiled	0.05/0.05	4.3	5%	Purslanes/boiled	2/2.6	11
1%	Oranges/juice	0.15/0.05	2.8	4%	Broccoli/boiled	0.4/0.34	8.2
0.9%	Courgettes/boiled	0.07/0.05	1.8	1%	Pumpkins/boiled	0.05/0.05	2.7
0.6%	Apples/juice	0.03/0.02	1.1	0.6%	Courgettes/boiled	0.07/0.05	1.1
0.5%	Potatoes/fried	0.01/0.01	0.93	0.4%	Oranges/juice	0.15/0.05	0.81
0.3%	Pears/juice	0.03/0.02	0.68	0.3%	Apples/juice	0.03/0.02	0.70
0.3%	Potatoes/dried (flakes)	0.01/0.05	0.59	0.3%	Grapefruits/juice	0.15/0.05	0.58

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 1 commodities.

For processed commodities, no exceedance of the ARfD/ADI was identified.

	*	tca_		LOQs (mg/kg) range f		0.01 ical reference va	to:	0.01	Details – c assess	hronic risk	Supplementar chronic risk as		
	C	fsa		ADI (mg/kg bw per da		0.2	ARfD (mg/kg bw):	not necessary	assess			sessment	
E	uropean Food	Safety Authority		Source of ADI:		EFSA	Source of ARfD:	EFSA	Details –		Details – ac		
		vision 3.1; 2019/03/19		Year of evaluation:		2010	Year of evaluation:	2010	assessmen	t/children	assessment	/adults	
men	ts:												
						Norma	l mode						
				r	Chronic r	isk assessment:	JMPR methodo	logy (IEDI/TMDI)					
				No of diets exceeding	the ADI :			-			-	Exposure	resulting
	Calculated exposure		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	MRLs set at the LOQ (in % of ADI)	under as
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	22%	NL toddler	43.33	5%	Oranges		5% 3%	Potatoes		4%	Sugar beet roots		22
	19% 19%	DE child NL child	38.93 37.29	10% 6%	Oranges Sugar beet roots		3% 4%	Potatoes Potatoes		1% 3%	Mandarins Oranges		19
	16%	FR child 3 15 yr	31.29	8%	Oranges		2%	Sugar beet roots		2%	Potatoes		16
	13%	UK toddler	26.98	5%	Oranges		4%	Potatoes		2%	Sugar beet roots		13
	13%	IE adult	25.32	3%	Potatoes		2%	Oranges		2%	Grapefruits		13
	13%	GEMS/Food G07	25.24	4%	Potatoes		3%	Oranges		0.5%	Wine grapes		13
	12%	GEMS/Food G06	24.92	2%	Oranges		2%	Potatoes		1%	Sugar beet roots		1:
	12% 12%	FR toddler 2 3 yr DE women 14-50 yr	24.69	3% 5%	Oranges		2% 3%	Potatoes		2% 1%	Sugar beet roots Potatoes		1:
	12%	DE women 14-50 yr GEMS/Food G11	24.36 23.69	5% 4%	Oranges Potatoes		3%	Sugar beet roots Oranges		1% 0.9%	Potatoes Lemons		12 12
	12%	SE general	23.46	4 % 5%	Potatoes		2%	Oranges		1%	Mandarins		12
	12%	GEMS/Food G10	23.35	3%	Potatoes		3%	Oranges		0.6%	Onions		12
	11%	GEMS/Food G08	22.20	4%	Potatoes		1%	Oranges		0.6%	Lemons		11
,	11%	DE general	22.06	4%	Oranges		3%	Sugar beet roots		1%	Potatoes		11
	11%	PT general	21.63	6%	Potatoes		1%	Oranges		0.9%	Wine grapes		1
	11% 10%	GEMS/Food G15	21.15	4% 5%	Potatoes		2% 2%	Oranges Potatoes		0.6%	Onions		11
	10%	ES child NL general	20.60 20.38	5%	Oranges Potatoes		2%	Potatoes Oranges		0.7% 2%	Lettuces Sugar beet roots		10
	10%	RO general	20.38	4%	Potatoes		0.9%	Sugar beet roots		0.9%	Head cabbages		10
	10%	UK infant	19.69	4%	Potatoes		3%	Oranges		1.0%	Sugar beet roots		10
	9%	FI 3 yr	17.89	5%	Potatoes		1.0%	Mandarins		0.4%	Onions		9
	7%	FI 6 yr	14.79	4%	Potatoes		0.8%	Mandarins		0.4%	Oranges		7
	7%	ES adult	14.37	3%	Oranges		1%	Potatoes		0.9%	Lettuces		7
	6%	FR infant	12.91	2%	Potatoes		0.9%	Sugar beet roots		0.6%	Oranges		6
	6% 6%	UK vegetarian PL general	12.48 11.41	2% 4%	Oranges Potatoes		2% 0.4%	Potatoes Onions		0.4%	Sugar beet roots Head cabbages		6
	6%	PL general DK child	11.41	4% 3%	Potatoes Potatoes		0.4%	Onions Oranges		0.2%	Head cabbages Onions		6
	5%	FR adult	10.75	1%	Oranges		0.8%	Potatoes		0.8%	Wine grapes		5
	5%	UK adult	10.29	2%	Potatoes		1%	Oranges		0.4%	Wine grapes		5
	5%	IT toddler	10.20	1%	Oranges		1%	Potatoes		0.5%	Mandarins		5
	5%	LT adult	9.40	4%	Potatoes		0.2%	Head cabbages		0.2%	Oranges		5
	5%	IT adult	9.09	0.9%	Oranges		0.7%	Potatoes		0.6%	Lettuces		5
	4% 4%	FI adult DK adult	7.78 7.16	1% 1%	Potatoes Potatoes		1.0% 0.3%	Oranges Wine grapes		0.3%	Mandarins Oranges		4
	4%	IE child	2.86	0.7%	Potatoes		0.2%	Oranges		0.1%	Rice		1
											1		1 '

Acute risk assessment/children	A	Acute risk assessment/adults/general population
Details – acute risk assessment/children		Details – acute risk assessment/adults

As an ARfD is not necessary/not applicable, no acute risk assessment is performed.

			Sh	ow result	s for all crop	S		
Unprocessed commodities	Results for children No. of commodities for exceeded (IESTI):	i or which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
og co	IESTI				IESTI			
Inprocesse	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
	Expand/collapse list Total number of cor children and adult d	mmodities exceeding the A	RfD/ADI in					
	(IESTI calculation)	liets						
odities	(IESTI calculation) Results for children No of processed corr		1			nmodities for which ARfD/ADI		
mmodities	(IESTI calculation) Results for children No of processed com is exceeded (IESTI):	1	1		No of processed con is exceeded (IESTI)			
d commodities	(IESTI calculation) Results for children No of processed com is exceeded (IESTI): IESTI	1	MRL/input		No of processed co is exceeded (IESTI) IESTI		MRL/input	
essed commodities	(IESTI calculation) Results for children No of processed com is exceeded (IESTI):	1		Exposure (µg/kg bw)	No of processed con is exceeded (IESTI)			Exposure (µg/kg bw)
Processed commodities	(IESTI calculation) Results for children No of processed corr is exceeded (IESTI): IESTI Highest % of	n nmodities for which ARfD/AD	MRL/input for RA	Exposure (µg/kg bw)	No of processed co is exceeded (IESTI) IESTI Highest % of		MRL/input for RA	
Processed commodities	(IESTI calculation) Results for children No of processed com is exceeded (IESTI): IESTI Highest % of ARfD/ADI	n nmodities for which ARfD/AD	MRL/input for RA		No of processed co is exceeded (IESTI) IESTI Highest % of		MRL/input for RA	

	****	-			Ber	zovindiflupyr				Inpu	t values		
1	*	fee		LOQs (mg/kg) range f		0.01	to:	0.05	Details – o	chronic risk	Supplementary re	sults –	
	** e	fsa				logical reference values			asses		chronic risk asses		
		d Safety Authority		ADI (mg/kg bw per da	ı):	0.05	ARfD (mg/kg bw):	0.1	Details -	acute risk	Details – acute	rick	À.
		vision 3.1: 2019/03/19		Source of ADI: Year of evaluation:		European 2015	Source of ARfD: Year of evaluation:	European Commision 2015		nt/children	assessment/ac		
	Its:	vision 3.1; 2019/03/19		rear or evaluation.		2010	rear or evaluation.	2010					<u> </u>
					Ref	ned calculation mode							
				1		sessment: JMPR methodo	logy (IEDI/TMDI)					- T	
	1			No of diets exceeding	the ADI :	-	-	I		1	1	Exposure MRLs set at	re resulting f
	Calculated exposure (% of ADI)	e MS Diet	Expsoure (µg/kg bw pe day)	Highest contributor to MS diet (in % of ADI)	Commodity/ group of commodities		2nd contributor to MS diet (in % of ADI)	Commodity/ group of commodities		3rd contributor to MS diet (in % of ADI)	Commodity/ group of commodities	the LOQ (in % of ADI	under ass (in % of
	(% 61 ADI) 5%	NL toddler	2.58	(in % 01 ADI) 2%	Milk: Cattle		(IN % 01 ADI) 1%	Apples		0.5%	Pears	_	59
	3%	DE child	1.55	1%	Apples		0.8%	Milk: Cattle		0.2%	Tomatoes		39 29
	2% 2%	NL child UK infant	1.21	1.0% 2%	Milk: Cattle Milk: Cattle		0.7%	Apples Apples		0.2%	Wheat Wheat		2
	2%	FR toddler 2 3 yr	1.03	1%	Milk: Cattle		0.4%	Apples		0.1%	Wheat		2
	2%	FR child 3 15 yr	0.93	0.9%	Milk: Cattle		0.2%	Apples		0.2%	Wheat		2
	2%	GEMS/Food G06	0.92	0.6%	Tomatoes		0.3%	Wheat		0.2%	Sugar canes		2
	2% 2%	GEMS/Food G11 GEMS/Food G15	0.92	0.3%	Milk: Cattle Barley		0.3%	Barley Milk: Cattle		0.3%	Sugar canes Tomatoes		2
	2%	GEMS/Food G15 GEMS/Food G08	0.92	0.3%	Barley		0.2%	Milk: Cattle		0.2%	Sugar canes		2
	2%	DK child	0.89	0.5%	Milk: Cattle		0.3%	Apples		0.2%	Wheat		2
	2%	GEMS/Food G07	0.86	0.3%	Milk: Cattle		0.2%	Barley		0.2%	Sugar canes		2
	2%	RO general	0.83	0.5%	Milk: Cattle		0.3%	Tomatoes		0.2%	Wheat		2
	2%	GEMS/Food G10	0.80	0.2%	Tomatoes		0.2%	Barley		0.2%	Mik: Cattle		2
	2% 1%	UK toddler DE general	0.78	0.8%	Milk: Cattle Milk: Cattle		0.2%	Apples Apples		0.2%	Wheat Barley		2
	1%	DE general DE women 14-50 yr	0.74	0.5%	Milk: Cattle		0.3%	Apples Apples		0.2%	Baney Tomatoes		1
	1%	ES child	0.67	0.5%	Milk: Cattle		0.2%	Wheat		0.2%	Tomatoes		1
	1%	SE general	0.66	0.5%	Milk: Cattle		0.2%	Bovine: Muscle/meat		0.1%	Tomatoes		1
	1%	NL general	0.53	0.3%	Milk: Cattle		0.2%	Apples		0.1%	Barley		1
	1%	FR infant	0.53	0.7%	Milk: Cattle		0.2%	Apples		0.0%	Potatoes		1
	1.0%	IE adult ES adult	0.49	0.2%	Milk: Cattle Milk: Cattle		0.1%	Wheat Barley		0.1%	Apples Tomatoes		1.
	0.8%	PT general	0.48	0.2%	Tomatoes		0.2%	Wheat		0.1%	Wine grapes		0.
	0.8%	LT adult	0.40	0.2%	Apples		0.2%	Milk: Cattle		0.1%	Tomatoes		0.
	0.8%	FR adult	0.38	0.2%	Milk: Cattle		0.1%	Wine grapes		0.1%	Wheat		0.
	0.7%	IT toddler	0.37	0.3%	Wheat		0.3%	Tomatoes		0.1%	Apples		0.
	0.7%	DK adult	0.36	0.2%	Milk: Cattle		0.1%	Apples		0.1%	Tomatoes		0.
	0.7%	FI3 yr	0.36	0.2%	Oat Milk: Cattle		0.1%	Apples		0.1%	Tomatoes		0.
	0.6%	UK vegetarian IT adult	0.28	0.1%	Milk: Cattle Tomatoes		0.1%	Tomatoes Wheat		0.1%	Wheat Apples	1	0.
	0.5%	PL general	0.28	0.2%	Apples		0.2%	Tomatoes		0.1%	Potatoes	1	0.
	0.5%	FI6 yr	0.26	0.1%	Oat		0.1%	Potatoes		0.1%	Tomatoes		0.
	0.5%	UK adult	0.25	0.1%	Milk: Cattle		0.1%	Tomatoes		0.1%	Wheat	1	0.
	0.5%	Fladult	0.25	0.2%	Coffee beans		0.1%	Tomatoes		0.1%	Apples		0.
	0.3%	IE child	0.15	0.1%	Milk: Cattle		0.0%	Wheat		0.0%	Apples		0.3

Acute risk assessment/children

Details – acute risk assessment/ad

Acute risk assessment/adults/general population

The acute risk assessment is based on the ARID. The calculation is based on the large portion of the most critical consumer group.

Results for children				Results for adults			
	or which ARfD/ADI is exceeded (IESTI):				for which ARfD/ADI is exceeded (IESTI):		
ESTI		MRL/input		IESTI		MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exp
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/l
59%	Table grapes	1/0.81	59	27%	Table grapes	1/0.81	
36%	Tomatoes	0.9/0.62	36	19%	Wine grapes	1/0.81	
24%	Pears	0.2/0.17	24	17%	Aubergines/egg plants	0.9/0.62	
18%	Apples	0.2/0.17	18	10%	Tomatoes	0.9/0.62	1
16%	Aubergines/egg plants	0.9/0.62	16	5%	Pears	0.2/0.17	-
10%	Cucumbers	0.08/0.16	10	5%	Apples	0.2/0.17	
8%	Kaki/Japanese persimmons	0.2/0.17	7.9	4%	Cucumbers	0.08/0.16	
8%	Wine grapes	1/0.81	7.5	4%	Kaki/Japanese persimmons	0.2/0.17	-
7%	Courgettes	0.08/0.16	7.4 4.2	4% 3%	Courgettes	0.08/0.16	1
4% 4%	Quinces	0.2/0.17	4.2	3%	Quinces Medlar	0.2/0.17	1
4%	Sweet peppers/bell peppers	1/0.06	3.7	1%			
	Potatoes	0.02/0.02			Sweet peppers/bell peppers	1/0.06	
2% 2%	Milk: Cattle	0.01/0.02	2.5 2.4	1.0%	Gherkins	0.08/0.16	0
2%	Medlar	0.2/0.17	2.4	0.9%	Barley Milk: Cattle	1.5/0.19 0.01/0.02	0
1% 1%	Barley Bovine: Liver	1.5/0.19 0.1/0.13	1.1 1.0	0.8%	Milk: Cattle Potatoes	0.01/0.02	0
1%	Bovine: Liver Bovine: Edible offals (other than liver and kidney)		1.0 0.93	0.6%	Potatoes Yams	0.02/0.02	0
0.9%	Bovine: Edible offals (other than liver and kidney) Yams	0.1/0.13 0.02/0.02	0.93	0.6%	Yams Bovine: Liver	0.02/0.02	0
0.5%	Milk: Goat	0.02/0.02	0.62	0.5%		0.1/0.13	0
0.5%	Bovine: Kidnev	0.1/0.13	0.48	0.4%	Bovine: Edible offals (other than liver and kidney) Sweet potatoes	0.02/0.02	0
0.3%	Gherkins	0.08/0.16	0.45	0.4%	Milk: Goat	0.01/0.02	0
0.4%	Sweet corn	0.01/0.01	0.43	0.4%	Sheep: Liver	0.1/0.13	0
0.4%	Swine: Edible offals (other than liver and kidney)	0.1/0.13	0.38	0.3%	Swine: Edible offals (other than liver and kidney)	0.1/0.13	0
0.4%	Onions	0.02/0.02	0.34	0.3%	Milk: Sheep	0.01/0.02	0
0.3%	Poultry: Muscle/meat	0.01/0.02	0.34	0.3%	Swine: Kidney	0.1/0.13	0
0.3%	Wheat	0.1/0.02	0.34	0.3%	Bovine: Kidney	0.1/0.13	0
0.2%	Eggs: Chicken	0.01/0.02	0.25	0.2%	Poultry: Muscle	0.01/0.02	ŭ
0.2%	Swine: Muscle/meat	0.01/0.02	0.24	0.2%	Onions	0.02/0.02	Ő
0.2%	Oat	1.5/0.19	0.24	0.2%	Jerusalem artichokes	0.02/0.02	0
0.2%	Beans	0.2/0.01	0.20	0.2%	Swine: Liver	0.1/0.13	0
0.2%	Swine: Kidney	0.1/0.13	0.16	0.2%	Wheat	0.1/0.02	ŭ
0.2%	Cassava roots/manioc	0.02/0.02	0.16	0.2%	Sweet corn	0.01/0.01	0
0.2%	Swine: Liver	0.1/0.13	0.16	0.1%	Oat	1.5/0.19	0
0.1%	Bovine: Muscle/meat	0.01/0.02	0.14	0.1%	Bovine: Muscle	0.01/0.02	Ő
0.1%	Other farmed animals: Muscle/meat	0.01/0.02	0.14	0.1%	Other farmed animals: Muscle/meat	0.01/0.02	0
0.1%	Equine: Muscle/meat	0.01/0.02	0.12	0.10%	Swine: Muscle/meat	0.01/0.02	Ő
0.1%	Sheep: Muscle/meat	0.01/0.02	0.11	0.10%	Equine: Muscle/meat	0.01/0.02	0
0.1%	Sweet potatoes	0.02/0.02	0.11	0.09%	Sheep: Muscle/meat	0.01/0.02	Ċ
0.08%	Bovine: Fat tissue	0.03/0.04	0.08	0.09%	Poultry: Liver	0.01/0.02	c
0.07%	Lentils	0.2/0.01	0.07	0.09%	Sheep: Edible offals (other than liver and kidney)	0.1/0.13	c
0.07%	Peas	0.2/0.01	0.07	0.09%	Eggs: Chicken	0.01/0.02	0
0.07%	Milk: Sheep	0.01/0.02	0.07	0.08%	Swine: Fat tissue	0.03/0.04	Ő
0.07%	Maize/corn	0.02/0.01	0.07	0.07%	Beans	0.2/0.01	0
0.06%	Swine: Fat tissue	0.03/0.04	0.06	0.07%	Lentils	0.2/0.01	0
0.06%	Rye	0.1/0.01	0.06	0.07%	Swine: Other products	0.01/0.02	0
0.05%	Garlic	0.02/0.02	0.05	0.06%	Cassava roots/manioc	0.02/0.02	0
0.05%	Sugar canes	0.4/0.25	0.05	0.06%	Soyabeans	0.08/0.01	0
0.03%	Rapeseeds/canola seeds	0.2/0.02	0.03	0.05%	Rye	0.1/0.01	C
0.03%	Peanuts/groundnuts	0.04/0.01	0.03	0.04%	Bovine: Other products	0.01/0.02	0
0.02%	Soyabeans	0.08/0.01	0.02	0.04%	Shallots	0.02/0.02	0
0.02%	Poultry: Liver	0.01/0.02	0.02	0.04%	Bovine: Fat tissue	0.03/0.04	C
0.02%	Linseeds	0.15/0.02	0.02	0.04%	Peas	0.2/0.01	C
0.02%	Mustard seeds	0.15/0.02	0.02	0.03%	Goat: Muscle	0.01/0.02	0
0.01%	Ginger	0.15/0.15	0.01	0.03%	Eggs: Quail	0.01/0.02	0
0.01%	Coffee beans	0.15/0.02	0.01	0.03%	Poultry: Kidney	0.01/0.02	C
0.005%	Shallots	0.02/0.02	0.00	0.02%	Peanuts/groundnuts	0.04/0.01	0
0.00%	Turmeric/curcuma	0.15/0.15	0.00	0.02%	Maize/corn	0.02/0.01	0
0.00%	Poultry: Fat tissue	0.01/0.02	0.00	0.02%	Turmeric/curcuma	0.15/0.15	c
	•			0.01%	Poppy seeds	0.15/0.02	c
				0.01%	Poppy seeds	0.15/0.02	c
				0.01%	Sheep: Kidney	0.1/0.13	c
				0.01%	Rapeseeds/canola seeds	0.2/0.02	0
				0.01%	Coffee beans	0.15/0.02	c
				0.01%	Eggs: Goose	0.01/0.02	Ő
				0.01%	Garlic	0.02/0.02	ŭ
				0.01%	Linseeds	0.15/0.02	0

(IESTI calculation)	ommodities exceeding the ARfD/ADI in children an	d adult diets					
(iEST calculation)							
Results for childre	n			Results for adults			
No of processed co	mmodities for which ARfD/ADI is exceeded (IESTI):			No of processed cor	nmodities for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
.2011		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposu
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg t
6%	Courgettes/boiled	0.08/0.16	5.7	8%	Wine grapes/wine	1/0.81	7.7
4%	Gherkins/pickled	0.08/0.16	3.7	5%	Table grapes/raisins	1/3.81	4.7
3%	Apples/juice	0.2/0.06	3.1	4%	Courgettes/boiled	0.08/0.16	3.7
2%	Pears/juice	0.2/0.06	1.9	2%	Apples/juice	0.2/0.06	1.9
2%	Potatoes/fried	0.02/0.02	1.9	1%	Beans/canned	0.2/0.2	1.4
2%	Tomatoes/juice	0.9/0.09	1.7	1%	Barley/beer	1.5/0.04	1.4
2%	Lentils/boiled	0.2/0.2	1.6	0.7%	Tomatoes/sauce/puree	0.9/0.09	0.73
1%	Peas/canned	0.2/0.08	1.4	0.6%	Wine grapes/juice	1/0.03	0.60
1%	Wine grapes/juice	1/0.03	1.3	0.5%	Peas/canned	0.2/0.08	0.53
1%	Sweet potatoes/boiled	0.02/0.02	1.0	0.4%	Cassava roots/boiled	0.02/0.02	0.38
0.8%	Tomatoes/sauce/puree	0.9/0.09	0.85	0.3%	Sweet potatoes/boiled	0.02/0.02	0.31
0.7%	Oat/boiled	1.5/0.19	0.69	0.3%	Oat/boiled	1.5/0.19	0.29
0.7%	Barley/cooked	1.5/0.19	0.69	0.2%	Jerusalem artichokes/boiled	0.02/0.02	0.16
0.6%	Potatoes/dried (flakes)	0.02/0.05	0.59	0.1%	Onions/boiled	0.02/0.02	0.14
0.6%	Oat/milling (flakes)	1.5/0.19	0.57	0.1%	Maize/oil	0.02/0.25	0.13
0.5%	Jerusalem artichokes/boiled	0.02/0.02	0.51	0.1%	Okra, lady's fingers/boiled	1/0.06	0.10
0.3%	Barley/milling (flour)	1.5/0.19	0.34	0.09%	Ginger/jam	0.15/0.08	0.09
0.2%	Shallots/boiled	0.02/0.02	0.24	0.09%	Shallots/boiled	0.02/0.02	0.09
0.2%	Wheat/milling (flour)	0.1/0.02	0.24	0.09%	Wheat/bread/pizza	0.1/0.02	0.09
0.2%	Maize/oil	0.02/0.25	0.23	0.08%	Potatoes/chips	0.02/0.01	0.08
0.2%	Ginger/jam	0.15/0.08	0.23	0.08%	Wheat/pasta	0.1/0.02	0.08
0.2%	Quinces/jam	0.2/0.06	0.18	0.07%	Quinces/jam	0.2/0.06	0.07
0.1%	Wheat/milling (wholemeal)-baking	0.1/0.02	0.11	0.07%	Coffee beans/extraction	0.15/0	0.07
0.0%	Soyabeans/soya drink	0.08/0.01	0.04	0.07%	Wheat/bread (wholemeal)	0.1/0.02	0.07
0.0%	Rye/boiled Peanuts/peanut butter	0.04/0.01	0.04 0.04	0.06%	Potatoes/dried (flakes)	0.02/0.05	0.06
					Sugar canes/sugar		
0.0%	Rye/milling (wholemeal)-baking Coffee beans/extraction	0.1/0.01 0.15/0	0.04 0.03	0.003%	Arrowroots/starch	0.02/0.01 0.15/0.15	0.00
0.03%	Sugar canes/sugar	0.15/0	0.03	0.00276	Turmeric (Curcuma)/boiled	0.15/0.15	0.00
0.03%	Maize/processed (not specified)	0.4/0	0.03				
0.0%	Soyabeans/boiled	0.02/0.01	0.02				
0.0%	Rapeseeds/oils	0.2/0.05	0.01				
0.0%	Arrowroots/starch	0.02/0.05	0.01				

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodily. A short-term intake of residues of Benzovindiflupyr is unlikely to present a public health risk. For processed commodities, no exceedance of the ARTD/ADI was identified.

	<u> </u>				Bifenthrin (F)							
-		tca		LOQs (mg/kg) range f	rom: 0.01	to:	30.0	Details – c	hronic risk	Supplementary resi		
-	**E	fsa			Toxicological reference value					chronic risk assessn	nent	
				ADI (mg/kg bw per da	y): 0.015	ARfD (mg/kg bw):	0.03	Dotails –	acute risk	Details – acute r	ickt	
E	uropean rood	Safety Authonity		Source of ADI:	EFSA	Source of ARfD:	EFSA	assessmer		assessment/adu		
ment		sion 3.1; 2019/03/19		Year of evaluation:	2008	Year of evaluation:	2008	ussessmen	ing enhier en	dissessmenty add		
imen	105:											
					Refined calculation mod	le						
					Chronic risk assessment: JMPR metho	odology (IEDI/TMI	(וכ					
				No of diets exceeding	the ADI :							e resulting fro
			Expsoure	Highest contributor to		2nd contributor to MS			3rd contributor to MS		MRLs set at the LOQ	commoditi under asses
	Calculated exposure		(µg/kg bw per	MS diet	Commodity/	diet	Commodity/		diet	Commodity/	(in % of ADI)	(in % of
_		MS Diet NL toddler	day) 6.12	(in % of ADI)	group of commodities Milk: Cattle	(in % of ADI)	group of commodities Wheat		(in % of ADI)	group of commodities		
		VL todder UK infant	6.12 3.90	21% 14%	Mik: Cattle Mik: Cattle	7% 4%	Wheat		2% 2%	Maize/corn Tea (dried leaves of Camellia sinensi		419
		FR child 3 15 yr	3.76	8%	Milk: Cattle	8%	Wheat			Bovine: Muscle/meat		25
	24%	NL child	3.64	9%	Milk: Cattle	7%	Wheat		1%	Swine: Muscle/meat		24
		DE child	3.33	7%	Wheat	7%	Milk: Cattle		2%	Strawberries		22
		FR toddler 2 3 yr	3.30	10%	Milk: Cattle	5%	Wheat		1%	Bovine: Muscle/meat		22
		GEMS/Food G06	3.19	12%	Wheat Milk: Cattle	2%	Tea (dried leaves of Camellia sinensis	5)	1%	Tomatoes		21
		UK toddler GEMS/Food G15	3.15 3.04	7% 8%	Wilk: Cattle Wheat	7% 2%	Wheat Milk: Cattle		1% 2%	Bovine: Muscle/meat Swine: Muscle/meat		219
		GEMS/Food G07	3.04	7%	Wheat	2%	Milk: Cattle		2%	Tea (dried leaves of Camellia sinensi		20
		RO general	2.99	8%	Wheat	4%	Milk: Cattle		1%	Swine: Muscle/meat		204
		GEMS/Food G11	2.94	6%	Wheat	3%	Milk: Cattle		1%	Swine: Muscle/meat		20
		GEMS/Food G08	2.90	7%	Wheat	2%	Swine: Muscle/meat		2%	Milk: Cattle		19
		SE general	2.89	5%	Wheat	5%	Bovine: Muscle/meat			Milk: Cattle		19
°		DK child	2.83	7%	Wheat	4%	Milk: Cattle		3%	Swine: Muscle/meat		19
		ES child GEMS/Food G10	2.79 2.74	7% 7%	Wheat Wheat	4% 2%	Milk: Cattle Milk: Cattle		2% 1%	Bovine: Muscle/meat Soyabeans		19 18
		IE adult	2.74	7% 5%	Wheat Tea (dried leaves of Camellia sinensis)	2%	Milk: Cattle Wheat		1%	Soyabeans Milk: Cattle		18
		FR adult	2.65	5%	Tea (dried leaves of Camelia sinensis) Tea (dried leaves of Camelia sinensis)	4%	Wheat		2%	Milk: Cattle		15
		DE women 14-50 yr	2.10	4%	Milk: Cattle	4%	Wheat		1%	Tea (dried leaves of Camellia sinensi		14
	14%	DE general	2.08	4%	Milk: Cattle	3%	Wheat		1%	Swine: Muscle/meat		14
		IT toddler	1.94	11%	Wheat	0.6%	Tomatoes			Strawberries		13
		NL general	1.91	3%	Wheat	3%	Milk: Cattle		1%	Tea (dried leaves of Camellia sinensi		13
		PT general	1.65	7%	Wheat	2%	Potatoes		1.0%	Wine grapes		11
		FR infant ES adult	1.57	6% 4%	Milk: Cattle Wheat	1% 2%	Wheat Milk: Cattle		0.6%	Potatoes Bovine: Muscle/meat		10 10
		ES aduit DK adult	1.50	4%	Wheat	2%	Milk: Cattle Milk: Cattle		1%	Swine: Muscle/meat		9
		UK adult	1.32	3%	Wheat	2%	Tea (dried leaves of Camellia sinensis	3)		Milk: Cattle		99
ļ		UK vegetarian	1.32	3%	Wheat	2%	Tea (dried leaves of Camellia sinensis			Milk: Cattle		99
		IT adult	1.24	7%	Wheat	0.5%	Tomatoes			Potatoes		8
ļ		LT adult	1.08	2%	Wheat	1%	Milk: Cattle		1%	Swine: Muscle/meat		7
		FI3 yr	0.95	2%	Wheat	2%	Potatoes		1%	Strawberries		6
ļ		FI6 yr	0.76	2%	Wheat	1%	Potatoes		0.9%	Strawberries		5
		IE child PL general	0.71 0.37	2% 1%	Wheat Potatoes	1% 0.4%	Milk: Cattle Tomatoes		0.5%	Swine: Fat tissue Head cabbages		5% 2%
		Fladult	0.36	0.5%	Wheat	0.4%	Strawberries		0.4%	Potatoes		2
	Conclusion:				1	1	1		1			L
	The estimated long-terr	m dietary intake (TMDI/NEDI/IEDI) was below the ADI. f residues of Bifenthrin (F) is unlikely to present a public l										

	Acute risk as	ssessment/children
Details	s – acute risl	k assessment/childre

Acute risk assessment/adults/general population

The acute risk assessment is based on the ARID. The calculation is based on the large portion of the most critical consumer group.

Results for childre	n			Results for adults			
	for which ARfD/ADI is exceeded (IESTI):		1		for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Expos
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
125%	Strawberries	3/2.3	38	72%	Strawberries	3/2.3	21
61%	Sweet peppers/bell peppers	0.5/0.31	18	49%	Blueberries	3/1.6	15
37%	Cauliflowers	0.4/0.19	11	27%	Head cabbages	0.4/0.19	8.0
34%	Table grapes	0.3/0.14	10	17%	Sweet peppers/bell peppers	0.5/0.31	5.1
33%	Kohlrabies	0.4/0.19	9.9	16%	Table grapes	0.3/0.14	4.7
32%	Blueberries	3/1.6	9.5	15%	Broccoli	0.4/0.19	4.5
29%	Tomatoes	0.3/0.15	8.7	15%	Cauliflowers	0.4/0.19	4.4
28%	Head cabbages	0.4/0.19	8.4	14%	Blackberries	1/0.51	4.2
27%	Tea (dried leaves of Camellia sinensis)	30/5.2	8.0	13%	Swine: Fat tissue	3/1.9	3.9
26%	Broccoli	0.4/0.19	7.9	11%	Wine grapes	0.3/0.14	3.3
26%	Potatoes	0.05/0.05	7.7	9%	Raspberries (red and yellow)	1/0.51	2.8
22%	Oranges	0.05/0.05	6.6	9%	Aubergines/egg plants	0.3/0.1	2.0
22%	Milk: Cattle	0.2/0.05	6.6	9%	Kohlrabies	0.4/0.19	2
		0.2/0.46	5.6	9%	Bovine: Muscle	0.2/0.46	2.0
10%							
19% 18% Expand/collapse list Total number of cr (IESTI calculation)	ommodities exceeding the ARfD/ADI in children and	1/0.51	1	9%	Tea (dried leaves of Camellia sinensis)	30/5.2	2.6
18% Expand/collapse list Total number of c (IESTI calculation)	Blackberries	1/0.51	5.5	9% Results for adults	Tea (dried leaves of Camellia sinensis)	30/5.2	2.
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre	Blackberries	1/0.51	5.5	9% Results for adults		30/5.2	
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre	Blackberries	1/0.51 adult diets	5.5	9% Results for adults No of processed col	Tea (dried leaves of Camellia sinensis)		
18% Expand/collapse list Total number of cr (IESTI calculation) Results for children No of processed co IESTI	Blackberries	1/0.51 adult diets MRL/input	1	9% Results for adults No of processed cor (IESTI): IESTI	Tea (dried leaves of Camellia sinensis)	MRL/input	
18% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of	Blackberries	1/0.51 adult diets MRL/input for RA	5.5 1 Exposure	9% Results for adults No of processed cor (IESTI): IESTI Highest % of	Tea (dried leaves of Camellia sinensis)	MRL/input for RA	Expos
18% Expand/collapse list Total number of cr (IESTI calculation) No of processed co IESTI Highest % of ARID/ADI	Blackberries	1/0.51 adult diets MRL/input for RA (mg/kg)	5.5 1 Exposure (µg/kg bw)	9% Results for adults No of processed con (IESTI): IESTI Highest % of ARID/ADI	Tea (dried leaves of Camellia sinensis) modities for which ARfD/ADI is exceeded Processed commodities	MRL/input for RA (mg/kg)	Expos (µg/kg
18% Expand/collapse list Total number of c. (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 50%	Blackberries ommodities exceeding the ARfD/ADI in children and mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Broccol/boiled	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19	5.5 1 (µg/kg bw) 15	9% Results for adults No of processed cor (IESTI): IESTI Highest % of ARID/ADI 26%	Tea (dried leaves of Camellia sinensis) mmodities for which AR(D/AD) is exceeded Processed commodities Caulificwers/boiled	MRL/input for RA (mg/kg) 0.4/0.19	Expos (µg/kg 7.5
18% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 50% 44%	Blackberries ommodities exceeding the ARfD/ADI in children and in mmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Broccoli/boiled Cauliflowers/boiled	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19	5.5 1 (µg/kg bw) 15 13	9% Results for adults No of processed coi (IEST): IESTI Highest % of ARID/ADI 26% 15%	Tea (dried leaves of Camellia sinensis) mmodities for which ARfD/ADI is exceeded Processed commodities Cauliflowers/boiled Broccol/boiled	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19	Ехроз (µg/kg 7.5 4.6
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 50% 44% 16%	Blackberries mmodities exceeding the ARfD/ADI in children and mmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Broccoli/boiled Broccoli/boiled Cauliflowers/boiled Potatoes/fried	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.05/0.05	5.5 1 Exposure (µg/kg bw) 15 13 4.7	9% Results for adults No of processed col (IESTI): IESTI Highest % of ARID/ADI 26% 15% 13%	Tea (dried leaves of Camellia sinensis) modities for which AR(D/AD) is exceeded Processed commodities Cauliflowers/boiled Broccoli/boiled Kohrabies/boiled	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19	Ехроз (µg/kg 7.5 4.6 4.0
18% Expand/collapse list Total number of co (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 50% 44% 16% 11%	Blackberries ommodities exceeding the ARfD/ADI in children and in mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Broccoli/boiled Cauliflowers/boiled Cauliflowers/boiled Potatoes/fried Raspberries/juce	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.5/0.05 1/0.29	5.5 1 Exposure (µg/kg bw) 15 13 4.7 3.4	9% Results for adults No of processed coi (IESTI): IESTI Highest % of ARID/ADI 28% 15% 13% 6%	Tea (dried leaves of Camellia sinensis) mmodilies for which ARfD/ADI is exceeded Processed commodities Caulifowers/boiled Broccoli/boiled Broccoli/boiled BetrotoSt/boiled	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.05/0.05	Expos (µg/kg 7.5 4.6 4.1
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 50% 44% 16% 11% 11%	Blackberries	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.05/0.05 1/0.29	5.5 1 Exposure (µg/kg bw) 15 13 4.7 3.4 3.0	9% Results for adults No of processed coi (IESTI): Highes% of ARID/ADI 26% 15% 13% 6%	Tea (dried leaves of Camellia sinensis) modities for which ARID/ADI is exceeded Processed commodities Caulifowers/boiled Broccol/boiled Kohirabies/boiled Beetroots/boiled Peas (with pods/boiled	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.05/0.05 0.9/0.5	Expos (µg/kg 4.6 4.0 1.5
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARD/ADI 50% 44% 16% 11% 10%	Blackberries black	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.05/0.05 1/0.29 0.5/0.25	5.5 1 Exposure (µg/kg bw) 15 13 4.7 3.4 3.0 3.0	9% Results for adults No of processed co (IESTI): Highest % of ARID/ADI 26% 15% 13% 6% 6% 6% 4%	Tea (dried leaves of Camellia sinensis) mmodities for which ARID/ADI is exceeded Processed commodities Cauliflowers/boiled Broccoli/boiled Kohtrabies/boiled Beetroots/boiled Peas (with pods)/boiled Wine grapes/wine	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.4/0.19 0.05/0.05 0.9/0.5 0.3/0.14	Ехроз (µg/kg 7.5 4.6 4.0 1.5 1.1 1.5
18% Expand/collapse list Total number of cr (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 50% 44% 16% 10% 10% 9%	Blackberries mmodities exceeding the ARfD/ADI in children and mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Processed commodities Broccoli/boiled Cauliflowers/boiled Cauliflowers/boiled Raspberries/juce Wheat/milling (flour) Protatoes/dried (flakes) Oranges/juce	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.6/0.05 1/0.29 0.5/0.25 0.05/0.23 0.05/0.05	5.5 1 Exposure (μg/kg bw) 15 13 4.7 3.4 3.4 3.0 3.0 2.6	9% Results for adults No of processed coi (IEST): IESTI Highest % of ARID/ADI 26% 15% 13% 6% 6% 6% 4% 4%	Tea (dried leaves of Camellia sinensis) mmodities for which ARfD/ADI is exceeded Processed commodities Cauliflowers/boiled Bercocoli/boiled Kohrabies/boiled Beetroots/boiled Peas (with pods)/boiled Wine grapes/wine Wine grapes/luce	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.050/0.05 0.9/0.5 0.3/0.14 0.3/0.06	Ехроз (µg/kg 4.6 4.0 1.5 1.7 1.3 1.3
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTIO/ADI 50% 44% 16% 11% 10% 9%	Blackberries black	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.05/0.05 1/0.29 0.5/0.25 0.05/0.23 0.05/0.23 0.05/0.03	5.5 1 Exposure (μg/kg bw) 15 13 4.7 3.4 3.0 2.6	9% Results for adults No of processed coi (IESTI): IESTI Highest % of ARTD/ADI 26% 15% 13% 6% 4% 4% 4%	Tea (dried leaves of Camellia sinensis) mmodities for which AR(D/ADI is exceeded Processed commodities Cauliflowers/boiled Broccoli/boiled Kohrabies/boiled Beetroots/boiled Peas (with pods/boiled Wine grapes/wine Wine grapes/juice Head cabbages/canned	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.4/0.19 0.9/0.5 0.3/0.4 0.3/0.06 0.4/0.12	Expos (µg/kg 4.6 4.0 1.3 1.3 1.3
18% Expand/collapse list Total number of co (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/AD/ 50% 44% 16% 16% 16% 16% 16% 10% 9% 9% 8%	Blackberries	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.5/0.25 0.05/0.05 0.05/0.23 0.05/0.05 0.3/0.06 0.05/0.05	5.5 1 Εxposure (μg/kg bw) 15 13 4.7 3.4 3.0 2.6 2.5	9% Results for adults No of processed coi (IESTI): IESTI Highest % of ARID/ADI 28% 15% 15% 13% 6% 6% 6% 4% 4% 4% 4% 4% 4%	Tea (dried leaves of Camellia sinensis)	MRL/input for RA (mg/kg) 0.4/0.19 0.05/0.05 0.9/0.5 0.3/0.14 0.3/0.06 0.4/0.12 0.5/0.25	Expos (µg/kg 7.5 4.6 4.0 1.5 1.5 1.5 1.5 1.5
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 50% 44% 11% 10% 10% 9% 9% 8%	Blackberries	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.05/0.05 1/0.25 0.05/0.05 0.05/0.05 0.3/0.06 0.05/0.05	1 Εxposure (μg/kg bw) 15 13 4.7 3.4 7.3 4.7 3.0 3.0 2.6 2.5	9%	Tea (dried leaves of Camellia sinensis) modities for which ARID/ADI is exceeded Processed commodities Cauliflowers/boiled Brocooli/boiled Kohirabies/boiled Beetroots/boiled Beetroots/boiled Wine grapes/wine Wine grapes/juice Head cabbegs/canned Wine at/bread/pizza Parsnips/boiled	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.4/0.19 0.3/0.05 0.3/0.14 0.3/0.06 0.4/0.12 0.5/0.25 0.05/0.05	Expos (µg/kg 4.6 4.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 44% 10% 10% 9% 9% 8% 8%	Blackberries	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.5/0.05 1/0.29 0.5/0.25 0.05/0.023 0.05/0.05 0.05/0.05 0.05/0.05	5.5 1 Exposure (μg/kg/bw)) 15 13 4.7 3.4 3.0 2.6 2.5 2.5	9%	Tea (dried leaves of Camellia sinensis)	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.05/0.05 0.9/0.5 0.3/0.14 0.3/0.06 0.4/0.12 0.5/0.25 0.05/0.05 30/0.05	Ехроз (µg/kg 4.6 1.5 1.5 1.2 1.1 1.1 1.1
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 50% 44% 16% 11% 11% 10% 10% 9% 9% 9% 8% 8% 8%	Blackberries	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.4/0.19 0.4/0.05 1/0.25 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05	5.5 1 Exposure (µg/kg bw) 15 13 4.7 3.4 7 3.4 3.0 3.0 2.6 2.6 2.6 2.5 2.5 2.2	9%	Tea (dried leaves of Camellia sinensis) modities for which ARID/ADI is exceeded Processed commodities Caulifowers/boiled Broccol/boiled Kohirabies/boiled Beetroots/boiled Peas (with pods)/boiled Wine grapes/wine Wine grapes/w	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.05/0.05 0.9/0.5 0.3/0.14 0.3/0.06 0.4/0.12 0.5/0.25 0.05/0.05 30/0.05	Ехроз (µg/kg 4.6 4.7 1.7 1.3 1.2 1.1 1.1 1.1 1.1 1.1
18% Expand/collapse list Total number of c (IESTI calculation) No of processed co IESTI Highest % of ARTD/ADI 50% 44% 16% 11% 10% 9% 9% 8% 8% 8%	Blackberries black	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.05/0.05 10/29 0.5/0.05 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05	5.5 1 Exposure (μg/kg bw) 15 13 4.7 3.4 3.0 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	9% Results for adults No of processed coi (IESTI): IESTI Highest % of ARDDADI 26% 15% 13% 6% 6% 4% 4% 4% 4% 4% 3% 3%	Tea (dried leaves of Camellia sinensis) Immodities for which ARID/ADI is exceeded Processed commodities Caulifiowers/boiled Broccol/boiled Kohrabie/solled Beetroots/boiled Peas (with pods)/boiled Wine grapes/juice Head cabbages/canned Wine grapes/juice Head cabbages/canned Weat/bread/pizza Parsings/boiled Tea (dried leaves of Camellia sinensis)/ Turnips/boiled Wine grapesta	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.05/0.05 0.9/0.5 0.3/0.14 0.3/0.04 0.4/0.12 0.5/0.25 0.05/0.05 0.05/0.05 0.5/0.25	Ехров (µg/kg 7.5 4.6 4.0 1.5 1.7 1.3 1.2 1.1 1.1 1.1 1.1 1.1 9.9 0.9
18% Expand/collapse list Total number of c (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 50% 44% 16% 11% 11% 10% 10% 9% 9% 9% 8% 8% 8%	Blackberries	1/0.51 adult diets MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.4/0.19 0.4/0.19 0.4/0.05 1/0.25 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05	5.5 1 Exposure (µg/kg bw) 15 13 4.7 3.4 7 3.4 3.0 3.0 2.6 2.6 2.6 2.5 2.5 2.2	9%	Tea (dried leaves of Camellia sinensis) modities for which ARID/ADI is exceeded Processed commodities Caulifowers/boiled Broccol/boiled Kohirabies/boiled Beetroots/boiled Peas (with pods)/boiled Wine grapes/wine Wine grapes/w	MRL/input for RA (mg/kg) 0.4/0.19 0.4/0.19 0.05/0.05 0.9/0.5 0.3/0.14 0.3/0.06 0.4/0.12 0.5/0.25 0.05/0.05 30/0.05	2.6 Expos (µg/kg 4.6, 4.0, 1.9, 1.7, 7.9, 4.6, 4.0, 1.9, 1.7, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 1 commodities.

For processed commodities, no exceedance of the ARfD/ADI was identified.

-	***	fsa Safety Authority			Boscalid				Inpu	out values		
	÷ 0'	tca		LOQs (mg/kg) range f	from: 0.01	to:	0.05	Details – c	hronic risk	Supplementary res	ults —	
	**E	Sd			Toxicological reference v			assess	ment	chronic risk assessr	nent	
-		Cafate Authority		ADI (mg/kg bw per da	uy): 0.04	ARfD (mg/kg bw):	not necessary	Details – a	acute risk	Details – acute r	risk	1
E	uropean Food	Safety Authority		Source of ADI:	EC	Source of ARfD:	EC	assessmen		assessment/adu		
		ision 3.1; 2019/03/19		Year of evaluation:	2008	Year of evaluation:	2008	assessmen	e, ennar en	assessment, au		
nen	ts:											
					Refined calc	ulation mode						
					Chronic risk assessment:		ology (IEDI/TMDI)					_
				No of diets exceeding			,				Exposure	reculting t
				NO OF GIELS EXCEEDING		-	r				MRLs set at	commod
			Expsoure	Highest contributor to		2nd contributor to			3rd contributor to MS	;	the LOQ (in % of ADI)	under ass (in % of
	Calculated exposure (% of ADI)	MS Diet	(µg/kg bw per dav)	MS diet (in % of ADI)	Commodity/ group of commodities	MS diet (in % of ADI)	Commodity/ aroup of commodities		diet (in % of ADI)	Commodity/ aroup of commodities	(III % 01 ADI)	
-		NL toddler	30.17	(IN % OF ADI) 11%	Apples	(IN % OF ADI) 10%	group of commodules Spinaches		(In % of ADI) 6%	Witloofs/Belgian endives		75
		DE child	20.03	13%	Apples	5%	Table grapes		3%	Spinaches		50
	40%	NL child	15.98	6%	Apples	4%	Table grapes		4%	Spinaches		40
		IE adult	14.78	4%	Wine grapes	3%	Sweet potatoes		2%	Tea (dried leaves of Camellia sinens	i i	37
		GEMS/Food G08	14.40	4%	Wine grapes	3%	Potatoes		3%	Onions		36
		GEMS/Food G06	14.19	4%	Onions	4%	Table grapes		4%	Tomatoes		3
		GEMS/Food G10	13.95	5%	Lettuces	3%	Onions		2%	Potatoes		3
		GEMS/Food G07 GEMS/Food G11	13.79	5%	Wine grapes	3%	Lettuces		3%	Potatoes		34
		GEMS/Food G11 GEMS/Food G15	13.21 13.20	4% 4%	Wine grapes Wine grapes	3% 3%	Potatoes Onions		2% 3%	Barley Potatoes		33
		SE general	12.00	4% 6%	Lettuces	3%	Potatoes		3% 2%	Onions		30
		RO general	11.73	6%	Wine grapes	4%	Onions		4%	Head cabbages		29
		FR child 3 15 yr	10.74	2%	Wheat	2%	Apples		2%	Other lettuce and other salad plants		2
		PT general	10.71	9%	Wine grapes	4%	Potatoes		2%	Onions		27
		NL general	10.41	3%	Witloofs/Belgian endives	2%	Spinaches		2%	Wine grapes		20
		FR adult	10.20	8%	Wine grapes	2%	Tea (dried leaves of Camellia sinensis	5)	2%	Other lettuce and other salad plants		2
	24%	FR toddler 2 3 yr	9.70	3%	Apples	2%	Spinaches		2%	Leeks		24
	23%	DK child	9.26	3%	Cucumbers	2%	Apples		2%	Rye		23
		DE women 14-50 yr	9.08	3%	Wine grapes	3%	Apples		2%	Lettuces		23
		DE general	9.06	3%	Wine grapes	3%	Apples		1%	Barley		23
		FI 3 yr	8.64	4%	Potatoes	2%	Onions		2%	Cucumbers		23
		IT adult	8.46	5%	Lettuces	2%	Other lettuce and other salad plants		2%	Wheat		2
		ES adult IT toddler	8.44 8.08	7% 4%	Lettuces Lettuces	1% 3%	Wine grapes Wheat		1% 2%	Barley Other lettuce and other salad plants		2 ⁻ 20
		ES child	8.08	4% 6%	Lettuces	3%	Wheat		2%	Other lettuce and other salad plants Potatoes		2
		UK toddler	7.56	3%	Potatoes	2%	Apples		2%	Wheat		1
		UK infant	7.50	2%	Potatoes	2%	Appies Milk: Cattle		2%	Apples		1
		FR infant	7.25	4%	Spinaches	2%	Apples		2%	Leeks		1
		FI 6 yr	6.71	3%	Potatoes	2%	Onions		1%	Strawberries		13
		UK vegetarian	6.27	3%	Wine grapes	2%	Lettuces		1%	Onions		10
		PL general	5.57	3%	Potatoes	2%	Apples		2%	Onions		14
		UK adult	5.56	4%	Wine grapes	2%	Lettuces		1%	Potatoes		14
		DK adult	5.38	3%	Wine grapes	1%	Lettuces		1%	Apples		13
		FI adult	4.64 4.28	2% 2%	Lettuces Potatoes	1% 2%	Wine grapes		0.9% 1%	Potatoes		12
		LT adult IE child	4.28	2%	Potatoes Wheat	2%	Apples Potatoes		1%	Head cabbages Apples		11

Details – acute risk assessment/children

Acute risk assessment/adults/general population

Details – acute risk assessment/adults

As an ARfD is not necessary/not applicable, no acute risk assessment is performed.

			She	ow result	s for all crop	S			
Unprocessed commodities	Results for children No. of commodities f exceeded (IESTI):	n for which ARfD/ADI is			Results for adults	for which ARfD/ADI is			
o p	IESTI				IESTI				
processe	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	
	Expand/collapse list Total number of co children and adult o (IESTI calculation)	mmodities exceeding the A diets	RfD/ADI in						
Processed commodities	Results for children	nmodities for which ARfD/AD	1			nmodities for which ARfD/ADI			
omm M	is exceeded (IESTI): IESTI				is exceeded (IESTI):				
8 p	ESTI		MRL/input				MRL/input		
esse	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	
Proc	Expand/collapse list								
<u> </u>	Enpanaroonapae list				1				

	••••••••••••••••••••••••••••••••••••••		LOQs (mg/kg) range	from: 0.01 Toxicological reference	to:	0.05	Details – c assess		Supplementar chronic risk as		
	CISC		ADI (mg/kg bw per da	0	ARfD (mg/kg bw):	0.5				Sessilient	
E	European Food Safety Authority		Source of ADI:	EFSA	Source of ARfD:	EFSA	Details –		Details – ac		
	EFSA PRIMo revision 3.1; 2019/03/19		Year of evaluation:	2010	Year of evaluation:	2010	assessmen	t/children	assessment	/adults	
ner	ents:										
				Norm	al mode						
			I	Chronic risk assessmer	t: JMPR methodo	ology (IEDI/TMDI)				-	
			No of diets exceeding	the ADI :		_			1	Exposure	
	Calculated exposure (% of ADI) MS Diet	Expsoure (µg/kg bw per day)	Highest contributor to MS diet (in % of ADI)	Commodity/ aroup of commodities	2nd contributor to MS diet (in % of ADI)	Commodity/ group of commodities		3rd contributor to MS diet (in % of ADI)	Commodity/ group of commodities	MRLs set at the LOQ (in % of ADI)	under as (in %
	13% NL toddler	1.26	(III % 01 ADI) 6%	Milk: Cattle	(III % 0I ADI) 1%	Apples		0.7%	Maize/corn	12%	0.
	7% NL child	0.68	2%	Milk: Cattle	0.8%	Sugar beet roots		0.6%	Apples	7%	0
	6% DE child 6% UK infant	0.65	2% 4%	Milk: Cattle Milk: Cattle	1% 0.3%	Apples Potatoes		0.4%	Wheat Wheat	6% 6%	0
	6% UK Infant 6% FR toddler 2 3 yr	0.61	4% 3%	Milk: Cattle	0.3%	Potatoes Apples		0.3%	Wheat	6%	0
	6% FR child 3 15 yr	0.56	2%	Milk: Cattle	0.5%	Wheat		0.4%	Sugar beet roots	6%	0.
	4% UK toddler	0.45	2%	Milk: Cattle	0.4%	Wheat		0.3%	Potatoes	4%	0
	4% GEMS/Food G11	0.43	0.8%	Milk: Cattle	0.4%	Potatoes		0.4%	Soyabeans	4%	0
	4% DK child 4% GEMS/Food G07	0.41 0.39	1% 0.6%	Milk: Cattle Milk: Cattle	0.6%	Rye Wheat		0.4%	Wheat Potatoes	4% 4%	0.
	4% GEMS/Food G07 4% GEMS/Food G06	0.39	0.6%	Wheat	0.4%	Tomatoes		0.4%	Milk: Cattle	4%	0.
	4% GEMS/Food G08	0.39	0.6%	Milk: Cattle	0.4%	Wheat		0.4%	Potatoes	4%	0.
	4% GEMS/Food G15	0.39	0.7%	Milk: Cattle	0.5%	Wheat		0.4%	Potatoes	4%	0.
	4% RO general	0.38	1%	Milk: Cattle	0.5%	Wheat		0.4%	Potatoes	4%	0.
	4% ES child	0.38	1%	Milk: Cattle	0.4%	Wheat		0.3%	Cocoa beans	4%	0.
	4% GEMS/Food G10 4% DE women 14-50 yr	0.38	0.5% 1%	Milk: Cattle Milk: Cattle	0.4%	Wheat Sugar beet roots		0.3%	Soyabeans Apples	4% 4%	0.
	4% SE general	0.38	1%	Milk: Cattle	0.3%	Bovine: Muscle/meat		0.4%	Potatoes	4%	0.
	4% DE general	0.37	1%	Milk: Cattle	0.4%	Sugar beet roots		0.2%	Apples	4%	0.
	4% Fl adult	0.35	3%	Coffee beans	0.1%	Potatoes		0.1%	Rye	4%	0.
	3% IE adult	0.35	0.4%	Milk: Cattle	0.4%	Sweet potatoes		0.2%	Wheat	3%	0.
	3% NL general	0.31	0.8%	Milk: Cattle	0.3%	Sugar beet roots		0.2%	Potatoes	3%	0.
	3% FR infant 2% FR adult	0.29	2% 0.4%	Milk: Cattle Milk: Cattle	0.2%	Potatoes Wine grapes		0.2%	Apples Wheat	3% 2%	0.
	2% PT general	0.22	0.5%	Potatoes	0.2%	Wheat		0.2%	Wine grapes	2%	0.
	2% ES adult	0.21	0.5%	Milk: Cattle	0.2%	Wheat		0.1%	Oranges	2%	0.
	2% FI 3 yr	0.18	0.5%	Potatoes	0.1%	Bananas		0.1%	Wheat	2%	0.
	2% IT toddler	0.17	0.7%	Wheat	0.2%	Other cereals		0.1%	Tomatoes	2%	0.
	2% DK adult 2% LT adult	0.16	0.5%	Milk: Cattle Milk: Cattle	0.1%	Potatoes		0.1%	Wheat	2% 2%	0.
	2% LT adult 1% UK vegetarian	0.15	0.4%	Milk: Cattle Milk: Cattle	0.3%	Potatoes Wheat		0.2%	Apples Potatoes	2%	0.
	1% FI6 yr	0.13	0.3%	Potatoes	0.1%	Cocoa beans		0.1%	Wheat	1%	0.
	1% UK adult	0.14	0.3%	Milk: Cattle	0.2%	Wheat		0.1%	Potatoes	1%	0.
	1% IT adult	0.12	0.4%	Wheat	0.1%	Tomatoes		0.1%	Apples	1%	0.
	1.0% PL general 0.8% IE child	0.10 0.08	0.3%	Potatoes Milk: Cattle	0.2%	Apples Wheat		0.1%	Tomatoes Potatoes	1.0% 0.8%	0.
	0.070 IE GIIIG	0.00	U.++ 70	WIIK. Oattio	U. 170	WIIIGH(0.170	i otatoes	0.0%	I 0.

Acute risk assessment/adults/general population

Details - acute risk assessment/children

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

Results for children No. of commodities exceeded (IESTI):	en s for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expos
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
0.1%	Coconuts	0.01/0.05	0.72	0.09%	Coconuts	0.01/0.05	0.43
0.06%	Pistachios	0.01/0.05	0.29	0.05%	Chestnuts	0.01/0.05	0.2
0.04%	Chestnuts Walnuts	0.01/0.05	0.21 0.17	0.03% 0.02%	Pistachios Pecans	0.01/0.05	0.1: 0.1
0.03% 0.03%	Hazelnuts/cobnuts	0.01/0.05 0.01/0.05	0.17	0.02%	Walnuts	0.01/0.05 0.01/0.05	0.1
0.03%	Almonds	0.01/0.05	0.10	0.02%	Macadamia	0.01/0.05	0.1
0.03%	Pecans	0.01/0.05	0.14	0.02%	Cashew nuts	0.01/0.05	0.0
0.03%	Cashew nuts	0.01/0.05	0.14	0.02 %	Almonds	0.01/0.05	0.0
0.01%	Brazil nuts	0.01/0.05	0.04	0.01%	Hazelnuts/cobnuts	0.01/0.05	0.0
0.01%	Macadamia	0.01/0.05	0.03	0.01%	Pine nut kernels	0.01/0.05	0.0
0.00%	Pine nut kernels	0.01/0.05	0.02	0.01%	Brazil nuts	0.01/0.05	0.0
Expand/collapse lis		RfD/ADI in					
	ommodities exceeding the A t diets	RfD/ADI in					
Total number of c children and adult (IESTI calculation Results for childre	ommodities exceeding the A t diets) en			Results for adults			
Total number of c children and adult (IESTI calculation Results for childr No of processed co	ommodities exceeding the A t diets) en mmodities for which ARfD/AE			No of processed co	mmodities for which ARfD/ADI		
Total number of c children and adult (IESTI calculation Results for childre	ommodities exceeding the A t diets) en mmodities for which ARfD/AE						
Total number of c children and adult (IESTI calculation Results for childr No of processed cc is exceeded (IESTI IESTI	ommodities exceeding the A t diets) en mmodities for which ARfD/AE)I MRL/input		No of processed co is exceeded (IESTI) IESTI		MRL/input	
Total number of c children and adult (IESTI calculation Results for childr No of processed or is exceeded (IESTI IESTI Highest % of	ommodities exceeding the A t diets) en mmodities for which ARfD/AE):	01 MRL/input for RA	 Exposure	No of processed co is exceeded (IESTI) IESTI Highest % of	:	MRL/input for RA	
Total number of c children and adult (IESTI calculation No of processed ca is exceeded (IESTI IESTI Highest % of ARfD/ADI	ommodities exceeding the A t diets) en ommodities for which ARfD/AE): Processed commodities	DI MRL/input for RA (mg/kg)	(µg/kg bw)	No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI	: Processed commodities	MRL/input for RA (mg/kg)	(µg/kg
Total number of c children and adult (IESTI calculation Results for childr No of processed or is exceeded (IESTI IESTI Highest % of	ommodities exceeding the A t diets) en mmodities for which ARfD/AE):	01 MRL/input for RA		No of processed co is exceeded (IESTI) IESTI Highest % of	:	MRL/input for RA	(µg/kg
Total number of c children and adult (IESTI calculation No of processed ca is exceeded (IESTI IESTI Highest % of ARfD/ADI	ommodities exceeding the A t diets) en ommodities for which ARfD/AE): Processed commodities	DI MRL/input for RA (mg/kg)	(µg/kg bw)	No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI	: Processed commodities	MRL/input for RA (mg/kg)	(µg/kg
Total number of c children and adult (IESTI calculation No of processed ca is exceeded (IESTI IESTI Highest % of ARfD/ADI	ommodities exceeding the A t diets) en ommodities for which ARfD/AE): Processed commodities Coconuts/drink	DI MRL/input for RA (mg/kg)	(µg/kg bw)	No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI	: Processed commodities	MRL/input for RA (mg/kg)	Ехроз (µg/kg 0.11

No exceedance of the toxicological reference value was identified for any unprocessed co A short-term intake of residues of Buprofezin (F) is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

+	effsa satety Authority		LOQs (mg/kg) range f	Carbendazin	n to:		Details – c		t values Supplementary r	oculto -	
	*••etsa		Loga (ingikg) tange t	Toxicological reference v			Details – c assess		chronic risk asses		
	CIJU		ADI (mg/kg bw per da	y): 0.02	ARfD (mg/kg bw):	0.02			<hr/>		
E	uropean Food Safety Authority		Source of ADI:		Source of ARfD:		Details – a assessmen		Details – acut assessment/a		
ment	EFSA PRIMo revision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:			c, chinar chi			
mon	no.										
				Norma	<u>l mode</u>						
				Chronic risk assessment	JMPR methodo	ology (IEDI/TMDI)					
-			No of diets exceeding	the ADI :	-	<u>ا</u>		1	1	Exposure MRLs set at	commodi
	Calculated exposure (% of ADI) MS Diet	Expsoure (µg/kg bw per day)	Highest contributor to MS diet (in % of ADI)	Commodity/ group of commodities	2nd contributor to MS diet (in % of ADI)	Commodity/ group of commodities		3rd contributor to MS diet (in % of ADI)	Commodity/ group of commodities	the LOQ (in % of ADI)	under asse (in % of
	0.1% DE child	0.03	0.0%	Nutmeg	0.0%	Fennel seed		0.0%	Cumin seed		
	0.0% GEMS/Food G11 0.0% GEMS/Food G06	0.00	0.0%	Anise/aniseed Anise/aniseed	0.0%	Nutmeg Nutmeg					
	0.0% GEMS/Food G07 0.0% GEMS/Food G07	0.00	0.0%	Anise/aniseed Anise/aniseed	0.0%	Nutmeg					
	0.0% GEMS/Food G07 0.0% GEMS/Food G08	0.00	0.0%	Anise/aniseed Anise/aniseed	0.0%	Nutmeg Nutmeg					
	0.0% GEMS/Food G10	0.00	0.0%	Anise/aniseed	0.0%	Nutmeg					
	0.0% FR toddler 2 3 yr 0.0% DE women 14-50 yr	0.00	0.0%	Other spices (seeds) Nutmeg	0.0%	Coriander seed Black caraway/black cumin		0.0%	Coriander seed Coriander seed		
	0.0% DE general	0.00	0.0%	Nutmeg	0.0%	Black caraway/black cumin		0.0%	Coriander seed		
	0.0% FR child 3 15 yr	0.00	0.0%	Other spices (seeds)		FRUIT AND TREE NUTS					
	0.0% FR adult 0.0% FR infant	0.00	0.0%	Other spices (seeds) Other spices (seeds)	0.0%	Anise/aniseed FRUIT AND TREE NUTS		0.0%	Coriander seed		
	0.070	0.00	0.070								
						1					1
1						1					
						1					
						1					1
						1					
						1					1
						1					
	Conclusion:			-	÷						
	The estimated long-term dietary intake (TMDI/NEDI/IEDI) wa The long-term intake of residues of Carbendazim is unlikely t		alth concern								

Acute risk assessment/adults/general population

Details – acute risk assessment/children

_				
Г)otaile	- acutorick	assessment	/adulte
L	Jerans		assessment	yauuits

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

			Sho	ow result	s for all crops	5		
Unprocessed commodities	Results for children No. of commodities f exceeded (IESTI):	or which ARfD/ADI is			Results for adults No. of commodities t exceeded (IESTI):	for which ARfD/ADI is		
o p	IESTI				IESTI			
nprocesse	Highest % of ARfD/ADI 2%	Commodities Fennel seed	MRL/input for RA (mg/kg) 5/0.53	Exposure (µg/kg bw) 0.40	Highest % of ARfD/ADI 0.3%	Commodities Black caraway/black cumin	MRL/input for RA (mg/kg) 5/0.53	Exposure (µg/kg bw) 0.05
	0.05% 0.05% 0.03% 0.01% 0.01% 0.01%	Coriander seed Anise/aniseed Nutmeg Fenugreek Dill seed Cumin seed	5/0.53 5/0.53 5/0.53 5/0.53 5/0.53 5/0.53	0.01 0.01 0.01 0.00 0.00 0.00	0.3% 0.3% 0.3% 0.3% 0.3% 0.00% 0.00%	Nutmeg Fenugreek Coriander seed Fennel seed Anise/aniseed Dill seed Cumin seed	5/0.53 5/0.53 5/0.53 5/0.53 5/0.53 5/0.53 5/0.53	0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.00
	Expand/collapse list Total number of cor children and adult d (IESTI calculation)	nmodities exceeding the AR liets	RfD/ADI in					
Processed commodities	Results for children No of processed com is exceeded (IESTI):	modities for which ARfD/ADI			Results for adults No of processed con is exceeded (IESTI):	nmodities for which ARfD/ADI		
mo	IESTI				IESTI			
essed c	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Proc			((13/3)	0.1%	Cumin seed/processed (not	5/0.53	0.02
	Expand/collapse list							
	r collapse list				1			
	Conclusion:		une identifi	fan ani (1997	eneral environmentiti			

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Carbendazim is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

	*	-			Chlorantraniliprole (DP)	X E-2Y45)	(F)		inpu	t values		
-		1		LOQs (mg/kg) range f	<u> </u>	to:	0.05	Details – c	hronic risk	Supplementary res	ults –	
	* * 6	TSam			Toxicological reference			assess		chronic risk assess		
Е.	uranaan Eaar	fsa		ADI (mg/kg bw per da	y): 1.56	ARfD (mg/kg bw):	not necessary	Details –	acute risk	Details – acute r	isk	
CU	uropean root	Salety Authonity		Source of ADI:	EFSA	Source of ARfD:	EFSA	assessmen		assessment/adu		
	EFSA PRIMo re	vision 3.1; 2019/03/19		Year of evaluation:	2013	Year of evaluation:	2013	assessmen	d'ennitren	assessment/aut	103	
nent					Refined cal	culation mode						
				1	Chronic risk assessmen	t: JMPR methodo	ology (IEDI/TMDI)				r	
				No of diets exceeding	the ADI :							resulting
			Expsoure	Highest contributor to		2nd contributor to			3rd contributor to MS		MRLs set at the LOQ (in % of ADI)	under as: (in % o
	Calculated exposure (% of ADI)	MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ aroup of commodities	MS diet (in % of ADI)	Commodity/ aroup of commodities		diet (in % of ADI)	Commodity/ group of commodities	(// 01/101)	,
$^{+}$	0.8%	NL toddler	13.07	0.3%	Spinaches	0.1%	Witloofs/Belgian endives		0.1%	Escaroles/broad-leaved endives	0.0%	0.
	0.4%	SE general	6.68	0.1%	Lettuces	0.1%	Chinese cabbages/pe-tsai		0.0%	Spinaches	0.0%	0
	0.4%	DE child	6.64	0.1%	Spinaches	0.1%	Apples		0.1%	Oranges	0.0%	0
	0.4%	GEMS/Food G10	6.41	0.1%	Lettuces	0.1%	Chinese cabbages/pe-tsai		0.0%	Cress and other sprouts and shoots	0.0%	0.
	0.4%	NL child	6.32	0.1%	Spinaches	0.0%	Escaroles/broad-leaved endive	9S		Apples	0.0%	0
L	0.3%	NL general	4.97	0.1%	Witloofs/Belgian endives	0.1%	Spinaches		0.0%	Escaroles/broad-leaved endives	0.0%	0
	0.3%	GEMS/Food G08	4.93	0.1%	Lettuces	0.0%	Lamb's lettuce/corn salads		0.0%	Watercress	0.0%	0.
	0.3%	ES adult GEMS/Food G07	4.92 4.84	0.2%	Lettuces Lettuces	0.0%	Chards/beet leaves Celeries		0.0%	Spinaches Wine grapes	0.0%	0.
	0.3%	GEMS/Food G07 GEMS/Food G11	4.64	0.1%	Celeries	0.0%	Spinaches		0.0%	Lamb's lettuce/com salads	0.0%	0
	0.3%	ES child	4.71	0.1%	Lettuces	0.0%	Oranges		0.0%	Spinaches	0.0%	0
	0.3%	GEMS/Food G06	4.50	0.0%	Lettuces	0.0%	Spinaches		0.0%	Kales	0.0%	0
	0.3%	IE adult	4.43	0.0%	Spinaches	0.0%	Rhubarbs		0.0%	Lettuces	0.0%	0.
	0.3%	IT adult	4.18	0.1%	Lettuces	0.0%	Spinaches		0.0%	Chards/beet leaves	0.0%	0
	0.2%	FR toddler 2 3 yr	3.72	0.1%	Spinaches	0.0%	Milk: Cattle		0.0%	Witloofs/Belgian endives	0.0%	0
	0.2%	FR child 3 15 yr	3.58	0.0%	Oranges	0.0%	Spinaches		0.0%	Witloofs/Belgian endives	0.0%	0
	0.2%	GEMS/Food G15	3.50	0.0%	Lettuces	0.0%	Head cabbages		0.0%	Wine grapes	0.0%	0
	0.2%	IT toddler	3.41	0.1%	Lettuces	0.0%	Chards/beet leaves			Spinaches	0.0%	0
L	0.2%	PT general	3.32	0.1%	Kales	0.0%	Lettuces			Wine grapes	0.0%	0
L	0.2% 0.2%	DE women 14-50 yr FR infant	3.03 2.93	0.0%	Lettuces Spinaches	0.0%	Oranges Milk: Cattle		0.0%	Spinaches Chards/beet leaves	0.0%	0
	0.2%	DE general	2.95	0.0%	Lettuces	0.0%	Oranges			Spinaches	0.0%	0
	0.2%	FR adult	2.42	0.0%	Witloofs/Belgian endives	0.0%	Wine grapes		0.0%	Spinaches	0.0%	0
	0.2%	RO general	2.36	0.0%	Head cabbages	0.0%	Wine grapes			Milk: Cattle	0.0%	0
	0.1%	DK child	2.20	0.1%	Lettuces	0.0%	Milk: Cattle		0.0%	Apples	0.0%	0
I	0.1%	UK vegetarian	2.12	0.1%	Lettuces	0.0%	Spinaches		0.0%	Oranges	0.0%	0
I	0.1%	UK toddler	2.10	0.0%	Oranges	0.0%	Milk: Cattle			Spinaches	0.0%	0
I	0.1%	UK infant	1.94	0.0%	Milk: Cattle	0.0%	Oranges		0.0%	Eggs: Chicken	0.0%	0.
1	0.1%	FI6 yr	1.75	0.0%	Lettuces	0.0%	Spinaches		0.0%	Chinese cabbages/pe-tsai	0.0%	0.
	0.1%	UK adult	1.68	0.0%	Lettuces	0.0%	Wine grapes			Oranges	0.0%	0.
	0.1%	FI3 yr	1.68	0.0%	Spinaches	0.0%	Lettuces		0.0%	Chinese cabbages/pe-tsai	0.0%	0
	0.1%	FI adult	1.61	0.1%	Lettuces	0.0%	Chinese cabbages/pe-tsai		0.0%	Oranges	0.0%	0
	0.1% 0.1%	DK adult LT adult	1.48 1.10	0.0%	Lettuces	0.0%	Wine grapes Head cabbages		0.0%	Milk: Cattle Apples	0.0%	0.
	0.1%	PL general	1.10	0.0%	Lettuces Head cabbages	0.0%	Apples		0.0%	Appies Chinese cabbages/pe-tsai	0.0%	0.
	0.0%	IE child	0.41	0.0%	Milk: Cattle	0.0%	Lettuces		0.0%	Rice	0.0%	0.

The estimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI. The long-term intake of residues of Chlorantraniliprole (DPX E-2Y45) (F) is unlikely to present a public health concern.

	Acute risk assessment/children	Acute risk assessment/adults/general population
	Details – acute risk assessment/children	Details – acute risk assessment/adults
	As an ARfD is not necessary/not applicable, no acute risk assessment is perform	ned.
w	Show results of IESTI calculation only	r for crops with GAPs under assessment
Unprocessed commodities	Results for children No. of commodities for which ARfD/ADI is exceeded (IESTI):	Results for adults No. of commodities for which ARfD/ADI is exceeded (IESTI):
sed c	IESTI MRL/input	IESTI MRL/input
Iproces	Highest % of for RA Exposure ARfD/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Commodities (mg/kg) (µg/kg bw)
5		
	Expand/collapse list	
	Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)	
es	Results for children	Results for adults
moditi	No of processed commodities for which ARfD/ADI is exceeded (IESTI):	No of processed commodities for which ARfD/ADI is exceeded (IESTI):
comi	IESTI MRL/input	IESTI MRL/input
Processed commodities	Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw)
Pro		
	Expand/collapse list	
	Complexient	
	Conclusion:	

	afca		LOQs (mg/kg) range f	Chlorothaloni	to:	0.05	Details – c	hronic risk	Supplementary	results –	
	efsa			Toxicological reference			assess	ment	chronic risk ass	sessment	
E	uropean Food Safety Authority		ADI (mg/kg bw per da	y): 0.015	ARfD (mg/kg bw):	0.05	Details –	acute risk	Details – ac	ite risk	
			Source of ADI: Year of evaluation:	EFSA 2018	Source of ARfD: Year of evaluation:	EFSA 2018	assessmen		assessment,		
	EFSA PRIMo revision 3.1; 2019/03/19		Teal of evaluation.	2010	Tear of evaluation.	2010					,
				Refined cal	culation mode						
				Chronic risk assessmer	t: JMPR method	ology (IEDI/TMDI)					
	1		No of diets exceeding	the ADI :		•		•		Exposure	
		Expsoure	Highest contributor to		2nd contributor to			3rd contributor to MS		MRLs set at the LOQ	under a
	Calculated exposure	(µg/kg bw per	MS diet	Commodity/	MS diet	Commodity/		diet	Commodity/	(in % of ADI)) (in %
	(% of ADI) MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	0.8% SE general 0.7% NL toddler	0.12	0.5%	Papayas	0.2%	Cranberries		0.1%	Bananas		
	0.7% NL toddler 0.7% GEMS/Food G10	0.11 0.11	0.4%	Papayas Cranberries	0.4%	Bananas Papayas		0.0%	Peanuts/groundnuts Bananas		
	0.6% GEMS/Food G06	0.09		Papayas	0.0%	Cranberries		0.0%	Bananas		
	0.5% NL child	0.07	0.3%	Papayas	0.1%	Bananas		0.1%	Cranberries		
	0.4% DE child	0.06		Papayas	0.1%	Bananas		0.0%	Peanuts/groundnuts		
	0.4% GEMS/Food G11	0.05		Papayas	0.0%	Cranberries		0.0%	Bananas		
	0.2% GEMS/Food G07	0.03	0.2%	Papayas	0.0%	Cranberries		0.0%	Bananas		
	0.2% GEMS/Food G15	0.02	0.1%	Papayas	0.0%	Cranberries		0.0%	Bananas		
	0.2% GEMS/Food G08	0.02	0.1%	Papayas	0.0%	Cranberries		0.0%	Bananas		
	0.1% DK child	0.02	0.1%	Bananas	0.1%	Papayas					
	0.1% DE women 14-50 yr	0.02	0.1%	Papayas	0.0%	Bananas		0.0%	Peanuts/groundnuts		0
	0.1% UK infant 0.1% DE general	0.01		Bananas	0.0%	Peanuts/groundnuts Bananas		0.0%	Description of the state		
	0.1% DE general 0.1% FI 3 yr	0.01 0.01	0.1%	Papayas Bananas	0.0%	Bananas Peanuts/groundnuts		0.0%	Peanuts/groundnuts		
	0.1% UK toddler	0.01	0.1%	Bananas	0.0%	Peanuts/groundnuts					
	0.1% ES child	0.01	0.1%	Bananas	0.0%	Peanuts/groundnuts					
	0.1% DK adult	0.01	0.0%	Bananas	0.0%	Papayas					
	0.1% IE adult	0.01	0.1%	Bananas	0.0%	Peanuts/groundnuts					
	0.1% ES adult	0.01	0.0%	Papayas	0.0%	Bananas		0.0%	Peanuts/groundnuts		
	0.1% FI 6 yr	0.01	0.1%	Bananas	0.0%	Peanuts/groundnuts			-		
	0.0% FR child 3 15 yr	0.01	0.0%	Bananas	0.0%	Peanuts/groundnuts					
	0.0% FR toddler 2 3 yr	0.01	0.0%	Bananas	0.0%	Peanuts/groundnuts					
	0.0% IT toddler	0.01		Bananas	0.0%	Peanuts/groundnuts					
	0.0% UK vegetarian 0.0% NL general	0.00	0.0%	Bananas	0.0%	Peanuts/groundnuts					
	0.0% NL general 0.0% UK adult	0.00		Bananas Bananas	0.0%	Peanuts/groundnuts Peanuts/groundnuts					
	0.0% PT general	0.00	0.0%	Bananas	0.0%	Peanuts/groundnuts					
	0.0% Fl adult	0.00	0.0%	Bananas	0.0%	Peanuts/groundnuts					l d
	0.0% RO general	0.00		Bananas	0.0%	Peanuts/groundnuts					
	0.0% FR infant	0.00	0.0%	Bananas	0.0%	Peanuts/groundnuts					
	0.0% IT adult	0.00		Bananas	0.0%	Peanuts/groundnuts					(
	0.0% IE child	0.00	0.0%	Bananas	0.0%	Peanuts/groundnuts					0
	0.0% PL general 0.0% FR adult	0.00	0.0%	Bananas Bananas	0.0%	Peanuts/groundnuts Peanuts/groundnuts					0
	0.0% FR adult 0.0% LT adult	0.00	0.0%	Bananas Bananas	0.0%	FRUIT AND TREE NUTS					
									1		1

Acute risk assessment/adults/general population

Details – acute risk assessment/children

Datalla			assessment	
Derails	- active	I SK	acceccment	aniirs
	acute	1131	033033110110	uuuuu

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

			Sho	ow result	s for all crop	S		
Unprocessed commodities	Results for children No. of commodities exceeded (IESTI):	n for which ARfD/ADI is		1	Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		1
d co	IESTI				IESTI			
processe	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
5	433% 69% 4% 0.06% Expand/collapse list	Papayas Cranberries Bananas Peanuts/groundnuts	15/5.1 15/7.7 0.02/0.02 0.01/0.01	216 35 1.9 0.03	142% 17% 0.8% 0.05%	Papayas Cranberries Bananas Peanuts/groundnuts	15/5.1 15/7.7 0.02/0.02 0.01/0.01	71 8.7 0.42 0.02
	Total number of co children and adult (IESTI calculation)	mmodities exceeding the AF diets	RfD/ADI in	1				
nodities	Results for children No of processed cor is exceeded (IESTI):	mmodities for which ARfD/ADI			Results for adults No of processed cor is exceeded (IESTI):	nmodities for which ARfD/ADI		
omr	IESTI				IESTI			
Processed commodities	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Proc	35% 0.1% Expand/collapse list	Cranberries/juice Peanuts/peanut butter	15/3 0.01/0.01	17 0.04	5%	Cranberries/dried	15/3	2.3
	Conclusion: The estimated short-	-term intake (IESTI) exceeded	the toxicologica	al reference val	ue for 1 commodities.			

	****				ç	SDS-3701				Input	values		
	****	fsa		LOQs (mg/kg) range t	from:	ogical reference v	to:		Details – c assess		Supplementar chronic risk as		
	C			ADI (mg/kg bw per da		0.008	ARfD (mg/kg bw):	0.03				sessment	
	Luiopean 100	d Safety Authority evision 3.1; 2019/03/19		Source of ADI: Year of evaluation:		JMPR 2009	Source of ARfD: Year of evaluation:	JMPR 0.03	Details – a assessmen		Details – ad assessment		
ommo	ents:	20151011 3.1, 2019/03/19					1						
						<u>Norma</u>	<u>l mode</u>						
					Chronic	risk assessment	JMPR methodo	ology (IEDI/TMDI)					
			- r	No of diets exceeding	the ADI :	-	-	<u> </u>				Exposure MRLs set at	commodities
	Calculated exposur		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	the LOQ (in % of ADI)	under assess (in % of Al
	(% of ADI) 0.0%	MS Diet GEMS/Food G10	day) 0.00020	(in % of ADI) 0.0%	group of commodities Cranberries		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		0.0%
otion)	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	SE general NL child GEMS/Food G11 GEMS/Food G06 GEMS/Food G06 GEMS/Food G06 GEMS/Food G06	0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000	0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	Cranberries Cranberries Cranberries Cranberries Cranberries Cranberries Cranberries			FRUIT AND TREE NUTS FRUIT AND TREE NUTS					0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
	Conclusion:	term dielary intake (TMDI/NED/JEDI) w											

Acute risk assessment/adults/general population

Details – acute risk assessment/children

Dotaile.	- acuta	rick	assessment	/adulte
Details	- acute	1121	assessment	auuits

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

			Sho	ow result	s for all crops	5		
Unprocessed commodities	Results for children No. of commodities f exceeded (IESTI):	I or which ARfD/ADI is			Results for adults No. of commodities t exceeded (IESTI):	for which ARfD/ADI is		
200	IESTI				IESTI			
ocessed	Highest % of	0	MRL/input for RA	Exposure	Highest % of	0	MRL/input for RA	Exposure
npr	ARfD/ADI 0.3%	Commodities Cranberries	(mg/kg) 0/0.02	(µg/kg bw) 0.09	ARfD/ADI 0.07%	Commodities Cranberries	(mg/kg) 0/0.02	(µg/kg bw) 0.02
	Expand/collapse list Total number of co children and adult c (IESTI calculation)	mmodities exceeding the AF	RfD/ADI in					
Processed commodities	Results for children No of processed com is exceeded (IESTI):	nmodities for which ARfD/ADI			Results for adults No of processed con is exceeded (IESTI):	nmodities for which ARfD/ADI		
umo	IESTI				IESTI			
ssed co	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure (µg/kg bw)
Proce	0.2%	Cranberries/juice	(mg/kg) 0/0.01	(µg/kg bw) 0.06	0.0%	Cranberries/dried	(mg/kg) 0/0.01	0.01
	Expand/collapse list							
	Conclusion:							
[Conclusion:							

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of SDS-3701 is unlikely to present a public health risk.

1		faa		LOQs (mg/kg) range f	rom: 0.05		0.05	Details – c	hronic risk	Supplementary	results –	
	**e	d Safety Authority		ADI (mg/kg bw per da	Toxicological reference			assess	ment	chronic risk ass	essment	
F	uronean Foo	d Safety Authority			y): 0.16	(0 0 .)	Not necessary	Details – a	acute risk	Details – acu	te risk	
				Source of ADI: Year of evaluation:		Source of ARfD: Year of evaluation:		assessmen	t/children	assessment/	adults	
en		vision 3.1; 2019/03/19		real of evaluation.		real of evaluation.			<u> </u>			
					Refined ca	alculation mode						
					Chronic risk assessme	ent: JMPR methodo	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :						Exposure	
											MRLs set at the LOQ	commo under as
	Calculated exposure	0	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI)	
	(% of ADI)	MS Diet	(pg/kg bw per day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	20%	NL toddler	32.01	4%	Spinaches	4%	Cauliflowers		3%	Broccoli	2%	2
	8%	GEMS/Food G11	12.36	3%	Soyabeans	0.6%	Cauliflowers		0.5%	Spinaches	0.2%	8
	8% 8%	NL child GEMS/Food G10	12.26 12.14	1% 2%	Spinaches Soyabeans	0.9%	Cauliflowers Rice		0.8%	Milk: Cattle Tomatoes	0.8%	8
	8%	IE adult	12.14	2%	Broccoli	1%	Brussels sprouts		1.0%	Cauliflowers	0.2%	6
	7%	UK infant	11.57	2%	Cauliflowers	1%	Milk: Cattle		1%	Brussels sprouts	1%	7
	7%	GEMS/Food G06	11.37	2%	Tomatoes	2%	Rice		0.8%	Soyabeans	0.1%	7
	7%	FR toddler 2 3 yr	10.92	1%	Cauliflowers	0.9%	Spinaches		0.9%	Milk: Cattle	0.9%	7
	6%	DE child	10.00	1%	Spinaches	0.7%	Broccoli		0.7%	Broccoli	0.7%	6
	6%	GEMS/Food G08	9.93	1%	Soyabeans	0.7%	Tomatoes		0.7%	Head cabbages	0.2%	6
	6% 6%	FR child 3 15 yr GEMS/Food G15	9.76 9.75	1% 1%	Cauliflowers Soyabeans	0.7% 1%	Milk: Cattle Head cabbages		0.6%	Spinaches Tomatoes	0.8%	6
	6%	GEMS/Food G15 GEMS/Food G07	9.75	1%	Soyabeans	0.6%	Tomatoes		0.5%	Cauliflowers	0.2%	6
	6%	SE general	9.55	0.9%	Head cabbages	0.6%	Bovine: Muscle/meat		0.5%	Potatoes	0.4%	6
	6%	NL general	9.32	1%	Cauliflowers	0.9%	Spinaches		0.8%	Witloofs/Belgian endives	0.3%	e
	6%	FR infant	8.82	2%	Spinaches	2%	Cauliflowers		0.8%	Broccoli	0.5%	6
	5%	RO general	8.69	2%	Head cabbages	1%	Tomatoes		0.4%	Potatoes	0.4%	5
	5%	UK toddler	8.43	0.7%	Rice	0.7%	Cauliflowers		0.6%	Milk: Cattle	0.7%	5
	4% 4%	DE general DE women 14-50 yr	6.22 6.21	0.9%	Cauliflowers Cauliflowers	0.4%	Tomatoes Tomatoes		0.4%	Milk: Cattle Milk: Cattle	0.4%	4
	4%	FI 3 yr	6.18	0.7%	Rice	0.4%	Potatoes		0.5%	Broccoli	0.4 %	4
	4%	PT general	6.12	0.9%	Rice	0.6%	Potatoes		0.5%	Tomatoes		4
	4%	ES child	5.81	0.6%	Tomatoes	0.6%	Rice		0.5%	Spinaches	0.4%	4
	4%	FR adult	5.71	0.8%	Cauliflowers	0.5%	Witloofs/Belgian endives		0.4%	Wine grapes	0.2%	4
	3%	UK vegetarian	5.54	0.7%	Cauliflowers	0.5%	Broccoli		0.5%	Rice	0.1%	3
	3%	UK adult	4.63	0.4%	Broccoli	0.4%	Rice		0.4%	Cauliflowers	0.1%	3
	3% 3%	ES adult DK child	4.36 4.31	0.5%	Tomatoes Milk: Cattle	0.4%	Spinaches Rice		0.3%	Cauliflowers Tomatoes	0.2%	3
	3%	FI 6 yr	4.31 4.11	0.4%	Milk: Cattle Rice	0.3%	Rice Potatoes		0.3%	I omatoes Spinaches	0.4%	3
	2%	PL general	3.86	0.5%	Cauliflowers	0.5%	Head cabbages		0.5%	Tomatoes		2
	2%	IT adult	3.79	0.7%	Tomatoes	0.6%	Spinaches		0.3%	Cauliflowers		2
	2%	DK adult	3.56	0.3%	Tomatoes	0.2%	Cauliflowers		0.2%	Peas (without pods)	0.2%	2
	2%	IT toddler	3.55	0.8%	Tomatoes	0.3%	Spinaches		0.2%	Cauliflowers		2
	2% 2%	LT adult	3.33	0.6%	Head cabbages	0.4%	Potatoes		0.4%	Tomatoes	0.1%	2
	2% 1%	FI adult IE child	2.48 2.37	0.3%	Tomatoes Broccoli	0.2%	Cauliflowers Rice		0.2%	Rice Beans (without pods)	0.1%	2
		n_ or and	2.31	0.47/0	0.0000	0.470			0.270	Sound (Without pous)	0.170	1 '

Acute risk assessment/children	Acute risk assessment/adults/general population	ו
Details – acute risk assessment/children	Details – acute risk assessment/adults	

As an ARfD is not necessary/not applicable, no acute risk assessment is performed.

			Sho	ow result	s for all crops	5		
Unprocessed commodities	Results for children No. of commodities frexceeded (IESTI):	l or which ARfD/ADI is			Results for adults No. of commodities t exceeded (IESTI):	for which ARfD/ADI is		
d co	IESTI				IESTI			
Iprocesse	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
	Expand/collapse list Total number of cor children and adult (IESTI calculation)	nmodities exceeding the AR liets	fD/ADI in					
Processed commodities	Results for children No of processed com is exceeded (IESTI):	nmodities for which ARfD/ADI			Results for adults No of processed con is exceeded (IESTI):	nmodities for which ARfD/ADI		
L L L	IESTI				IESTI			
g			MRL/input	_			MRL/input	_
sesse	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)
Proc	Expand/collapse list							
	Canalusian							
	Conclusion:							

* *	· · ·				iliprole (F)					put values	$ \rightarrow$	
***	efsa 💿		LOQs (mg/kg) range		0.01 I reference values	to:	50.0		hronic risk sment	Supplementary results – ch assessment	ronic risk	
			ADI (mg/kg bw per da	ay):	0.0043	ARfD (mg/kg bw):	Unnecessary	÷		·	$ \rightarrow$	
European I	Food Safety Authority		Source of ADI:		EFSA	Source of ARfD:			acute risk nt/children	Details – acute risl assessment/adults		
EFSA PRIM ents:	lo revision 3.1; 2019/03/19		Year of evaluation:		2016	Year of evaluation:		assessmen	it/cilluren	assessment/audits)
ents.												
				<u>N</u>	lormal mode							
				Chronic risk asses	sment: JMPR method	ology (IEDI/TMD	1)				- <u>1</u>	
-			No of diets exceeding	the ADI :		1			1	1	Exposure MRLs set at	e resulting
1		Expsoure	Highest contributor to			2nd contributor to			3rd contributor to MS		the LOQ	under ass
Calculated exp	posure	(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		diet	Commodity/	(in % of ADI)	(in %)
(% of AD		day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
125%	NL toddler	5.37	40%	Spinaches		14%	Apples		14%	Escaroles/broad-leaved endives	8%	1
88%	IE adult	3.78	38%	Tea (dried leaves of Camellia sinensis)		15%	Other leafy brassica		7%	Spinaches	4%	8
71% 69%	DE child	3.04 2.96	17% 14%	Apples Spinaches		11% 8%	Spinaches		8% 5%	Oranges Escaroles/broad-leaved endives	4% 6%	
67%	NL child GEMS/Food G10	2.96	14%	Lettuces		8%	Apples		5%	Escaroles/broad-leaved endives Tea (dried leaves of Camellia sinensis)		6
64%		2.90	18%	Lettuces		13%	Chinese cabbages/pe-tsai		9%	Lea (dried leaves of Camellia sinensis) Kales	5% 3%	e
64%	SE general FR adult	2.73	23%	Lettuces Tea (dried leaves of Camellia sinensis)		16%	Chinese cabbages/pe-tsai Wine grapes		4%	Kales Spinaches	3% 2%	e
62% 55%	GEMS/Food G06	2.66	41%	Tea (dried leaves of Camellia sinensis) Tea (dried leaves of Camellia sinensis)		6%	Wine grapes Lettuces		3%	Spinaches Table grapes	2% 5%	
54%	GEMS/Food G07	2.35	14%	Tea (dried leaves of Camelia sinensis) Tea (dried leaves of Camellia sinensis)		13%	Lettuces		4%	Wine grapes	5%	4
51%	NL general	2.31	10%	Tea (dried leaves of Carriella sinensis)		8%	Spinaches		6%	Escaroles/broad-leaved endives	3%	4
51%	ES adult	2.17	30%	Lettuces		4%	Chards/beet leaves		4%	Spinaches	2%	4
49%	ES child	2.11	23%	Lettuces		5%	Spinaches		4%	Chards/beet leaves	3%	4
49%	GEMS/Food G11	2.10	11%	Tea (dried leaves of Camellia sinensis)		5%	Spinaches		5%	Lamb's lettuce/corn salads	5%	4
46%	GEMS/Food G08	1.97	11%	Lettuces		8%	Tea (dried leaves of Camellia sine	neie)	4%	Lamb's lettuce/corn salads	5%	4
45%	IT adult	1.92	21%	Lettuces		5%	Spinaches	1010)	4%	Other spinach and similar	2%	4
42%	DE women 14-50 yr	1.79	9%	Tea (dried leaves of Camellia sinensis)		6%	Lettuces		4%	Oranges	3%	3
39%	FR child 3 15 yr	1.69	7%	Tea (dried leaves of Camellia sinensis)		7%	Oranges		6%	Spinaches	4%	3
39%	DE general	1.69	9%	Tea (dried leaves of Camellia sinensis)		5%	Lettuces		3%	Apples	3%	3
37%	PT general	1.60	15%	Kales		7%	Wine grapes		6%	Lettuces	3%	
37%	IT toddler	1.60	16%	Lettuces		3%	Chards/beet leaves		3%	Spinaches	3%	3
35%	UK infant	1.50	17%	Tea (dried leaves of Camellia sinensis)		4%	Milk: Cattle		3%	Oranges	3%	
35%	UK vegetarian	1.50	14%	Tea (dried leaves of Camellia sinensis)		8%	Lettuces		2%	Wine grapes	2%	3
34%	FR toddler 2 3 yr	1.46	9%	Spinaches		4%	Apples		3%	Oranges	3%	3
33%	UK adult	1.40	16%	Tea (dried leaves of Camellia sinensis)		7%	Lettuces		3%	Wine grapes	1%	3
31%	GEMS/Food G15	1.35	6%	Lettuces		4%	Tea (dried leaves of Camellia sine	nsis)	3%	Wine grapes	4%	2
30%	UK toddler	1.27	8%	Tea (dried leaves of Camellia sinensis)		4%	Oranges		2%	Apples	3%	2
28%	FR infant	1.19	15%	Spinaches		2%	Apples		2%	Cauliflowers	2%	2
25%	DK child	1.05	8%	Lettuces		3%	Apples		1%	Swine: Muscle/meat	4%	2
23%	FI adult	0.98	8%	Lettuces		6%	Coffee beans		1%	Chinese cabbages/pe-tsai	7%	1
19%	FI3 yr	0.83	4%	Spinaches		2%	Lettuces		2%	Chinese cabbages/pe-tsai	3%	1
19%	DK adult	0.82	5%	Lettuces		3%	Tea (dried leaves of Camellia sine	nsis)	3%	Wine grapes	1%	1
19% 19%	RO general	0.82	5% 5%	Wine grapes Lettuces		2% 3%	Apples		1% 3%	Tomatoes	3% 2%	1
19%	FI6 yr PL general	0.81	3%	Apples		2%	Spinaches Chinese cabbages/pe-tsai		0.9%	Chinese cabbages/pe-tsai Table grapes	2%	
11%	PL general LT adult	0.47	3% 4%	Apples Lettuces		2%	Chinese cabbages/pe-tsai Apples		0.9%	Potatoes	1%	1
4%	IE child	0.19	0.6%	Tea (dried leaves of Camellia sinensis)		0.4%	Apples		0.4%	Lettuces	0.7%	4
Conclusion:						-	1		1	1	1	+

Acute risk assessment/children Acute risk assessment/adults/general population Details - acute risk assessment/adults The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group Show results for all crops ults for children esults for adults No. of commodities for which ARfD/ADI is exceeded (IESTI): No. of commodities for which ARfD/ADI is exceeded (IESTI): Unprocessed com IESTI ESTI MRL/input for RA MRL/input for RA Highest % of ARfD/ADI Exposure Exposure Highest % of ARfD/ADI С (mg/kg) (µg/kg bw) Commodities (mg/kg) (µg/kg bw) Expand/collapse list Total number of commodities exceeding the ARfD/ADI in children and adult diets IESTI calculation) Results for adults No of processed com sults for children No of processed commodities for which ARfD/ADI is exceeded (IESTI) es for which ARfD/ADI is exce 13 eded (IESTI) Processed com IESTI IESTI MRL/input for RA (mg/kg) 7/7 MRL/inpu for RA Highest % of ARfD/ADI 3327% Exposure (µg/kg bw 143 Highest % of ARfD/ADI Exposure בא⊢ µg/kg t 464 Pre oditie (mg/kg) 7/7 7/7 7/7 0.8/0.8 0.6/0.6 0.1/0.1 1.5/0.28 0.6/2.82 50/0.13 1.5/0.28 0.6/0.12 0.3/0.3 0.2/0.06 Processed Continuous Escarcies/broad-leaved endives/boiled Kales/boiled Chards/beet leaves/boiled Spinaches/frozen, boiled Broccoli/boiled Cauliflowers/boiled Pumpkins/boiled Currants (red, black and white)/juice Peaches/canned Wine grapes/juice Oranges/juice Tea (dried leaves of Camellia sinensis)/infusion Elderberries/juice Raspberries/juice Processed commodities Escarates/trocar/leaved faulty/s/boiled Chards/breet leaves/holied Spinaches/frozen; holied Pursianes/holied Broccoli/holied Wine grapes/wine Pumpkins/boiled Currants (red, black and white)/juice Table grapes/raisins Tae (dried leaves of Camellia sinensis)/infusion Elderberries/juice Wine grapes/juice Peaches/canned Apples/juice 6414% 5066% 2264% 1466% 1295% 206% 183% 181% 122% 107% 102% 73% 72% 10/10 7/7 7/7 0.8/0.8 0.8/0.8 0.8/0.8 0.3/0.3 0.6/0.12 0.6/0.12 0.6/0.12 0.4/0.09 50/0.13 1.5/0.28 0.8/0.27 0.2/0.06 2037% 1347% 775% 671% 448% 132% 128% 82% 82% 80% 59% 59% 58% 57% 276 218 97 63 56 8.9 7.9 7.8 5.2 4.6 4.4 4.4 3.2 3.1 88 58 33 29 19 5.7 5.5 3.5 3.5 2.5 2.5 2.5 2.5 1.9 collaps

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Cyclaniliprole (F) a unifiely to present a public health risk. For processed commodities, the toxicological reference value was exceeded in one or several cases

****		Cypermethri	р (F)			Input values	
efsa European Food Safety Authority	LOQs (mg/kg) rai		to:		Details – chronic ri assessment	isk Supplementar chronic risk as:	
European Food Safety Authority	ADI (mg/kg bw pe Source of ADI:	er day): 0.005	ARfD (mg/kg bw): Source of ARfD:	0.005	Details – acute ris		
EFSA PRIMo revision 3.1; 2019/03/19	Year of evaluation	ĸ	Year of evaluation:		assessment/childre	en assessment	adults
mments:							
		<u>Nori</u>	nal mode				
		Chronic risk assessme	nt: JMPR methodol	logy (IEDI/TMDI)			
	No of diets excee	ding the ADI :					Exposure resulting fro MRLs set at commoditie
Calculated exposure (% of ADI) MS Diet	Expsoure (µg/kg bw per day) Highest contribut MS diet (in % of ADI)	Commodity/	2nd contributor to MS diet (in % of ADI)	Commodity/ group of commodities	3rd contrib di	outor to MS let Commodity/ of ADI) group of commodities	the LOQ under asses (in % of ADI) (in % of A
Conclusion:							

268

Acute risk assessment/adults/general population

Details – acute risk assessment/children

Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

			Sho	ow result	s for all crop	S		
Unprocessed commodities	Results for children No. of commodities f exceeded (IESTI):	or which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
900	IESTI				IESTI			
orocesse	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Сил	0.4% Expand/collapse list Total number of cor children and adult of (IESTI calculation)	Ginseng root nmodities exceeding the AR liets	0.15/0.1	0.02	1%	Ginseng root	0.15/0.1	0.06
Processed commodities	Results for children No of processed com is exceeded (IESTI):	nmodities for which ARfD/ADI			Results for adults No of processed cor is exceeded (IESTI):	nmodities for which ARfD/ADI		
i i i i i i i i i i i i i i i i i i i	IESTI				IESTI			
o pesse	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Proc	Expand/collapse list		(mgrkg)				(mgrag)	(pgrig bir)
	Conclusion:	e toxicological reference value	was identified	for any upproc	essed commodity			

A short-term intake of residues of Cypermethin (F) is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

1	****				Cvpr	odinil				Inp	ut values		
-	× *	fsa		LOQs (mg/kg) range f			to:	5.0	Details – c	hronic risk	Supplementary results -	- chronic	
	** • P	TSA			Toxicological r	eference va	alues		assess		risk assessment		
	L	JUM		ADI (mg/kg bw per da	iy):	0.03	ARfD (mg/kg bw):	not necessary				$ \longrightarrow$	
E	uropean Food	Safety Authority		Source of ADI:		EFSA	Source of ARfD:	France	Details –	acute risk	Details – acute ri	sk	
		vision 3.1; 2019/03/19		Year of evaluation:		2005	Year of evaluation:	2018	assessmen	it/children	assessment/adul		
men		131011 0.1, 2010/00/13		1				I					
					<u>R</u>	efined cal	culation mod	2					
					Chronic risk	assessmer	nt: JMPR metho	iology (IEDI/TMDI)					
				No of diets exceeding	the ADI :								resulting fron
			5	Highest contributor to			2nd contributor to			3rd contributor to MS		MRLs set at the LOQ	under assessr
	Calculated exposure	3	Expsoure (µg/kg bw per	MS diet	Commodity/		2nd contributor to MS diet	Commodity/		diet	Commodity/	(in % of ADI)	(in % of AL
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	56% 43%	NL toddler DE child	16.83 12.83	17% 20%	Apples		7% 3%	Spinaches		7% 2%	Pears Spinaches	0.3%	56% 43%
	43%	GEMS/Food G11	8.61	20%	Apples Celeries		2%	Table grapes Apples		2%	Spinacnes Wine grapes	0.3%	43%
	28%	NL child	8.52	9%	Apples		3%	Spinaches		2%	Table grapes	0.3%	28%
	24%	GEMS/Food G07	7.29	4%	Celeries		3%	Wine grapes		2%	Lettuces	0.3%	24%
	23%	GEMS/Food G08	6.79	2%	Wine grapes		2%	Barley		2%	Lettuces	0.3%	23%
	20%	GEMS/Food G10	6.14	3%	Lettuces		2%	Wheat		2%	Celeries	0.2%	20%
	20%	IE adult	6.12	4%	Celeries		3%	Wine grapes		1%	Spinaches	0.2%	20%
	20%	GEMS/Food G15	5.97	2%	Celeries		2%	Wine grapes		2%	Wheat	0.3%	20%
	20%	GEMS/Food G06	5.85	3%	Wheat		2%	Table grapes		2%	Tomatoes	0.2%	20%
	18%	DK child	5.41	4%	Apples		2%	Rye		2%	Carrots	0.2%	18%
	17%	FR child 3 15 yr	5.21	3%	Apples		2%	Wheat		2%	Milk: Cattle	0.2%	17%
	17%	FR toddler 2 3 yr	5.11	5%	Apples		2%	Milk: Cattle		2%	Spinaches	0.2%	17%
	17%	IT adult	5.00	4%	Lettuces		2%	Wheat		2%	Other lettuce and other salad plants	0.0%	17%
	16%	IT toddler	4.84	3%	Lettuces		3%	Wheat		1%	Apples	0.1%	16%
	16%	ES adult	4.75	6%	Lettuces		1%	Apples		1%	Barley	0.1%	16%
	16%	SE general	4.71	4%	Lettuces			Apples		1%	Wheat	0.3%	16%
	15%	DE women 14-50 yr	4.63	4%	Apples		2%	Wine grapes		1%	Lettuces	0.1%	15%
	15% 15%	DE general	4.55	4% 4%	Apples		2%	Wine grapes		1%	Barley	0.1%	15% 15%
	15%	ES child PT general	4.53 4.50	4% 6%	Lettuces Wine grapes		2% 2%	Wheat Wheat		2% 2%	Apples Apples	0.2%	15%
	14%	RO general	4.30	4%	Wine grapes			Apples		2%	Wheat	0.4%	13%
	14%	FR adult	4.34	4 % 5%	Wine grapes			Apples Other lettuce and other salad pla	nte	1%	Apples	0.3%	14%
	14%	NL general	4.13	2%	Apples		2%	Spinaches	11.0	1%	Wine grapes	0.2%	14%
	13%	UK infant	3.99	3%	Milk: Cattle		3%	Apples		2%	Carrots	0.3%	13%
	13%	FR infant	3.98	3%	Spinaches		3%	Apples		2%	Carrots	0.1%	13%
	12%	UK toddler	3.72	3%	Apples		2%	Wheat		1%	Milk: Cattle	0.3%	12%
	11%	FI 3 yr	3.40	2%	Apples		1%	Oat		1%	Carrots	0.3%	11%
	9%	UK vegetarian	2.81	2%	Wine grapes		1%	Lettuces		1.0%	Celeries	0.1%	9%
	9%	DK adult	2.75	2%	Wine grapes		2%	Apples		0.9%	Lettuces	0.1%	9%
	9%	FI 6 yr	2.63	0.9%	Strawberries		0.9%	Apples		0.9%	Carrots	0.3%	9%
	8%	PL general	2.33	3%	Apples		0.7%	Table grapes		0.5%	Tomatoes	0.2%	8%
	8%	UK adult	2.32	2%	Wine grapes		1%	Lettuces		0.7%	Wheat	0.1%	8%
	7%	LT adult	2.17	3%	Apples		0.7%	Lettuces		0.5%	Rye	0.2%	7%
	7%	FI adult IE child	1.96 0.78	1% 0.5%	Lettuces Apples		0.9%	Apples Wheat		0.7%	Wine grapes Carrots	0.1%	7% 3%
	3%												

The estimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI. The long-term intake of residues of Cyprodinil is unlikely to present a public health concern.

Acute risk assessment/children	Acute risk assessment/adults/general population
Details – acute risk assessment/children	Details – acute risk assessment/adults

As an ARfD is not necessary/not applicable, no acute risk assessment is performed.

Show results of IESTI calculation for all crops

ESTI Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	IESTI Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Highest % of	Commodities	for RA		Highest % of	Commodities	for RA	
	Commodities				Commodities		
	Commodules	(119/kg)	(µg/kg bw)		Commodities	(iiig/kg)	(µg/kg bw)
Expand/collapse list							
		RfD/ADI in					
(IESTI calculation)	1013						
Desults for shildren				Desults for edults			
					modities for which ARfD/ADI		
s exceeded (IESTI):				is exceeded (IESTI):			
ESTI				IESTI			
Highest % of			Exposure	Highest % of			Exposure
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)
⊢xpand/collapse list							
Conclusion:							
	Total number of com children and adult d IESTI calculation) Results for children No of processed com s exceeded (IESTI): ESTI Highest % of ARfD/ADI EXPANDIAN ARfD/ADI	Total number of commodities exceeding the AR children and adult diets IESTI calculation) Results for children No of processed commodities for which ARfD/ADI s exceeded (IESTI): ESTI Highest % of ARfD/ADI Processed commodities EXPANDIADI Processed commodities	Total number of commodities exceeding the ARfD/ADI in thildren and adult diets IESTI calculation Results for children No of processed commodities for which ARfD/ADI s exceeded (IESTI): ESTI Highest % of for RA ARfD/ADI Processed commodities (mg/kg) Expand/collapse list	Total number of commodities exceeding the ARfD/ADI in thildren and adult diets IESTI calculation) Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI): ESTI Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw) Expand/collapse list	Total number of commodities exceeding the ARfD/ADI in thildren and adult diets Results for adults IESTI calculation) Results for adults No of processed commodities for which ARfD/ADI sexceeded (IESTI): ESTI IESTI Highest % of ARfD/ADI for RA ARfD/ADI Processed commodities MRL/input Highest % of ARfD/ADI ARfD/ADI Processed commodities (mg/kg) (µg/kg bw) ARfD/ADI Processed commodities Expand/collapse list Image: Commodities	Total number of commodities exceeding the ARfD/ADI in thildren and adult diets Results for adults IESTI calculation) Results for adults No of processed commodities for which ARfD/ADI s exceeded (IESTI): IESTI IESTI ESTI IESTI Highest % of ARTD/ADI Processed commodities (mg/kg) (µg/kg bw) Highest % of ARTD/ADI Processed commodities (mg/kg) ARfD/ADI Processed commodities (mg/kg) Expand/collapse list IESTI	Total number of commodities exceeding the ARTD/ADI in children and adult diets Results for adults IESTI calculation Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): ESTI IESTI ESTI IESTI Highest % of ARTD/ADI Processed commodities (mg/kg) MRL/input for RA Exposure (mg/kg) MRID/ADI Processed commodities (mg/kg) ARTD/ADI Processed commodities (mg/kg) Img/kg bw) ARTD/ADI Processed commodities (mg/kg) Expand/collapse list

3	efsa			Dican	nba		Inpu	t values		
	+ otca		LOQs (mg/kg) range t	rom:	0.05 to:	0.05	Details – chronic risk	Supplementary	results –	
				Toxicological refe			assessment	chronic risk as	sessment	
			ADI (mg/kg bw per da	y):	0.3 ARfD (mg/kg bw):	0.3				
E	uropean Food Safety Authority		Source of ADI:		Source of ARfD:		Details – acute risk	Details – ac		
	EFSA PRIMo revision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:		assessment/children	assessment	adults	
ment	is:									
				Nor	mal mode					
					ent: JMPR methodology					
			No of diets exceeding						Exposure	resulting
			no or dioto exceeding	and Abr.					MRLs set at	commod
		Expsoure	Highest contributor to		2nd contributor to	0	3rd contributor to M		the LOQ (in % of ADI)	under ass (in % c
	Calculated exposure (% of ADI) MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ aroup of commodities	MS diet (in % of ADI)	Commodity/ group of commodities	diet (in % of ADI)	Commodity/ group of commodities		1
T	14% NL toddler	43.49	10%	Milk: Cattle	3%	Wheat	0.4%	Barley	0.6%	0.
	9% UK infant	26.60	6%	Milk: Cattle	2%	Wheat	0.2%	Bovine: Muscle/meat	0.2%	0.
	8% NL child 8% FR child 3 15 yr	23.34 23.07	4% 4%	Milk: Cattle Milk: Cattle	3% 3%	Wheat Wheat	0.2%	Apples Bovine: Muscle/meat	0.5%	0
	8% FR toddler 2 3 yr	23.07	4%	Milk: Cattle	2%	Wheat	0.2%	Bovine: Muscle/meat Bovine: Muscle/meat	0.3%	0.
	8% DE child	22.84	3%	Milk: Cattle	3%	Wheat	0.4%	Apples	0.4%	0.
	7% GEMS/Food G15	21.37	3%	Wheat	2%	Barley	1%	Milk: Cattle	0.3%	0
	7% GEMS/Food G08	21.11	3%	Wheat	2%	Barley	0.9%	Milk: Cattle	0.3%	0
	7% GEMS/Food G11	20.66	2%	Wheat	2%	Barley	1%	Milk: Cattle	0.3%	0
	7% GEMS/Food G06	20.41	5%	Wheat	0.6%	Sugar canes	0.4%	Milk: Cattle	0.3%	0
	7% UK toddler	20.12	3%	Milk: Cattle	3%	Wheat	0.2%	Bovine: Muscle/meat	0.3%	0.
	7% GEMS/Food G07	20.01	3%	Wheat	1%	Barley	1%	Milk: Cattle	0.3%	0.
	7% DK child	19.84	3%	Wheat	2%	Milk: Cattle	0.9%	Rye	0.2%	0.
	6% GEMS/Food G10 6% RO general	18.59 17.20	3% 3%	Wheat Wheat	1% 2%	Barley Milk: Cattle	0.9%	Milk: Cattle Potatoes	0.3%	0.
	6% ES child	17.20	3%	Wheat	2%	Milk: Cattle	0.1%	Potatoes Bovine: Muscle/meat	0.3%	0
	5% SE general	16.26	2%	Wheat	2%	Milk: Cattle	0.2%	Bovine: Muscle/meat	0.2%	0
	5% DE general	15.91	2%	Milk: Cattle	1%	Wheat	1%	Barley	0.2%	0
	5% IT toddler	14.44	4%	Wheat	0.2%	Other cereals	0.0%	Apples	0.1%	0
	5% DE women 14-50 yr	14.35	2%	Milk: Cattle	1%	Wheat	0.4%	Barley	0.3%	0
	4% ES adult	11.85	2%	Wheat	1%	Barley	0.8%	Milk: Cattle	0.2%	0
	4% NL general	11.63	1%	Milk: Cattle	1%	Wheat	0.7%	Barley	0.2%	0
	4% FR infant	10.88	3%	Milk: Cattle	0.5%	Wheat	0.1%	Bovine: Muscle/meat	0.2%	0
	3% IE adult 3% PT general	9.61	2%	Wheat	0.7%	Milk: Cattle	0.2%	Asparagus	0.4%	0
	3% PT general 3% IT adult	9.22 9.14	3% 3%	Wheat Wheat	0.1%	Potatoes Other cereals	0.1%	Rice Apples	0.2%	0
	3% FR adult	7.89	1%	Wheat	0.7%	Milk: Cattle	0.0%	Apples Bovine: Muscle/meat	0.2%	0
	2% UK vegetarian	6.54	1%	Wheat	0.5%	Milk: Cattle	0.0%	Barley	0.1%	0
	2% DK adult	6.05	0.9%	Milk: Cattle	0.7%	Wheat	0.1%	Bovine: Muscle/meat	0.1%	I
	2% UK adult	5.93	1%	Wheat	0.5%	Milk: Cattle	0.1%	Bovine: Muscle/meat	0.1%	0
1	2% LT adult	5.92	0.7%	Wheat	0.7%	Milk: Cattle	0.2%	Rye	0.1%	0
1	1% IE child	4.43	0.8%	Wheat	0.6%	Milk: Cattle	0.0%	Rice	0.0%	0.
1	1% FI 3 yr	4.38	0.8%	Wheat		Barley	0.1%	Rye	0.2%	0.
	1% FI6 yr 0.6% FI adult	3.52 1.84	0.6%	Wheat Wheat	0.1%	Barley Rye	0.1% 0.1%	Rye Coffee beans	0.2%	0. 0.
	0.2% PL general	0.63	0.1%	Apples	0.1%	Potatoes	0.1%	Tomatoes	0.2%	0.
- 1	o.e.o i e gonoral	0.03	0.170	, abbien	0.170	. 0101000	0.070		0.170	

		/children		Acute risk	assessment/adults/ge	eneral popul	ation
Det	tails – acute risk assessm	nent/children		Details	s – acute risk asses	sment/adı	ults
	essment is based on the ARfD. based on the large portion of the most of the state o	- · ·		crops with GA	APs under assessi	nent	
Results for childr	en s for which ARfD/ADI is exceeded (IES	TI):		Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
IESTI				IESTI			
Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposi
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
0.04% 0.04%	Maize/corn Soyabeans	0.5/0.02 10/0.05	0.13 0.12	0.10% 0.01%	Soyabeans Maize/corn	10/0.05 0.5/0.02	0.29 0.04
Expand/collapse lis Total number of c adult diets (IESTI calculation	commodities exceeding the ARfD/AD	l in children and					
Total number of c adult diets (IESTI calculation Results for childr	commodities exceeding the ARfD/AD) en			Results for adults	mmodilies for which ARfD/AD		
Total number of c adult diets (IESTI calculation Results for childr	commodities exceeding the ARfD/AD				mmodities for which ARfD/ADI		
Total number of c adult diets (IESTI calculation Results for childr No of processed ca	commodities exceeding the ARfD/AD) en	eded		No of processed cor			
Total number of c adult diets (IESTI calculation Results for childr No of processed ca (IESTI): IESTI	commodities exceeding the ARfD/AD) en	eded MRL/input	Exposure	No of processed cor is exceeded (IESTI): IESTI		MRL/input	
Total number of c adult diets (IESTI calculation Results for childr No of processed cs (IESTI): IESTI Highest % of ARfD/ADI	en mmodities for which ARfD/ADI is exce Processed commodities	eded MRL/input for RA (rng/kg)	 Exposure (µg/kg bw)	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI	: Processed commodities	MRL/input for RA (mg/kg)	Expos (µg/kg
Total number of c adult diets (IESTI calculation Results for childr No of processed cr (IESTI): IESTI Highest % of ARfD/ADI 0.2%	en ommodities exceeding the ARfD/AD en ommodities for which ARfD/ADI is exce Processed commodities Maize/oil	eded MRL/input for RA (mg/kg) 0.5/0.5	(µg/kg bw) 0.47	No of processed cor is exceeded (IESTI): IESTI Highest % of		MRL/input for RA	(µg/kg
Total number of c adult diets (IESTI calculation Results for childr No of processed c (IESTI): IESTI Highest % of AR(D/ADI	en mmodities for which ARfD/ADI is exce Processed commodities	eded MRL/input for RA (rng/kg)	(µg/kg bw)	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI	: Processed commodities	MRL/input for RA (mg/kg)	(µg/kg
Total number of c adult diets (IESTI calculation Results for childr No of processed co (IESTI): IESTI Highest % of AR(D/ADI 0.2% 0.1%	en ommodities exceeding the ARfD/AD en ommodities for which ARfD/ADI is exce Processed commodities Maize/oil Soyabeans/soya drink	eded MRL/input for RA (mg/kg) 0.5/0.5 10/0.05	(µg/kg bw) 0.47 0.22	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI	: Processed commodities	MRL/input for RA (mg/kg)	(µg/kg
Total number of c adult diets (IESTI calculation Results for childr No of processed cs (IESTI): IESTI Highest % of AR(D/AD) 0.2% 0.1% 0.0%	en ommodities exceeding the ARfD/AD en ommodities for which ARfD/ADI is exce Processed commodities Maize/oil Soyabeans/soya drink Soyabeans/boiled	eded MRL/input for RA (mg/kg) 0.5/0.5 10/0.05 10/0.02	(µg/kg bw) 0.47 0.22 0.08	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI	: Processed commodities	MRL/input for RA (mg/kg)	

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Dicamba is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

Sa 📷		LOQs (mg/kg) range	Dimethoate						
Sa Fety Authority			rom: 0.0	1 to:	5.0	Details – chronic risk	Supplementary results -	chronic	
fety Authority			Toxicological reference value	es		assessment	risk assessment		
fety Authority		ADI (mg/kg bw per da	y): 0.0	ARfD (mg/kg bw):	0.02				
		Source of ADI:		Source of ARfD:		Details – acute risk assessment/children	Details – acute ri assessment/adul		
n 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:		discissionenty enhancen			-
			Refined calculation	n mode					
			Chronic risk assessment: JMPF	t methodology (IED	I/TMDI)				
		No of diets exceeding	the ADI :						e resulting
	Expsoure	Highest contributor to		2nd contributor to MS		3rd contributor	to MS	MRLs set at the LOQ	under as
	(µg/kg bw per	MS diet	Commodity/	diet	Commodity/	diet	Commodity/	(in % of ADI)) (in %
Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of Al	DI) group of commodities	1	┢
child MS/Food G06	0.15	2% 4%	Wheat Wheat	0.7%	Vanilla pods Olives for oil production	0.4%	Rye Tamarind	1	
child	0.10	4%	Rye	2%	Wheat	0.2%	Tamarind		
MS/Food G08	0.10	2%	Wheat	2%	Olives for oil production	0.3%	Rve		
child	0.08	2%	Wheat	2%	Olives for oil production	0.0%	Table olives		
MS/Food G10	0.07	2%	Wheat	0.9%	Olives for oil production	0.4%	Ginger		
MS/Food G11	0.07	2%	Wheat	0.6%	Olives for oil production	0.4%	Peppercorn (black, green and white)		
MS/Food G07	0.07	2%	Wheat	0.7%	Olives for oil production	0.2%	Peppercorn (black, green and white)		
MS/Food G15	0.07	2%	Wheat	0.5%	Olives for oil production	0.1%	Peppercorn (black, green and white)		
oddler	0.07	3%	Wheat	0.0%	Table olives				
general	0.05	2%	Wheat	0.6%	Olives for oil production	0.1%	Rye		
child 3 15 yr	0.05	2%	Wheat	0.3%	Olives for oil production	0.0%	Other spices (seeds)		
general	0.05	3%	Wheat	0.0%	Table olives				
toddler	0.05	2%	Wheat	0.2%	Rye	0.1%	Olives for oil production		
child	0.05	2%	Wheat	0.1%	Olives for oil production	0.1%	Rye		
adult	0.05	1%	Wheat	1%	Olives for oil production	0.0%	Table olives		
dult	0.04	2%	Wheat	0.0%	Table olives				
toddler	0.04	2%	Wheat	0.0%	Rye				
toddler 2 3 yr	0.04	2%	Wheat	0.1%	Olives for oil production	0.0%	Other spices (roots)		
women 14-50 yr	0.04	1%	Wheat	0.2%	Rye	0.2%	Olives for oil production		
general	0.04	2%	Wheat	0.1%	Rye	0.1%	Table olives		
general	0.03	0.9%	Wheat	0.3%	Rye	0.2%	Olives for oil production		
idult	0.03	1%	Wheat	0.3%	Horseradish, root spices	0.1%	Rye		
adult	0.03	1%	Wheat	0.2%	Olives for oil production	0.0%	Peppercorn (black, green and white)		
infant	0.03	1%	Wheat		FRUIT AND TREE NUTS			1	
general	0.02	1.0%	Wheat	0.1%	Olives for oil production	0.0%	Rye	1	
adult	0.02	0.5%	Rye	0.5%	Wheat			1	
vegetarian	0.02	1%	Wheat	0.0%	Rye	0.0%	Table olives	1	
yr	0.02	0.6%	Wheat	0.3%	Rye	0.0%	Olives for oil production	1	1
adult	0.02	0.8%	Wheat	0.0%	Rye	0.0%	Table olives	1	0
adult	0.02	0.6%	Wheat	0.3%	Rye			1	0
							Olives for oil production		0
									0
			Rye						0
nfant	0.01	0.4%	Wheat	0.0%	Olives for oil production	0.0%	Other spices (seeds)		0
	1	I	l	1	I	I	l	1	L
ietary intake (TMDI/NEDI/IEDI) was below t									
i yr child infant ietary intake		0.02 0.01 0.01	0.02 0.5% 0.01 0.6% 0.01 0.4% 0.01 0.4% (TMDINEDI/EDI) was below the ADI.	0.02 0.5% Wheat 0.01 0.6% Wheat 0.01 0.4% Rye 0.01 0.4% Wheat (TMDINEDI/IEDI) was below the ADI. TMDINEDI/IEDI was below the ADI.	0.02 0.5% Wheat 0.3% 0.01 0.6% Wheat 0.0% 0.01 0.4% Rye 0.2% 0.01 0.4% Wheat 0.0%	0.02 0.5% Wheat 0.3% Sys 0.01 0.6% Wheat 0.0% Ginger 0.01 0.4% Rys 0.2% Wheat 0.01 0.4% Wheat 0.0% Olles for oil production 0.01 0.4% Wheat 0.0% Olles for oil production	0.02 0.5% Wheat 0.3% Sye 0.0% 0.01 0.6% Wheat 0.0% Ginger 0.0% 0.01 0.4% Rye 0.2% Wheat 0.0% 0.01 0.4% Rye 0.2% Wheat 0.0% 0.01 0.4% Wheat 0.0% 0.0% 0.0% 0.01 0.4% Wheat 0.0% 0.0% 0.0% (INUNED/IEDI) was below the ADI. TMOINED/IEDI was below the ADI. </td <td>0.02 0.5% Wheat 0.3% Rye 0.0% Olves for oll production 0.01 0.6% Wheat 0.0% Gigger 0.0% Traile olives 0.01 0.4% Rye 0.2% Wheat 0.0% Olives for oll production 0.01 0.4% Rye 0.2% Wheat 0.0% Other spices (seeds) 0.01 0.4% Wheat 0.0% Olives for oil production 0.0% Other spices (seeds)</td> <td>0.02 0.5% Wheat 0.3% Rye 0.0% Olives for of production 0.01 0.6% Wheat 0.0% Grager 0.0% Tumeroinforucruma 0.01 0.4% Rye 0.2% Wheat 0.0% Tumeroinforucruma 0.01 0.4% Wheat 0.0% Olives for ol production 0.0% Other spices (seeds)</td>	0.02 0.5% Wheat 0.3% Rye 0.0% Olves for oll production 0.01 0.6% Wheat 0.0% Gigger 0.0% Traile olives 0.01 0.4% Rye 0.2% Wheat 0.0% Olives for oll production 0.01 0.4% Rye 0.2% Wheat 0.0% Other spices (seeds) 0.01 0.4% Wheat 0.0% Olives for oil production 0.0% Other spices (seeds)	0.02 0.5% Wheat 0.3% Rye 0.0% Olives for of production 0.01 0.6% Wheat 0.0% Grager 0.0% Tumeroinforucruma 0.01 0.4% Rye 0.2% Wheat 0.0% Tumeroinforucruma 0.01 0.4% Wheat 0.0% Olives for ol production 0.0% Other spices (seeds)

Acute risk assessment/adults/general population

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

			Sh	ow resul	ts for all crop	os		
commodities	Results for children	n for which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities	for which ARfD/ADI is exceeded (IESTI):		
od co	IESTI				IESTI			
Juprocessed	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Νur	51% 19% 2% 0.7% 0.5% 0.3% 0.3% 0.3% 0.3% 0.1% 0.1% 0.1% 0.1%	Table olives Fennel seed Vanille pods Wheat Anise/aniseed Anise/aniseed Olives for oil production Rye Juniper berry Nutmeg Cumin seed Cumin seed Cumin seed Cumin seed Peppercom (black, green and white) Allspice/pimento	3/3 5/5 0.5/0.5 0.05/0.01 5/5 5/5 3/0.05 0.02/0.01 0.5/0.5 5/5 5/5 5/5 5/5 5/5 5/5 0.5/0.5	10 3.9 0.31 0.14 0.10 0.06 0.06 0.05 0.05 0.03 0.03 0.03 0.02 0.01	15% 3% 3% 3% 3% 3% 0.4% 0.3% 0.2% 0.2% 0.2% 0.08% 0.08%	Table olives Black caraway/black cumin Black caraway/black cumin Black caraway/black cumin Anise/aniseed Anise/aniseed Wheat Cardamom Cardamom Rye Olives for oil production Tamarind Peppercorn (black, green and white)	3/3 5/5 5/5 5/5 5/5 5/5 5/5 5/5 0.05/0.01 0.5/0.5 0.02/0.01 3/0.05 0.5/0.5 0.5/0.5 0.5/0.5	3.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.05 0.05 0.05 0.05 0.04 0.02 0.02 0.01
commodities	Expand/collapse list Total number of co diets (IESTI calculation) Results for children	mmodities exceeding the ARfD/ADI in child			Results for adults	Caraway mmodities for which ARfD/ADI is exceeded (IEST		
cessed co	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)

Highest % of ARfD/ADI 10%		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)
10%	Ginger/jam	0.1/0.68	2.1	4%	Ginger/jam	0.1/0.68	0.85
0.6%	Wheat/milling (flour)	0.05/0.01	0.12	0.2%	Wheat/bread/pizza	0.05/0.01	0.04
0.5%	Olives for oil production/oils	3/0.1	0.09	0.2%	Wheat/pasta	0.05/0.01	0.04
0.3%	Wheat/milling (wholemeal)-baking	0.05/0.01	0.06	0.2%	Wheat/bread (wholemeal)	0.05/0.01	0.03
0.2%	Rye/boiled	0.02/0.01	0.04	0.1%	Table olives/canned	3/0.02	0.03
0.2%	Rye/milling (wholemeal)-baking	0.02/0.01	0.04	0.1%	Cumin seed/processed (not specified)	5/0.68	0.02
0.1%	Table olives/canned	3/0.02	0.02	0.01%	Turmeric (Curcuma)/boiled	0.1/0.1	0.00
Expand/collapse li	st						

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Dimethoate is unlikely to present a public health risk.

	Fenazaqı	ıin	
Status of the active substance:	0.01	Code no.	0.01
LOQ (mg/kg bw):		Proposed LOQ:	
Тох	icological enc	l points	
ADI (mg/kg bw per day):	0.005	ARfD (mg/kg bw):	0.1
Source of ADI:	EFSA	Source of ARfD:	EFSA
Year of evaluation:	2013	Year of evaluation:	2013

			Chronic risk assessm	ent – refined c	alculations			
				nge) in % of ADI				
				um-maximum				
			17	88				
		No of diets excee	eding ADI:					
Highest calculate	d	Highest contributo	or	2nd contributor to)	3rd contributor to)	pTMRLs
TMDI values in %	, D	to MS diet	Commodity/	MS diet	Commodity/	MS diet	Commodity/	LOQ
of ADI	MS Diet	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of a
87.8	DE child	24.1	Apples	12.9	Oranges	9.8	Strawberries	
72.0	WHO Cluster diet B	30.8	Tomatoes	5.0	Peppers	4.2	Peaches	
64.1	NL child	12.7	Apples	10.6	Oranges	6.8	Bananas	
57.1	IE adult	10.5	Tea (dried leaves and stalks,	5.7	Peaches	5.0	Strawberries	
55.4	FR toddler	12.5	Strawberries	7.9	Milk and cream,	7.7	Tomatoes	
41.6	UK Toddler	6.7	Oranges	5.9	Tomatoes	4.6	Sugar beet (root)	
41.0	UK Infant	7.7	Milk and cream,	5.8	Bananas	4.6	Tea (dried leaves and stalks,	
37.8	ES child	9.8	Tomatoes	7.4	Oranges	4.0	Bananas	
37.7	SE general population 90th percentile	7.7	Tomatoes	7.2	Bananas	3.3	Strawberries	
36.8	DK child	6.5	Cucumbers	5.3	Tomatoes	4.6	Apples	
36.1	FR infant	9.8	Strawberries	5.1	Milk and cream,	5.0	Apples	
34.1	IT kids/toddler	14.3	Tomatoes	3.5	Peaches	2.4	Strawberries	
33.3	WHO regional European diet	11.0	Tomatoes	3.0	Tea (dried leaves and stalks,	2.1	Peaches	
29.1	WHO cluster diet D	10.1	Tomatoes	2.8	Tea (dried leaves and stalks,	1.3	Apples	
28.1	IT adult	11.6	Tomatoes	3.8	Peaches	1.6	Apples	
28.0	WHO cluster diet E	5.3	Tomatoes	2.6	Tea (dried leaves and stalks,	1.7	Strawberries	
27.7	PT General population	9.0	Tomatoes	3.6	Peaches	2.1	Apples	
27.0	ES adult	7.8	Tomatoes	4.4	Oranges	2.1	Peaches	
24.4	WHO Cluster diet F	6.8	Tomatoes	3.0	Oranges	2.3	Bananas	
24.2	UK vegetarian	6.2	Tomatoes	3.9	Tea (dried leaves and stalks,	2.9	Oranges	
23.3	NL general	5.1	Oranges	4.3	Tomatoes	2.4	Apples	
20.9	FR all population	4.3	Tomatoes	3.2	Wine grapes	1.8	Strawberries	
19.9	PL general population	8.8	Tomatoes	4.1	Apples	1.0	Plums	
19.3	UK Adult	4.4	Tomatoes	4.3	Tea (dried leaves and stalks,	1.9	Oranges	
17.6	DK adult	4.1	Tomatoes	1.6	Apples	1.5	Bananas	
17.0	FI adult	4.3	Tomatoes	3.3	Oranges	1.5	Strawberries	
16.6	LT adult	6.2	Tomatoes	3.7	Apples	1.6	Cucumbers	

Conclusion: The estimated Theoretical Maximum Daily Intakes (TMDI), based on pTMRLs were below the ADI. A long-term intake of residues of Fenazaquin is unlikely to present a public health concern.

Acute risk assessment/children – refined calculations

Acute risk assessment/adults/general population – refined calculations

The acute risk assessment is based on the ARfD.

For each commodity the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS an average European unit weight was used for the IESTI calculation.

In the IESTI 1 calculation, the variability factors were 10, 7 or 5 (according to JMPR manual 2002); for lettuce, a variability factor of 5 was used.

In the IESTI 2 calculations, the variability factors of 10 and 7 were replaced by 5. For lettuce, the calculation was performed with a variability factor of 3.

Threshold MRL is the calculated residue level which would leads to an exposure equivalent to 100% of the ARfD.

nodities	No of commoditie is exceeded (IEST	es for which ARfD/ADI [I 1):		No of commoditie ARfD/ADI is exce			No of commoditi is exceeded (IES	es for which ARfD/Al FI 1):		No of commoditie (IESTI 2):	s for which ARfD/ADI is exceede	d
Somr	IESTI 1	*)	**)	IESTI 2	*)	**)	IESTI 1	*)	**)	IESTI 2	*)	**)
p			pTMRL/			pTMRL/			pTMRL/			pTMRL/
SS SS	Highest % of		threshold MRL	Highest % of		threshold MRL	Highest % of		threshold MRL	Highest % of		threshold MRL
ĕ	ARfD/ADI	Commodities	(mg/kg)	ARfD/ADI	Commodities	(mg/kg)	ARfD/ADI	Commodities	(mg/kg)	ARfD/ADI	Commodities	(mg/kg)
ē	2.484	Milk and milk products:	0.02/-	2.484	Milk and milk	0.02/-	0.345	Milk and milk	0.02/-	0.345	Milk and milk products: Cattle	0.02/-
5	0.5	Milk and milk products:	0.02/-	0.5	Milk and milk	0.02/-	0.1	Milk and milk	0.02/-	0.1	Milk and milk products: Goat	0.02/-
	0.3	Bovine: Meat	0.02/-	0.3	Bovine: Meat	0.02/-	0.1	Bovine: Meat	0.02/-	0.1	Bovine: Meat	0.02/-
	0.3	Meat, preparations of	0.02/-	0.3	Meat, preparations	0.02/-	0.1	Swine: Meat	0.02/-	0.1	Swine: Meat	0.02/-
	0.2	Sheep: Meat	0.02/-	0.2	Sheep: Meat	0.02/-	0.1	Sheep: Meat	0.02/-	0.1	Sheep: Meat	0.02/-
	No of critical MRI	_s (IESTI 1)					No of critical MR	Ls (IESTI 2)				

		***)			***)	
		pTMRL/			pTMRL/	
Highest % of	Processed	threshold MRL	Highest	% of Processed	threshold MRL	
ARfD/ADI	commodities	(mg/kg)	ARfD/A	DI commodities	(mg/kg)	
24.8	Orange juice	0.5/-	5.0	Orange juice	0.5/-	
9.0	Peach juice	0.5/-	1.0	Peach preserved with syrup	0.5/-	
8.7	Tomato juice	0.5/-	1.0	Tomato (preserved-	0.5/-	
6.6	Grape juice	0.2/-	0.8	Wine	0.2/-	
5.1	Apple juice	0.1/-	0.7	Apple juice	0.1/-	
*) The results of t	he IESTI calculations	are reported for at leas	commodities. If the ARfD is exceeded for more than 5 commoditie	s, all IESTI values > 90% of A	RfD are reported.	

Conclusion:

For Fenazaquin IESTI 1 and IESTI 2 were calculated for food commodities for which pTMRLs were submitted and for which consumption data are available. No exceedance of the ARfD/ADI was identified for any unprocessed commodity.

- · · ·	× •			F	Ionicamid			$ \longrightarrow$		ut values		
*	otca		LOQs (mg/kg) range		0.02	to:	6.0		ils – chronic risk	Supplementary res		
* *	efsa				ogical reference value		0.005	a	assessment	risk assessr	nent	J
			ADI (mg/kg bw per d	ау):	0.025	ARfD (mg/kg bw):	0.025	Dota	ails – acute risk	Details – acu	to rick	
	Food Safety Authority		Source of ADI:		EFSA, EC	Source of ARfD:	EFSA, EC		sment/children	assessment/		
EFSA PRIM ents:	Mo revision 3.1; 2019/03/19		Year of evaluation:		2010	Year of evaluation:	2010					
5111.5.												
				Ē	Refined calculation	mode						
				Chronic risk	assessment: JMPR m	ethodology (IEE	DI/TMDI)					
			No of diets exceeding	the ADI :		-						e resulting f
		Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		MRLs set at the LOQ	under asse
Calculated ex	xposure	(µg/kg bw p		Commodity/		2nd contributor to MS diet	Commodity/		MS diet	Commodity/	(in % of ADI	(in % of
(% of Al	DI) MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
31%		7.81	12%	Milk: Cattle		6%	Wheat		3%	Beans (with pods)		31
21% 21%		5.31 5.24	8% 6%	Rye Wheat		6% 4%	Wheat Milk: Cattle		3% 3%	Milk: Cattle Apples		21
21%		5.24 4.80	6%	Wheat		4% 5%	Milk: Cattle		2%	Apples Beans (with pods)		2
19%		4.80	6%	Wheat		5%	Milk: Cattle		1%	Apples		19
18%		4.44	6%	Milk: Cattle		4%	Wheat		3%	Beans (with pods)		18
18%	UK infant	4.44	8%	Milk: Cattle		4%	Wheat		1%	Peas (without pods)		18
17%		4.39	10%	Wheat		4%	Tomatoes		0.5%	Milk: Cattle		17
16%	UK toddler	4.00	5%	Wheat		4%	Milk: Cattle		1%	Beans		16
15%		3.70	7%	Wheat		2%	Milk: Cattle		0.9%	Potatoes		15
14%		3.59	6%	Wheat		2%	Milk: Cattle		1.0%	Oranges		14
14%		3.48	6%	Wheat		1%	Milk: Cattle		0.9%	Potatoes		14
13%		3.36	6%	Wheat		1%	Milk: Cattle		0.9%	Potatoes		13
13%		3.34	4%	Wheat		2%	Milk: Cattle		1%	Bovine: Muscle/meat		13
13%		3.33	6%	Wheat		1%	Milk: Cattle		0.9%	Potatoes		13
13%		3.14	5%	Wheat		1%	Milk: Cattle		0.7%	Potatoes		13
12%	GEMS/Food G11	3.12	5%	Wheat		2%	Milk: Cattle		0.9%	Potatoes		12
12%	IT toddler	3.04	9%	Wheat		0.6%	Tomatoes		0.3%	Beans (with pods)		12
11%	IE adult	2.80	3%	Wheat		0.9%	Milk: Cattle		0.6%	Beans (with pods)		11
11%	DE women 14-50 yr	2.74	3%	Wheat		2%	Milk: Cattle		0.9%	Oranges		11
11%	DE general	2.69	3%	Wheat		2%	Milk: Cattle		0.8%	Rye		11
10%	PT general	2.44	5%	Wheat		1%	Potatoes		0.6%	Beans (without pods)		10
9%	NL general	2.27	3%	Wheat		2%	Milk: Cattle		0.8%	Beans (with pods)		9
9%	FR infant	2.15	3%	Milk: Cattle		2%	Beans (with pods)		1%	Wheat		9
9%	ES adult	2.13	3%	Wheat		1.0%	Milk: Cattle		0.8%	Beans (with pods)		9
8%	IT adult	2.11	6%	Wheat		0.5%	Beans (with pods)		0.5%	Tomatoes		8
7%	FR adult	1.84	3%	Wheat		0.9%	Milk: Cattle		0.8%	Beans (with pods)		7
7%	FI 3 yr	1.68	2%	Wheat		1%	Potatoes		0.9%	Rye		7
7%	LT adult	1.67	2%	Rye		1%	Wheat		0.8%	Milk: Cattle		7
7%	UK vegetarian	1.63	3%	Wheat		0.7%	Milk: Cattle		0.6%	Beans		7
6%	DK adult	1.42	2%	Wheat		1%	Milk: Cattle		0.7%	Rye		6
5%	FI 6 yr	1.37	1%	Wheat		0.9%	Potatoes		0.9%	Rye		5
5%	UK adult	1.35	2%	Wheat		0.6%	Milk: Cattle		0.3%	Beans		5
3% 3%	IE child Fl adult	0.80	2% 1.0%	Wheat		0.7%	Milk: Cattle Wheat		0.2%	Beans (without pods) Potatoes		3
	Fl adult PL general	0.79	1.0%	Rye Potatoes		0.4%	Wheat Apples		0.3%	Potatoes Tomatoes		3
3%	· - yenerai	0.67	0.070			0.070	, the second s		0.470	101101000		1 3

Details – acute risk assessment/adults

Acute risk assessment/adults/general population

The acute risk assessment is based on the ARfD.

The acute fisk assessment is based on the ARID.	
The calculation is based on the large portion of the most critical consumer group.	

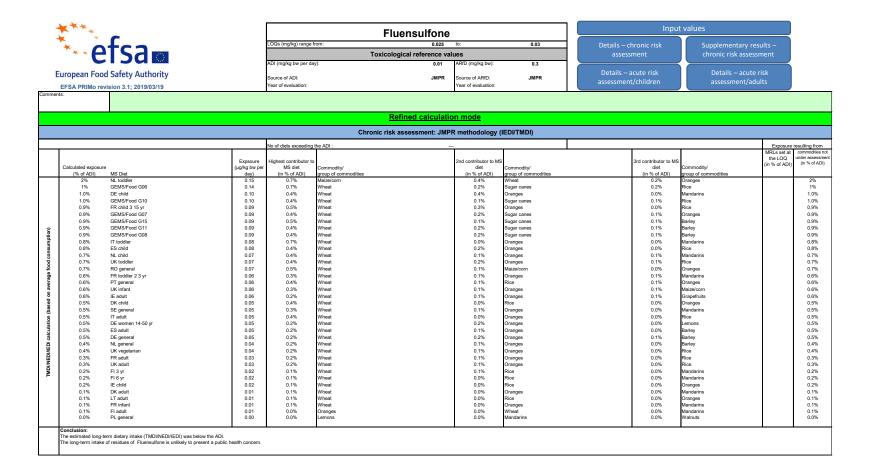
Results for childre No. of commodities	n for which ARfD/ADI is exceeded (IESTI):		3	Results for adults No. of commodities	for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Expos (µg/kg
127%	Oranges	0.4/0.24	32	63%	Peas (without pods)	5/2.94	16
114%	Peaches	0.4/0.3	29	46%	Beans (without pods)	5/2.94	12
105%	Pears	0.3/0.19	26	43%	Beans (with pods)	3/1.41	11
97%	Lemons	1.5/0.71	24	39%	Head cabbages	0.5/0.23	9.7
96%	Peas (without pods)	5/2.94	24	38%	Cucumbers	0.6/0.34	9.5
93%	Beans (without pods)	5/2.94	23	37%	Aubergines/egg plants	0.5/0.34	9.2
89%	Cucumbers	0.6/0.34	22	32%	Courgettes	0.6/0.34	7.9
85%	Melons	0.4/0.14	21	29%	Oranges	0.4/0.24	7.4
82%	Apples	0.3/0.19	20	28%	Peas (with pods)	3/2.03	6.9
79%	Tomatoes	0.5/0.34	20	25%	Lemons	1.5/0.71	6.4
68%	Watermelons	0.4/0.14	17	23%	Pears	0.3/0.19	5.8
68%	Potatoes	0.2/0.11	17	23%	Watermelons	0.4/0.14	5.7
66%	Peas (with pods)	3/2.03	17	22%	Peaches	0.4/0.3	5.6
64%	Beans (with pods)	3/1.41	16	22%	Melons	0.4/0.14	5.5
63%	Courgettes	0.6/0.34	16	22%	Tomatoes	0.5/0.34	5.4
Expand/collapse list							

No of processed co (IESTI):	mmodities for which ARfD/ADI is exceeded			No of processed co (IESTI):	mmodities for which ARfD/ADI is exceeded	I	
IESTI				IESTI			
Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw
71%	Beans (with pods)/boiled	3/1.41	18	61%	Beans (without pods)/boiled	5/2.94	15
50%	Pumpkins/boiled	0.4/0.14	12	37%	Peas (without pods)/boiled	5/2.94	9.2
48%	Courgettes/boiled	0.6/0.34	12	31%	Courgettes/boiled	0.6/0.34	7.8
41%	Potatoes/fried	0.2/0.11	10	31%	Pumpkins/boiled	0.4/0.14	7.7
31%	Gherkins/pickled	0.6/0.34	7.8	28%	Peas (with pods)/boiled	3/2.03	6.9
31%	Peaches/canned	0.4/0.3	7.8	23%	Beetroots/boiled	0.3/0.15	5.8
30%	Turnips/boiled	0.3/0.15	7.6	13%	Parsnips/boiled	0.3/0.15	3.2
30%	Parsnips/boiled	0.3/0.15	7.6	12%	Currants (red, black and white)/juice	0.8/0.23	2.9
27%	Beetroots/boiled	0.3/0.15	6.7	11%	Turnips/boiled	0.3/0.15	2.9
26%	Currants (red, black and white)/juice	0.8/0.23	6.6	11%	Beans/canned	2/0.39	2.8
24%	Oranges/juice	0.4/0.12	6.1	11%	Celeriacs/boiled	0.3/0.15	2.7
18%	Peas (without pods)/canned	5/0.55	4.4	10%	Peaches/canned	0.4/0.3	2.5
17%	Wheat/milling (flour)	2/0.35	4.2	8%	Apples/juice	0.3/0.06	2.0
17%	Raspberries/juice	1/0.36	4.2	7%	Oranges/juice	0.4/0.12	1.7
15%	Salsifies/boiled	0.3/0.15	3.9	6%	Wheat/bread/pizza	2/0.35	1.5

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 3 commodities.

+	*	f		LOQs (mg/kg) range f	Fluazifop-p-k		0.08	Details_ch	ronic risk	Supplementary	roculte	1
	***•	fsa		Eolas (ing/kg) range i	Toxicological referenc		0.00	Details – ch assessi		chronic risk asse		
				ADI (mg/kg bw per da	ay): 0.01	ARfD (mg/kg bw):	0.017			·	$ \longrightarrow$	<u></u>
EI	uropean Foo	d Safety Authority		Source of ADI:		Source of ARfD:		Details – a assessment		Details – acut assessment/a		
ent		evision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:						<u> </u>
					Refined ca	alculation mode						
				I	Chronic risk assessme	ent: JMPR methodo	ology (IEDI/TMDI)					
-				No of diets exceeding	the ADI :	2	-				Exposure MRLs set at	re resulting
	Calculated exposu		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	the LOQ (in % of ADI	under as
+	(% of ADI) 142%	MS Diet GEMS/Food G11	day) 14.20	(in % of ADI) 139%	group of commodities Soyabeans	(in % of ADI) 0.7%	group of commodities Strawberries		(in % of ADI) 0.4%	group of commodities Potatoes		14
	132%	GEMS/Food G10	13.19	122%	Soyabeans	6%	Rapeseeds/canola seeds		0.8%	Strawberries		13
ľ	84%	GEMS/Food G08	8.44	74%	Soyabeans	8%	Rapeseeds/canola seeds		0.6%	Strawberries		8
	83%	GEMS/Food G07	8.27	66%	Soyabeans	13%	Rapeseeds/canola seeds		0.8%	Peas (with pods)		8
	73% 52%	GEMS/Food G15	7.29 5.15	65% 46%	Soyabeans	5% 1%	Rapeseeds/canola seeds		0.4%	Peas (with pods) Rapeseeds/canola seeds		7
	52% 41%	GEMS/Food G06 NL toddler	5.15 4.10	46%	Soyabeans Rapeseeds/canola seeds	1%	Sugar beet roots Soyabeans		0.8%	Rapeseeds/canola seeds Sugar beet roots		5
	32%	NL child	3.16	11%	Rapeseeds/canola seeds	8%	Sugar beet roots		8%	Soyabeans		3
	16%	NL general	1.62	6%	Rapeseeds/canola seeds	5%	Soyabeans		3%	Sugar beet roots		1
	14%	PT general	1.39	11%	Soyabeans	0.5%	Potatoes		0.4%	Peas (without pods)		1
	10%	FR child 3 15 yr	1.04	4%	Sugar beet roots	2%	Strawberries		1%	Soyabeans		1
	10%	FR toddler 2 3 yr	0.98	3%	Sugar beet roots	2%	Beans (with pods)		2%	Soyabeans		1
	9%	IE adult	0.88	3%	Linseeds	1%	Strawberries		0.6%	Peas		5
	8%	DE women 14-50 yr	0.81	5%	Sugar beet roots	1%	Soyabeans		0.8%	Strawberries		٤
	8%	UK toddler	0.80	3%	Sugar beet roots	2%	Beans		1%	Strawberries		٤
	8%	DE child	0.78	3%	Strawberries	2%	Soyabeans		0.5%	Carrots		٤
	8%	DE general	0.77	4%	Sugar beet roots	1%	Soyabeans		0.7%	Strawberries		٤
	7% 6%	UK infant FI 3 yr	0.67	1% 2%	Strawberries Strawberries	1% 2%	Sugar beet roots		1% 0.5%	Peas (without pods) Potatoes		7
	6%	FR infant	0.65	2%	Sugar beet roots	2%	Rapeseeds/canola seeds Beans (with pods)		1%	Strawberries		
	5%	FI 6 yr	0.50	2%	Strawberries	1%	Rapeseeds/canola seeds		0.4%	Potatoes		
	4%	FR adult	0.43	0.8%	Strawberries	0.8%	Sugar beet roots		0.6%	Soyabeans		4
1	4%	RO general	0.40	1%	Sugar beet roots	0.5%	Onions		0.4%	Potatoes		4
	4%	SE general	0.36	1%	Strawberries	0.4%	Carrots		0.4%	Potatoes		4
	3%	ES child	0.33	0.6%	Beans (with pods)	0.5%	Lentils		0.5%	Strawberries		3
	3%	UK vegetarian	0.30	0.8%	Beans	0.5%	Sugar beet roots		0.5%	Strawberries		1
	3%	Fladult	0.27	1.0%	Strawberries	0.8%	Soyabeans		0.2%	Carrots		-
	3%	IT toddler	0.25	0.8%	Strawberries	0.3%	Beans (with pods)		0.2%	Peas (without pods)		1
	2% 2%	ES adult DK child	0.25	0.6%	Beans (with pods) Strawberries	0.4%	Strawberries Carrots		0.2%	Lentils Potatoes		2
	2%	UK adult	0.24	0.6%	Sugar beet roots		Beans		0.2%	Strawberries		-
	2%	IT adult	0.22	0.6%	Beans (with pods)	0.5%	Strawberries		0.2%	Peas (without pods)		2
	1%	DK adult	0.13	0.5%	Strawberries	0.3%	Peas (without pods)		0.2%	Carrots		1
1	1%	PL general	0.14	0.3%	Potatoes	0.2%	Onions		0.2%	Carrots		1
1	0.9%	LT adult	0.09	0.3%	Potatoes	0.3%	Strawberries		0.1%	Carrots		0.
	0.4%	IE child	0.04	0.2%	Strawberries	0.1%	Carrots		0.1%	Potatoes		0.

280


Acute risk assessment/adults/general population

Details – acute risk assessment/children

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for children				Results for adults			
No. of commodities for exceeded (IESTI):	r which ARTD/ADI is		2	No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
IESTI				IESTI			
		MRL/input	-			MRL/input	_
Highest % of	Commodities	for RA	Exposure	Highest % of ARfD/ADI	Commodities	for RA	Expo (µg/k
	Strawberries	(mg/kg) 3/1.5	(µg/kg bw) 25	121%	Soyabeans	(mg/kg) 15/3.75	(µy/ĸ
	Tomatoes	0.06/0.3	17	96%	Aubergines/egg plants	1/0.6	1
	Beetroots	0.5/0.29	17	82%	Strawberries	3/1.5	1
	Potatoes	0.15/0.1	15	58%	Swedes/rutabagas	0.5/0.29	g
	Carrots	0.4/0.24	15	40%	Globe artichokes	0.9/0.53	6
	Swedes/rutabagas	0.5/0.29	15	39%	Beetroots	0.5/0.29	6
	Aubergines/egg plants	1/0.6	15	38%	Beans (with pods)	1.5/0.84	6
	Parsnips	0.5/0.29	10	28%	Tomatoes	0.06/0.3	4
	Turnips	0.5/0.29	10	28%	Carrots	0.4/0.24	4
	Beans (with pods)	1.5/0.84	9.6	26%	Peas (without pods)	1.5/0.84	4
	Celeriacs/turnip rooted	0.5/0.17	9.4	24%	Parsnips	0.5/0.29	4
	Globe artichokes	0.9/0.53	9.3	20%	Peas (with pods)	2/1	3
	Salsifies	0.5/0.29	9.0	19%	Turnips	0.5/0.29	3
	Soyabeans	15/3.75	8.7	18%	Salsifies	0.5/0.29	3
	Peas (with pods)	2/1	8.2	18%	Radishes	0.5/0.29	3
48%							
Expand/collapse list	modities exceeding the ARf		3	Results for adults			
Expand/collapse list Total number of com children and adult die (IESTI calculation) Results for children No of processed comm	modities exceeding the ARf			Results for adults No of processed col	mmodities for which ARfD/ADI		
Expand/collapse list Total number of comm children and adult die (IESTI calculation) Results for children No of processed comm is exceeded (IESTI):	modities exceeding the ARf ets			Results for adults No of processed co is exceeded (IESTI)	mmodities for which ARfD/ADI		
Expand/collapse list Total number of com children and adult die (IESTI calculation) Results for children No of processed comm	modities exceeding the ARf ets			Results for adults No of processed col	mmodities for which ARfD/ADI	MRL/input	
Expand/collapse list Total number of com children and adult die (IESTI calculation) Results for children No of processed comn is exceeded (IESTI): IESTI Highest % of	modities exceeding the ARf ets nodities for which ARfD/ADI	D/ADI in MRL/input for RA	3 Exposure	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of	mmodities for which ARfD/ADI	MRL/input for RA	
Expand/collapse list Total number of comm children and adult die (IESTI calculation) Results for children No of processed comm is exceeded (IESTI): IESTI Highest % of ARfD/ADI	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities	D/ADI in MRL/input for RA (mg/kg)	3 Exposure (µg/kg bw)	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI	mmodities for which ARfD/ADI	MRL/input for RA (mg/kg)	Ехро (µg/k
Expand/collapse list Total number of comm children and adult die (IESTI calculation) Results for children No of processed comm is exceeded (IESTI): IESTI Highest % of ARTD/ADI 92%	modities exceeding the ARf ets modities for which ARfD/ADI Processed commodities Soyabeans/soya drink	D/ADI in MRL/input for RA (mg/kg) 15/3.75	3 Exposure (µg/kg bw) 16	Results for adults No of processed col is exceeded (IESTI) IESTI Highest % of ARTD/ADI 66%	mmodities for which ARfD/ADI	MRL/input for RA (mg/kg) 0.5/0.29	(µg/k
Expand/collapse list Total number of comm children and adult die (IESTI calculation) Results for children No of processed comm is exceeded (IESTI): IESTI Highest % of ARfD/ADI 92% 87%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29	3 —— (µg/kg bw) 16 15	Results for adults No of processed coi is exceeded (IESTI) IESTI Highest % of ARfD/ADI 66% 36%	mmodities for which ARfD/ADI Processed commodities Beetroots/boiled Parsnips/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29	(μg/k 1 6
Expand/collapse list Total number of com children and adult die (IESTI calculation) Results for children No of processed comn is exceeded (IESTI): IESTI Highest % of AR(D/ADI 92% 87% 87%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29	3 (µg/kg bw) 16 15 15	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 66% 36% 33%	mmodities for which ARfD/ADI	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29	(μg/k 1 6 5
Expand/collapse list Total number of common children and adult die (IESTI calculation) Results for children No of processed commis is exceeded (IESTI): IESTI Highest % of ARfD/ADI 92% 87% 87% 87% 76%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29 0.5/0.29	3 —— (µg/kg bw) 16 15 15 13	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI 66% 36% 33% 26%	mmodities for which ARfD/ADI Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.5/0.29 0.3/0.13	(μg/k 1 6 5 4
Expand/collapse list Total number of comm children and adult die (IESTI calculation) Results for children No of processed comm is exceeded (IESTI): IESTI Highest % of ARTD/ADI 92% 87% 87% 76% 65%	modities exceeding the ARf ets modities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29 0.5/0.29 0.5/1.2	3 Exposure (µg/kg bw) 16 15 15 13 11	Results for adults No of processed col is exceeded (IESTI) IESTI Highest % of ARID/ADI 66% 36% 33% 26% 26%	Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled Sugar beets (root)/sugar	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.5/0.29 0.3/0.13 0.5/1.2	(µg/k (6 5 4 4
Expand/collapse list Total number of comm children and adult die (IESTI calculation) Results for children No of processed commis is exceeded (IESTI): IESTI Highest % of ARf0/ADI 92% 87% 87% 87% 65% 65% 62%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29 0.5/0.29 0.5/1.2 1.5/0.84	3 Exposure (µg/kg bw) 16 15 15 15 13 11 11	Results for adults No of processed coi is exceeded (IESTI) IESTI Highest % of ARID/ADI 66% 36% 33% 26% 26% 20%	Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled Sugar beets (root)/sugar Peas (with pods)/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.5/0.29 0.3/0.13 0.5/1.2 2/1	(µg/k (µg/k 6 5 4 4 3
Expand/collapse list Total number of common children and adult die (IESTI calculation) Results for children No of processed common is exceeded (IESTI): IESTI Highest % of ARfD/ADI 92% 87% 87% 76% 65% 62% 55%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled Potatoes/fried	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29 0.5/0.29 0.5/1.2 1.5/0.84 0.15/0.1	3 Exposure (µg/kg bw) 16 15 15 13 13 11 11 9.3	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 66% 36% 33% 26% 26% 20% 18%	Processed commodities Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled Sugar beets (root)/sugar Peas (with pods)/boiled Celerics/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.29 2.3/0.13 0.5/1.2 2/1 0.5/0.17	(µg/k (µg/k 6 5 4 4 3 3 3
Expand/collapse list Total number of common children and adult die (IESTI calculation) Results for children No of processed commis is exceeded (IESTI): IESTI Highest % of ARfD/ADI 92% 87% 87% 87% 65% 62% 55% 44%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled Potatoes/fried Salisfies/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29 0.5/0.29 0.5/1.2 1.5/0.84 0.15/0.1 0.5/0.29	3 Exposure (µg/kg bw) 16 15 15 13 11 11 9.3 7.5	Results for adults No of processed coi is exceeded (IESTI) IESTI Highest % of ARfD/ADI 66% 36% 33% 26% 26% 26% 20% 18% 15%	Processed commodities Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled Sugar beets (root)/sugar Peas (with pods)/boiled Peas (withpods)/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.5/0.29 0.3/0.13 0.5/1.2 2/1 0.5/0.17 1.5/0.84	(µg/k (µg/k 6 5 4 4 3 3 2
Expand/collapse list Total number of comm children and adult die (IESTI calculation) Results for children No of processed comm is exceeded (IESTI): IESTI Highest % of ARTD/ADI 92% 87% 87% 87% 65% 62% 55% 44% 44%	modities exceeding the ARf ets modities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled Potatoes/fried Salsifies/boiled Jerusalem artichokes/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29 0.5/1.2 1.5/0.84 0.15/0.1 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.29	3 Exposure (µg/kg bw) 16 15 13 11 11 9.3 7.5 7.4	Results for adults No of processed col is exceeded (IESTI) IESTI Highest % of ARfD/ADI 66% 36% 33% 26% 26% 26% 20% 18% 15%	Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled Sugar beets (root)/sugar Peas (with pods)/boiled Celeriacs/boiled Peas (without pods)/boiled Florence fennels/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.3/0.13 0.5/1.2 2/1 0.5/0.17 1.5/0.84 0.3/0.13	(µg/k (µg/k 5 4 4 3 3 2 2 2
Expand/collapse list Total number of com children and adult die (IESTI calculation) Results for children No of processed comn is exceeded (IESTI): IESTI Highest % of AR(D/ADI 92% 87% 87% 76% 65% 62% 55% 44% 44% 35%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled Potatoes/fried Salsifies/boiled Jerusalem artichokes/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29 0.5/0.29 0.5/1.2 1.5/0.84 0.15/0.1 0.5/0.29 0.5/0.29 0.5/1.2 1.5/0.84 0.15/0.1 0.5/0.29 0	3 Exposure (µg/kg bw) 16 15 15 13 11 11 9.3 7.5 7.4 5.9	Results for adults No of processed cois is exceeded (IESTI) IESTI Highest % of ARTD/ADI 66% 36% 33% 26% 26% 20% 18% 15% 14%	Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Sugar beets (root)/sugar Peas (with pods)/boiled Celeriacs/boiled Peas (without pods)/boiled Florence fennels/boiled Salsifies/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.3/0.13 0.5/1.2 2/1 0.5/0.17 1.5/0.84 0.3/0.13 0.5/0.29	(µg/k 6 5 4 4 3 3 3 2 2 2 2 2
Expand/collapse list Total number of common children and adult die (IESTI calculation) Results for children No of processed common is exceeded (IESTI): IESTI Highest % of ARfD/ADI 92% 87% 87% 87% 76% 65% 62% 55% 44% 44% 35% 32%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled Potatoes/fried Satsifies/boiled Jerusalem artichokes/boiled Florence fennels/boiled Soyabeans/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29	3 Exposure (µg/kg bw) 16 15 15 13 11 9.3 7.5 7.4 5.9 5.4	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 66% 36% 26% 26% 26% 26% 15% 15% 14%	Processed commodities Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled Sugar beets (root)/sugar Peas (with pods)/boiled Celeriacs/boiled Peas (without pods)/boiled Florence fennels/boiled Satsifies/boiled Jerusalem artichokes/	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.17 1.5/0.84 0.5/0.17 1.5/0.84 0.5/0.29	(µg/k 1 6 5 4 4 3 3 2 2 2 2 2 2 2 2
Expand/collapse list Total number of common children and adult die (IESTI calculation) Results for children No of processed commis is exceeded (IESTI): IESTI Highest % of ARfD/ADI 92% 87% 87% 87% 65% 62% 55% 44% 44% 44% 35% 32% 29%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled Potatoes/fried Salsifies/boiled Jerusalem artichokes/boiled Florence fennels/boiled Rhubarbs/sauce/puree	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.31 15/1.5 0.3/0.13	3 Exposure (µg/kg bw) 16 15 15 13 11 11 9.3 7.5 7.4 5.9 5.4 4.8	Results for adults No of processed coils is exceeded (IESTI) IESTI Highest % of ARfD/ADI 66% 36% 26% 26% 26% 15% 15% 14% 11%	Processed commodities Perocessed commodities Beetroots/boiled Parsnips/boiled Celeries/boiled Sugar beets (root)/sugar Peas (with pods)/boiled Celeriacs/boiled Peas (without pods)/boiled Florence fennels/boiled Salsifies/boiled Jerusalem artichokes/ Rhubarbs/sauce/puree	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.17 1.5/0.84 0.3/0.13 0.5/0.29 0.5/0.29 0.5/0.29	(µg/k 6 5 4 4 3 3 2 2 2 2 2 2 2 2 1
Expand/collapse list Total number of comm children and adult die (IESTI calculation) Results for children No of processed commis is exceeded (IESTI): IESTI Highest % of ARTD/ADI 92% 87% 87% 76% 65% 62% 55% 44% 44% 35% 32% 29% 18%	modities exceeding the ARf ets modities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled Potatoes/fried Salsifies/boiled Jerusalem artichokes/boiled Florence fennels/boiled Soyabeans/boiled Rhubarbs/sauce/puree Shallots/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29 0.5/1.2 1.5/0.84 0.15/0.1 0.5/0.29 0.3/0.13 0.3/0.13 0.3/0.19	3 Exposure (µg/kg bw) 16 15 13 11 11 11 9.3 7.5 7.4 5.9 5.4 4.8 3.1	Results for adults No of processed colisis exceeded (IESTI) IESTI Highest % of ARfD/ADI 66% 36% 26% 26% 26% 26% 15% 15% 14% 11%	Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled Sugar beets (root)/sugar Peas (with pods)/boiled Celerias/boiled Peas (without pods)/boiled Florence fennels/boiled Salifies/boiled Jerusalem artichokes/ Rhubarbs/sauce/puree Onions/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.3/0.13 0.5/1.2 2/1 0.5/0.17 1.5/0.84 0.3/0.13 0.5/0.29 0.3/0.13 0.5/0.29 0.3/0.13 0.3/0.19	(µg/k 1 6 5 4 4 3 3 2 2 2 2 2 2 2 2 2 2 1 1
Expand/collapse list Total number of com children and adult die (IESTI calculation) Results for children No of processed comn is exceeded (IESTI): IESTI Highest % of ARTD/ADI 92% 87% 87% 76% 65% 62% 55% 44% 44% 35% 32% 29% 18% 11%	modities exceeding the ARf ets nodities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled Potatoes/fried Salsifies/boiled Jerusalem artichokes/boiled Florence fennels/boiled Soyabeans/boiled Rhubarbs/sauce/puree Shallots/boiled Peas (without pods)/canned	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.3/0.13 15/1.5 0.3/0.19 1.5/0.23	3 Exposure (µg/kg bw) 16 15 15 13 11 11 11 9.3 7.5 7.4 5.9 5.4 4.8 3.1 1.8	Results for adults No of processed cois is exceeded (IESTI) IESTI Highest % of ARTD/ADI 66% 36% 33% 26% 26% 26% 15% 15% 14% 11% 9%	Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled Sugar beets (root)/sugar Peas (with pods)/boiled Celeriacs/boiled Peas (without pods)/boiled Florence fennels/boiled Salsifies/boiled Jerusalem artichokes/ Rhubarbs/sauce/puree Onions/boiled Cardoons/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.3/0.13 0.5/1.2 2/1 0.5/0.17 1.5/0.84 0.3/0.13 0.5/0.29 0.5/0.29 0.5/0.29 0.5/0.29 0.3/0.13	(µg/k 1 5 4 4 3 3 2 2 2 2 2 2 2 2 1 1 1 1
Expand/collapse list Total number of com children and adult die (IESTI calculation) Results for children No of processed comn is exceeded (IESTI): IESTI Highest % of ARTD/ADI 92% 87% 87% 76% 65% 62% 55% 44% 44% 35% 32% 29% 18% 11%	modities exceeding the ARf ets modities for which ARfD/ADI Processed commodities Soyabeans/soya drink Turnips/boiled Parsnips/boiled Beetroots/boiled Sugar beets (root)/sugar Beans (with pods)/boiled Potatoes/fried Salsifies/boiled Jerusalem artichokes/boiled Florence fennels/boiled Soyabeans/boiled Rhubarbs/sauce/puree Shallots/boiled	D/ADI in MRL/input for RA (mg/kg) 15/3.75 0.5/0.29 0.5/0.29 0.5/1.2 1.5/0.84 0.15/0.1 0.5/0.29 0.3/0.13 0.3/0.13 0.3/0.19	3 Exposure (µg/kg bw) 16 15 13 11 11 11 9.3 7.5 7.4 5.9 5.4 4.8 3.1	Results for adults No of processed colisis exceeded (IESTI) IESTI Highest % of ARfD/ADI 66% 36% 26% 26% 26% 26% 15% 15% 14% 11%	Processed commodities Beetroots/boiled Parsnips/boiled Turnips/boiled Celeries/boiled Sugar beets (root)/sugar Peas (with pods)/boiled Celerias/boiled Peas (without pods)/boiled Florence fennels/boiled Salifies/boiled Jerusalem artichokes/ Rhubarbs/sauce/puree Onions/boiled	MRL/input for RA (mg/kg) 0.5/0.29 0.5/0.29 0.3/0.13 0.5/1.2 2/1 0.5/0.17 1.5/0.84 0.3/0.13 0.5/0.29 0.3/0.13 0.5/0.29 0.3/0.13 0.3/0.19	(µg/k 6 5 4 4 3 3 2 2 2 2 2 2 2 2 1

EFSA Journal

Acute risk assessment/adults/general population

Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for children No. of commodities f	or which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities to (IESTI):	for which ARfD/ADI is exceeded		
IESTI				IESTI			
Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposur (µg/kg b
3%	Oranges	0.2/0.06	8.4	0.8%	Sweet corn	0.15/0.15	2.4
2%	Sweet corn	0.15/0.15	6.5	0.6%	Oranges	0.2/0.06	1.9
2%	Grapefruits	0.2/0.06	4.9	0.4%	Mandarins	0.2/0.06	1.1
1%	Mandarins	0.2/0.06	3.7	0.4%	Grapefruits	0.2/0.06	1.1
0.7%	Lemons	0.2/0.06	2.2	0.2%	Lemons	0.2/0.06	0.56
0.4%	Limes	0.2/0.06	1.3	0.1%	Limes	0.2/0.06	0.44
0.05%	Wheat	0.08/0.01	0.14	0.03%	Coconuts	0.03/0.01	0.09
0.05%	Coconuts	0.03/0.01	0.14	0.03%	Rice	0.04/0.01	0.09
0.04%	Rice	0.04/0.01	0.13	0.03%	Wheat	0.08/0.01	0.08
0.02%	Maize/corn	0.15/0.01	0.07	0.02%	Barley	0.08/0.01	0.05
0.02%	Pistachios	0.03/0.01	0.06	0.02%	Chestnuts	0.03/0.01	0.05
0.02%	Barley	0.08/0.01	0.06	0.01%	Pistachios	0.03/0.01	0.03
0.01%	Chestnuts	0.03/0.01	0.04	0.01%	Pecans	0.03/0.01	0.02
0.01%	Walnuts	0.03/0.01	0.03	0.01%	Walnuts	0.03/0.01	0.02
0.01%	Hazelnuts/cobnuts	0.03/0.01	0.03	0.01%	Maize/corn	0.15/0.01	0.02
Expand/collapse list							

commodities	Results for children No of processed com (IESTI):	modities for which ARfD/ADI is exceeded			Results for adults No of processed cor exceeded (IESTI):	nmodities for which ARfD/ADI is		
Ē	IESTI				IESTI			
Processed c	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
ĕ	10%	Wine grapes/juice	0.7/0.7	31	5%	Wine grapes/juice	0.7/0.7	15
L	4%	Apples/juice	0.2/0.2	11	2%	Apples/juice	0.2/0.2	6.7
	2%	Pears/juice	0.2/0.2	6.5	2%	Wine grapes/wine	0.7/0.7	6.6
	0.8%	Peaches/canned	0.09/0.09	2.3	1%	Table grapes/raisins	0.7/3.29	4.0
	0.5%	Peaches/juice	0.09/0.09	1.5	0.2%	Peaches/canned	0.09/0.09	0.74
	0.3%	Plums/juice	0.09/0.09	0.85	0.08%	Quinces/jam	0.2/0.2	0.25
	0.2%	Quinces/jam	0.2/0.2	0.61	0.08%	Coffee beans/extraction	0.05/0.01	0.24
	0.2%	Oranges/juice	0.2/0.01	0.53	0.05%	Oranges/juice	0.2/0.01	0.15
	0.1%	Maize/oil	0.15/0.25	0.23	0.04%	Maize/oil	0.15/0.25	0.13
	0.0%	Wheat/milling (flour)	0.08/0.01	0.12	0.04%	Grapefruits/juice	0.2/0.01	0.11
	0.0%	Coffee beans/extraction	0.05/0.01	0.09	0.02%	Barley/beer	0.08/0	0.07
	0.0%	Sugar canes/sugar	0.06/0.01	0.09	0.02%	Sugar canes/sugar	0.06/0.01	0.06
	0.0%	Coconuts/drink	0.03/0.01	0.09	0.01%	Wheat/bread/pizza	0.08/0.01	0.04
	0.0%	Rice/milling (polishing)	0.04/0	0.06	0.01%	Rice/milling (polishing)	0.04/0	0.04
	0.0%	Wheat/milling (wholemeal)-baking	0.08/0.01	0.06	0.01%	Wheat/pasta	0.08/0.01	0.04
	Expand/collapse list							

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Fluensulfone is unlikely to present a public health risk.

*			LOQs (mg/kg) range f	oyradifurone and DFA, o	0.0100000000	to						í I
-	efsa		Loos (higing) ranger		I reference values	10.		Details –	chronic risk	Supplementary	results –	
			ADI (mg/kg bw per da		0.064	ARfD (mg/kg bw):	0.15			·		2
Eur	ropean Food Safety Authority		Source of ADI:		EC	Source of ARfD:	EC			Details – acu		
E	FSA PRIMo revision 3.1; 2018/08/18		Year of evaluation:		2015	Year of evaluation:	2015	assessme	nt/children	assessment/	adults	J
its:							I					
				Norm	nal mode							
				Chronic risk assessmer	nt: JMPR methodology	(IEDI/TMDI)						
_			No of diets exceeding	he ADI :		-			-		Exposure	
		Expsoure	Highest contributor to			2nd contributor to			3rd contributor to MS		MRLs set at the LOQ	under a
с	Calculated exposure	(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		diet	Commodity/	(in % of ADI)	(in %
	(% of ADI) MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		1
	50% NL toddler 29% GEMS/Food G06	32.02 18.49	20% 11%	Milk: Cattle Wheat		6% 4%	Wheat Tomatoes		4% 1%	Apples Watermelons		
	28% DE child	17.98	6%	Mik: Cattle		6%	Wheat		4%	Apples	1	
	28% UK infant	17.71	13%	Milk: Cattle		4%	Wheat		3%	Beans		
	27% FR child 3 15 yr	17.33	8%	Mik: Cattle		7%	Wheat		1%	Bovine: Muscle/meat		
	26% NL child 25% UK toddler	16.87 16.06	8% 7%	Milk: Cattle Milk: Cattle		6% 6%	Wheat Wheat		2% 5%	Apples Beans		
	25% FR toddler 2 3 yr	15.86	10%	Mik: Cattle		4%	Wheat		1%	Beans (with pods)		
	24% DK child	15.11	6%	Wheat		4%	Milk: Cattle		4%	Rye		
	23% RO general	14.71	7%	Wheat		4%	Milk: Cattle		2%	Tomatoes		
	23% GEMS/Food G15	14.64	7%	Wheat		2%	Milk: Cattle		1%	Tomatoes		
	23% ES child 22% GEMS/Food G07	14.51 14.13	6% 6%	Wheat		4% 2%	Milk: Cattle Milk: Cattle		1% 1%	Lentils Wine grapes		
	22% GEMS/Food G08	13.98	6%	Wheat		2%	Milk: Cattle		2%	Barley		
	22% GEMS/Food G10	13.96	6%	Wheat		2%	Milk: Cattle		2%	Tomatoes		
	22% GEMS/Food G11	13.86	5%	Wheat		3%	Milk: Cattle		1%	Potatoes		
	21% SE general	13.45	5%	Wheat		4%	Milk: Cattle		4%	Bovine: Muscle/meat		
	21% IE adult	13.43	3%	Wheat		2%	Peas		1%	Milk: Cattle		
	17% IT toddler	10.86	10%	Wheat		2%	Tomatoes		1%	Other cereals		
	16% PT general 15% DE women 14-50 yr	10.51 9.55	6% 4%	Wheat Milk: Cattle		2% 3%	Wine grapes Wheat		2% 0.9%	Potatoes Tomatoes		
	15% DE general	9.55	4%	Mik: Cattle		3%	Wheat		0.9%	Barley		
	15% ES adult	9.28	3%	Wheat		2%	Milk: Cattle		1.0%	Lettuces		
	14% NL general	8.82	3%	Wheat		3%	Milk: Cattle		0.8%	Potatoes		
	13% FR adult	8.50	3%	Wheat		2%	Wine grapes		1%	Milk: Cattle		
	13% FR infant	8.21	6%	Mik: Cattle		1%	Wheat		0.9%	Beans (with pods)		
	13% IT adult 11% UK vegetarian	8.03 7.33	6% 3%	Wheat		1% 2%	Tomatoes Beans		0.7%	Lettuces Milk: Cattle	1	
	11% UK vegetanan 10% FI 3 yr	7.33	3% 2%	Wheat		2%	Potatoes		1%	Milk: Cattle Cucumbers	1	
	10% UK adult	6.21	2%	Wheat		1%	Beans		1%	Wine grapes	1	
	9% DK adult	5.82	2%	Mik: Cattle		2%	Wheat		0.9%	Wine grapes	1	
	9% FI 6 yr	5.53	1%	Wheat		1%	Potatoes		0.8%	Cucumbers	1	
	9% LT adult	5.47	2%	Wheat		1%	Milk: Cattle		1%	Potatoes	1	
	7% Fl adult 5% PL general	4.61 3.14	3% 1%	Coffee beans Potatoes		0.6%	Tomatoes Tomatoes		0.5%	Rye Apples	1	
1	4% IE child	2.76	2%	Wheat		1%	Milk: Cattle		0.2%	Potatoes	1	
											1	1 1

		Acute risk assessment/child	iren		4	cute risk assessment/adults/general pop	pulation	
		Details – acute risk assessment/	/children			Details – acute risk assessment/a	dults	
		essment is based on the ARID. ased on the large portion of the most critical consumer		ion only f	ior crops with	n GAPs under assessment		
	Results for childre				Results for adults			
1	No. of commodities	for which ARfD/ADI is exceeded (IESTI):			No. of commodities	for which ARfD/ADI is exceeded (IESTI):		
h	IESTI				IESTI			
ľ			MRL/input		1		MRL/input	
	Highest % of		for RA	Exposure	Highest % of		for RA	Expo
ŀ	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
	31% 26%	Blackberries Raspberries (red and yellow)	0/4.3 0/4.3	46 40	24% 15%	Blackberries Raspberries (red and yellow)	0/4.3 0/4.3	3
1	26% 12%	Avocados	0/4.3	40	4%	Dewberries	0/4.3	6.
	5%	Dewberries	0/4.3	7.6	4%	Avocados	0/0.36	5
L	0.2%	Cocoa beans	0/0.11	0.35	1.0%	HOPS (dried)	0/8.1	1.
	0.2%	HOPS (dried)	0/8.1	0.34	0.1%	Cocoa beans	0/0.11	0.
8	Expand/collapse list	t						
(Total number of co (IESTI calculation)	ommodities exceeding the ARfD/ADI in children and	d adult diets					
	Total number of co (IESTI calculation) Results for childre	ommodities exceeding the ARfD/ADI in children and	d adult diets		Results for adults	nmodities for which ARID/ADI is exceeded (IESTI);		
	Total number of co (IESTI calculation) Results for childre No of processed co	ommodities exceeding the ARfD/ADI in children and	d adult diets		No of processed co	mmodities for which ARfD/ADI is exceeded (IESTI):		
1	Total number of co (IESTI calculation) Results for childre No of processed co IESTI	ommodities exceeding the ARfD/ADI in children and	MRL/input		No of processed co	nmodities for which ARID/ADI is exceeded (IESTI):	MRL/input	
	Total number of co (IESTI calculation) Results for childre No of processed co IESTI Highest % of	ommodities exceeding the ARfD/ADI in children and an mmodilies for which ARfD/ADI is exceeded (IESTI):	MRL/input for RA	Exposure	No of processed co IESTI Highest % of		for RA	
	Total number of cc (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI	ommodities exceeding the ARfD/ADI in children and an mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities	MRL/input for RA (mg/kg)	(µg/kg bw)	No of processed co IESTI Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	(µg/k
()	Total number of cc (IESTI calculation) Results for children No of processed co IESTI Highest % of ARTD/ADI 11%	ommodities exceeding the ARfD/ADI in children and an mmmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Raspberries/juice	MRL/input for RA (mg/kg) 0/1.4	(µg/kg bw) 16	No of processed co IESTI Highest % of ARfD/ADI 0.9%	Processed commodities Coffee beans/extraction	for RA (mg/kg) 0/0.06	(µg/k 1
()	Total number of cc (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI	ommodities exceeding the ARfD/ADI in children and an mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities	MRL/input for RA (mg/kg) 0/1.4 0/0.06	(µg/kg bw)	No of processed co IESTI Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	(μg/k 1 0.
1	Total number of cc (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 11% 0.4%	ommodities exceeding the ARfD/ADI in children and an mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Raspberries/juice Coffee beam/extraction	MRL/input for RA (mg/kg) 0/1.4 0/0.06	(μg/kg bw) 16 0.55	No of processed co IESTI Highest % of ARfD/ADI 0.9% 0.3%	Processed commodities Coffee beans/extraction Hops/beer	for RA (mg/kg) 0/0.06 0/0.01	

No exceedance of the toxicological reference value was identified for any unprocessed commonly. A short-term trake of residues of Houvradifiyone and DFA, soverssed as fluowradifiyone is unlikely to present a public health risk. For processed commodilies, no exceedance of the ARTD/ADI was identified.

¥	*	fsa			Fluxapyroxad					t values		
**	0	tca_		LOQs (mg/kg) range f		to:	0.05		hronic risk	Supplementar		
	C			ADI (mg/kg bw per day	Toxicological reference values	ARfD (mg/kg bw):	0.25		ment	chronic risk as	sessment	
Furonea	n Food	Safety Authority						Details –	acute risk	Details – a	cute risk	
		ision 3.1: 2021/01/06		Source of ADI: Year of evaluation:	EC 2013	Source of ARfD: Year of evaluation:	EC 2013		:/children	assessment	/adults	
ents:		31011 3.1, 202 110 1100										
					Normal mode							
				r	Chronic risk assessment: JMPR meth	odology (IEDI/TM	DI)					
1				No of diets exceeding	the ADI :		· · ·		1		Exposure MRLs set at	e resulting fr
			Expsoure	Highest contributor to		2nd contributor to MS			3rd contributor to MS		the LOQ	under asse (in % of
	d exposure		(µg/kg bw per		Commodity/	diet	Commodity/		diet	Commodity/	(in % of ADI)) (
	f ADI) 1%	MS Diet NL toddler	day) 12.25	(in % of ADI) 15%	group of commodities Apples	(in % of ADI) 6%	group of commodities Pears		(in % of ADI) 4%	group of commodities Oranges	0.2%	6%
		DE child	9.17	17%	Apples	8%	Oranges		3%	Table grapes	0.2%	99
	8%	NL child	7.53	8%	Apples	5%	Sugar beet roots		3%	Oil palm fruits	0.1%	4
	0%	GEMS/Food G06	5.99	7%	Rice	4%	Wheat		2%	Table grapes	0.1%	3
		FR child 3 15 yr	5.66	7%	Oranges	3%	Wheat		2%	Apples	0.2%	79
	8%	GEMS/Food G11	5.57	3%	Sugar canes	2%	Wine grapes		2%	Celeries	0.1%	35
		GEMS/Food G07	5.37	3%	Wine grapes	3%	Oranges		2%	Wheat	0.1%	49
	6%	GEMS/Food G10	5.16	5%	Rice	2%	Wheat		2%	Oranges	0.1%	39
		FR toddler 2 3 yr	4.85	4%	Apples	3%	Oranges		3%	Rice	0.1%	49
	4%	GEMS/Food G08	4.81	2%	Wine grapes	2%	Barley		2%	Wheat	0.1%	2
	4% 3%	IE adult GEMS/Food G15	4.70 4.52	3% 3%	Wine grapes Wheat	2% 2%	Oranges Wine grapes		2% 2%	Rhubarbs Barley	0.2%	49
		PT general	4.52	6%	Wheat Wine grapes	2%	Rice		2%	Potatoes	0.0%	19
		DE women 14-50 yr	4.01	4%	Oranges	4%	Apples		3%	Sugar beet roots	0.1%	49
	0%	UK toddler	4.01	4%	Oranges	2%	Rice		2%	Apples	0.0%	5
		DE general	3.86	3%	Apples		Oranges		3%	Sugar beet roots	0.1%	4
1	9%	NL general	3.77	2%	Apples	2%	Oranges		2%	Oil palm fruits	0.1%	2
1	9%	DK child	3.75	3%	Apples	3%	Rye		3%	Wheat	0.0%	0.6
		FR adult	3.63	5%	Wine grapes	3%	Other lettuce and other salad plants		1%	Wheat	0.1%	11
	8%	RO general	3.55	4%	Wine grapes	3%	Wheat		2%	Apples	0.0%	0.8
	8%	SE general	3.50	2%	Potatoes	2%	Wheat		2%	Rice	0.0%	3
		UK infant	3.50	3%	Rice	3%	Oranges		2%	Apples	0.0%	3
		ES child	3.48		Oranges	3%	Wheat		2%	Rice	0.2%	55
		IT toddler	3.26 3.06	4% 2%	Wheat Rice	2% 2%	Other lettuce and other salad plants Potatoes		1% 2%	Apples Oat	0.1%	11
		FI 3 yr IT adult	3.06	2%	Rice Other lettuce and other salad plants	2%	Potatoes Wheat		2%	Oat Apples	0.1%	1
		ES adult	3.02	3%	Other lettuce and other salad plants Oranges	2%	Wheat		1%	Appies Barlev	0.1%	3
		ES aduit FI 6 yr	2.73	3%	Rice	2%	Potatoes		1%	Barley Strawberries	0.1%	0.9
	1%	UK vegetarian	2.32	2%	Wine grapes	2%	Oranges		2%	Rice	0.0%	2
		FR infant	2.23	2%	Apples	2%	Beans (with pods)		0.9%	Potatoes	0.0%	0.8
	0%	UK adult	1.99	3%	Wine grapes	2%	Rice		1%	Oranges	0.0%	19
		DK adult	1.79	2%	Wine grapes	1%	Apples		0.6%	Wheat	0.0%	0.5
		LT adult	1.63	3%	Apples	1%	Potatoes		0.9%	Rice	0.0%	0.2
		PL general	1.56	3%	Apples	2%	Potatoes		0.8%	Table grapes	0.0%	0.2
		Fl adult IE child	1.55 0.79	0.8% 1%	Coffee beans Rice	0.8%	Apples Wheat		0.8%	Oranges Apples	0.0%	1 ¹ 0.2
Conclusio				L						I		L
		rm dietary intake (TMDI/NEDI/IEDI) was below	the ADI.									
		of residues of Fluxapyroxad is unlikely to prese										

Acute risk assessment/adults/general population

Details - acute risk assessment/adults

The acute risk assessment is based on the ARID. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union. The calculation is based on the large portion of the most critical consumer group.

Show results for all crops

No. of commodities	for which ARfD/ADI is exceeded (IESTI):			No. of commodities	for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposu
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg b
77%	Celeries	9/5.15	193	38%	Florence fennels	9/5.15	96
77%	Rhubarbs	9/5.15	192	33%	Celeries	9/5.15	82
62%	Bananas	3/1.6	155	21%	Cardoons	9/5.15	53
41%	Table grapes	3/1.4	102	19%	Chinese cabbages/pe-tsai	4/1.9	48
40%	Witloofs/Belgian endives	6/2.5	99	19%	Rhubarbs	9/5.15	48
33%	Florence fennels	9/5.15	84	19%	Table grapes	3/1.4	47
31%	Oranges	1.5/0.59	78	18%	Witloofs/Belgian endives	6/2.5	46
29%	Escaroles/broad-leaved endives	4/1.8	72	15%	Escaroles/broad-leaved endives	4/1.8	36
27%	Lettuces	4/1.8	69	14%	Blueberries	7/3.77	34
26%	Pears	0.9/0.47	65	14%	Bananas	3/1.6	34
24%	Chinese cabbages/pe-tsai	4/1.9	61	13%	Wine grapes	3/1.4	33
24%	Peaches	1.5/0.63	60	12%	Broccoli	2/1.27	30
21%	Broccoli	2/1.27	53	11%	Chards/beet leaves	3/1.44	27
20%	Apples	0.9/0.47	51	9%	Lettuces	4/1.8	22
17%	Papayas	1/1	42	9%	Strawberries	4/2.34	22

Total number of con (IESTI calculation) nodities exceeding the ARfD/ADI in children and adult diets

	mmodities for which ARfD/ADI is exceeded (IESTI)	•			mmodities for which ARfD/ADI is exceeded (IES	· · · <i>j</i> .	
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw
93%	Florence fennels/boiled	9/5.15	233	70%	Celeries/boiled	9/5.15	174
89%	Witloofs/boiled	6/2.5	222	40%	Florence fennels/boiled	9/5.15	100
77%	Rhubarbs/sauce/puree	9/5.15	192	30%	Rhubarbs/sauce/puree	9/5.15	75
48%	Escaroles/broad-leaved endives/boiled	4/1.8	119	25%	Cardoons/boiled	9/5.15	63
40%	Broccoli/boiled	2/1.27	100	18%	Witloofs/boiled	6/2.5	46
18%	Chards/beet leaves/boiled	3 1.44	45	15%	Escaroles/broad-leaved endives/boiled	4/1.8	37
10%	Leeks/boiled	0.7/0.42	24	12%	Broccoli/boiled	2/1.27	31
8%	Oranges/juice	1.5/0.4	21	7%	Chards/beet leaves/boiled	3/1.44	18
8%	Wine grapes/juice	3/0.47	21	5%	Wine grapes/wine	3/1.4	13
8%	Spinaches/frozen; boiled	3/1.44	20	5%	Spinaches/frozen; boiled	3/1.44	12
7%	Peaches/canned	1.5/0.63	16	4%	Beetroots/boiled	0.9/0.26	10
6%	Apples/juice	0.9/0.28	15	4%	Wine grapes/juice	3/0.47	9.8
5%	Sugar beets (root)/sugar	0.4/1.44	13	4%	Apples/juice	0.9/0.28	9.3
5%	Turnips/boiled	0.9/0.26	13	3%	Table grapes/raisins	3/6.58	8.1
5%	Parsnips/boiled	0.9/0.26	13	3%	Leeks/boiled	0.7/0.42	7.3

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Fluxapyroxad is unlikely to present a public health risk. For processed commodities, no exceedance of the ARID/ADI was identified.

www.efsa.europa.eu/efsajournal

	Glyphosa	ate	
Status of the active substance:		Code no.	
LOQ (mg/kg bw):		Proposed LOQ:	
Toxi	cological end	points	
ADI (mg/kg bw per day):	0.5	ARfD (mg/kg bw):	0.5
Source of ADI:	EFSA	Source of ARfD:	EFSA
Year of evaluation:	2015	Year of evaluation:	2015

			mir 0	(range) in % of ADI nimum–maximum 19				
		No of diets excee						I
Highest calculated		Highest contributo		2nd contributor to		3rd contributor to		pTMRLs a
TMDI values in %		to MS diet	Commodity/	MS diet	Commodity/	MS diet	Commodity/	LOQ
of ADI	MS Diet	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of Al
18.8	UK Toddler	15.1	Sugar beet (root)	2.8	Wheat	0.4	Milk and cream,	
10.2	UK Infant	6.7	Sugar beet (root)	1.9	Wheat	0.8	Milk and cream,	
8.6	WHO Cluster diet B	6.2	Wheat	0.5	Maize	0.4	Sugar beet (root)	
8.2	DK child	4.0	Wheat	3.2	Rye	0.6	Oats	
6.2	WHO cluster diet D	4.7	Wheat	0.3	Barley	0.3	Rye	
5.7	WHO cluster diet E	2.8	Wheat	1.3	Barley	0.4	Rape seed	
5.2	IE adult	2.0	Barley	1.7	Wheat	0.4	Maize	
5.0	WHO Cluster diet F	2.6	Wheat	1.0	Barley	0.6	Rye	
4.9	NL child	3.4	Wheat	0.6	Milk and cream,	0.2	Oats	
4.9	IT kids/toddler	4.8	Wheat	0.0	Barley	0.0	Beans	
4.7	DE child	3.0	Wheat	0.6	Rye	0.3	Oats	
4.4	UK vegetarian	2.5	Sugar beet (root)	1.5	Wheat	0.1	Oats	
4.1	UK Adult	2.6	Sugar beet (root)	1.2	Wheat	0.1	Milk and cream,	
4.0	ES child	3.2	Wheat	0.3	Milk and cream,	0.1	Lentils	
3.5	PT General population	2.8	Wheat	0.1	Rye	0.1	Maize	
3.4	WHO regional European diet	2.1	Wheat	0.5	Barley	0.1	Milk and cream.	
3.1	IT adult	3.0	Wheat	0.0	Barley	0.0	Tomatoes	
3.1	FR toddler	1.9	Wheat	0.8	Milk and cream,	0.1	Potatoes	
3.0	SE general population 90th percentile	2.3	Wheat	0.2	Milk and cream,	0.2	Rye	
2.9	ES adult	1.7	Wheat	0.8	Barley	0.1	Milk and cream,	
2.7	FR all population	2.4	Wheat	0.1	Sunflower seed	0.1	Milk and cream.	
2.6	NL general	1.5	Wheat	0.6	Barley	0.1	Milk and cream.	
2.3	DK adult	1.5	Wheat	0.5	Rye	0.2	Oats	
2.2	LT adult	0.8	Rye	0.8	Wheat	0.2	Buckwheat	
1.6	FI adult	0.0	Wheat	0.5	Rye	0.1	Oats	
1.4	FR infant	0.6	Wheat	0.5	Milk and cream,	0.1	Potatoes	
0.1	PL general population	0.0	Potatoes	0.0	Apples	0.0	Tomatoes	

Conclusion:

The estimated Theoretical Maximum Daily Intakes (TMDI), based on pTMRLs were below the ADI. A long-term intake of residues of glyphosate is unlikely to present a public health concern.

Acute risk assessment/children – refined calculations

Acute risk assessment/adults/general population – refined calculations

The acute risk assessment is based on the ARfD.

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS an average European unit weight was used for the IESTI calculation.

In the **IESTI 1** calculation, the variability factors were 10, 7 or 5 (according to JMPR manual 2002); for lettuce, a variability factor of 5 was used.

In the IESTI 2 calculations, the variability factors of 10 and 7 were replaced by 5. For lettuce, the calculation was performed with a variability factor of 3.

Threshold MRL is the calculated residue level which would leads to an exposure equivalent to 100% of the ARfD.

commodities	No of commoditie is exceeded (IES)	es for which ARfD/ADI [1):		No of commoditie ARfD/ADI is exce			No of commodition is exceeded (IES	es for which ARfD/AD [1):		No of commoditie (IESTI 2):	s for which ARfD/ADI is exceede	d
E mo	IESTI 1	*)	**)	IESTI 2	*)	**)	IESTI 1	*)	**)	IESTI 2	*)	**)
Unprocessed o	Highest % of ARfD/ADI 90.7 59.5	Commodities Sugar beet (root) Wheat	pTMRL/ threshold MRL (mg/kg) 7.1/- 20.6/-	Highest % of ARfD/ADI 90.7 59.5	Commodities Sugar beet (root) Wheat	pTMRL/ threshold MRL (mg/kg) 7.1/- 20.6/- 20.6/	Highest % of ARfD/ADI 36.8 32.2	Commodities Sugar beet (root) Wheat	pTMRL/ threshold MRL (mg/kg) 7.1/- 20.6/- 21.4/	Highest % of ARfD/ADI 36.8 32.2	Commodities Sugar beet (root) Wheat	pTMRL/ threshold MRL (mg/kg) 7.1/- 20.6/- 21.4/
	26.0 21.3 18.1	Rye Sweet corn Potatoes	20.6/- 1.45/- 0.59/-	26.0 17.0 15.2	Rye Oats Sweet corn	20.6/- 21.4/- 1.45/-	31.0 20.0 14.3	Barley Rye	21.4/- 20.6/- 20.6/-	31.0 20.0 14.3	Barley Rye	21.4/- 20.6/- 20.6/-
								Buckwheat			Buckwheat	
	No of critical MR	Ls (IESTI 1)					No of critical MR	_s (IESTI 2)				

No of commoditie is exceeded:	es for which ARfD/ADI			No of commoditie is exceeded:	es for which ARfD/ADI		
		***)				***)	
Highest % of ARfD/ADI	Processed commodities	pTMRL/ threshold MRL (mg/kg)		Highest % of ARfD/ADI	Processed commodities	pTMRL/ threshold MRL (mg/kg)	
48.7 2.8 1.6 0.5 0.5	Wheat flour Maize flour Potato puree (flakes) Apple juice Orange juice	20.6/- 3.3/- 0.59/- 0.05/- 0.05/-		18.1 0.2 0.1 0.1 0.1	Bread/pizza Maize flour Potato uree (flakes) Orange juice Fried potatoes	20.6/- 3.3/- 0.59/- 0.05/- 0.59/-	
) pTMRL: provision *) pTMRL: provision: Conclusion:	onal temporary MRL. ional temporary MRL for	unprocessed com				RfD are reported.	
	STI 1 and IESTI 2 were ca the ARfD/ADI was identifi		I commodities for which pTMRLs were submitted and for who cessed commodity.	ich consumption d	lata are available.		
For processed con	nmodities, no exceedance	e of the ARfD/ADI	I was identified.				

	***	efsa			ls	ofetamid				Inpu	t values		
	*	tea		LOQs (mg/kg) range f	rom:	0.01	to:	0.05	Details – o	hronic risk	Supplementary re	sults –	
	* * E				Toxicolo	gical reference values			asses		chronic risk asses	ment	J
	-			ADI (mg/kg bw/day):		0.02	ARfD (mg/kg bw):	1	Details –	acuto rick	Details – acute	rick	1
	uropean Foo	od Safety Authority		Source of ADI:		2016/1425	Source of ARfD:	2016/1425	assessmer		assessment/ad		
		evision 3.1; 2018/11/18		Year of evaluation:		2016	Year of evaluation:	2016	ussessmen	ity critical crit	ussessment/uu	uito	1
ent	ts:												
					Re	fined calculation m	ode						
						assessment: JMPR me		/TMDI)					
				No of diets exceeding								Exposure	e resulting fro
												MRLs set at the LOQ	commoditi under asse
	Calculated exposu	re	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI)	
	(% of ADI)	MS Diet	(µg/kg bw per day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	1	1
t	24%	DE child	4.89	8%	Apples		5%	Table grapes		2%	Tomatoes		249
1	24%	NL toddler	4.82	7%	Apples		5%	Table grapes		3%	Pears		249
	19%	GEMS/Food G06	3.73	9%	Tomatoes		4%	Table grapes		1%	Sweet peppers/bell peppers	1	199
I	16%	RO general	3.22	6%	Wine grapes		5%	Tomatoes		1%	Sweet peppers/bell peppers		169
I	15% 14%	PT general NL child	3.09	9% 4%	Wine grapes		2% 4%	Tomatoes		1% 1%	Peaches Tomatoes		159 149
I	14%	GEMS/Food G15	2.87 2.52	4%	Apples Wine grapes		4%	Table grapes Tomatoes		2%	I omatoes Sweet peppers/bell peppers		143
I	12%	FR adult	2.32	476	Wine grapes		1%	Tomatoes		0.5%	Peaches		129
I	12%	GEMS/Food G07	2.39	5%	Wine grapes		3%	Tomatoes		1%	Table grapes		129
I	12%	GEMS/Food G08	2.36	4%	Wine grapes		3%	Tomatoes		1%	Table grapes		129
I	12%	IE adult	2.36	4%	Wine grapes		1%	Peaches		1.0%	Tomatoes		129
I	11%	DE women 14-50 yr	2.15	3%	Wine grapes		2%	Tomatoes		2%	Apples		119
	10%	GEMS/Food G11	2.01	4%	Wine grapes		2%	Tomatoes		1%	Table grapes		10%
	10%	DE general	1.97	3%	Wine grapes		2%	Apples		2%	Tomatoes		10%
	9%	GEMS/Food G10	1.85	3%	Tomatoes		1%	Wine grapes		1%	Table grapes		9%
	8%	FR child 3 15 yr	1.69	2%	Tomatoes			Wine grapes		1%	Table grapes		8%
	8% 7%	IT toddler IT adult	1.63 1.48	3% 3%	Tomatoes Tomatoes		1% 2%	Peaches Peaches		0.6%	Apples Apples		8% 7%
	7%	DK adult	1.48	3%	Wine grapes		1%	Tomatoes		0.6%	Apples		7%
	7%	ES adult	1.35	2%	Tomatoes		1%	Wine grapes		0.9%	Peaches		7%
	7%	DK child	1.34	2%	Apples		1%	Tomatoes		1%	Cucumbers		7%
I	7%	NL general	1.32	2%	Wine grapes		1%	Tomatoes		1.0%	Apples		7%
	6%	FI 3 yr	1.28	1%	Tomatoes		0.9%	Strawberries		0.8%	Table grapes		6%
I	6%	PL general	1.25	2%	Tomatoes		1%	Apples		1%	Table grapes		6%
I	6%	UK vegetarian	1.23	3%	Wine grapes		1%	Tomatoes		0.4%	Apples		6%
I	6%	UK adult	1.21	4%	Wine grapes		1%	Tomatoes		0.3%	Apples		6%
I	6%	ES child	1.20	2%	Tomatoes		0.8%	Peaches		0.8%	Apples		6%
I	6% 6%	FR toddler 2 3 yr SE general	1.15	2% 2%	Apples Tomatoes		1% 0.7%	Tomatoes		0.8%	Wine grapes Peaches	1	6% 6%
ļ	5%	SE general UK toddler	1.13	2%	Tomatoes		1%	Apples Apples		0.9%	Peacnes Table grapes		5%
I	5%	FI 6 yr	0.96	1%	Tomatoes		0.7%	Strawberries		0.6%	Table grapes		5%
1	4%	Fladult	0.85	1%	Tomatoes		1%	Wine grapes		0.4%	Apples	1	4%
ļ	4%	UK infant	0.84	1%	Apples		0.9%	Tomatoes		0.5%	Strawberries		4%
	4%	LT adult	0.73	1%	Tomatoes		1%	Apples		0.3%	Cucumbers	1	4%
	3%	FR infant	0.58	1%	Apples		0.4%	Strawberries		0.3%	Courgettes	1	3%
	0.8%	IE child	0.17	0.2%	Apples		0.2%	Table grapes		0.1%	Tomatoes		0.89

Acute risk assessment/adults/general population

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for children No. of commodities for	or which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities t	for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expo
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
43%	Lettuces	20/11.38	433	22%	Chards/beet leaves	20/11.38	21
26%	Spinaches	20/11.38	257	14%	Lettuces	20/11.38	13
23%	Table grapes	4/3.13	228	11%	Table grapes	4/3.13	10
18%	Peaches	3/1.87	178	7%	Wine grapes	4/3.13	74
18%	Chards/beet leaves	20/11.38	178	5%	Spinaches	20/11.38	46
10%	Sweet peppers/bell peppers	3/1.66	99	4%	Cherries (sweet)	4/3.74	3
7%	Apricots	3/1.87	65	4%	Peaches	3/1.87	3
6%	Pears	0.6/0.42	58	3%	Blueberries	4/3.3	30
5%	Tomatoes	1.5/0.94	55	3%	Strawberries	4/3.1	29
5%	Strawberries	4/3.1	51	3%	Sweet peppers/bell peppers	3/1.66	2
5%	Cherries (sweet)	4/3.74	46	3%	Aubergines/egg plants	1.5/0.94	2
5%	Apples	0.6/0.42	45	2%	Currants (red, black and white)	4/3.3	22
4%	Cucumbers	1/0.56	37	2%	Purslanes	20/11.38	22
3%	Wine grapes	4/3.13	29	2%	Apricots	3/1.87	2
3%	Currants (red, black and white)	4/3.3	26	2%	Cucumbers	1/0.56	10
Expand/collapse list							

Results for childre No of processed cor (IESTI):	n nmodities for which ARfD/ADI is exceeded			Results for adults No of processed cor (IESTI):	nmodities for which ARfD/ADI is exceeded		
IESTI				IESTI			
Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodifies	MRL/input for RA (mg/kg)	Exposure (µg/kg bw
35%	Chards/beet leaves/boiled	20/11.38	354	14%	Chards/beet leaves/boiled	20/11.38	142
16%	Spinaches/frozen; boiled	20/11.38	158	9%	Spinaches/frozen; boiled	20/11.38	94
5%	Peaches/canned	1/1.87	49	5%	Purslanes/boiled	20/11.38	47
3%	Wine grapes/juice	4/0.71	31	3%	Wine grapes/wine	4 3.13	30
2%	Courgettes/boiled	1/0.56	20	2%	Table grapes/raisins	4/14.71	18
1%	Peaches/juice	3/0.84	14	1%	Peaches/canned	3/1.87	15
1%	Gherkins/pickled	1/0.56	13	1%	Wine grapes/juice	4/0.71	15
1.0%	Currants (red, black and white)/juice	4/0.34	9.7	1%	Courgettes/boiled	1/0.56	13
0.9%	Tomatoes/juice	1.5/0.48	9.1	0.4%	Apples/juice	0.6/0.14	4.5
0.8%	Raspberries/juice	3/0.68	8.0	0.4%	Currants (red, black and white)/juice	4/0.34	4.3
0.7%	Apples/juice	0.6/0.14	7.3	0.4%	Tomatoes/sauce/puree	1.5/0.48	3.9
0.5%	Tomatoes/sauce/puree	1.5/0.48	4.6	0.3%	Okra, lady's fingers/boiled	3/1.66	2.7
0.5%	Beans (with pods)/boiled	0.6/0.36	4.5	0.1%	Peas (with pods)/boiled	0.6/0.36	1.2
0.4%	Pears/juice	0.6/0.14	4.4	0.04%	Rose hips/jam	4/0.34	0.43
0.3%	Cranberries/juice	4/0.49	2.8	0.04%	Cranberries/dried	4/0.49	0.37

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Isofetamid is unlikely to present a public health risk. For processed commodities, no exceedance of the ARE/JADI was identified.

	***	efsa			Kres	oxim-methyl			Inpu	t values		
		fee		LOQs (mg/kg) range		0.01 to:	0.15	Details – c	hronic risk	Supplementary r	esults –	
	**(e				Toxicolog	ical reference values		assess	ment	chronic risk asse		
	•			ADI (mg/kg bw/day):		0.4 ARfD (mg/kg bw):	Not allocated					
E	uropean Foo	d Safety Authority		Source of ADI:		Source of ARfD:		Details –		Details – acut		
	EFSA PRIMo re	evision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation	:	assessmen	t/children	assessment/a	auits)
men	ts:											
					<u>Ref</u>	ined calculation mode						
					Chronic risk as	sessment: JMPR methodology (IE	DI/TMDI)					
				No of diets exceeding	the ADI :		-		-			e resulting t
			Europe and	Linkest sentels.		2nd contributor	_		3rd contributor to		MRLs set at the LOQ	under asse
	Calculated exposu	re	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor MS diet	o Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI)	l) (in % c
	(% of ADI)	MS Diet	(pging bir poi day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	1%	NL toddler	5.01	0.3%	Apples	0.1%	Milk: Cattle		0.1%	Table grapes		
	1%	DE child	4.14	0.4%	Apples	0.1%	Wheat		0.1%	Table grapes		
	0.9%	GEMS/Food G06	3.54	0.3%	Tomatoes	0.2%	Wheat		0.1%	Table grapes		0
	0.8%	NL child	3.25	0.2%	Apples	0.1%	Wheat		0.1%	Sugar beet roots		0
	0.7%	FR child 3 15 yr	2.77	0.2%	Leeks	0.1%	Wheat		0.1%	Tomatoes		0
	0.7%	GEMS/Food G11	2.69	0.2%	Leeks	0.1%	Wheat		0.1%	Wine grapes		0
	0.7%	RO general	2.66	0.2%	Wine grapes	0.2%	Wheat		0.2%	Tomatoes		0
	0.6%	FR toddler 2 3 yr	2.54		Leeks	0.1%	Apples			Wheat		0
	0.6%	DK child GEMS/Food G08	2.47 2.40	0.2%	Rye Wheat	0.1%	Wheat		0.1%	Apples		0
	0.6%	GEMS/Food G08 GEMS/Food G07	2.40	0.1%	Wine grapes	0.1%	Wine grapes Wheat		0.1%	Tomatoes Tomatoes		
	0.6%	PT general	2.30	0.2%	Wine grapes	0.1%	Wheat		0.1%	Tomatoes		0
	0.5%	DE women 14-50 yr	2.23	0.2%	Apples	0.1%	Wine grapes		0.1%	Wheat		0
	0.5%	GEMS/Food G15	2.10	0.1%	Wheat	0.1%	Tomatoes		0.1%	Wine grapes		
	0.5%	FR adult	2.10	0.2%	Wine grapes	0.1%	Leeks		0.1%	Wheat		
	0.5%	DE general	2.04	0.1%	Wine grapes	0.1%	Apples		0.1%	Leeks		0
	0.5%	IE adult	2.00	0.1%	Wine grapes	0.1%	Leeks		0.1%	Wheat		0
	0.5%	GEMS/Food G10	1.84	0.1%	Wheat	0.1%	Tomatoes		0.0%	Wine grapes		
	0.4%	IT toddler	1.75	0.2%	Wheat	0.1%	Tomatoes		0.0%	Peaches		0
	0.4%	NL general	1.72	0.1%	Leeks	0.1%	Wheat		0.1%	Wine grapes		0
	0.4%	UK toddler	1.66	0.1%	Wheat	0.1%	Milk: Cattle		0.1%	Apples		0
	0.4%	ES child	1.65	0.1%	Wheat	0.1%	Tomatoes		0.0%	Apples		C
	0.4%	FR infant	1.63	0.2%	Leeks	0.1%	Apples		0.0%	Milk: Cattle		0
	0.4%	SE general	1.51	0.1%	Wheat	0.1%	Tomatoes		0.0%	Leeks		0
	0.3%	IT adult	1.34	0.1%	Wheat	0.1%	Tomatoes		0.0%	Peaches		0
	0.3%	UK infant	1.34	0.1%	Milk: Cattle	0.1%	Wheat		0.0%	Apples		0
	0.3%	ES adult	1.30	0.1%	Wheat	0.1%	Tomatoes		0.0%	Wine grapes	1	0
	0.3%	DK adult	1.21	0.1%	Wine grapes	0.0%	Tomatoes		0.0%	Wheat	1	0
	0.3%	FI 3 yr UK vegetarian	1.16 1.15	0.0%	Tomatoes Wine grapes	0.0%	Wheat Wheat		0.0%	Strawberries Tomatoes		0
	0.3%	UK vegetarian UK adult	1.15	0.1%		0.1%	Wheat		0.0%	Tomatoes		
	0.3%	UK adult PL general	1.02	0.1%	Wine grapes Tomatoes	0.1%	Apples		0.0%	l omatoes Leeks	1	0
	0.2%	FI 6 yr	0.93	0.1%	Tomatoes	0.1%	Wheat		0.0%	Leeks Strawberries	1	0
	0.2%	LT adult	0.85	0.1%	Apples	0.0%	Tomatoes		0.0%	Rye	1	0
	0.2%	Fladult	0.03	0.0%	Tomatoes	0.0%	Wine grapes		0.0%	Rye	1	ő
	0.1%	IE child	0.31	0.0%	Wheat	0.0%	Apples		0.0%	Milk: Cattle		0
							1.11		1 1 1		1	1 1

Acute risk assessment/children	Acute risk assessment/adults/general population
Details - acute risk assessment/children	Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

		Sho	ow results	s for all crops	•		
Results for childre No. of commodities	n for which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities	for which ARfD/ADI is exceeded (IESTI):		
IFOTI				IESTI			
IESTI		MRL/input		IESTI		MRL/input	
Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Ex (µg
Expand/collapse list							
Total number of co adult diets (IESTI calculation) Results for childre No of processed cor	ommodities exceeding the ARfD/ADI in ch	nildren and			mmodities for which ARfD/ADI is exceeded		
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI):	ommodities exceeding the ARfD/ADI in ch	nildren and	1	No of processed cor (IESTI):	mmodities for which ARfD/ADI is exceeded		
Total number of co adult diets (IESTI calculation) Results for childre No of processed cor	ommodities exceeding the ARfD/ADI in ch		1	No of processed cor	mmodities for which ARfD/ADI is exceeded	MDI (input	
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI	ommodities exceeding the ARfD/ADI in ch on mmodities for which ARfD/ADI is exceeded Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	No of processed cor (IESTI): IESTI Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exj (µg
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 143%	ommodities exceeding the ARfD/ADI in ch en mmodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled	MRL/input for RA (mg/kg) 10/10	Exposure (µg/kg bw) 573	No of processed cor (IESTI): IESTI Highest % of ARfD/ADI 44%	Processed commodities Leeks/boiled	for RA (mg/kg) 10/10	
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 143% 7%	ommodities exceeding the ARfD/ADI in cf	MRL/input for RA (mg/kg) 10/10 0.3/0.3	Exposure (µg/kg bw) 573 27	No of processed con (IESTI): IESTI Highest % of ARfD/ADI 44% 4%	Processed commodities Leeks/boiled Pumpkins/boiled	for RA (mg/kg) 10/10 0.3/0.3	(µg
Total number of cc adult diets ((ESTI calculation) Results for childre No of processed cor ((ESTI): IESTI Highest % of ARID/ADI 143% 7% 4%	mmodities exceeding the ARfD/ADI in cf	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37	Exposure (µg/kg bw) 573 27 16	No of processed cor (IESTI): IESTI Highest % of ARfD/ADI 44% 3%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned	for RA (mg/kg) 10/10 0.3/0.3 15/15	(µg
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 143% 7% 4% 2%	enmodities exceeding the ARfD/ADI in ch mmodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28	Exposure (µg/kg bw) 573 27 16 8.0	No of processed cor (IESTI): IESTI Highest % of ARfD/ADI 44% 4% 3% 2%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/wine	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1	(µg
Total number of cc adult diets ((IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 143% 2% 2%	ommodities exceeding the ARfD/ADI in cf ommodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice Apples/juice	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28 0.2/0.12	Exposure (µg/kg bw) 573 27 16 8.0 6.5	No of processed cor (IESTI): IESTI Highest % of ARID/ADI 44% 3% 2% 2%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/wine Wine grapes/juice	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37	(µg
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 143% 7% 4% 2% 2%	mmodities exceeding the ARfD/ADI in ch mmodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice Apples/juice Peaches/juice	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28 0.2/0.12 0.01/0.37	Exposure (μg/kg bw) 573 27 16 8.0 6.5 6.1	No of processed cor (IESTI): IESTI Highest % of ARD/ADI 44% 4% 3% 2% 2% 2% 1%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/vine Wine grapes/juice Table grapes/raisins	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37 1/4.7	(µg
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 143% 7% 4% 2% 2% 2% 2%	ommodities exceeding the ARfD/ADI in cf ommodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice Apples/juice	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28 0.2/0.12	Exposure (µg/kg bw) 573 27 16 8.0 6.5	No of processed cor (IESTI): Highest % of ARI0/ADI 44% 4% 3% 2% 2% 2% 1%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/wine Wine grapes/juice Table grapes/raisins Apples/juice	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37	(µg
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 143% 7% 4% 2% 2%	mmodities exceeding the ARfD/ADI in ch mmodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice Apples/juice Peaches/juice	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28 0.2/0.12 0.01/0.37	Exposure (μg/kg bw) 573 27 16 8.0 6.5 6.1	No of processed cor (IESTI): IESTI Highest % of ARD/ADI 44% 4% 3% 2% 2% 2% 1%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/vine Wine grapes/juice Table grapes/raisins	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37 1/4.7	(µg
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 143% 7% 4% 2% 2% 2% 2%	mmodities exceeding the ARfD/ADI in cf mmodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice Apples/juice Tomatoes/juice	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28 0.2/0.12 0.01/0.37 0.6/0.32	Exposure (µg/kg bw) 573 27 16 8.0 6.5 6.1 6.0	No of processed cor (IESTI): Highest % of ARI0/ADI 44% 4% 3% 2% 2% 2% 1%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/wine Wine grapes/juice Table grapes/raisins Apples/juice	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37 1/4.7 0.2/0.12	(µg
Total number of cc adult diets ((IESTI) calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARIDIADI 143% 7% 4% 2% 2% 2% 2% 2% 1%	mmodities exceeding the ARfD/ADI in cf mmodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice Apples/juice Peaches/juice Tomatoes/juice Sugar beets (root)/sugar	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28 0.2/0.12 0.01/0.37 0.6/0.32 0.05/0.6	Exposure (µg/kg bw) 573 27 16 8.0 6.5 6.1 6.1 6.0 5.5	No of processed cor (IESTI): IESTI Highest % of ARIDADI 44% 4% 3% 2% 2% 2% 1% 1% 0.9%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/wine Wine grapes/juice Table grapes/raisins Apples/juice Currants (red, black and white)/juice	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37 1/4.7 0.2/0.12 0.9/0.28	(µg
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 143% 7% 4% 2% 2% 2% 2% 2% 2% 2% 1%	mmodities exceeding the ARfD/ADI in ch mmodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice Apples/juice Peaches/juice Tomatoes/juice Sugar beets (root)/sugar Shallots/boiled	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28 0.2/0.12 0.01/0.37 0.6/0.32 0.05/0.6 0.3/0.3	Exposure (µg/kg bw) 573 27 16 8.0 6.5 6.1 6.5 6.1 6.0 5.5 4.9	No of processed cor (IESTI): IESTI Highest % of ARID/ADI 44% 4% 3% 2% 2% 2% 1% 1% 0.9% 0.7%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/vine Wine grapes/juice Table grapes/juice Table grapes/juice Currants (red, black and white)/juice Onions/boiled	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37 1/4.7 0.2/0.12 0.9/0.28 0.3/0.3	(µg
Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARID/ADI 143% 7% 4% 2% 2% 2% 2% 2% 2% 1% 1% 1.0%	mmodities exceeding the ARfD/ADI in cf mmodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice Apples/juice Peaches/juice Sugar beets (root)/sugar Shallots/boiled Pears/juice	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1//0.37 0.9/0.28 0.2/0.12 0.01/0.37 0.6/0.32 0.05/0.6 0.3/0.3 0.2/0.12	Exposure (µg/kg bw) 573 27 16 8.0 6.5 6.1 6.0 5.5 4.9 3.9	No of processed cor (IESTI): Highest % of ARID/ADI 44% 4% 3% 2% 2% 2% 2% 1% 1% 0.9% 0.7% 0.6%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/vine Wine grapes/vince Table grapes/raisins Apples/juice Currants (red, black and white)/juice Onions/boiled Tomatoes/sauce/puree	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37 1/4.7 0.2/0.12 0.9/0.28 0.3/0.3 0.6/0.32	(µg
Total number of cc adult diets (IESTI calculation) Results for children No of processed cor (IESTI): IESTI Highest % of ARtD/ADI 143% 7% 4% 2% 2% 2% 2% 2% 1% 1% 1.0% 0.8%	mmodities exceeding the ARfD/ADI in cf	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28 0.2/0.12 0.01/0.37 0.6/0.32 0.05/0.6 0.3/0.3 0.2/0.12 0.6/0.32	Exposure (µg/kg bw) 573 27 16 8.0 6.5 6.1 6.0 5.5 6.1 6.0 5.5 4.9 3.9 3.0	No of processed cor (IESTI): Highest % of ARD/ADI 44% 4% 3% 2% 2% 2% 1% 1% 0.9% 0.7% 0.6% 0.5%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/vine Wine grapes/juice Table grapes/raisins Apples/juice Currants (red, black and white)/juice Onions/boiled Tomatoes/sauce/puree Sugar beets (root)/sugar	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37 1/4.7 0.2/0.12 0.9/0.28 0.3/0.3 0.6/0.32 0.05/0.6	(µg
Total number of cc adult diets ((IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 143% 7% 2% 2% 2% 2% 2% 2% 2% 2% 1% 1,0% 0.8% 0.6%	mmodities exceeding the ARfD/ADI in cf mmodities for which ARfD/ADI is exceeded Processed commodities Leeks/boiled Pumpkins/boiled Wine grapes/juice Currants (red, black and white)/juice Apples/juice Currants (red, black and white)/juice Apples/juice Tomatoes/juice Sugar beets (root)/sugar Shallots/boiled Pears/juice Tomatoes/succe/puree Turnips/boiled	MRL/input for RA (mg/kg) 10/10 0.3/0.3 1/0.37 0.9/0.28 0.2/0.12 0.01/0.37 0.6/0.32 0.05/0.6 0.3/0.3 0.2/0.12 0.6/0.05	Exposure (µg/kg bw) 573 27 16 8.0 6.5 6.1 6.0 5.5 4.9 3.9 3.0 2.5	No of processed cor (IESTI): IESTI Highest % of ARID/ADI 44% 4% 3% 2% 2% 2% 2% 1% 1% 1% 0.9% 0.5%	Processed commodities Leeks/boiled Pumpkins/boiled Grape leaves/canned Wine grapes/vine Wine grapes/juice Table grapes/juice Table grapes/juice Currants (red, black and white)/juice Onions/boiled Tomatoes/sauce/puree Sugar beets (root)/sugar Beetroots/boiled	for RA (mg/kg) 10/10 0.3/0.3 15/15 1/1 1/0.37 1/4.7 0.2/0.12 0.9/0.28 0.3/0.3 0.6/0.32 0.05/0.6	(µg

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Kresoxim-methyl is unlikely to present a public health risk. For processed commodities, the toxicological reference value was exceeded in one or several cases.

-	*	fsa			Mandest		(F)			Inpu	: values		
	÷. 0	tca_		LOQs (mg/kg) range		0.01	to:	5.0		hronic risk	Supplementar		
				ADI (mg/kg bw/day):	Toxicological re	0.19	ARfD (mg/kg bw):	3	assess	ment	chronic risk as	sessment	
	Ironoon Foo	d Safety Authority		ADI (Ing/kg bw/day).		0.19	ARID (IIIg/kg bw).	3	Details –	acute risk	Details – ac	ute risk	
		, , ,		Source of ADI: Year of evaluation:		EFSA 2015	Source of ARfD: Year of evaluation:	JMPR 2018	assessmen		assessment		
nen		evision 3.1; 2019/03/19		Year of evaluation:		2015	Year of evaluation:	2018					
mon	la.												
					Refir	ned calc	ulation mode						
					Chronic risk ass	sessment:	JMPR methodo	logy (IEDI/TMDI)					
				No of diets exceeding	the ADI :			-			-	Exposure	
			F	1.11-1			2nd contributor to			3rd contributor to MS		MRLs set at the LOQ	under ass
	Calculated exposure	e	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		diet	Commodity/	(in % of ADI)	(in %
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
1	2%	PT general	4.37	2%	Wine grapes		0.2%	Table grapes		0.1%	Peaches		
	2%	FR adult	3.83	2% 1%	Wine grapes		0.1%	Table grapes		0.1%	Strawberries		
	2% 2%	DE child RO general	3.11 3.00	1%	Table grapes Wine grapes		0.3%	Strawberries Table grapes		0.1%	Cherries (sweet) Cherries (sweet)		
	2%	NL toddler	2.95	1%	Table grapes		0.1%	Strawberries		0.0%	Peaches		
	2%	GEMS/Food G07	2.92	1%	Wine grapes		0.3%	Table grapes		0.0%	Peaches		
	1%	IE adult	2.68	1.0%	Wine grapes		0.2%	Table grapes		0.1%	Strawberries		
	1%	GEMS/Food G08	2.33	0.8%	Wine grapes		0.3%	Table grapes		0.1%	Peaches		
	1%	GEMS/Food G11	2.30	0.8%	Wine grapes		0.3%	Table grapes		0.0%	Strawberries		
	1%	GEMS/Food G15	2.24	0.8%	Wine grapes		0.3%	Table grapes		0.0%	Peaches		
	1%	NL child	2.11	0.8%	Table grapes		0.2%	Strawberries		0.1%	Peaches		
	1%	DE women 14-50 yr	2.02	0.7%	Wine grapes		0.2%	Table grapes		0.1%	Strawberries		
	1%	GEMS/Food G06	1.97	0.8%	Table grapes		0.1%	Peaches		0.1%	Wine grapes		
	1% 0.9%	DE general DK adult	1.90 1.78	0.6%	Wine grapes Wine grapes		0.2%	Table grapes Table grapes		0.1%	Strawberries Strawberries		. 0
	0.9%	UK adult	1.75	0.8%	Wine grapes		0.0%	Table grapes		0.0%	Strawberries		0
	0.8%	FR child 3 15 yr	1.43	0.3%	Wine grapes		0.3%	Table grapes		0.1%	Strawberries		0
	0.8%	UK vegetarian	1.43	0.6%	Wine grapes		0.1%	Table grapes		0.0%	Strawberries		0
	0.7%	NL general	1.40	0.5%	Wine grapes		0.2%	Table grapes		0.0%	Strawberries		0
	0.7%	GEMS/Food G10	1.32	0.3%	Wine grapes		0.2%	Table grapes		0.1%	Strawberries		0
ļ	0.5%	ES adult	0.91	0.3%	Wine grapes		0.1%	Peaches		0.0%	Table grapes		0
	0.4%	FI 3 yr	0.78	0.2%	Strawberries		0.2%	Table grapes		0.0%	Peaches		0
	0.4%	Fladult	0.73	0.2%	Wine grapes		0.1%	Strawberries		0.1%	Table grapes		0
	0.3%	UK toddler	0.66	0.2%	Table grapes		0.1%	Strawberries		0.0%	Wine grapes Peaches		0
	0.3%	FI 6 yr PL general	0.60 0.60	0.1%	Strawberries Table grapes		0.1%	Table grapes Cherries (sweet)		0.0%	Peaches Peaches		0
	0.3%	IT toddler	0.57	0.1%	Peaches		0.1%	Table grapes		0.1%	Strawberries		0
	0.3%	FR toddler 2 3 yr	0.55	0.2%	Wine grapes		0.1%	Strawberries		0.0%	Apricots		0
ļ	0.3%	IT adult	0.55	0.1%	Peaches		0.1%	Table grapes		0.0%	Apricots		0
ļ	0.3%	DK child	0.49	0.1%	Table grapes		0.1%	Strawberries		0.0%	Peaches		0
	0.2%	UK infant	0.40	0.1%	Strawberries		0.0%	Apricots		0.0%	Cherries (sweet)		0
	0.2%	ES child	0.31	0.1%	Peaches		0.0%	Strawberries		0.0%	Cherries (sweet)		0.
	0.1%	SE general	0.27	0.1%	Strawberries		0.0%	Peaches		0.0%	Apricots		0.
	0.1% 0.1%	FR infant IE child	0.24 0.12	0.1%	Strawberries Table grapes		0.0%	Wine grapes Strawberries		0.0%	Apricots Peaches		0.
	0.0%	LT adult	0.07	0.0%	Strawberries		0.0%	Table grapes		0.0%	Cherries (sweet)		0.
_ 1													

Acute risk assessment/adults/general population

Details - acute risk assessment/children

Detai	ls - acute	e risk a	assessm	ient/	/adult	S
-------	------------	----------	---------	-------	--------	---

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

			Sho	ow result	s for all crop	S		
Unprocessed commodities	Results for children No. of commodities t exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
о р	IESTI				IESTI			
rocesse	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
ли Л	10% 4% 1% 1% 0.6% 0.4% 0.00% Expand/collapse list Total number of co children and adult (Table grapes Peaches Apricots Strawberries Wine grapes Cherries (sweet) Plums Rapeseeds/canola seeds mmodities exceeding the AF	5/3.92 2/1.23 2/1.23 3/2.42 5/3.92 3/1.43 0.5/0.32 0.2/0.02	286 117 43 40 36 17 13 0.03	4% 3% 0.8% 0.5% 0.4% 0.2% 0.00%	Table grapes Wine grapes Peaches Strawberries Cherries (sweet) Apricots Plums Rapeseeds/canola seeds	5/3.92 5/3.92 2/1.23 3/2.42 3/1.43 2/1.23 0.5/0.32 0.2/0.02	133 93 23 14 13 5.7 0.01
	(IESTI calculation)							
Processed commodities	Results for children No of processed cor is exceeded (IESTI):	າ nmodities for which ARfD/ADI			Results for adults No of processed cor is exceeded (IESTI):	mmodities for which ARfD/ADI		
m oc	IESTI				IESTI			
essed (Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Proc	2% 1% 0.3% 0.0% 0.0% Expand/collapse list	Wine grapes/juice Peaches/canned Peaches/juice Plums/juice Rapeseeds/oils	5/1.48 2/1.23 2/0.53 0.5/0.13 0.2/0.04	65 32 8.8 1.2 0.01	1% 1% 0.8% 0.3%	Wine grapes/yine Wine grapes/juice Table grapes/raisins Peaches/canned	5/3.92 5/1.48 5/18.43 2/1.23	37 31 23 10
					L			
	Conclusion: No exceedance of th	e toxicological reference value	e was identified	for any unproc	essed commodity.			

A short-term intake of residues of Mandestrobin (F) is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

LOGs (mg/kg)range from: 0.01 to: 0.01 Toxicological reference values ADI (mg/kg bw/icy): 0.01 ARID (mg/kg bw/icy): 0.01 ErSA PRIMo revision 3.1; 2019/03/19 Source of ADI: ErSA France ARID: ErSA Memory 2016 Year of evaluation: 2016 Details – acute risk assessment Details – acute risk assessment Memory Year of evaluation: 2016 Year of evaluation: 2016 Details – acute risk assessment/children Details – acute risk assessment/children Memory Year of evaluation: 2016 Year of evaluation: 2016 Details – acute risk assessment/children Memory Vear of evaluation: 2016 Year of evaluation: 2016 Details – acute risk assessment/children Memory Vear of evaluation: 2016 Year of evaluation: 2016 Details – acute risk assessment/children Memory Vear of evaluation: 2016 Year of evaluation: Year of evaluation	****				me	sotrione (F)				Inpu	t values		
Lunde in tool and e (Nation 13, 12) et al. 12, 12) and 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	* *	f		LOQs (mg/kg) range f			to:	0.01	Details – c	hronic risk	Supplementary re	sults –	
Longent for used and y manual stress of the state of the sta	**E			ADI (mailea busidas):	Toxicolo	•	ADED (mailes hus):	0.00	assess	ment	chronic risk asses	sment	
Test PAR Not overvises 1.1: 201903/19 Year of washing:	European Foo	od Safety Authority							Details –	acute risk	Details – acute	risk	
Relined calculation mode Belined calculation mode Control risk assessment: JMPR methodology (JED/TMD) Control risk assessment: JMPR methodology (JED/TMD) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>assessmen</th> <th>t/children</th> <th>assessment/ad</th> <th>ults</th> <th></th>									assessmen	t/children	assessment/ad	ults	
Unrole tak assessment: JMPR methodology (EDVTMD) text discussed/p h-0: - E E Calculate departer Egroom High contribute for the formation 2nd contribute for the formation MS dat MS dat 0.5 dat MS dat 0.6 dat 0.0 monodity MS dat 0.0 monodity MS dat 0.0 monodity MS dat 0.0 monodity 0.0 monodity MS dat 0.0 monodity 0.0 monodity <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
No of data seconding the AD1 <					<u>Re</u>	fined calculation mo	<u>de</u>						
Expose Highet contributor to (upling be per (to ALQ) Highet (to ALQ) Commodity (upling be per (to AL					Chronic risk a	ssessment: JMPR meth	nodology (IEDI/1	TMDI)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	No of diets exceeding	the ADI :							Exposure	
Calculate deposition MS det Commodity MB rat Commodity (m ¹⁰ A) (m ¹⁰ A)			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		MRLs set at the LOQ	under a
3% NL todair 0.27 1% Applie 0.7% Mazatoom 0.4% Pears 2% DE rhid 0.11 0.0% Applie 0.1% Pears 0.1% Pears 1% NL child 0.11 0.0% Applie 0.1% Orange 0.1% Pears 0.7% RF child 31% P 0.05% Drange 0.2% Applie 0.1% Mazatoom 0.1%<			(µg/kg bw per	MS diet			MS diet			MS diet		(in % of ADI	(in %
P2% DE child 0.20 1% Appies 0.4% Oranges 0.1% Penirs 07% FR child 31 5y 0.07 0.3% Oranges 0.1% Appies 0.0% Matzalcorm 0.0% Matzalcorm 0.0% Matzalcorm 0.0% Matzalcorm 0.0% Matzalcorm 0.1% Matzalco													4
11%N. chid0.1%0.0%kpples0.1%Darage0.1%Darage0.1%Pare0.0%GEMSFood G060.060.2%Sugar canes0.1%0.1%Maizolcora0.1%Apples0.6%GEMSFood G070.060.2%Sugar canes0.1%0.1%Orange0.1%Apples0.6%GEMSFood G070.060.3%Apples0.1%Orange0.1%Mandarins0.6%FN todar 2.3 yr0.060.3%Apples0.1%Orange0.1%Mandarins0.6%GEMSFood G070.060.3%Apples0.1%Orange0.1%Apples0.6%GEMSFood G080.060.1%Sugar canes0.1%Apples0.1%Apples0.5%GEMSFood G030.050.1%Sugar canes0.1%Apples0.1%Apples0.5%GEMSFood G150.050.1%Sugar canes0.1%Apples0.1%Apples0.5%GEMSFood G150.050.1%Apples0.1%Apples0.1%Apples0.5%GE paneral0.050.1%Apples0.1%Apples0.1%Apples0.5%GE paneral0.060.1%Apples0.1%Apples0.1%Apples0.5%Mardarins0.060.1%Apples0.1%Apples0.1%Apples0.5%GE paneral0.060.1%Apples0.1%Apples0.1%Apples <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
0.7% FR child 31 Syr 0.07 0.3% Oringen 0.2% Apples 0.1% Maiza'corn 0.1% Maiza'corn 0.6% GEMSFood 007 0.68 0.2% Sugar canes 0.1% Orangen 0.1% Apples 0.6% GEMSFood 011 0.68 0.2% Sugar canes 0.1% Aragen 0.1% Aragen 0.6% GEMSFood 011 0.68 0.2% Sugar canes 0.2% Apples 0.1% Canagen 0.1%													
0.6% 0.6% 0.0% 0.1% Maxborn 0.1% Orange 0.6% GEMSFood G67 0.06 0.2% Sugar canes 0.1% Oranges 0.1% Mardarns 0.6% FR toddsr 2 3 yr 0.06 0.2% Sugar canes 0.2% Apples 0.1% Mardarns 0.6% DE wornen 14-50 yr 0.06 0.2% Apples 0.2% Apples 0.0% Lemoins 0.6% DE wornen 14-50 yr 0.06 0.0% Apples 0.1% Apples 0.0% Lemoins 0.6% GEMSFood G101 0.06 0.0% Apples 0.1% Apples 0.0% Oranges 0.5% GEMSFood G15 0.5% Sugar canes 0.1% Apples													
0.6% FR todair 2 yr 0.06 0.3% Apples 0.1% Mandarins 0.6% GEMNSFood C611 0.06 0.2% Apples 0.2% Oranges 0.0%		GEMS/Food G06						Maize/corn					
0.6% CEMS/Food C11 0.6% 0.2% Apples 0.2% Apples 0.1% Oranges 0.6% GEMS/Food C10 0.06 0.1% Sugar cames 0.1% Apples 0.1% Apples 0.5% GEMS/Food C35 0.05 0.1% Sugar cames 0.1% Apples 0.1% Oranges 0.5% GEMS/Food C35 0.05 0.1% Sugar cames 0.1% Apples 0.1% Oranges 0.5% GEMS/Food C35 0.05 0.1% Sugar cames 0.1% Apples 0.1% Apples 0.5% E5 chil 0.05 0.1% Oranges 0.1% Apples 0.1% Apples 0.4% UK infant 0.04 0.2% Apples 0.1% Apples 0.1% Apples 0.4% UK infant 0.04 0.2% Apples 0.1% Apples 0.1% Mazziocan 0.4% UK infant 0.04 0.2% Apples 0.1% Mazziocan													
0.6% DE women 14-30 yr 0.68 0.3% Apples 0.2% Orangen 0.1% Apples 0.6% GEMB/Food 601 0.06 0.0% Dagar canes 0.1% Apples 0.0% Oranges 0.5% GEMB/Food 675 0.05 0.2% Sugar canes 0.1% Apples 0.0% Oranges 0.5% GEMB/Food 675 0.65 0.2% Oranges 0.0% 0.0% Gemb/Food 515 0.0% 0.0% Lenons 0.5% Es child 0.65 0.2% Oranges 0.0% Canes 0.0% Lenons 0.5% Es child 0.65 0.7% Oranges 0.1% Apples 0.1% Apples 0.1% Apples 0.0% Mandarins 0.4% UK Indart 0.04 0.2% Apples 0.1% Apples 0.1% Apples 0.0% Anges 0.0% Anges 0.0% Anges 0.0% Anges 0.0% Anges 0.0% Anges <													
0.6% CEMB/Food C10 0.1% Jugar cames 0.1% Apples 0.1% Apples 0.5% GEMB/Food C35 0.05 0.1% Sugar cames 0.1% Apples 0.1% Apples 0.1% Sugar cames 0.1% Apples 0.1% Apples 0.1% Sugar cames 0.1% Apples 0.1%													
0.5% GEMS/Food G08 0.0% 0.2% Sugar cames 0.1% Apples 0.0% Oranges 0.5% GEMS/Food G515 0.05 0.2% Apples 0.2% Oranges 0.1% Apples 0.0% 0.0% Camops 0.5% DE general 0.05 0.2% Apples 0.1% Apples 0.1% Apples 0.5% ES child 0.05 0.2% Oranges 0.1% Apples 0.1% Apples 0.4% UK infart 0.04 0.2% Oranges 0.1% Mazoron 0.1% Mazoron 0.4% UK infart 0.04 0.2% Oranges 0.2% Apples 0.0% Oranges 0.4% N. Useneral 0.04 0.2% Apples 0.2% Apples 0.0% Oranges 0.4% N. Useneral 0.04 0.2% Apples 0.1% Apples 0.1% Apples 0.1% Apples 0.1% Apples 0.1% Apples <td></td>													
D.G. Degeneral D.G. D. 2% Apples D.2% Cranges D.0% Lemons 0.5% ES child 0.05 0.1% Ormoges 0.1% Apples 0.1% Apples 0.5% ES child 0.06 0.2% Ormoges 0.1% Apples 0.1% Machanistic 0.4% UK infart 0.04 0.2% Ormoges 0.1% Apples 0.1% Machanistic 0.4% UK infart 0.04 0.2% Apples 0.2% Apples 0.0% Mandarins 0.4% N.L.general 0.04 0.2% Apples 0.1% Apples 0.1% Apples 0.0% Compes 0.4% N.G. Indir 0.04 0.2% Apples 0.1% Apples 0.1% Apples 0.0% Ormoges 0.3% RC general 0.03 0.1% Apples 0.1% Apples 0.1% Apples 0.1% Apples 0.0% Perars 0.0% Perars 0					Sugar canes			Apples			Oranges		
0.5% Eschil $0.1%$ Oranges $0.1%$ Apples $0.1%$ Grapefults $0.5%$ Eschil 0.05 $0.2%$ Apples $0.1%$ Apples $0.1%$ Apples $0.4%$ Uk infart 0.04 $0.2%$ Apples $0.1%$ $0.1%$ Mazzocon $0.4%$ Uk infart 0.04 $0.2%$ Apples $0.1%$ $0.1%$ Mazzocon $0.4%$ Ngeneral 0.04 $0.2%$ Apples $0.1%$ Oranges $0.1%$ Mazzocon $0.4%$ Ngeneral 0.04 $0.1%$ Apples $0.1%$ Oranges $0.0%$ Mazzocon $0.4%$ Ngeneral 0.04 $0.1%$ Apples $0.1%$ Mazzocon $0.0%$ Oranges $0.3%$ R0 general 0.03 $0.1%$ Apples $0.1%$ Mazzocon $0.0%$ Mazzocon $0.3%$ R7 general 0.03 $0.1%$ Apples $0.1%$ Apples $0.1%$ Apples $0.1%$ Apples $0.0%$ Apples $0.0%$													
0.5%ES ohld 0.06 $0.2%$ $Orages$ $0.1%$ Apples $0.1%$ Apples $0.0%$ $0.0%$ Mandarins $0.4%$ UK infart 0.04 $0.2%$ $Orages$ $0.2%$ $Apples$ $0.2%$ $Apples$ $0.0%$ $Mandarins$ $0.4%$ UK todder 0.04 $0.2%$ $Orages$ $0.2%$ $Apples$ $0.0%$ $Orow0.4%NL general0.040.2%Apples0.1%Orages0.0%Oranges0.4%NC ohid0.040.2%Apples0.1%Varges0.0%Oranges0.3%RC operaral0.030.1%Apples0.1%Varges0.0%Oranges0.3%SE general0.030.1%Apples0.1%Varges0.0%Mandarins0.3%PF general0.030.1%Apples0.1%Varges0.0%Mandarins0.3%PF general0.030.1%Apples0.1%Apples0.1%Apples0.1%Apples0.0%Pars0.3%PF general0.030.1%Apples0.0%Oranges0.0%Pars0.0%Pars0.3%PF general0.030.1%Apples0.0%Pars0.0%Pars0.3%PF general0.030.1%Apples0.0%Pars0.0%Pars0.3%PF ge$													(
0.4% UK infart $0.4%$ $0.2%$ $Apples$ $0.4%$ $0.1%$ Mazedom $0.4%$ UK todder 0.04 $0.2%$ $Orange 0.2% Apples 0.4% Mazedom 0.4% NL general 0.04 0.1% Apples 0.1% Orange 0.0% Orange 0.4% NL general 0.04 0.1% Apples 0.1% Orange 0.0% Orange 0.4% NL general 0.04 0.1% Apples 0.1% Orange 0.0% Orange 0.4% NL general 0.03 0.1% Apples 0.1% Mazedom 0.% Mazedom 0.3% PL general 0.03 0.1% Apples 0.1% Mazedom 0.% Mazedom 0.3% PL general 0.03 0.1% Apples 0.1% Apples 0.0% Apples 0.0% Apples 0.0% Apples 0.0%0$													0
0.4% DK bild 0.04 0.2% Apples 0.1% Pear 0.0% Omages 0.3% RO general 0.03 0.1% Apples 0.1% Maxworm 0.0% Omages 0.3% SE general 0.03 0.1% Apples 0.1% Orages 0.0% Mandarins 0.3% SE general 0.03 0.1% Apples 0.1% Orages 0.0% Maxdorm 0.3% FS andult 0.03 0.1% Apples 0.1% Apples 0.0% Maxdorm 0.3% FS andult 0.03 0.1% Apples 0.0% Pears 0.0% Pears 0.3% IT todder 0.02 0.1% Apples 0.0% Oranges 0.0% Pears 0.0% Pears 0.2% IT adult 0.02 0.1% Apples 0.0% Pears 0.0% Pears 0.0% Pears 0.0% Pears 0.0% Pears 0.0% Pears													
0.3% ROgeneral 0.03 0.1% Apples 0.1% Maize/corn 0.0% Moradins 0.3% F5 general 0.03 0.1% Apples 0.1% Carages 0.0% Moradins 0.3% F7 general 0.03 0.1% Apples 0.1% Carages 0.0% Marzins 0.3% F7 general 0.03 0.1% Apples 0.1% Carages 0.0% Marzins 0.3% F1 general 0.03 0.1% Apples 0.0% Pears 0.0% Pears 0.3% F1 codair 0.03 0.2% Apples 0.0% Pears 0.0% Pears 0.2% F1 codair 0.02 0.1% Apples 0.0% Oranges 0.0% Pears 0.2% F1 codair 0.02 0.1% Apples 0.0% Pears 0.0% Oranges 0.2% F1 codair 0.02 0.1% Apples 0.0% Pears 0.0% Pe	0.4%	NL general									Coconuts		
0.3% SE general 0.03 0.1% Apples 0.1% Orages 0.0% Mandarins 0.3% FP general 0.03 0.1% Apples 0.1% Apples 0.1% Mandarins 0.3% ES adult 0.03 0.1% Orages 0.1% Apples 0.0% Macdarins 0.3% ES adult 0.03 0.1% Apples 0.1% Apples 0.0% Pears 0.3% IT todder 0.03 0.1% Apples 0.0% Orages 0.0% Pears 0.2% FR infart 0.02 0.1% Apples 0.0% Orages 0.0% Orages 0.2% IT adult 0.02 0.1% Apples 0.0% Pears 0.0% Orages 0.2% IT adult 0.02 0.1% Apples 0.0% Pears 0.0% Orages 0.2% FR adult 0.02 0.1% Apples 0.0% Madarins 0.0% O.0%													
0.3% PT general 0.03 0.1% Apples 0.1% Oranges 0.1% Apples 0.3% PL general 0.03 0.1% Apples 0.0% Pears 0.0% Pears 0.3% PL general 0.03 0.2% Apples 0.0% Pears 0.0% Pears 0.3% PL general 0.03 0.1% Apples 0.0% Oranges 0.0% Pears 0.0%													
0.3% ES adult 0.03 0.1% Oranges 0.1% Apples 0.0% Pears 0.3% PL general 0.03 0.2% Apples 0.0% Paras 0.0% Pears 0.3% IT toddar 0.03 0.1% Apples 0.0% Oranges 0.0% Pears 0.2% FR infant 0.02 0.1% Apples 0.0% Oranges 0.0% Pears 0.2% IT adult 0.02 0.1% Apples 0.0% Pears 0.0% Oranges 0.2% IT adult 0.02 0.1% Apples 0.0% Pears 0.0% Oranges 0.2% FI 3 yr 0.02 0.1% Apples 0.0% Madarins 0.0% Pears 0.2% FI 8 adult 0.02 0.1% Apples 0.0% Madarins 0.0% Pears 0.2% FI 8 adult 0.02 0.1% Apples 0.1% Apples 0.0% Apples													
0.3% PLopendal 0.03 0.2% Apples 0.0% Pears 0.0% Pears 0.3% IT hoddim 0.03 0.1% Apples 0.0% Oranges 0.0% Pears 0.2% FR infart 0.02 0.2% Apples 0.0% Oranges 0.0% Pears 0.2% IT adult 0.02 0.1% Apples 0.0% Pears 0.0% Oranges 0.0% Oranges 0.2% IT adult 0.02 0.1% Apples 0.0% Pears 0.0% Oranges 0.0% Oranges 0.0% Oranges 0.0% Oranges 0.0% Oranges 0.0% Pears 0.0% Oranges 0.0% Oranges 0.0% Pears 0.0% Oranges 0.0% Pears													
0.2% Findart 0.02 0.2% Apples 0.0% Oranges 0.0% Pears 0.2% I Tadult 0.02 0.1% Apples 0.0% Pears 0.0% Onages 0.2% I Tadult 0.02 0.1% Apples 0.0% Pears 0.0% Oranges 0.2% FI Jyr 0.02 0.1% Apples 0.0% Mardarins 0.0% Pears 0.2% FI Adult 0.02 0.1% Apples 0.0% Mardarins 0.0% Pears 0.2% VK vegetarian 0.02 0.1% Apples 0.1% Apples 0.0% Pears 0.0% Pears 0.2% VK vegetarian 0.02 0.1% Apples 0.1% Apples 0.0% Apples <td></td> <td></td> <td></td> <td>0.2%</td> <td>Apples</td> <td></td> <td></td> <td></td> <td></td> <td>0.0%</td> <td></td> <td></td> <td>(</td>				0.2%	Apples					0.0%			(
0.2% IT adult 0.02 0.1% Apples 0.0% Peaches 0.0% Oranges 0.2% I.T adult 0.02 0.2% Apples 0.0% Pears 0.0% Oranges 0.2% F13 yr 0.02 0.1% Apples 0.0% Mardarins 0.0% Pears 0.2% F13 yr 0.02 0.1% Apples 0.0% Mardarins 0.0% Pears 0.2% F14 xult 0.02 0.1% Apples 0.1% Arages 0.0% Pears 0.2% UK vagatrian 0.02 0.1% Oranges 0.1% Apples 0.0% Grapefults 0.2% DK adult 0.02 0.1% Apples 0.1% Apples 0.0% Grapefults 0.2% F16 yr 0.02 0.1% Apples 0.0% Mardarins 0.0% Pears 0.1% UK adult 0.01 0.7% Oranges 0.0% Apples 0.0% Apples<													
0.2% L'adult 0.02 0.2% Apples 0.0% Pears 0.0% Onages 0.2% F13 yr 0.02 0.1% Apples 0.0% Mandarins 0.0% Pears 0.2% FR adult 0.02 0.1% Apples 0.1% Granges 0.0% Pears 0.2% FR adult 0.02 0.1% Oranges 0.1% Granges 0.0% Granges 0.2% UK vegatrian 0.02 0.1% Oranges 0.1% Apples 0.0% Granges 0.0% <td></td>													
0.2% FI 3 yr 0.02 0.1% Apples 0.0% Mandarins 0.0% Pears 0.2% FR adult 0.02 0.1% Apples 0.1% Oranges 0.0% Pears 0.2% UK vegetarian 0.02 0.1% Oranges 0.1% Apples 0.1% Apples 0.2% DK adult 0.02 0.1% Oranges 0.1% Apples 0.0% Pears 0.0% Oranges 0.2% FI 6 yr 0.02 0.1% Apples 0.0% Mardarins 0.0% Oranges 0.1% UK adult 0.01 0.1% Oranges 0.0% Mardarins 0.0% O.0% Figure 1 0.0% Oranges 0.0% Apples													0
0.2% FR adult 0.02 0.1% Apples 0.1% Oranges 0.0% Pears 0.2% UK vegetarian 0.02 0.1% Oranges 0.1% Apples 0.0% Grapefruits 0.2% DK adult 0.02 0.1% Apples 0.0% Pears 0.0% Oranges 0.2% Fl Gyr 0.02 0.1% Apples 0.0% Mardarins 0.0% Pears 0.1% UK adult 0.01 0.7moges 0.0% Mardarins 0.0% Grapefruits													
0.2% UK vogetarian 0.02 0.1% Oranges 0.1% Apples 0.0% Grapefults 0.2% DK xdutt 0.02 0.1% Apples 0.0% Paras 0.0% Oranges 0.2% F16 yr 0.02 0.1% Apples 0.0% Mardarins 0.0% Oranges 0.1% UK xdutt 0.01 0.7mages 0.0% Apples 0.0% Apples	0.2%		0.02					Oranges		0.0%			
0.2% FI 6yr 0.02 0.1% Apples 0.0% Mandarins 0.0% Opens 0.1% UK adult 0.01 0.1% Oranges 0.0% Apples 0.0% Grapher Mutta	0.2%		0.02		Oranges			Apples					
0.1% UK adult 0.01 0.1% Oranges 0.0% Apples 0.0% Grapefruits													(
													0
0.1% IE child 0.01 0.0% Apples 0.0% Oranges 0.0% Sweet corn													i i

7% Oranges 0.010.01 1.3 2% Pear 0.010.01 0.01 5% Apples 0.010.01 0.95 0.9% Peaches 0.010.01 0.9% 4% GrapeFruits 0.010.01 0.95 0.9% Peaches 0.010.01 3% Mandarins 0.010.01 0.59 0.9% Flums 0.010.01 2% Sweet corn 0.010.01 0.43 0.9% Plums 0.010.01 2% Apricots 0.010.01 0.42 0.8% Sweet corn 0.010.01 2% Apricots 0.010.01 0.42 0.8% Sweet corn 0.010.01 1% Camoras 0.010.01 0.42 0.4% Camoras 0.010.01 0.7% Coconuts 0.010.01 0.44 0.4% Lemons 0.010.01 0.7% Mediar 0.010.01 0.14 0.4% Lemons 0.010.01 0.7% Mediar 0.010.01 0.14 0.4% Lemon									
The actualition is based on the large potion of the most attitual consumer group.	l	Det	ails - acute risk assessment/	children		D	etails - acute risk assessme	nt/adults	
Results for children No. of commodilies for which ARDADI is exceeded ((EST)):				consumer group).				
No. of commodities for which ARD/ADJ is exceeded (IEST): No. of commodities for which ARD/ADJ is exceeded (IEST): IEST IEST IEST IEST Highest % of ARD/ADJ Commodities (mgRg) (up10)				Sh	ow result	s for all crops	5		
MRUmput MRUmput <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>for which ARfD/ADI is exceeded (IESTI):</th><th></th><th>-</th></t<>							for which ARfD/ADI is exceeded (IESTI):		-
Highest % of ARTIXAD For RA Exposure Part (purg) try ARTIXAD Commodities (marking) (purg) try ARTIXAD 7% Pers 0.010.01 1.4 2% Oranges 0.010.01 0.010.01 7% Pers 0.010.01 1.3 2% Pers 0.010.01 0.010.01 6% Astance 0.010.01 0.75 0.05% Mandarins 0.010.01 0.75 0.05% Mandarins 0.010.01 0.75 0.05% Grapefruits 0.010.01 0.75 0.05% Grapefruits 0.010.01 0.42 0.5% Grapefruits 0.010.01 0.43 0.45% Grapefruits 0.010.01 0.44 0.45% Concreas <		ESTI				IESTI			
7% Oranges 0.010.01 1.3 2% Paras 0.010.01 0.1 6% Apples 0.010.01 1.3 1% Apples 0.010.01 0.1 4% Grapefruits 0.010.01 0.75 0.9% Mandarins 0.010.01 0.5 3% Mandarins 0.010.01 0.43 0.9% Mandarins 0.010.01 2% Sweet corn 0.011.00 0.43 0.9% Aprices 0.011.00 0.43 2% Apples 0.011.00 0.43 0.9% Apricot 0.011.00 0.43 2% Apricots 0.011.00 0.43 0.9% Apricots 0.011.00 0.43 0.7% Mediar 0.011.00 0.43 0.4% Carconits 0.011.00 0.14 0.4% Lines 0.011.00 0.02% Apples 0.011.00 0.02% Apples 0.011.00 0.02% Apples 0.011.00 0.03% Markarcorn 0.011.00 0.02% Apples		Highost % of			Evpoqueo	Highapt % of			Eve
7% Pers 0.010.01 1.4 2% Oranges 0.010.01 0.010.01 5% Apples 0.010.01 1.1 1% Apples 0.010.01 0.010.01 6% Apples 0.010.01 0.75 Apples 0.010.01 0.76 6% Apples 0.010.01 0.75 0.9% Mandarins 0.010.01 0.75 2% Swet com 0.010.01 0.42 0.9% Grapefuls 0.010.01 0.42 2% Plums 0.010.01 0.42 0.9% Grapefuls 0.010.01 0.25 2% Apricos 0.010.01 0.35 0.9% Quinces 0.010.01 0.26 2% Lamores 0.010.01 0.14 0.44% Lamores 0.010.01 0.14 0.44% Lamores 0.010.01 0.12 0.3% Matazion 0.010.01 0.12 0.3% Matazion 0.010.01 0.012 0.3% Matazion 0.010.01 0.015 0.02% <td< td=""><td></td><td></td><td>Commodities</td><td></td><td></td><td></td><td>Commodities</td><td></td><td></td></td<>			Commodities				Commodities		
7% Oranges 0.010.01 1.3 2% Pear 0.010.01 0.010.01 5% Apples 0.010.01 0.9% Mardarins 0.010.01 0.0% 5% Pearbas 0.010.01 0.79 0.9% Mardarins 0.010.01 0.79 3% Mardarins 0.010.01 0.79 0.9% Mardarins 0.010.01 0.79 2% Prims 0.010.01 0.42 0.9% Sweet com 0.010.01 0.27 2% Apricots 0.010.01 0.42 0.9% Sweet com 0.010.01 0.27 2% Apricots 0.010.01 0.24 0.5% Apricots 0.010.01 0.25 1% Curomits 0.010.01 0.25 0.5% Chemics 0.010.01 0.16 0.7% Coconsits 0.010.01 0.14 0.4% Coconsits 0.010.01 0.16 0.7% Coconsits 0.010.01 0.14 0.4% Aples and prokapyotes organisms <									0.
9% Apple* 0.0110.01 1.1 1% Apple* 0.010.01 0.1% 9% Apple* 0.0140.01 0.79 0.9% Mandarins 0.0110.01 0.1% 2% Swet corn 0.0110.01 0.43 0.9% Grapefruits 0.0110.01 0.43 2% Swet corn 0.0110.01 0.43 0.9% Grapefruits 0.0110.01 0.43 2% Lemons 0.0110.01 0.34 0.9% Aprice 0.0110.01 0.43 0.9% Aprice 0.0110.01 0.14 0.4% Aprice 0.0110.01 0.14 0.4% Aprice 0.0110.01 0.14 0.4% Aprice 0.0110.01 0.14 0.4% Lamons 0.0110.01 0.14 0.4% Lamons 0.0110.01 0.14 0.4% Consults 0.0110.01 0.014 0.4% Aprice 0.0110.01 0.014 0.016 0.010.01 0.016 0.010.01 0.016 0.010.01 0.016 0.010.01 0.016 0.010.01<									0.
5% Pisches 0.010.01 0.95 0.9% Mardarins 0.010.01 0 3% Mardarins 0.010.01 0.59 0.9% GrapeFruits 0.010.01 0 2% Sweet corn 0.010.01 0.43 0.9% GrapeFruits 0.010.01 0 2% Plums 0.010.01 0.42 0.9% Sweet corn 0.010.01 0 2% Plums 0.010.01 0.32 0.9% GrapeFruits 0.010.01 0 2% Plums 0.010.01 0.32 0.9% Columos 0.010.01 0 2% Plums 0.010.01 0.32 0.9% Columos 0.010.01 0 1% Linnes 0.010.01 0.14 0.4% Columos 0.010.01 0 0.7% Median 0.010.01 0.12 0.3% Median 0.010.01 0 0.7% Median 0.010.01 0.12 0.3% Median 0.010.01 0.010 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.:</td>									0.:
4% Grapefruits 0.010.01 0.79 0.9% Mandamis 0.010.01 0.43 2% Sweet corn 0.010.01 0.43 0.9% Financial 0.010.01 0.43 2% Sweet corn 0.010.01 0.43 0.9% Funancial 0.010.01 0.43 2% Apricota 0.010.01 0.43 0.9% Grapefruits 0.010.01 0.43 2% Apricota 0.010.01 0.43 0.9% Guardes 0.010.01 0.43 1% Cuinces 0.010.01 0.25 0.5% Cuincies 0.010.01 0.44 0.7% Mediar 0.010.01 0.14 0.44 Lemona 0.010.01 0.47 0.3% Maradorin 0.010.01 0.14 0.44 Lines 0.010.01 0.43 Appeared probaryotes organisms 0.010.01 0.5% Mediar 0.010.01 0.5% Mediar 0.010.01 0.03 0.1% Mediar 0.010.01 0.03 0.1% Meacot									0.
2% Sweet corn 0.010.01 0.43 0.9% Flums 0.010.01 0.42 2% Apricots 0.010.01 0.35 0.8% Quinces 0.010.01 0.42 2% Apricots 0.010.01 0.34 0.5% Apricots 0.010.01 0.44 2% Lemons 0.010.01 0.24 0.5% Apricots 0.010.01 0.01 1% Cuncost 0.010.01 0.14 0.4% Cunconta 0.010.01 0.01 0.01%			Grapefruits						0.
2% Plums 0.010.01 0.42 0.8% Sweet corn 0.010.01 0.10 2% Apricots 0.010.01 0.35 0.8% Sweet corn 0.010.01 0.10 2% Lemons 0.010.01 0.25 0.5% Apricots 0.010.01 0.10 0.7% Cocontis 0.010.01 0.25 0.5% Apricots 0.010.01 0.11 0.7% Mediar 0.010.01 0.14 0.4% Lemons 0.010.01 0.11 0.5% Mediar 0.010.01 0.14 0.4% Lemons 0.010.01 0.010 <t< td=""><td></td><td></td><td>Mandarins</td><td>0.01/0.01</td><td>0.59</td><td></td><td>Grapefruits</td><td>0.01/0.01</td><td>0.</td></t<>			Mandarins	0.01/0.01	0.59		Grapefruits	0.01/0.01	0.
2% Apricots 0.01/0.01 0.35 0.8% Quinces 0.01/0.01 0.10 1% Cuinces 0.01/0.01 0.25 0.5% Chemics (sweet) 0.01/0.01 0.01 0.7% Coconuts 0.01/0.01 0.25 0.5% Chemics (sweet) 0.01/0.01 0.7% Coconuts 0.01/0.01 0.14 0.4% Cocnuts 0.01/0.01 0.7% Mediar event 0.01/0.01 0.14 0.4% Cocnuts 0.01/0.01 0.7% Mediar event 0.01/0.01 0.14 0.4% Cocnuts 0.01/0.01 0.3% Mediar event 0.01/0.01 0.02 0.2% Algea and probaryotes organisms 0.05/0.05 0.01/0.01 0.03 0.1% Plasterbiols 0.01/0.01 0.03 0.1% Plasterbiols 0.01/0.01 0.03 0.1% Macademia 0.01/0.01 0.03 0.1% Macademia 0.01/0.01 0.03 0.1% Macademia 0.01/0.01 0.01 0.01% Algea and probaryotes organisms 0.01									0.1
2% Lemons 0.01/001 0.34 0.5% Apricits 0.01/001 0.01 1% Curnes 0.01/001 0.20 0.4% Lemons 0.01/001 0.01 0.7% Mediar 0.01/001 0.14 0.4% Lemons 0.01/001 0.01 0.7% Mediar 0.01/001 0.14 0.4% Lemons 0.01/001 0.01 0.01/001 0.01/001 0.01/001 0.01/001 0.01/001 0.01/001 0.01/001 0.01/001 0.01/001 0.01/001 0.02/% Chestinuts 0.01/001 0.02 0.01/001 0.02 0.01/001 0.									0.
1% Quinces 0.01/0.01 0.25 0.5% Chemics (sweet) 0.01/0.01 0.01/0.01 0.7% Coconuts 0.01/0.01 0.14 0.4% Coconuts 0.01/0.01 0.01 0.7% Mediar 0.01/0.01 0.14 0.4% Coconuts 0.01/0.01 0.01 0.6% Chemines (sweet) 0.01/0.01 0.12 0.3% Mediar 0.01/0.01 0.01 0.3% Mediar 0.01/0.01 0.07 0.2% Chestinuts 0.01/0.01 0.01									0.
1% Lines 0.01/0.01 0.29 0.4% Lemons 0.01/0.01 0.01/0.01 0.7% Mediar 0.01/0.01 0.14 0.4% Coconuts 0.01/0.01 0.01 0.6% Cherries (sweet) 0.01/0.01 0.12 0.3% Mediar 0.01/0.01 0.01 0.3% Mizzelcorn 0.01/0.01 0.07 0.2% Chestruts 0.01/0.01 0.07 0.3% Mizzelcorn 0.01/0.01 0.06 0.2% Algee and prokaryotes organisms 0.01/0.01 0.01 0.2% Chestruts 0.01/0.01 0.03 0.1% Platachics 0.01/0.01 0.03 0.1% Mianuts 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.0									0.
0.7% Coconuts 0.010.01 0.14 0.4% Limes 0.010.01 0.010.01 0.7% Mediar 0.010.01 0.12 0.3% Mediar 0.010.01 0.010.0									0.
0.7% Mediar 0.010.01 0.14 0.4% Umes 0.010.01 0 0.8% Cherris (sweet) 0.010.01 0.07 0.2% Malazelocin 0.010.01 0 0.3% Malazelocin 0.010.01 0.07 0.2% Algae and prokayotes organisms 0.050.05 0.010.01 0.02% Algae and prokayotes organisms 0.010.01 0.010.01 0.010.01 0.01% Platachios 0.010.01 0.025% Phaeral nuts </td <td></td> <td></td> <td>Limes</td> <td>0.01/0.01</td> <td>0.20</td> <td></td> <td>Lemons</td> <td>0.01/0.01</td> <td>0.</td>			Limes	0.01/0.01	0.20		Lemons	0.01/0.01	0.
0.6% Cherries (sweet) 0.01/0.01 0.12 0.3% Melar 0.01/0.01 0.02% 0.3% Miszicorn 0.01/0.01 0.06 0.2% Chestnuts 0.01/0.01 0.06 0.2% Chestnuts 0.01/0.01 0.06 0.2% Chestnuts 0.01/0.01 0.04 0.1% Pistachios 0.01/0.01 0.03 0.1% Pistachios 0.01/0.01 0.03 0.1% Pistachios 0.01/0.01 0.03 0.1% Miszelocan 0.01/0.01 0.01 0.01/0.0			Coconuts	0.01/0.01	0.14		Coconuts	0.01/0.01	0.
0.3% Mizzleon 0.01/0.01 0.07 0.2% Alge and prokayotes organisms 0.01/0.01 0.06 0.3% Pistachios 0.01/0.01 0.06 0.2% Alge and prokayotes organisms 0.01/0.01 0.06 0.2% Alge and prokayotes organisms 0.01/0.01 0.02% Alge and prokayotes organisms 0.01/0.01 0.03 0.1% Peacas 0.01/0.01 0.03 0.1% Mission 0.01/0.01 0.01 0.01%			Medlar						0.
0.3% Pistachios 0.01/0.01 0.06 0.2% Algae and prokaryotes organisms 0.05/0.05 0.01/0.01 0.03 0.2% Chestnuts 0.01/0.01 0.03 0.1% Pistachios 0.01/0.01 0.03 0.2% Hazsinuts/cobruts 0.01/0.01 0.03 0.1% Wahruts 0.01/0.01 0.03 0.1% Pecans 0.01/0.01 0.03 0.1% Mazzicom 0.01/0.01									0.
0.2% Chestruits 0.01/0.01 0.04 0.1% Pistachios 0.01/0.01 0.0 0.2% Wainuts 0.01/0.01 0.03 0.1% Pecans 0.01/0.01 0.0 0.1% Almonds 0.01/0.01 0.03 0.1% Mazeronut/cohnods 0.01/0.01 0.01%				0.01/0.01				0.01/0.01	0.
0.2% Wainuts 0.01/0.01 0.03 0.1% Peans 0.01/0.01 0.03 0.3% Hazendurscohnuts 0.01/0.01 0.03 0.1% Mainuts 0.01/0.01 0.03 0.1% Peans 0.01/0.01 0.03 0.1% Maize/com 0.01/0.01 0.01/0.01 0.1% Peans 0.01/0.01 0.03 0.1% Maize/com 0.01/0.01									0.
0.2% Hazehnuts/cobnuts 0.01/0.01 0.03 0.1% Walnuts 0.01/0.01 0.03 0.1% Almonds 0.01/0.01 0.03 0.1% Macadamia 0.01/0.01 0.03 0.1% Cashew nuts 0.01/0.01 0.03 0.0% Cashew nuts 0.01/0.01 0.0 0.0% Represends/canola seeds 0.01/0.01 0.01 0.0% Almonds 0.01/0.01 0.0 0.0% Brazinuts 0.01/0.01 0.01 0.0% Hazahnuts/cobnuts 0.01/0.01 0.01 0.0% Brazinuts 0.01/0.01 0.01 0.0% Hazahnuts/cobnuts 0.01/0.01 0.01 0.03% Brazinuts 0.01/0.01 0.01 0.03% Brazinuts 0.01/0.01 0.01 0.02% D.01/0.01 0.00 0.03% Brazinuts 0.01/0.01 0.01 0.01/0.01 0.02 0.03% Brazinuts 0.01/0.01 0.01/0.01 0.01/0.01 0.02 0.03% Brazinuts 0.01/0.01 0.01/0.01 0.02 0.									0.
0.1% Almonds 0.01/0.01 0.03 0.1% Mazadamia 0.01/0.01 0.03 0.1% Cashew ruts 0.01/0.01 0.03 0.09% Cashew ruts 0.01/0.01 0.03 0.07% Rapeseeds/canola seeds 0.01/0.01 0.01 0.07% Himods 0.01/0.01 0.01 0.07% Rapeseeds/canola seeds 0.01/0.01 0.01 0.07% Himods 0.01/0.01 0.01 0.04% Brazil ruts 0.01/0.01 0.01 0.04% Proppy seeds 0.01/0.01 0.01 0.02% Pline rut kernels 0.01/0.01 0.00 0.03% Brazil ruts 0.01/0.01 0.00 0.03% Rapeseds/canola seeds 0.01/0.01 0.0 0.02% Linseeds 0.01/0.01 0.0 0.03% Rapeseds/canola seeds 0.01/0.01 0.0 0.03% Rapeseds/canola seeds 0.01/0.01 <									0.
0.1% Pecans 0.01/0.01 0.03 0.1% Macadamia 0.01/0.01 0.01 0.1% Cashew nuts 0.01/0.01 0.03 0.09% Cashew nuts 0.01/0.01 0.01 0.05% Linseeds 0.01/0.01 0.01 0.05% Hazelnutscobruts 0.01/0.01 0.01 0.04% Brazil nuts 0.01/0.01 0.01 0.05% Hazelnutscobruts 0.01/0.01 0.01 0.03% Macadamia 0.01/0.01 0.01 0.04% Propy seds 0.01/0.01 0.01 0.01% Nicadamia 0.01/0.01 0.01 0.04% Propy seds 0.01/0.01 0.01 0.01% Sugar canes 0.01/0.01 0.00 0.03% Rapeseds/canola seeds 0.01/0.01 0.02% Itest number of commodities creeding the ARID/ADI in children and aduit diets Linseedis 0.01/0.01 C 0.165 Tr calculation) MRL/input results for children No of processed commodities for which ARID/ADI is exceeded (IEST) IESTI IESTI IESTI									0.
0.1% Cashew nuts 0.01/0.01 0.03 0.09% Cashew nuts 0.01/0.01 0.01 0.05% Linseeds 0.01/0.01 0.01 0.05% Almonds 0.01/0.01 0.01 0.05% Linseeds 0.01/0.01 0.01 0.05% Pine nut kernels 0.01/0.01 0.01 0.03% Macadamia 0.01/0.01 0.01 0.05% Pine nut kernels 0.01/0.01 0.01 0.02% Pine nut kernels 0.01/0.01 0.00 0.03% Rapeseds/canola seeds 0.01/0.01 0.01 0.01% Sugar canes 0.01/0.01 0.00 0.03% Rapeseds/canola seeds 0.01/0.01 0.01 0.02% Linseeds 0.01/0.01 0.00 0.03% Rapeseds/canola seeds 0.01/0.01 0.02 Itestration Insertion Results for adults No of processed commodities for which ARfD/ADI is exceeded (IEST) Itestration Itestration Itestration Itestration Itestration Itestration Itestration Itestration Itestration									0.
0.07% Rapeseeds/canola seeds 0.01/10.01 0.01 0.07% Almonds 0.01/10.01 0.01/10.01 0.01 0.07% Hazelnit/schonts 0.01/10.01 0.01/10.01 0.01 0.07% Hazelnit/schonts 0.01/10.01 0.01 0.03% Macadamia 0.01/10.01 0.01 0.04% Prine nut kernels 0.01/10.01 0.01 0.04% Prine nut kernels 0.01/10.01 0.01 0.04% Prine nut kernels 0.01/10.01 0.01 0.03% Brazin nut kernels 0.01/10.01 0.01 0.03% Brazin nut kernels 0.01/10.01 0.01 0.02% Linseeds 0.01/10.01 0.01 0.02% Linseeds 0.01/10.01 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.</td>									0.
0.05% Linseeds 0.01/0.01 0.01 0.06% HazeInutiscobrutis 0.01/0.01 0.01 0.03% Macadamia 0.01/0.01 0.01 0.04% Propy seeds 0.01/0.01 0.01 0.03% Macadamia 0.01/0.01 0.01 0.04% Popy seeds 0.01/0.01 0.01 0.01% Sugar cases 0.01/0.01 0.00 0.03% Brazil nuts 0.01/0.01 0.01 0.01% Sugar cases 0.01/0.01 0.00 0.03% Represed/canola seeds 0.01/0.01 0.01 0.01% Sugar cases 0.01/0.01 0.00 0.03% Represed/canola seeds 0.01/0.01 0.02% Expand/collapse list Total number of commodities exceeded Internand adult diets 0.01/0.01 Inseeds 0.01/0.01 Inseeds 0.01/0.01 Inseeds 0.01/0.01 Inseeds 0.01/0.01 Inseeds Inseeded Inseeded Inseeded Inseeded Inseeded Inseeded Inseeded Inseeded Inseeded Inseedes Inseedes Inseedes									0.
0.04% Brazil nuts 0.01/0.01 0.01 0.05% Pine nut kernels 0.01/0.01 0.01 0.03% Macadamia 0.01/0.01 0.01 0.03% Prazil nuts 0.01/0.01 0.01 0.02% Pine nut kernels 0.01/0.01 0.00 0.03% Brazil nuts 0.01/0.01 0.01 0.01% Sugar canes 0.01/0.01 0.00 0.03% Brazil nuts 0.01/0.01 0.01 0.01% Sugar canes 0.01/0.01 0.00 0.03% Brazil nuts 0.01/0.01 0.01 0.01% Sugar canes 0.01/0.01 0.00 0.03% Brazil nuts 0.01/0.01 0.02% Expand/collapse list									0.
0.03% Macadamia 0.01/0.01 0.01 0.04% Poppy seds 0.01/0.01 0.03% 0.02% Pine nut kernels 0.01/0.01 0.00 0.03% Brazil nuts 0.01/0.01 0.03% 0.01% Sugar canes 0.01/0.01 0.00 0.03% Rapeseds/canola seeds 0.01/0.01 0.02% Expand/collapse list 0.01/0.01 0.00 0.03% Rapeseds/canola seeds 0.01/0.01 0.02% ItEST Total number of commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No of processed commodities for which ARID/ADI is exceeded No processed commodities for which ARID/									0. 0.
0.02% Pine nut kernels 0.01/0.01 0.00 0.03% Brazil nuts 0.01/0.01 0.01 0.01% Sugar canes 0.01/0.01 0.00 0.03% Rapeseeds/canola seeds 0.01/0.01 0.02 Expand/collapse list									
0.01% Sugar canes 0.01/0.01 0.00 0.03% Rapseeds/canola seeds 0.01 0.01 0.01 Expand/collapse list 0.01% 0.02% Linseeds 0.01/0.01 0.02% Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation) No of processed commodities for which ARfD/ADI is exceeded (IESTI): Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): IESTI IESTI IESTI IESTI IESTI MRL/input for RA Exposure (Ug/kg bW) ARfD/ADI Processed commodities (mg/kg) (ug/kg bW) ARfD/ADI Processed commodities (mg/kg) 0.01/0.01 0.54 2% Apples/juice 0.01/0.01 0.54 2% Apples/juice 0.01/0.01 0.53 0.8% Oranges/juice 0.01/0.01 0.02% 0.01/0.01 0.01/0.01 0.02% 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 <									0.
Expand/collapse list 0.02% Linseeds 0.01/0.01 0 Expand/collapse list Total number of commodities exceeding the ARfD/ADI in children and adult diets (IEST) calculation) Results for adults No N									0.0 0.1
Total number of commodities exceeding the ARfD/ADI in children and aduit diets (IESTI calculation) Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI): IESTI IESTI <td></td> <td></td> <td>-</td> <td>0.01/0.01</td> <td>0.00</td> <td></td> <td></td> <td></td> <td>0.</td>			-	0.01/0.01	0.00				0.
(IESTI calculation) Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI): Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI): MRL/input for RA ESTI IESTI IESTI Highest % of ARfD/ADI Processed commodities (mg/kg) (µg/kg bw) (µg/kg bw) ARfD/ADI Processed commodities (mg/kg) (µg/kg bw) (µg/kg bw) 3% Apples/juice 0.01/0.01 0.53 0.8% Oranges/juice 0.01/0.01 0.63 2% Pears/juice 0.01/0.01 0.26 0.5% Grapefuits/juice 0.01/0.01 0.01 1% Peaches/canned 0.01/0.01 0.10 0.23 0.4% Peaches/canned 0.01/0.01 0.09 0.8% Peaches/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.01 0.5% Sugar canes/sugar 0.01/0.01 0.03 0.06% Quinces/jam 0.01/0.01 0.07 0.5% Sugar canes/sugar 0.01/0.01 0.03 0.06% Quinces/jam	T	Fotal number of co		ildren and					
No of processed commodities for which ARfD/ADI is exceeded (IESTI): No of processed commodities for which ARfD/ADI is exceeded (IESTI): IESTI IESTI IESTI Highest % of ARfD/ADI MRL/input for RA Exposure (mg/kg) Highest % of (mg/kg) MRL/input for RA Exposure (mg/kg) MRD/Input Highest % of ARfD/ADI MRL/input Processed commodities MRL/input for RA Exp Exp Exp MRL/input 3% Apples/juice 0.01/0.01 0.54 2% Apples/juice 0.01/0.01 0.53 3% Oranges/juice 0.01/0.01 0.53 0.8% Oranges/juice 0.01/0.01 0.26 1% Peaches/canned 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.09 0.8% Peaches/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.09 0.5% Sugar canes/sugar 0.01/0.01 0.03 0.06% Quinces/jam 0.01/0.01 0.01 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0.01									
IESTI (IESTI): Highest % of ARtD/ADI MRL/input for RA Exposure (mg/kg) Highest % of ARtD/ADI MRL/input for RA Exposure (mg/kg) Highest % of ARtD/ADI MRL/input for RA Exposure (mg/kg) Highest % of ARtD/ADI Processed commodities (mg/kg) (µg/kg) 3% Apples/juice 0.01/0.01 0.54 2% Apples/juice 0.01/0.01 C 2% Pears/juice 0.01/0.01 0.53 0.8% Oranges/juice 0.01/0.01 C 1% Peaches/canned 0.01/0.01 0.25 0.23 0.4% Peaches/canned 0.01/0.01 C 0.8% Peaches/juice 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 C 0.6% Sugar canes/sugar 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 C 0.5% Sugar canes/sugar 0.01/0.01 0.03 0.06% Quinces/jam 0.01/0.01 C 0.2% Lemons/jam 0.01/0.01 0.03 0.06%									
IESTI IESTI Highest % of ARtD/ADI for RA Exposure (ug/kg bw) Highest % of ARtD/ADI Processed commodities for RA Exposure (ug/kg bw) 3% Apples/juice 0.01/0.01 0.54 2% Apples/juice 0.01/0.01 3% Oranges/juice 0.01/0.01 0.53 0.8% Oranges/juice 0.01/0.01 0.53 1% Peaches/canned 0.01/0.01 0.28 0.5% Grapefruits/juice 0.01/0.01 0.03 0.8% Peaches/canned 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.01 0.8% Peaches/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.09 0.5% Plums/juice 0.01/0.01 0.09 0.09% Lemons/jam 0.01/0.01 0.03 0.2% Lemons/jam 0.01/0.01 0.03 0.06% Quinces/jam 0.01/0.01 0.02 0.2% Lemons/jam 0.01/0.01 0.03 0.04% Quinces/jam 0.01/0.01			mmodities for which ARfD/ADI is exceeded				mmodities for which ARfD/ADI is exceeded		
MRL/input MRL/input MRL/input Highest % of for RA Exposure Highest % of for RA Exp ARID/ADI Processed commodities (mg/kg) (µg/kg bw) ARID/ADI Processed commodities (mg/kg) (µg/kg bw) 3% Apples/juice 0.01/0.01 0.54 2% Apples/juice 0.01/0.01 0.53 2% Pears/juice 0.01/0.01 0.33 0.6% Matze/oil 0.01/0.01 0.26 1% Peaches/canned 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.26 0.8% Peaches/juice 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.09 0.8% Peaches/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.09 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.09% Lemons/june 0.01/0.01 0.09 0.4% Coconuts/drink 0.01/0.01 0.03 0.06% Quinces/jam 0.01	Ľ,								-
Highest % of ARID/ADI For RA Exposure (mg/kg) Highest % of (µg/kg bw) Highest % of ARID/ADI For cessed commodities for RA Exp (µg/kg bw) 3% Apples/juice 0.01/0.01 0.54 2% Apples/juice 0.01/0.01 0.53 3% Oranges/juice 0.01/0.01 0.53 0.8% Oranges/juice 0.01/0.01 0.53 2% Pear/s/juice 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.01 1% Pear/s/juice 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.01 0.8% Peaches/canned 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.01 0.8% Peaches/juice 0.01/0.01 0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.01 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.06% Quinces/jam 0.01/0.01 0.01 0.4% Coconuts/drink 0.01/0.01 0.03 0.06% Quinces/jam	μ	ESTI				IESTI			
ÂRD/ADI Processed commodities (mg/kg) (µg/kg bw) ÂRD/ADI Processed commodities (mg/kg) (µg/kg 3% Apples/juice 0.01/0.01 0.54 2% Apples/juice 0.01/0.01 0 3% Oranges/juice 0.01/0.01 0.53 0.8% Oranges/juice 0.01/0.01 0 2% Pears/juice 0.01/0.01 0.33 0.6% Maize/oil 0.01/0.25 0 1% Peaches/canned 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0 0.8% Peaches/juice 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0 0.5% Plums/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0 0.4% Coconuts/drink 0.01/0.01 0.03 0.06% Quinces/jam 0.01/0.01 0 0.2% <t< td=""><td></td><td>Highost % of</td><td></td><td></td><td>Evennurg</td><td>Highpot % of</td><td></td><td></td><td>Eve</td></t<>		Highost % of			Evennurg	Highpot % of			Eve
3% Apples/juice 0.01/0.01 0.54 2% Apples/juice 0.01/0.01 0.5 3% Oranges/juice 0.01/0.01 0.53 0.8% Oranges/juice 0.01/0.01 0.5 2% Pears/juice 0.01/0.01 0.33 0.6% Maize/oil 0.01/0.01 0.2 1% Peaches/canned 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.2 0.8% Peaches/juice 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.0 0.8% Peaches/juice 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.0 0.5% Plums/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.0 0.4% Coconuts/drink 0.01/0.01 0.09 0.06% Quinces/jam 0.01/0.01 0.0 0.2% Lemons/jam 0.01/0.01 0.03 0.06% Quinces/jam 0.01/0.01 0.0 0.2% Lemons/jam <td></td> <td></td> <td>Processed commodities</td> <td></td> <td></td> <td></td> <td>Processed commodities</td> <td></td> <td></td>			Processed commodities				Processed commodities		
3% Oranges/juice 0.01/0.01 0.53 0.8% Oranges/juice 0.01/0.01 0.23 2% Pears/juice 0.01/0.01 0.33 0.6% Maize/oil 0.01/0.01 0.23 1% Peaches/canned 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.01 1% Maize/oil 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.01 0.8% Peaches/canned 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.01 0.8% Peaches/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.01 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0.01 0.4% Coconuts/drink 0.01/0.01 0.03 0.2% Lemons/jam 0.01/0.01 0.03 0.2% Lemons/jam 0.01/0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01	H								(μg/κ 0.:
2% Pears/juice 0.01/0.01 0.33 0.6% Maize/oil 0.01/0.25 0.01/0.25 1% Peaches/canned 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.01 1% Maize/oil 0.01/0.25 0.23 0.4% Peaches/canned 0.01/0.01 0.01 0.8% Peaches/juice 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.01 0.5% Plums/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.09 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0.09 0.4% Coconuts/drink 0.01/0.01 0.09 0.06% Quinces/jam 0.01/0.01 0.03 0.2% Lemons/jam 0.01/0.01 0.03 0.01% Rapseeds/oils 0.01/0.01 0.03 0.1% Maize/processed (not specified) 0.01/0.01 0.02 0.01 0.04 Expand/collapse list Expand/collapse list <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.</td></td<>									0.
1% Peaches/canned 0.01/0.01 0.26 0.5% Grapefruits/juice 0.01/0.01 0.01 1% Maize/oil 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.01 0.8% Peaches/juice 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.01 0.5% Plums/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.01 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0.01 0.4% Coconuts/drink 0.01/0.01 0.09 0.06% Quinces/jam 0.01/0.01 0.01 0.2% Lemons/jam 0.01/0.01 0.03 0.06% Quinces/jam 0.01/0.01 0.02 0.0% Rapeseeds/oils 0.01/0.01 0.02 0.01 0.02 0.01 0.04 0.0% Limes/juice 0.01/0.01 0.00 Immediate processed (not specified) 0.01/0.01 0.00 0.0% Limes									0.
1% Maize/oil 0.01/0.25 0.23 0.4% Peaches/canned 0.01/0.01 0.01 0.8% Peaches/juice 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.01 0.5% Plums/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.01 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.01 0.4% Coconuts/drink 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0.03 0.2% Lemons/jam 0.01/0.01 0.03 0.1% Maize/processed (not specified) 0.01/0.01 0.02 0.1% Maize/processed (not specified) 0.01/0.01 0.02 0.01 0.00 Immediate Immediat Immediat Immediat									0.
0.8% Peaches/juice 0.01/0.01 0.17 0.3% Sugar canes/sugar 0.01/0.01 0.0 0.5% Plums/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.0 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.0 0.4% Coconuts/drink 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0.0 0.2% Lemons/jam 0.01/0.01 0.03 0.06% Quinces/jam 0.01/0.01 0.0 0.1% Maize/processed (not specified) 0.01/0.01 0.02 0.01 0.04 0.00% Lemons/juice 0.01/0.01 0.02 0.0% Limes/juice 0.01/0.01 0.00 0.00 Lemons/jam 0.01/0.01 0.00									0.
0.5% Plums/juice 0.01/0.01 0.09 0.2% Coconuts/drink 0.01/0.01 0.0 0.5% Sugar canes/sugar 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0.0 0.4% Coconuts/drink 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0.0 0.2% Lemons/jam 0.01/0.01 0.03 0.06% Quinces/jam 0.01/0.01 0.0 0.2% Lemons/jam 0.01/0.01 0.03 0.1% Mize/processed (not specified) 0.01/0.01 0.02 0.04 0.04 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.00 0.04 0.04 0.01/0.01 0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04									0.0
0.5% Sugar canes/sugar 0.01/0.01 0.09 0.09% Lemons/juice 0.01/0.01 0.00 0.4% Coconuts/drink 0.01/0.01 0.09 0.06% Quinces/jam 0.01/0.01 0.09 0.2% Lemons/jam 0.01/0.01 0.03 0.03 0.01% 0.01 0.03 0.2% Lemons/jam 0.01/0.01 0.03 0.03 0.01% 0.01 0.02 0.1% Maize/processed (not specified) 0.01/0.01 0.02 0.01 0.01 0.02 0.0% Rapeseeds/oils 0.01/0.01 0.00 0.00 Expand/collapse list Expand/collapselist Expand/collapse list	- I								0.
0.4% Coconuts/drink 0.01/0.01 0.09 0.06% Quinces/jam 0.01/0.01 0.01 0.2% Lemons/jam 0.01/0.01 0.03 0.2% Lemons/jam 0.01/0.01 0.03 0.1% Maize/processed (not specified) 0.01/0.01 0.02 0.01 0.02 0.06% Quinces/jam 0.01/0.01 0.02 0.0% Rapeseeds/oils 0.01/0.01 0.02 0.01 0.00 Expand/collapse list Expand/colap									0.
0.2% Lemons/jam 0.01/0.01 0.03 0.2% Lemons/jam 0.01/0.01 0.03 0.1% Mize/processed (not specified) 0.01/0.01 0.02 0.0% Rapeseeds/oils 0.01/0.02 0.01 0.0% Limes/juice 0.01/0.01 0.00									0.
0.2% Lemons/jam 0.01/0.01 0.03 0.1% Maize/processed (not specified) 0.01/0.01 0.02 0.0% Rapseed5/oils 0.01/0.02 0.01 0.0% Limes/juice 0.01/0.01 0.00 Expand/collapse list						0.0070	a an loos jam	0.01/0.01	0.
0.1% Maize/processed (not specified) 0.01/0.01 0.02 0.0% Rapeseds/oils 0.01/0.02 0.01 0.0% Limes/juice 0.01/0.01 0.00									
0.0% Rapeseeds/oils 0.01/0.02 0.01 0.0% Limes/juice 0.01/0.01 0.00 Expand/collapse list									
0.0% Limes/juice 0.01/0.01 0.00 Expand/collapse list		0.2%							
Expand/collapse list		0.2% 0.1%			0.01	1			
		0.2% 0.1% 0.0%	Rapeseeds/oils		0.00				
Conclusion:		0.2% 0.1% 0.0%	Rapeseeds/oils		0.00				
	E	0.2% 0.1% 0.0% 0.0%	Rapeseeds/oils Limes/juice		0.00				

-	*	C				onazole				t values	$ \longrightarrow $	
	***•	fsa		LOQs (mg/kg) range f		0.02 to: reference values	0.15		- chronic risk ssment	Supplementary chronic risk ass		
				ADI (mg/kg bw per da	y):	0.01 ARfD (mg/kg bw):	0.01			·	$ \longrightarrow$	
Ει	uropean Foo	d Safety Authority		Source of ADI:		Source of ARfD:			– acute risk ent/children	Details – ac assessment,		
		vision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation		855655111	ent/children	assessment,	auuits)
nent	S:											
						Normal mode						
					Chronic risk asse	essment: JMPR methodolog	ıy (IEDI/TMDI)					
				No of diets exceeding	the ADI :						Exposure	
											MRLs set at the LOQ	t comm under a
	Calculated exposure		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor t MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI)) (in %
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
Τ	44%	NL toddler	4.37	24%	Milk: Cattle	5%	Bananas		2%	Apples	33%	
	23%	UK infant NL child	2.30	15% 10%	Milk: Cattle Milk: Cattle	1% 2%	Bananas		1% 2%	Potatoes	20% 16%	
	23% 20%	DE child	2.28 2.04	10%	Milk: Cattle Milk: Cattle	2%	Bananas Apples		2%	Sugar beet roots Wheat	16%	
	20%	FR toddler 2 3 vr	1.96	12%	Milk: Cattle	1%	Wheat		0.7%	Potatoes	17%	
	19%	FR child 3 15 yr	1.90	9%	Milk: Cattle	2%	Wheat		0.7%	Sugar beet roots	15%	1
	16%	UK toddler	1.62	8%	Milk: Cattle	2%	Wheat		1%	Potatoes	12%	
	14%	DK child	1.42	5%	Milk: Cattle	2%	Wheat		1%	Bananas	10%	
	14% 14%	SE general ES child	1.42 1.37	5% 5%	Milk: Cattle Milk: Cattle	2% 2%	Bananas Wheat		2% 1%	Bovine: Muscle/meat Bananas	11% 10%	1
	14%	RO general	1.37	5%	Milk: Cattle	2%	Wheat		1%	Potatoes	9%	
	12%	GEMS/Food G11	1.32	3%	Milk: Cattle	2%	Potatoes		1%	Wheat	9%	
	12%	GEMS/Food G15	1.24	3%	Milk: Cattle	2%	Wheat		1%	Potatoes	8%	
	12%	GEMS/Food G07	1.23	3%	Milk: Cattle	2%	Wheat		2%	Potatoes	8%	
	12%	GEMS/Food G08	1.22	2%	Milk: Cattle	2%	Wheat		2%	Potatoes	8%	1
	12% 11%	DE women 14-50 yr	1.15	5% 3%	Milk: Cattle Wheat	0.9%	Sugar beet roots Milk: Cattle		0.9%	Wheat	9%	
	11%	GEMS/Food G06 DE general	1.14 1.13	3% 5%	Wheat Milk: Cattle	1.0%	Milk: Cattle Sugar beet roots		0.8%	Potatoes Wheat	6% 9%	
	11%	GEMS/Food G10	1.13	2%	Milk: Cattle	2%	Wheat		1%	Potatoes	7%	
	11%	IE adult	1.09	2%	Milk: Cattle	1%	Sweet potatoes		0.9%	Wheat	8%	
	10%	FR infant	1.02	7%	Milk: Cattle	0.8%	Potatoes		0.3%	Apples	9%	
	10%	NL general	0.99	3%	Milk: Cattle	1.0%	Potatoes		0.8%	Wheat	7%	
	8% 7%	Fladult	0.77	6% 2%	Coffee beans Milk: Cattle	0.5%	Potatoes		0.3%	Bananas	7%	C
	7%	ES adult PT general	0.71	2%	Milk: Cattle Potatoes	2%	Wheat Wheat		0.4%	Potatoes Wine grapes	5% 4%	
	7%	FR adult	0.68	2%	Milk: Cattle	0.9%	Wheat		0.5%	Wine grapes	5%	
	6%	FI 3 yr	0.61	2%	Potatoes	1%	Bananas		0.5%	Wheat	4%	
	6%	DK adult	0.58	2%	Milk: Cattle	0.5%	Potatoes		0.5%	Bananas	5%	
	6% 5%	IT toddler	0.55	3% 2%	Wheat Milk: Cattle	0.5%	Bananas		0.4%	Potatoes	2% 5%	
	5% 5%	LT adult UK vegetarian	0.54	2%	Milk: Cattle Milk: Cattle	1%	Potatoes Wheat		0.4%	Wheat Potatoes	5%	
	5%	FI 6 yr	0.48	2%	Potatoes	0.8%	Bananas		0.4%	Wheat	3%	
	5%	UK adult	0.47	1%	Milk: Cattle	0.7%	Wheat		0.6%	Potatoes	3%	
	4%	IT adult	0.38	2%	Wheat	0.2%	Potatoes		0.2%	Tomatoes	1%	0
	3% 3%	PL general IE child	0.30	1% 1%	Potatoes Milk: Cattle	0.4%	Apples Wheat		0.2%	Bananas Potatoes	2% 2%	
	370	12 01m0	0.50	170	min. outile	0.5%	····odt		0.270	. 0101003	2 /0	1 1

Details – acute risk assessment/children

Acute risk assessment/adults/general population

Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the

ne calculation is based	on the large	portion of the	most critical	consumer group.	

Results for childre No. of commodities (IESTI):	n for which ARfD/ADI is exceeded			Results for adults No. of commodities (IESTI):	for which ARfD/ADI is exceeded		
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposur
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg b
97%	Bananas	0.1/0.1	9.7	30%	Blueberries	0.5/0.33	3.0
81%	Peaches	0.2/0.09	8.1	21%	Bananas	0.1/0.1	2.1
62%	Potatoes	0.04/0.04	6.2	16%	Peaches	0.2/0.09	1.6
50%	Milk: Cattle	0.04/0.04	5.0	15%	Milk: Cattle	0.04/0.04	1.5
30%	Apricots	0.2/0.09	3.0	14%	Cherries (sweet)	0.3/0.14	1.4
20%	Blueberries	0.5/0.33	2.0	12%	Potatoes	0.04/0.04	1.2
19%	Plums	0.1/0.05	1.9	11%	Yams	0.04/0.04	1.1
17%	Cherries (sweet)	0.3/0.14	1.7	9%	Apricots	0.2/0.09	0.92
12%	Yams	0.04/0.04	1.2	8%	Sweet potatoes	0.04/0.04	0.83
11%	Onions	0.05/0.05	1.1	8%	Plums	0.1/0.05	0.80
10%	Milk: Goat	0.04/0.04	0.97	7%	Onions	0.05/0.05	0.74
7%	Beans	0.15/0.04	0.73	7%	Milk: Goat	0.04/0.04	0.74
7%	Poultry: Muscle/meat	0.04/0.04	0.68	6%	Milk: Sheep	0.04/0.04	0.60
5%	Eggs: Chicken	0.04/0.04	0.50	5%	Poultry: Muscle	0.04/0.04	0.47
5%	Swine: Muscle/meat	0.04/0.04	0.48	3%	Beans	0.15/0.04	0.26
Expand/collapse list	t						
Total number of co and adult diets (IESTI calculation)	ommodities exceeding the ARfD/A	OI in children					
Results for childre			Results for adults				
No of processed co exceeded (IESTI):	to of processed commodities for which ARfD/ADI is xceeded (IESTI):			No of processed co exceeded (IESTI):	mmodities for which ARfD/ADI is		
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposu
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg b

Highest % of ARD/ADI For RA Processed commodities (mg/kg) for RA (mg/kg) Exposure (mg/kg) Highest % of (mg/kg) for RA (mg/kg) Exposure (mg/kg) for RA (mg/kg) for RA (mg/kg)	σ			MRL/input				MRL/input	
24% Potatoes/dned (flakes) 0.04/0.18 2.4 8% Cassava roots/boiled 0.04/0.04 0.76 22% Peaches/canned 0.2/0.09 2.2 7% Peaches/canned 0.2/0.09 0.69 22% Sugar beets (root)/sugar 0.07/0.24 2.2 6% Sweet potatoes/boiled 0.04/0.04 0.62 20% Sweet potatoes/boiled 0.04/0.04 2.0 5% Onions/boiled 0.05/0.05 0.47 7% Peaches/juice 0.2/0.05 0.75 3% Potatoes/chips 0.04/0.04 0.34 4% Plums/juice 0.1/0.04 0.38 3% Beans/canned 0.15/0.04 0.29 3% Lentils/boiled 0.15/0.02 0.30 1% Maize/oil 0.1/0.25 0.13 3% Peas/canned 0.15/0.02 0.23 1% Sugar canes/sugar 0.06/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.12 2% Su	se	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
24% Potatoes/dned (flakes) 0.04/0.18 2.4 8% Cassava roots/boiled 0.04/0.04 0.76 22% Peaches/canned 0.2/0.09 2.2 7% Peaches/canned 0.2/0.09 0.69 22% Sugar beets (root)/sugar 0.07/0.24 2.2 6% Sweet potatoes/boiled 0.04/0.04 0.62 20% Sweet potatoes/boiled 0.04/0.04 2.0 5% Onions/boiled 0.05/0.05 0.47 7% Peaches/juice 0.2/0.05 0.75 3% Potatoes/chips 0.04/0.04 0.34 4% Plums/juice 0.1/0.04 0.38 3% Beans/canned 0.15/0.04 0.29 3% Lentils/boiled 0.15/0.02 0.30 1% Maize/oil 0.1/0.25 0.13 3% Peas/canned 0.15/0.02 0.23 1% Sugar canes/sugar 0.06/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.12 2% Su	se	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)
24% Potatoes/dned (flakes) 0.04/0.18 2.4 8% Cassava roots/boiled 0.04/0.04 0.76 22% Peaches/canned 0.2/0.09 2.2 7% Peaches/canned 0.2/0.09 0.69 22% Sugar beets (root)/sugar 0.07/0.24 2.2 6% Sweet potatoes/boiled 0.04/0.04 0.62 20% Sweet potatoes/boiled 0.04/0.04 2.0 5% Onions/boiled 0.05/0.05 0.47 7% Peaches/juice 0.2/0.05 0.75 3% Potatoes/chips 0.04/0.04 0.34 4% Plums/juice 0.1/0.04 0.38 3% Beans/canned 0.15/0.04 0.29 3% Lentils/boiled 0.15/0.02 0.30 1% Maize/oil 0.1/0.25 0.13 3% Peas/canned 0.15/0.02 0.23 1% Sugar canes/sugar 0.06/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.12 2% Su	ĕ	37%	Potatoes/fried	0.04/0.04	3.7	9%	Sugar beets (root)/sugar	0.07/0.24	0.88
22% Sugar beets (root)/sugar 0.07/0.24 2.2 6% Sweet potatoes/boiled 0.04/0.04 0.62 20% Sweet potatoes/boiled 0.04/0.04 2.0 5% Onions/boiled 0.05/0.05 0.47 7% Peaches/juice 0.2/0.05 0.75 3% Potatoes/chips 0.04/0.04 0.34 4% Plums/juice 0.1/0.04 0.38 3% Beans/canned 0.15/0.04 0.29 3% Lentils/boiled 0.15/0.02 0.34 2% Potatoes/dried (flakes) 0.04/0.18 0.23 3% Beans/canned 0.15/0.02 0.30 1% Maize/oil 0.1/0.25 0.13 3% Beans (with pods/boiled 0.05/0.02 0.25 1% Sugar canes/sugar 0.06/0.02 0.12 2% Sunflower seeds/oils 1.5/0.18 0.21 0.6% Peas/canned 0.15/0.02 0.11 2% Sugar canes/sugar 0.06/0.02 0.19 0.6% Peas/without pods/boiled 0.02/0.02 0.06		24%	Potatoes/dried (flakes)	0.04/0.18	2.4	8%	Cassava roots/boiled	0.04/0.04	0.76
20% Sweet potatoes/boiled 0.04/0.04 2.0 5% Onions/boiled 0.05/0.05 0.47 7% Peaches/juice 0.2/0.05 0.75 3% Potatoes/chips 0.04/0.04 0.34 4% Plums/juice 0.1/0.04 0.38 3% Beans/canned 0.15/0.04 0.29 3% Lentils/toolied 0.15/0.04 0.34 2% Potatoes/chips 0.04/0.04 0.29 3% Peas/canned 0.15/0.02 0.30 1% Maize/oil 0.1/0.25 0.13 3% Beans (with pods/boiled 0.05/0.02 0.23 1% Sugar canes/sugar 0.06/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.11 2% Sugar canes/sugar 0.06/0.02 0.19 0.6% Peas/canned 0.02/0.02 0.06 2% Sugar canes/sugar 0.06/0.02 0.19 0.1% Arrowroots/starch 0.04/0.04 0.01 0.8% Peas (wit		22%	Peaches/canned	0.2/0.09	2.2	7%	Peaches/canned	0.2/0.09	0.69
7% Peaches/juice 0.2/0.05 0.75 3% Potatoes/chips 0.04/0.04 0.34 4% Plums/juice 0.1/0.04 0.38 3% Beans/canned 0.15/0.04 0.29 3% Lentils/boiled 0.15/0.04 0.34 2% Potatoes/clied (flakes) 0.04/0.18 0.23 3% Peas/canned 0.15/0.02 0.30 1% Maize/oil 0.1/0.25 0.13 3% Beans (with pods)/boiled 0.05/0.02 0.25 1% Sugar canes/sugar 0.06/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.12 2% Sugar canes/sugar 0.06/0.02 0.19 0.6% Peas/ (without pods)/boiled 0.02/0.02 0.06 2% Sugar canes/sugar 0.06/0.02 0.19 0.1% Arrowroots/starch 0.04/0.04 0.01 0.8% Peas (without pods)/canned 0.02/0.01 0.08 0.33 Arrowroots/starch 0.04/0.04 0.03		22%	Sugar beets (root)/sugar	0.07/0.24	2.2	6%	Sweet potatoes/boiled	0.04/0.04	0.62
4% Plums/juce 0.1/0.04 0.38 3% Beans/canned 0.15/0.04 0.29 3% Lentils/boiled 0.15/0.04 0.34 2% Potatoes/dried (flakes) 0.04/0.18 0.23 3% Peas/canned 0.15/0.02 0.30 1% Maize/oil 0.1/0.25 0.13 3% Beans (with pods)/boiled 0.05/0.02 0.25 1% Sugar canes/sugar 0.06/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.12 2% Sunflower seeds/oils 1.5/0.18 0.21 0.6% Peas (without pods)/boiled 0.02/0.02 0.06 2% Sugar canes/sugar 0.06/0.02 0.19 0.1% Arrowroots/starch 0.04/0.04 0.03 0.3% Arrowroots/starch 0.04/0.04 0.03 0.34 0.34 0.34 0.34		20%	Sweet potatoes/boiled	0.04/0.04	2.0	5%	Onions/boiled	0.05/0.05	0.47
3% Lentils/boiled 0.15/0.04 0.34 2% Potatoes/dried (flakes) 0.04/0.18 0.23 3% Peas/canned 0.15/0.02 0.30 1% Maize/oil 0.1/0.25 0.13 3% Peas/canned 0.05/0.02 0.25 1% Sugar canes/sugar 0.06/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.12 2% Sunflower seeds/oils 1.5/0.18 0.21 0.6% Peas/canned 0.02/0.02 0.06 2% Sugar canes/sugar 0.06/0.02 0.19 0.1% Arrowroots/starch 0.04/0.04 0.01 0.8% Peas (without pods)/canned 0.02/0.02 0.06 0.4/0.04 0.01 0.3% Arrowroots/starch 0.04/0.04 0.03 Arrowroots/starch 0.04/0.04 0.03		7%	Peaches/juice	0.2/0.05	0.75	3%	Potatoes/chips	0.04/0.04	0.34
3% Peas/canned 0.15/0.02 0.30 1% Maize/oil 0.1/0.25 0.13 3% Beans (with pods)/boiled 0.05/0.02 0.25 1% Sugar canes/sugar 0.06/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.11 2% Sunflower seeds/oils 1.5/0.18 0.21 0.6% Peas/canned 0.02/0.02 0.06 2% Sugar canes/sugar 0.06/0.02 0.19 0.1% Arrowroots/starch 0.04/0.04 0.01 0.8% Peas (without pods)/canned 0.02/0.01 0.08 0.33 Arrowroots/starch 0.04/0.04 0.03		4%	Plums/juice	0.1/0.04	0.38	3%	Beans/canned	0.15/0.04	0.29
3% Beans (with pods)/boiled 0.05/0.02 0.25 1% Sugar canes/sugar 0.06/0.02 0.12 2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.11 2% Sunflower seeds/oils 1.5/0.18 0.21 0.6% Peas (without pods)/boiled 0.02/0.02 0.06 2% Sugar canes/sugar 0.06/0.02 0.19 0.1% Arrowroots/starch 0.04/0.04 0.03 0.3% Arrowroots/starch 0.04/0.04 0.03 0.03 Arrowroots/starch 0.04/0.04 0.03		3%	Lentils/boiled	0.15/0.04	0.34	2%	Potatoes/dried (flakes)	0.04/0.18	0.23
2% Maize/oil 0.1/0.25 0.23 1% Peas/canned 0.15/0.02 0.11 2% Sunflower seeds/oils 1.5/0.18 0.21 0.6% Peas (without pods)/boiled 0.02/0.02 0.06 2% Sugar canes/sugar 0.06/0.02 0.19 0.1% Arrowroots/starch 0.04/0.04 0.01 0.3% Arrowroots/starch 0.04/0.04 0.03 0.03 0.04/0.04 0.03		3%	Peas/canned	0.15/0.02	0.30	1%	Maize/oil	0.1/0.25	0.13
2% Sunflower seeds/oils 1.5/0.18 0.21 0.6% Peas (without pods)/boiled 0.02/0.02 0.06 2% Sugar canes/sugar 0.06/0.02 0.19 0.1% Arrowroots/starch 0.04/0.04 0.01 0.8% Peas (without pods)/canned 0.02/0.01 0.08 0.04/0.04 0.01 0.3% Arrowroots/starch 0.04/0.04 0.03 0.03 0.04/0.04 0.03		3%	Beans (with pods)/boiled	0.05/0.02	0.25	1%	Sugar canes/sugar	0.06/0.02	0.12
2% Sugar canes/sugar 0.06/0.02 0.19 0.1% Arrowroots/starch 0.04/0.04 0.01 0.8% Peas (without pods)/canned 0.02/0.01 0.08 0.3% Arrowroots/starch 0.04/0.04 0.03		2%	Maize/oil	0.1/0.25	0.23	1%	Peas/canned	0.15/0.02	0.11
0.8% Peas (without pods)/canned 0.02/0.01 0.08 0.3% Arrowroots/starch 0.04/0.04 0.03		2%	Sunflower seeds/oils	1.5/0.18	0.21	0.6%	Peas (without pods)/boiled	0.02/0.02	0.06
0.3% Arrowroots/starch 0.04/0.04 0.03		2%	Sugar canes/sugar	0.06/0.02	0.19	0.1%	Arrowroots/starch	0.04/0.04	0.01
		0.8%	Peas (without pods)/canned	0.02/0.01	0.08				
Expand/collapse list		0.3%	Arrowroots/starch	0.04/0.04	0.03				
		Expand/collapse list							

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Metconazole is unlikely to present a public health risk.

For processed commodities, no exceedance of the ARfD/ADI was identified.

-	K *	ſ		LOQs (mg/kg) range f	Metcona	0.02 to:	0.15	Dataila ah		Consultant and		
	** * • •	fsa		LOQS (mg/kg) range i	Toxicological refer		0.15	Details – chronic ri assessment	isk	Supplementary chronic risk ass		
	L			ADI (mg/kg bw per da		0.01 ARfD (mg/kg bw):	0.01		\rightarrow			
E	uropean Food	Safety Authority		Source of ADI:		Source of ARfD:		Details – acute ris assessment/childre		Details – acu assessment/		
		sion 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:		ussessmenty emiliare		ussessment	udunts	
ner	ls:											
					!	lormal mode						
					Chronic risk asses	sment: JMPR method	lology (IEDI/TMDI)					
				No of diets exceeding	the ADI :	-					Exposure	
			-								MRLs set at the LOQ	commodi under asse
	Calculated exposure		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		outor to MS iet	commodity/	(in % of ADI)	(in % d
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % (of ADI) g	roup of commodities		
		NL toddler	4.37	24%	Milk: Cattle	5%	Bananas			pples	33%	35
		UK infant NL child	2.30 2.28	15% 10%	Milk: Cattle Milk: Cattle	1% 2%	Bananas Bananas			otatoes Jugar beet roots	20% 16%	20 17
		DE child	2.28	8%	Milk: Cattle	2%	Apples			Vheat	16%	13
		FR toddler 2 3 yr	1.96	12%	Milk: Cattle	1%	Wheat			otatoes	17%	16
	19%	FR child 3 15 yr	1.90	9%	Milk: Cattle	2%	Wheat	0.1	7% S	iugar beet roots	15%	14
		UK toddler	1.62	8%	Milk: Cattle	2%	Wheat			otatoes	12%	13
		DK child	1.42	5%	Milk: Cattle	2%	Wheat			ananas	10%	9
		SE general	1.42	5%	Milk: Cattle	2%	Bananas			ovine: Muscle/meat	11% 10%	11
		ES child RO general	1.37 1.32	5% 5%	Milk: Cattle Milk: Cattle	2% 2%	Wheat Wheat			ananas otatoes	10%	99
		GEMS/Food G11	1.24	3%	Milk: Cattle	2%	Potatoes			Vheat	9%	7
		GEMS/Food G15	1.24	3%	Milk: Cattle	2%	Wheat			otatoes	8%	89
		GEMS/Food G07	1.23	3%	Milk: Cattle	2%	Wheat			otatoes	8%	79
		GEMS/Food G08	1.22	2%	Milk: Cattle	2%	Wheat			otatoes	8%	79
		DE women 14-50 yr	1.15	5%	Milk: Cattle	0.9%	Sugar beet roots			Vheat	9%	8
		GEMS/Food G06	1.14 1.13	3% 5%	Wheat Milk: Cattle	1.0%	Milk: Cattle Sugar beet roots			otatoes	6% 9%	59
		DE general GEMS/Food G10	1.13	2%	Milk: Cattle	2%	Wheat			Vheat otatoes	9% 7%	6
		IE adult	1.09	2%	Milk: Cattle	1%	Sweet potatoes			Vheat	8%	7
		FR infant	1.02	7%	Milk: Cattle	0.8%	Potatoes			pples	9%	9'
		NL general	0.99	3%	Milk: Cattle	1.0%	Potatoes			Vheat	7%	7
		Fladult	0.77	6%	Coffee beans	0.5%	Potatoes			ananas	7%	0.9
		ES adult	0.71	2% 2%	Milk: Cattle	0.9%	Wheat Wheat			otatoes	5%	4
		PT general FR adult	0.68	2% 2%	Potatoes Milk: Cattle	2% 0.9%	Wheat			Vine grapes Vine grapes	4% 5%	39
		FI 3 yr	0.61	2%	Potatoes	1%	Bananas			Vheat	4%	4
		DK adult	0.58	2%	Milk: Cattle	0.5%	Potatoes			lananas	5%	4
		IT toddler	0.55	3%	Wheat	0.5%	Bananas			otatoes	2%	19
		LT adult	0.54	2%	Milk: Cattle	1%	Potatoes			Vheat	5%	49
		UK vegetarian	0.48	1% 2%	Milk: Cattle Potatoes	0.8%	Wheat			otatoes	3% 3%	39
		FI 6 yr UK adult	0.47 0.47	2% 1%	Potatoes Milk: Cattle	0.8%	Bananas Wheat			Vheat otatoes	3%	39
		IT adult	0.38	2%	Wheat	0.2%	Potatoes			omatoes	1%	0.9
	3%	PL general	0.30	1%	Potatoes	0.4%	Apples	0.3	2% E	lananas	2%	29
	3%	IE child	0.30	1%	Milk: Cattle	0.5%	Wheat	0.1	2% F	otatoes	2%	25

Acute risk assessment/adults/general population

Details – acute risk assessment/children

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

Show results of IESTI calculation only for crops with GAPs under assessment

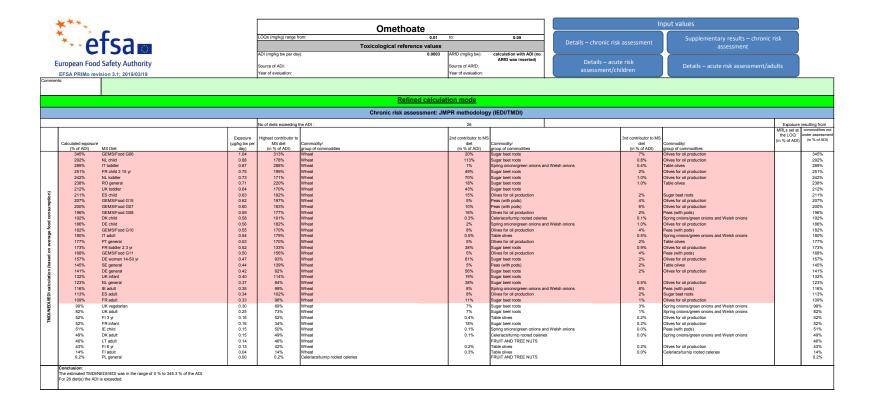
n o	exceeded (IESTI):				exceeded (IESTI):					
gc	IESTI				IESTI					
Unprocessed commodities	Highest % of ARfD/ADI	Commodities	MRL/input for RA Exposu nodities (mg/kg) (µg/kg b		Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)		
du	97%	Bananas	0.1/0.1	(µg/kg bw) 9.7	30%	Blueberries	0.5/0.33	(µg/kg bw) 3.0		
∍	81%	Peaches	0.2/0.09	8.1	21%	Bananas	0.1/0.1	2.1		
	62%	Potatoes	0.04/0.04	6.2	16%	Peaches	0.2/0.09	1.6		
	50%	Milk: Cattle	0.04/0.04	5.0	15%	Milk: Cattle	0.04/0.04	1.5		
	30%	Apricots	0.2/0.09	3.0	14%	Cherries (sweet)	0.3/0.14	1.4		
	20%	Blueberries	0.5/0.33	2.0	12%	Potatoes	0.04/0.04	1.2		
	19%	Plums	0.1/0.05	1.9	11%	Yams	0.04/0.04	1.1		
	17%	Cherries (sweet)	0.3/0.14	1.7	9%	Apricots	0.2/0.09	0.92		
	12%	Yams	0.04/0.04	1.2	8%	Sweet potatoes	0.04/0.04	0.83		
	11%	Onions	0.05/0.05	1.1	8%	Plums	0.1/0.05	0.80		
	10%	Milk: Goat	0.04/0.04	0.97	7%	Onions	0.05/0.05	0.74		
	7%	Beans	0.15/0.04	0.73	7%	Milk: Goat	0.04/0.04	0.74		
	7%	Poultry: Muscle/meat	0.04/0.04	0.68	6%	Milk: Sheep	0.04/0.04	0.60		
	5%	Eggs: Chicken	0.04/0.04	0.50	5%	Poultry: Muscle	0.04/0.04	0.47		
	5%	Swine: Muscle/meat	0.04/0.04	0.48	3%	Beans	0.15/0.04	0.26		
	Expand/collapse list									

No of processed con is exceeded (IESTI)	mmodities for which ARfD/ADI			No of processed con is exceeded (IESTI)	mmodities for which ARfD/ADI		
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposu
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg l
37%	Potatoes/fried	0.04/0.04	3.7	9%	Sugar beets (root)/sugar	0.07/0.24	0.88
24%	Potatoes/dried (flakes)	0.04/0.18	2.4	8%	Cassava roots/boiled	0.04/0.04	0.76
22%	Peaches/canned	0.2/0.09	2.2	7%	Peaches/canned	0.2/0.09	0.69
22%	Sugar beets (root)/sugar	0.07/0.24	2.2	6%	Sweet potatoes/boiled	0.04/0.04	0.62
20%	Sweet potatoes/boiled	0.04/0.04	2.0	5%	Onions/boiled	0.05/0.05	0.47
7%	Peaches/juice	0.2/0.05	0.75	3%	Potatoes/chips	0.04/0.04	0.34
4%	Plums/juice	0.1/0.04	0.38	3%	Beans/canned	0.15/0.04	0.29
3%	Lentils/boiled	0.15/0.04	0.34	2%	Potatoes/dried (flakes)	0.04/0.18	0.23
3%	Peas/canned	0.15/0.02	0.30	1%	Maize/oil	0.1/0.25	0.13
3%	Beans (with pods)/boiled	0.05/0.02	0.25	1%	Sugar canes/sugar	0.06/0.02	0.12
2%	Maize/oil	0.1/0.25	0.23	1%	Peas/canned	0.15/0.02	0.11
2%	Sunflower seeds/oils	1.5/0.18	0.21	0.6%	Peas (without pods)/boiled	0.02/0.02	0.06
2%	Sugar canes/sugar	0.06/0.02	0.19	0.1%	Arrowroots/starch	0.04/0.04	0.01
0.8%	Peas (without pods)/canned	0.02/0.01	0.08	#NUM!	#NUM!	#NUM!	#NUN
0.3%	Arrowroots/starch	0.04/0.04	0.03	#NUM!	#NUM!	#NUM!	#NUN

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Metconazole is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

-	**	~			Methoprene					t values		
	*	fsa		LOQs (mg/kg) range f		to:	0.10	Details – ch		Supplementary		
	- C			ADI (mg/kg bw per da	Toxicological reference va	ARfD (mg/kg bw):			nent	chronic risk as:	sessment	
Б.		d Safety Authority		ADI (IIIg/kg bw per da	y). 0.05	ARID (Hg/kg bw).	n.n.	Details – ad	ruto risk	Details – ac	uto risk	
				Source of ADI:	JMPR	Source of ARfD:	JMPR	assessment/		assessment		
		vision 3.1; 2019/03/19		Year of evaluation:	2005	Year of evaluation:	2005	assessmenty	children	ussessment	ladana	
nents	i:	Chronic nsk assessment conducted usin	ig the MRL set in Reg. (EU) No	899/2012, the STMR	(5 mg/kg, equal to the proposed CXL) and the lower ADI set f	or s-methoprene						
					Normal mo							
					Chronic risk assessment: JMP		(IEDI/TMDI)					
-				No of diets exceeding	the ADI :	3					Exposure MRLs set at	
			Expsoure	Highest contributor to		2nd contributor to			Brd contributor to MS		the LOQ	under as
	Calculated exposur	e	(µg/kg bw per	MS diet	Commodity/	2nd contributor to MS diet	Commodity/	3	diet	Commodity/	(in % of ADI)) (in %
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	136%	NL toddler	67.84	70%	Maize/corn	39%	Wheat		6%	Rice	8%	1
	108% 104%	DK child GEMS/Food G06	54.15 52.07	55% 72%	Rye Wheat	44% 16%	Wheat Rice		4% 13%	Oat Maize/com	2% 2%	0
E	84%	IT toddler	42.09	66%	Wheat	15%	Other cereals		2%	Rice	0.3%	0
L	70%	GEMS/Food G10	34.83	39%	Wheat	13%	Rice		7%	Maize/corn	2%	1
L	68%	GEMS/Food G15	34.07	45%	Wheat	8%	Barley		6%	Maize/corn	2%	0
L	66%	GEMS/Food G08	33.24	41%	Wheat	9%	Barley		6%	Rye	2%	0
L	66%	RO general	32.78	51%	Wheat	10%	Maize/corn		3%	Rice	2%	0
L	61%	DE child	30.35	42%	Wheat	8%	Rye		3%	Rice	4%	0
L	60%	GEMS/Food G07	29.88	42%	Wheat	6%	Barley		3%	Rice	2%	0
L	60%	FR child 3 15 yr	29.78	46%	Wheat	4%	Rice		4%	Maize/corn	4%	0
	55%	NL child ES child	27.53 27.32	41% 44%	Wheat	3% 5%	Maize/corn		3% 3%	Peanuts/groundnuts Maize/corn	4%	0
	55% 55%	PT general	27.32	44% 39%	Wheat	5%	Rice Rice		3%	Maize/com Maize/com	2% 0.7%	0
	53%	GEMS/Food G11	27.29 26.73	39%	Wheat	8%	Rice Barley		3%	Rice	2%	
	51%	IT adult	25.43	41%	Wheat	7%	Other cereals		2%	Rice	0.3%	o
	50%	UK infant	25.13	26%	Wheat	10%	Maize/corn		6%	Rice	5%	ő
	49%	UK toddler	24.67	39%	Wheat	6%	Rice		2%	Milk: Cattle	3%	0
	43%	FR toddler 2 3 yr	21.27	31%	Wheat	6%	Rice		3%	Milk: Cattle	4%	0
L	41%	SE general	20.71	32%	Wheat	4%	Rice		3%	Rye	2%	
L	36%	IE adult	18.10	23%	Wheat	3%	Buckwheat and other pseudo-cereal	s	2%	Rice	2%	0
L	34%	DE general	16.93	19%	Wheat	6%	Rye		5%	Barley	2%	0
L	33%	ES adult	16.48	23%	Wheat	5%	Barley		2%	Rice	1%	0
L	32% 32%	DE women 14-50 yr FI 3 yr	16.17 15.81	21% 12%	Wheat	5% 7%	Rye		2% 6%	Barley Oat	2% 0.6%	0
L	32%	NL general	15.81	12%	Wheat	3%	Rye Barley		1%	Rice	2%	0
L	28%	LT adult	14.04	11%	Rye	11%	Wheat		2%	Rice	0.9%	
	26%	UK vegetarian	13.22	20%	Wheat	4%	Rice		0.5%	Oat	0.7%	0
1	26%	FR adult	13.00	22%	Wheat	2%	Rice		0.6%	Maize/corn	1%	0
	25%	FI 6 yr	12.38	10%	Wheat	6%	Rye		4%	Rice	0.5%	0
L	22%	UK adult	10.96	17%	Wheat	4%	Rice		0.3%	Milk: Cattle	0.8%	0
L	18%	DK adult	9.24	11%	Wheat	5%	Rye		0.8%	Rice	1%	1
	15%	IE child	7.67	12%	Wheat	3%	Rice		0.4%	Milk: Cattle	0.5%	0.
	15% 11%	FI adult FR infant	7.30 5.55	7% 8%	Rye Wheat	3% 2%	Wheat Milk: Cattle		1% 0.7%	Oat Rice	1% 2%	0.
	0.5%	PL general	0.23	0.1%	Potatoes	0.1%	Apples		0.0%	Peanuts/groundnuts	0.4%	0.
												1


Acute risk assessment/children	Acute risk assessment/adults/general population
Details – acute risk assessment/children	Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

			Show	results fo	or all crops			
Unprocessed commodities	Results for childre No. of commodities	n for which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities (IESTI):	for which ARfD/ADI is exceeded		
8	IESTI				IESTI			
sed	12311		MRL/input		12311		MRL/input	
proces	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)
	Expand/collapse list Total number of co	mmodities exceeding the ARfD/ADI in o	children and					
odities	Total number of co adult diets (IESTI calculation) Results for childre No of processed con	mmodities exceeding the ARfD/ADI in o		2		mmodities for which ARfD/ADI is		1
mmodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed cor (IESTI):	mmodities exceeding the ARfD/ADI in o		2	No of processed con exceeded (IESTI):	mmodities for which ARfD/ADI is		1
commodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed con	mmodities exceeding the ARfD/ADI in o	j	2	No of processed co	mmodities for which ARfD/ADI is	MRI /input	1
essed commodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed cor (IESTI):	mmodities exceeding the ARfD/ADI in o		2 Exposure (Jg/kg bw)	No of processed con exceeded (IESTI):	nmodities for which ARfD/ADI is Processed commodities	MRL/input for RA (mg/kg)	Exposure
rocessed commodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of	mmodities exceeding the ARfD/ADI in o	d MRL/input for RA	Exposure	No of processed col exceeded (IESTI): IESTI Highest % of		for RA	1 Exposure (µg/kg bw) 63
Processed commodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 233% 121%	mmodities exceeding the ARfD/ADI in o	MRL/input for RA (mg/kg) 5/125 5/5	Exposure (µg/kg bw) 116 60	No of processed col exceeded (IESTI): IESTI Highest % of ARfD/ADI 127% 72%	Processed commodities Maize/oii Barley/beer	for RA (mg/kg) 5/125 5/1	Exposure (µg/kg bw 63 36
Processed commodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARfD/ADI 233% 121% 61%	mmodities exceeding the ARfD/ADI in o	d MRL/input for RA (mg/kg) 5/125 5/5 5/5 5/2	Exposure (µg/kg bw) 116 60 31	No of processed col exceeded (IESTI): IESTI Highest % of ARfD/ADI 127% 72% 44%	Processed commodities Matze/oil Barley/beer Wheat/bread/pizza	for RA (mg/kg) 5/125 5/1 5/1 5/5	Exposure (µg/kg bw 63 36 22
Processed commodities	Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 233% 121% 61% 55%	mmodities exceeding the ARfD/ADI in o	MRL/input for RA (mg/kg) 5/125 5/5 5/2 5/5	Exposure (µg/kg bw) 116 60 31 28	No of processed col exceeded (IESTI): IESTI Highest % of ARfD/ADI 127% 72% 44% 39%	Processed commodities Maize/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing)	for RA (mg/kg) 5/125 5/1 5/5 5/2	Exposure (µg/kg bw 63 36 22 19
Processed commodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARfD/ADI 233% 121% 61%	mmodities exceeding the ARfD/ADI in of n mmodities for which ARfD/ADI is exceeded Processed commodities Maize/oii Wheat/milling (flour) Rice/milling (polishing) Wheat/milling (wholemeal)-baking Millet/boiled	MRL/input for RA (mg/kg) 5/125 5/5 5/2 5/5 5/5 5/2	Exposure (µg/kg bw) 116 60 31 28 27	No of processed col exceeded (IESTI): IESTI Highest % of ARID/ADI 127% 72% 44% 39% 38%	Processed commodities Maize/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing) Wheat/pasta	for RA (mg/kg) 5/125 5/1 5/5 5/2 5/2 5/5	Exposure (µg/kg bw 63 36 22 19 19
Processed commodities	Total number of co adult diets (IESTI calculation) Results for children No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 233% 121% 61% 55% 54%	mmodities exceeding the ARfD/ADI in of normalities for which ARfD/ADI is exceeded processed commodities Maize/oil Wheat/milling (flour) Rice/milling (polishing) Wheat/milling (wholemeal)-baking	MRL/input for RA (mg/kg) 5/125 5/5 5/2 5/5 5/2 5/2 5/2 5/2 5/2	Exposure (µg/kg bw) 116 60 31 28 27 27 27	No of processed col exceeded (IESTI): IESTI Highest % of ARTD/ADI 127% 72% 44% 39% 38% 35%	Processed commodities Maize/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing)	for RA (mg/kg) 5/125 5/1 5/5 5/2 5/2 5/5 5/5	Exposure (μg/kg bw 63 36 22 19 19 19
Processed commodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARfD/ADI 233% 121% 61% 55% 54%	mmodities exceeding the ARfD/ADI in of n mmodities for which ARfD/ADI is exceeded Processed commodities Maize/oii Wheat/milling (flour) Rice/milling (polishing) Wheat/milling (wholemeal)-baking Millet/boiled	MRL/input for RA (mg/kg) 5/125 5/5 5/2 5/5 5/5 5/2	Exposure (µg/kg bw) 116 60 31 28 27	No of processed col exceeded (IESTI): IESTI Highest % of ARID/ADI 127% 72% 44% 39% 38%	Processed commodities Maize/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing) Wheat/pasta	for RA (mg/kg) 5/125 5/1 5/5 5/2 5/2 5/5	Exposure (µg/kg bw 63 36 22 19 19 19 17 11
Processed commodities	Total number of co adult diets (IESTI calculation) Results for children No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 233% 121% 61% 55% 54%	mmodities exceeding the ARfD/ADI in of n mmodities for which ARfD/ADI is exceeded Processed commodities Maize/oii Wheat/milling (flour) Rice/milling (polishing) Wheat/milling (wholemeal)-baking Millet/boiled Buckwheat bulgur and grits	MRL/input for RA (mg/kg) 5/125 5/5 5/2 5/5 5/2 5/2 5/2 5/2 5/2	Exposure (µg/kg bw) 116 60 31 28 27 27 27	No of processed col exceeded (IESTI): IESTI Highest % of ARTD/ADI 127% 72% 44% 39% 38% 35%	Processed commodities Matze/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing) Wheat/pasta Wheat/bread (wholemeal)	for RA (mg/kg) 5/125 5/1 5/5 5/2 5/2 5/5 5/5	Exposure (μg/kg bw 63 36 22 19 19 19
Processed commodities	Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 233% 121% 61% 55% 54% 54% 36%	mmodities exceeding the ARfD/ADI in of normalities for which ARfD/ADI is exceeded by the second times and the second times of times	MRL/input for RA (mg/kg) 5/125 5/5 5/2 5/5 5/2 5/5 5/5	Exposure (µg/kg bw) 116 60 31 28 27 27 27 18	No of processed col exceeded (IESTI): IESTI Highest % of ARfD/ADI 127% 72% 44% 39% 38% 35% 23%	Processed commodities Maize/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing) Wheat/bread (wholemeal) Millet/boiled	for RA (mg/kg) 5/125 5/1 5/5 5/2 5/5 5/5 5/2	Exposure (µg/kg bw 63 36 22 19 19 19 17 11
Processed commodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARfD/ADI 233% 121% 61% 55% 54% 54% 36%	mmodities exceeding the ARfD/ADI in or mmodities for which ARfD/ADI is exceeded Processed commodities Maize/oil Wheat/milling (flour) Rice/milling (polishing) Wheat/milling (wholemeal)-baking Millet/boiled Buckwheat bulgur and grits Rye/boiled	MRL/input for RA (mg/kg) 5/125 5/5 5/2 5/5 5/2 5/5 5/5 5/5	Exposure (µg/kg bw) 116 60 31 28 27 27 27 18 18	No of processed col exceeded (IESTI): IESTI Highest % of ARID/ADI 127% 72% 44% 39% 38% 35% 23% 15%	Processed commodities Maize/oil Barley/beer Wheat/bread/pizza Rice/miling (polishing) Wheat/pread (wholemeal) Millet/boiled Oat/boiled	for RA (mg/kg) 5/125 5/1 5/5 5/2 5/5 5/5 5/2 5/2 5/5	Exposure (µg/kg bw 63 36 22 19 19 19 17 11 7.6
Processed commodities	Total number of cc adult diets (IESTI calculation) Results for children No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 233% 121% 61% 55% 54% 36% 36%	mmodities exceeding the ARfD/ADI in of modifies exceeding the ARfD/ADI in of modifies for which ARfD/ADI is exceeded with the second se	MRL/input for RA (mg/kg) 5/125 5/5 5/2 5/5 5/2 5/5 5/5 5/5 5/5	Exposure (µg/kg bw) 116 60 31 28 27 27 27 18 18 18	No of processed col exceeded (IESTI): IESTI Highest % of ARtD/ADI 127% 72% 44% 39% 38% 35% 23% 15% 2%	Processed commodities Matze/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing) Wheat/pasta Wheat/bread (wholemeal) Millet/boiled Oat/boiled Pumpkins/boiled	for RA (mg/kg) 5/125 5/5 5/2 5/5 5/5 5/5 5/2 5/5 5/5 0.02/0.02	Exposure (µg/kg bw 63 36 22 19 19 17 11 7.6 1.1
Processed commodities	Total number of cc adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 233% 121% 61% 55% 54% 54% 36% 36% 36% 36%	mmodities exceeding the ARfD/ADI in of mmodities for which ARfD/ADI is exceeded Processed commodities Maize/oil Wheat/milling (flour) Rice/milling (polishing) Wheat/milling (wholemeal)-baking Millet/boiled Buckwheat bulgur and grits Rye/boiled Oat/boiled Buckwhea/boiled Barley/ cooked	MRL/input for RA (mg/kg) 5/125 5/5 5/2 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5	Exposure (µg/kg bw) 116 60 31 28 27 27 18 18 18 18 18	No of processed col exceeded (IESTI): IESTI Highest % of ARfD/ADI 127% 72% 44% 39% 38% 35% 23% 15% 2%	Processed commodities Maize/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing) Wheat/pasta Wheat/bread (wholemeal) Millet/boiled Oat/boiled Pumpkins/boiled Sugar beets (root)/sugar	for RA (mg/kg) 5/125 5/5 5/5 5/5 5/5 5/5 5/5 5/5 0.02/0.02 0.02/0.24	Exposure (μg/kg bw 63 36 22 19 19 17 11 7.6 1.1 0.88
Processed commodities	Total number of co adult diets (IESTI calculation) Results for childre No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 233% 121% 61% 55% 54% 54% 54% 36% 36% 36% 36%	mmodities exceeding the ARfD/ADI in or mmodities for which ARfD/ADI is exceeded Processed commodities Maize/oil Wheat/milling (flour) Rice/milling (polishing) Wheat/milling (wholemeal)-baking Millet/boiled Buckwheat bulgur and grits Rye/boiled Oat/boiled Buckwhea/boiled Barley/ cooked Peanuts/peanut butter	MRL/input for RA (mg/kg) 5/125 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5	Exposure (µg/kg bw) 116 60 31 28 27 27 27 18 18 18 18 18	No of processed col exceeded (IESTI): IESTI Highest % of ARID/ADI 127% 72% 44% 38% 38% 38% 35% 23% 15% 2% 2%	Processed commodities Maize/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing) Wheat/bread (wholemeal) Millet/boiled Oat/boiled Pumpkins/boiled Sugar beets (root/sugar Cauliflowers/boiled	for RA (mg/kg) 5/125 5/1 5/5 5/5 5/5 5/5 5/5 5/5 5/5 0.02/0.02 0.02/0.02	Exposure (µg/kg bw 63 36 22 19 19 17 11 7.6 1.1 0.88 0.83
Processed commodities	Total number of cc adult diets (IESTI calculation) Results for children No of processed cor (IESTI): IESTI Highest % of ARTD/ADI 233% 121% 61% 55% 54% 36% 36% 36% 36% 36% 35%	mmodities exceeding the ARfD/ADI in of mmodities for which ARfD/ADI is exceeded Processed commodities Mize/oil Wheat/milling (flour) Rice/milling (polishing) Wheat/milling (wholemeal)-baking Mille/boiled Buckwheat bulgur and grits Rye/boiled Buckwhea/boiled Buckwhea/boiled Barley/ cooked Peanuts/peanut butter Rye/milling (wholemeal)-baking	MRL/input for RA (mg/kg) 5/125 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5	Exposure (µg/kg bw) 116 60 31 28 27 27 18 18 18 18 18 18 18 18	No of processed col exceeded (IESTI): IESTI Highest % of ARID/ADI 127% 72% 44% 39% 38% 35% 23% 15% 2% 2% 2% 2%	Processed commodities Maize/oil Barley/beer Wheat/bread/pizza Rice/milling (polishing) Wheat/pasta Wheat/bread (wholemeal) Millet/boiled Oat/boiled Pumpkins/boiled Sugar beets (root)/sugar Cauliflowers/boiled Beetroots/boiled	for RA (mg/kg) 5/125 5/1 5/5 5/2 5/5 5/2 5/5 5/5 5/2 5/5 0.02/0.22 0.02/0.24 0.02/0.02	Exposure (µg/kg bw 63 36 22 19 17 11 7.6 1.1 0.88 0.83 0.78

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Methoprene is unlikely to present a public health risk. For processed commodities, the toxicological reference value was exceeded in one or several cases.

Acute risk assessment/children
Details – acute risk assessment/children

Acute risk assessment/adults/general population
Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for childre No. of commodities	en for which ARfD/ADI is exceeded (IESTI):		4	Results for adults No. of commodities	for which ARfD/ADI is exceeded (IESTI):		3
IESTI				IESTI			
Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Expos (µg/kg
1685%	Table olives	1.5/1.5	5.1	500%	Table olives	1.5/1.5	1.5
1046%	Spring onions/green onions and Welsh onions	0.2/0.2	3.1	364%	Wheat	0.01/0.13	1.1
626%	Wheat	0.01/0.13	1.9	300%	Spring onions/green onions and Welsh onions	0.2/0.2	0.9
369%	Celeriacs/turnip rooted celeries	0.02/0.02	1.1	79%	Celeriacs/turnip rooted celeries	0.02/0.02	0.2
27%	Peas (with pods)	0.01/0.01	0.08	16%	Olives for oil production	1.5/0.06	0.0
26%	Olives for oil production	1.5/0.06	0.08	11%	Peas (with pods)	0.01/0.01	0.0
Expand/collapse list							
Total number of co (IESTI calculation)	ommodities exceeding the ARfD/ADI in children ar)	d adult diets	4				
Total number of co (IESTI calculation) Results for childre	ommodities exceeding the ARfD/ADI in children ar)	d adult diets	43	Results for adults No of processed con	nmodities for which ARfD/ADI is exceeded (IESTI);		5
Total number of co (IESTI calculation) Results for childre	ommodities exceeding the ARfD/ADI in children ar) en				nmodities for which ARID/ADI is exceeded (IESTI):		5
Total number of c: (IESTI calculation) Results for childre No of processed co IESTI	ommodities exceeding the ARfD/ADI in children ar) en	MRL/input	3	No of processed con	nmodities for which ARfD/ADI is exceeded (IESTI):	MRL/input	
Total number of co (IESTI calculation) Results for children No of processed co IESTI Highest % of	ommodities exceeding the ARfD/ADI in children ar) en mmodities for which ARfD/ADI is exceeded (IESTI):	MRL/input for RA	3 Exposure	No of processed con IESTI Highest % of		for RA	Expos
Total number of co (IESTI calculation) Results for children No of processed co IESTI Highest % of ARTD/ADI	ommodities exceeding the ARfD/ADI in children ar	MRL/input for RA (mg/kg)	3 Exposure (µg/kg bw)	No of processed con IESTI Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Expos (µg/kg
Total number of cr. (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARfD/ADI 1469%	ommodities exceeding the ARfD/ADI in children ar an mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Sugar beets (root)/sugar	MRL/input for RA (mg/kg) 0.01/0.48	3 Exposure (µg/kg bw) 4.4	No of processed con IESTI Highest % of ARfD/ADI 584%	Processed commodities Sugar beets (root)/sugar	for RA (mg/kg) 0.01/0.48	Expos (µg/kg 1.8
Total number of cr. (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 1469% 524%	ommodities exceeding the ARfD/ADI in children ar an mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Sugar beets (root)/sugar Wheat/milling (flour)	MRL/input for RA (mg/kg) 0.01/0.48 0.01/0.13	3 Exposure (µg/kg bw) 4.4 1.6	No of processed con IESTI Highest % of ARfD/ADI 584% 190%	Processed commodities Sugar beets (root)/sugar Wheat/bread/pizza	for RA (mg/kg) 0.01/0.48 0.01/0.13	Ехроз (µg/kg 1.1 0.5
Total number of cc (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARTD/ADI 1469% 524% 240%	ommodities exceeding the ARfD/ADI in children ar an mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Sugar beets (root)/sugar Wheat/milling (thour) Wheat/milling (wholemeal)-baking	MRL/input for RA (mg/kg) 0.01/0.48 0.01/0.13 0.01/0.13	3 Ехроѕиге (µg/kg bw) 4.4 1.6 0.72	No of processed con IESTI Highest % of ARfD/ADI 584% 190% 165%	Processed commodities Sugar beets (root)/sugar Wheat/bread/pizza Wheat/pasta	for RA (mg/kg) 0.01/0.48 0.01/0.13 0.01/0.13	Expos (µg/kg 1.4 0.5 0.5
Total number of c (IESTI calculation) Results for childrr No of processed co IESTI Highest % of ARID/ADI 1466% 524% 240% 96%	ommodities exceeding the ARfD/ADI in children ar an mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Sugar beets (root)/sugar Wheat/milling (flour) Wheat/milling (wholemeal)-baking Ceteriacs/juice	MRL/input for RA (mg/kg) 0.01/0.48 0.01/0.13 0.01/0.13	3 Exposure (µg/kg bw) 4.4 1.6 0.72 0.29	No of processed con IESTI Highest % of ARID/ADI 584% 190% 165% 151%	Processed commodilies Sugar beets (root)/sugar Wheat/pasta Wheat/pasta Wheat/pasta	for RA (mg/kg) 0.01/0.48 0.01/0.13 0.01/0.13 0.01/0.13	Expos (µg/kg 1.8 0.5 0.5 0.4
Total number of cc (IESTI calculation) Results for childre No of processed co IESTI Highest % of ARID/ADI 1469% 524% 240% 96% 37%	ommodities exceeding the ARfD/ADI in children ar an mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Sugar beets (root)/sugar Wheat/milling (flour) Wheat/milling (wholemeal)-baking Celeriacs/juice Olives for oil production/oils	MRL/input for RA (mg/kg) 0.01/0.48 0.01/0.13 0.02/0.02 1.5/0.12	3 (µg/kg bw) 4.4 1.6 0.72 0.29 0.11	No of processed con IESTI Highest % of ARTD/ADI 584% 190% 165% 151% 121%	Processed commodities Sugar beets (root)/sugar Wheat/bread/pizza Wheat/pasta Wheat/pasta Celeriacs/boiled	for RA (mg/kg) 0.01/0.48 0.01/0.13 0.01/0.13 0.01/0.13 0.02/0.02	Expos (µg/kg 0.5 0.5 0.4 0.3
Total number of c (IESTI calculation) Results for childrr No of processed co IESTI Highest % of ARID/ADI 1466% 524% 240% 96%	ommodities exceeding the ARfD/ADI in children ar an mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Sugar beets (root)/sugar Wheat/milling (flour) Wheat/milling (wholemeal)-baking Ceteriacs/juice	MRL/input for RA (mg/kg) 0.01/0.48 0.01/0.13 0.01/0.13	3 Exposure (µg/kg bw) 4.4 1.6 0.72 0.29	No of processed con IESTI Highest % of ARID/ADI 584% 190% 165% 151%	Processed commodilies Sugar beets (root)/sugar Wheat/pasta Wheat/pasta Wheat/pasta	for RA (mg/kg) 0.01/0.48 0.01/0.13 0.01/0.13 0.01/0.13	Expos (µg/kg 1.1 0.5 0.5 0.4

Expand/collapse lis

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 4 commodities.

For processed commodities, the toxicological reference value was exceeded in one or several cases.

Pe	endimeth	alin	
Status of the active substance:		Code no.	
LOQ (mg/kg bw):		Proposed LOQ:	
Toxi	cological end	points	
ADI (mg/kg bw per day):	0.125	ARfD (mg/kg bw):	0.3
Source of ADI:		Source of ARfD:	
Year of evaluation:		Year of evaluation:	

			mir 0	(range) in % of ADI nimum–maximum 2				
		No of diets excee	•					
Highest calculated		Highest contributo		2nd contributor to		3rd contributor to		pTMRLs a
TMDI values in %		to MS diet	Commodity/	MS diet	Commodity/	MS diet	Commodity/	LOQ
of ADI	MS Diet	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of A
1.6	NL child	0.3	Apples	0.2	Potatoes	0.2	Milk and milk products: Cattle	
1.5	DE child	0.5	Apples	0.2	Carrots	0.2	Carrots	
1.4	WHO Cluster diet B	0.3	Wheat	0.1	Tomatoes	0.1	Potatoes	
1.3	FR toddler	0.4	Carrots	0.2	Potatoes	0.2	Beans (with pods)	
1.2	FR infant	0.4	Carrots	0.2	Milk and milk products: Cattle	0.2	Potatoes	
1.1	IE adult	0.1	Parsnips	0.1	Maize	0.1	Maize	
1.0	WHO cluster diet E	0.2	Wheat	0.2	Potatoes	0.1	Carrots	
0.9	PT General population	0.2	Potatoes	0.2	Wheat	0.1	Carrots	
0.9	DK child	0.2	Wheat	0.2	Carrots	0.2	Rye	
0.9	UK Infant	0.2	Carrots	0.1	Potatoes	0.1	Wheat	
0.9	WHO cluster diet D	0.3	Wheat	0.2	Potatoes	0.0	Tomatoes	
0.9	SE general population 90th percentile	0.2	Potatoes	0.1	Carrots	0.1	Wheat	
0.8	UK Toddler	0.2	Wheat	0.1	Potatoes	0.1	Beans	
0.8	WHO regional European diet	0.2	Potatoes	0.1	Wheat	0.1	Carrots	
0.8	ES child	0.2	Wheat	0.1	Milk and milk products: Cattle	0.1	Oranges	
0.8	WHO Cluster diet F	0.1	Wheat	0.1	Potatoes	0.1	Carrots	
0.7	NL general	0.1	Potatoes	0.1	Wheat	0.1	Oranges	
0.6	FR all population	0.2	Wine grapes	0.1	Wheat	0.0	Carrots	
0.6	IT kids/toddler	0.3	Wheat	0.1	Tomatoes	0.0	Potatoes	
0.5	ES adult	0.1	Wheat	0.1	Oranges	0.0	Milk and milk products: Cattle	
0.5	UK vegetarian	0.1	Wheat	0.1	Beans	0.1	Potatoes	
0.5	LT adult	0.1	Potatoes	0.1	Apples	0.0	Rye	
0.5	IT adult	0.2	Wheat	0.0	Tomatoes	0.0	Apples	
0.4	DK adult	0.1	Wheat	0.1	Carrots	0.1	Potatoes	
0.4	PL general population	0.1	Potatoes	0.1	Apples	0.0	Carrots	1
0.4	UK Adult	0.1	Wheat	0.1	Potatoes	0.0	Wine grapes	
0.3	FI adult	0.0	Potatoes	0.0	Wheat	0.0	Oranges	1

Conclusion:

The estimated Theoretical Maximum Daily Intakes (TMDI), based on pTMRLs were below the ADI. A long-term intake of residues of Pendimethalin is unlikely to present a public health concern.

Acute risk assessment/children – refined calculations

Acute risk assessment/adults/general population – refined calculations

The acute risk assessment is based on the ARfD.

For each commodity the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS an average European unit weight was used for the IESTI calculation.

In the IESTI 1 calculation, the variability factors were 10, 7 or 5 (according to JMPR manual 2002); for lettuce, a variability factor of 5 was used.

In the IESTI 2 calculations, the variability factors of 10 and 7 were replaced by 5. For lettuce, the calculation was performed with a variability factor of 3.

Threshold MRL is the calculated residue level which would leads to an exposure equivalent to 100% of the ARfD.

is exceeded (IES	es for which ARfD/ADI [11]:		No of commoditie ARfD/ADI is exce			is exceeded (IES	es for which ARfD/AE FI 1):		(IESTI 2):	es for which ARfD/ADI is excee	
IESTI 1	*)	**)	IESTI 2	*)	**)	IESTI 1	*)	**)	IESTI 2	*)	**)
		pTMRL/			pTMRL/			pTMRL/			pTMR
Highest % of		threshold MRL	Highest % of		threshold MRL	Highest % of		threshold MRL	Highest % of		threshold
ARfD/ADI	Commodities	(mg/kg)	ARfD/ADI	Commodities	(mg/kg)	ARfD/ADI	Commodities	(mg/kg)	ARfD/ADI	Commodities	(mg/k
1.0	Peppers	0.05/-	0.7	Peppers	0.05/-	0.4	Aubergines (egg	0.05/-	0.4	Aubergines (egg plants)	0.05/
1.0	Tomatoes	0.05/-	0.7	Tomatoes	0.05/-	0.3	Peppers	0.05/-	0.2	Tomatoes	0.05/
0.7	Onions	0.05/-	0.5	Melons	0.01/-	0.3	Tomatoes	0.05/-	0.2	Peppers	0.05/
0.5	Melons	0.01/-	0.5	Onions	0.05/-	0.2	Onions	0.05/-	0.2	Onions	0.05/
0.4	Aubergines (egg	0.05/-	0.4	Aubergines (egg	0.05/-	0.2	Globe artichokes	0.05/-	0.2	Pumpkins	0.01/
0.4	Watermelons	0.01/-	0.4	Watermelons	0.01/-	0.2	Pumpkins	0.01/-	0.1	Watermelons	0.01/
0.4	Leek	0.02/-	0.3	Leek	0.02/-	0.1	Watermelons	0.01/-	0.1	Melons	0.01/
0.3	Globe artichokes	0.05/-	0.3	Strawberries	0.05/-	0.1	Melons	0.01/-	0.1	Globe artichokes	0.05/
0.3	Strawberries	0.05/-	0.2	Globe artichokes	0.05/-	0.1	Leek	0.02/-	0.1	Leek	0.02/
0.2	Cucumbers	0.01/-	0.2	Cucumbers	0.01/-	0.1	Courgettes	0.01/-	0.1	Strawberries	0.05/
0.2	Courgettes	0.01/-	0.1	Pumpkins	0.01/-	0.1	Strawberries	0.05/-	0.1	Courgettes	0.01/
0.1	Pumpkins	0.01/-	0.1	Courgettes	0.01/-	0.1	Cucumbers	0.01/-	0.1	Cucumbers	0.01/
0.1	Gherkins	0.01/-	0.0	Gherkins	0.01/-	0.0	Gherkins	0.01/-	0.0	Gherkins	0.01/
0.0	Garlic	0.05/-	0.0	Garlic	0.05/-	0.0	Garlic	0.05/-	0.0	Garlic	0.05/
0.0	Shallots	0.05/-	0.0	Shallots	0.05/-	0.0	Shallots	0.05/-	0.0	Shallots	0.05/
0.0	Rape seed	0.01/-	0.0	Rape seed	0.01/-						

р	No of commoditie is exceeded:	es for which ARfD/A	DI		No of commoditi is exceeded:	es for which ARfD/ADI		
commo			***)				***)	
essed co	Highest % of ARfD/ADI	Processed commodities	pTMRL/ threshold MRL (mg/kg)		Highest % of ARfD/ADI	Processed commodities	pTMRL/ threshold MRL (mg/kg)	
Proce	5.9 0.8 0.8 0.5 0.5	Carrot, juice Apple juice Orange juice Grape juice Celeriac juice	0.41/- 0.05/- 0.05/- 0.05/- 0.12/-		0.2 0.1 0.1 0.1 0.0	Orange juice Apple juice Bread/pizza Wine Peach preserved with	0.05/- 0.05/- 0.05/- 0.05/- 0.05/-	
) pTMRL: provisi *) pTMRL: provisi Conclusion: For Pendimethalin,	onal temporary MRL. ional temporary MRL	for unprocessed com	bod commodities for which pTMRLs were submitted and fi			RfD are reported.	
			entified for any unproc ance of the ARfD/ADI					

1	× *	faa		LOQs (mg/kg) range f	Penthiop	0.01 to:	10.0	Details – ch	nronic risk	Supplementary results – c	hronic risk	
	** e	fsa			Toxicological reference				ment	assessment		
	-	d Safety Authority		ADI (mg/kg bw per da	y):	0.1 ARfD (mg/kg bw):	0.75	Details – a	cute risk	Details – acute ri	sk	
		vision 3.1: 2019/03/19		Source of ADI: Year of evaluation:		Source of ARfD: Year of evaluation:				assessment/adul		ļ
nt												,
					No	rmal mode						
					Chronic risk assessm	nent: JMPR methodology	(IEDI/TMDI)					
				No of diets exceeding	the ADI :					1	Exposure MRLs set at	
	Calculated exposur		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	the LOQ (in % of ADI)	under a
+	(% of ADI)	MS Diet NL toddler	day) 30.03	(in % of ADI) 5%	group of commodities	(in % of ADI) 3%	group of commodities Sugar beet roots		(in % of ADI) 2%	group of commodities	0.8%	
1	30% 21%	DE child	20.76	5% 6%	Apples Apples	3%	Sugar beet roots Tomatoes		2%	Beans (with pods) Cherries (sweet)	0.8%	
1	21%	GEMS/Food G06	20.51	7%	Tomatoes	2%	Lettuces		1.0%	Sweet peppers/bell peppers	0.1%	0
I	19%	GEMS/Food G10	19.34	5%	Lettuces	3%	Tomatoes		2%	Head cabbages	0.2%	0
I	19%	NL child	19.31	4%	Sugar beet roots	3%	Apples		1%	Tomatoes	0.4%	
	18%	GEMS/Food G08	18.15	3%	Lettuces	2%	Tomatoes		2%	Head cabbages	0.2%	C
I	17% 17%	SE general RO general	17.29 17.28	6% 6%	Lettuces Head cabbages	3% 4%	Head cabbages Tomatoes		2% 1.0%	Tomatoes Sunflower seeds	0.2%	0
I	17%	GEMS/Food G15	17.28	3%	Head cabbages	470	Tomatoes		2%	Lettuces	0.2%	
	16%	IE adult	15.84	4%	Rhubarbs	1%	Lettuces		0.8%	Broccoli	0.2%	
I	15%	GEMS/Food G07	15.26	4%	Lettuces	2%	Tomatoes		0.7%	Peas (with pods)	0.2%	0
I	15%	IT adult	15.06	6%	Lettuces	2%	Other lettuce and other salad plants		2%	Tomatoes	0.0%	C
	15%	GEMS/Food G11	14.63	2%	Rhubarbs	2%	Tomatoes		1%	Lamb's lettuce/corn salads	0.2%	C
	14% 14%	ES adult	14.24 13.96	8% 2%	Lettuces	2% 2%	Tomatoes		0.7%	Beans (with pods)	0.1%	0
	14% 14%	FR child 3 15 yr IT toddler	13.96	2% 4%	Sugar beet roots Lettuces	2%	Tomatoes Tomatoes		2% 2%	Other lettuce and other salad plants Other lettuce and other salad plants	0.4%	0
	14%	ES child	13.56	6%	Lettuces	2%	Tomatoes		0.7%	Beans (with pods)	0.2%	0
	13%	FR toddler 2 3 yr	12.72	2%	Beans (with pods)	2%	Apples		1%	Sugar beet roots	0.4%	0
	12%	DE women 14-50 yr	12.47	2%	Sugar beet roots	2%	Lettuces		1%	Tomatoes	0.2%	0
	11%	DE general	11.50	2%	Sugar beet roots	1%	Lettuces		1%	Tomatoes	0.2%	C
	10%	DK child	10.45	2%	Lettuces	1%	Apples		1%	Cucumbers	0.2%	0
I	10% 9%	NL general FR infant	10.43 9.20	1% 1%	Sugar beet roots Beans (with pods)	1% 1%	Lettuces Cauliflowers		0.8%	Tomatoes Apples	0.2%	0
	9%	UK toddler	9.20	2%	Beans (with pods) Sugar beet roots	1%	Tomatoes		0.8%	Apples	0.2%	
	9%	FR adult	8.59	2%	Other lettuce and other salad plants	0.9%	Tomatoes		0.7%	Beans (with pods)	0.1%	0
I	9%	FI3yr	8.53	1%	Tomatoes	1%	Strawberries		0.7%	Cucumbers	0.0%	
I	8%	UK infant	7.79	1%	Cauliflowers	0.8%	Carrots		0.8%	Apples	0.5%	C
I	7%	PT general	7.50	2%	Tomatoes	2%	Lettuces		0.5%	Apples	0.1%	(
I	7%	UK vegetarian	7.44	2%	Lettuces	1%	Tomatoes		0.5%	Cauliflowers	0.1%	0
1	7% 7%	FI 6 yr PL general	7.28	1% 2%	Lettuces Tomatoes	0.9%	Tomatoes Head cabbages		0.9% 1%	Strawberries Apples	0.0%	0
1	6%	FL general Fl adult	6.24	2%	Lettuces	1%	Tomatoes		0.4%	Appies Strawberries	0.1%	0
	6%	LT adult	6.23	2%	Head cabbages	1%	Tomatoes		1.0%	Lettuces	0.1%	0
I	6%	DK adult	5.56	1%	Lettuces	1%	Tomatoes		0.5%	Apples	0.1%	0
1	5%	UK adult	5.46	2%	Lettuces	0.9%	Tomatoes		0.3%	Broccoli	0.1%	0
	2%	IE child	1.73	0.2%	Broccoli	0.2%	Rhubarbs		0.2%	Apples	0.1%	0

Acute risk assessment/children
Details – acute risk assessment/children

Acute risk assessment/adults/general population

Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for children	n for which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities (IESTI):			
IESTI				IESTI			
Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Expos (µg/kg
90%	Spinaches	30/30	678	76%	Chards/beet leaves	30/30	56
76%	Lettuces	15/15	571	24%	Lettuces	15/15	18
74%	Rhubarbs	15/15	558	22%	Head cabbages	4/4	16
62%	Chards/beet leaves	30/30	468	21%	Cardoons	15/15	15
51%	Peaches	4/4	380	19%	Rhubarbs	15/15	13
37%	Celeries	20/7.4	277	18%	Florence fennels	20/7.4	13
31%	Cauliflowers	4/4	232	16%	Spinaches	30/30	12
24%	Head cabbages	4/4	177	16%	Celeries	20/7.4	11
24%	Leeks	3/3	177	13%	Broccoli	4/4	95
22%	Broccoli	4/4	166	12%	Cauliflowers	4/4	93
19%	Apricots	4/4	140	11%	Red mustards	15/15	80
16%	Florence fennels	20/7.4	120	10%	Peaches	4/4	75
16%	Sweet peppers/bell peppers	2/2	119	8%	Purslanes	30/30	57
16%	Tomatoes	2/2	116	7%	Aubergines/egg plants	2/2	54
12%	Melons	0.6/0.6	91	6%	Apricots	4/4	44

diets (IESTI calculation)

No of processed con (IESTI):	mmodities for which ARfD/ADI is exceeded		No of processed commodities for which ARfD/ADI is 1 exceeded (IESTI):						
IESTI				IESTI					
Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw		
124%	Chards/beet leaves/boiled	30/30	934	50%	Chards/beet leaves/boiled	30/30	375		
75%	Rhubarbs/sauce/puree	15/15	559	33%	Celeries/boiled	20/7.4	250		
56%	Spinaches/frozen; boiled	30/30	417	33%	Spinaches/frozen; boiled	30/30	248		
45%	Florence fennels/boiled	20/7.4	335	29%	Rhubarbs/sauce/puree	15/15	219		
42%	Broccoli/boiled	4/4	315	24%	Cardoons/boiled	15/15	182		
37%	Cauliflowers/boiled	4/4	278	22%	Cauliflowers/boiled	4/4	167		
23%	Leeks/boiled	3/3	172	19%	Florence fennels/boiled	20/7.4	143		
14%	Peaches/canned	4/4	104	16%	Purslanes/boiled	30/30	124		
7%	Sugar beets (root)/sugar	0.5/6	55	13%	Broccoli/boiled	4/4	96		
7%	Pumpkins/boiled	0.6/0.6	53	7%	Leeks/boiled	3/3	52		
6%	Currants (red, black and white)/juice	7/1.7	49	5%	Head cabbages/canned	4/4	38		
6%	Raspberries/juice	10/3.7	43	4%	Pumpkins/boiled	0.6/0.6	33		
5%	Tomatoes/juice	2/2	38	4%	Peaches/canned	4/4	33		
5%	Beans (with pods)/boiled	3/3	38	3%	Beetroots/boiled	0.6/0.6	23		
4%	Turnips/boiled	0.6/0.6	30	3%	Sugar beets (root)/sugar	0.5/6	22		

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Penthiopyrad is unlikely to present a public health risk.

For processed commodities, the toxicological reference value was exceeded in one or sev

4				PAM (metabo		thiopyrac			Inpu	t values		
	uropean Food Safety Authority		LOQs (mg/kg) range		0.01 gical reference v	to: alues	0.05	Details – c asses	hronic risk sment	Supplementar chronic risk as		
F	uropean Food Safety Authority		ADI (mg/kg bw per da	ау):	0.0024	ARfD (mg/kg bw):	0.024	Details – :	acute risk	Details – ac	ute risk	
	EFSA PRIMo revision 3.1; 2019/03/19		Source of ADI: Year of evaluation:		EFSA 2016	Source of ARfD: Year of evaluation:	EFSA 2016	assessmer	nt/children	assessment	/adults	
en	ts:		•			•						
					Norma	l mode						
				Chronic r	isk assessment:	JMPR methodo	logy (IEDI/TMDI)					
			No of diets exceeding	the ADI :							Exposure	
	Calculated exposure	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	MRLs set at the LOQ (in % of ADI)	t commo under as (in %
	(% of ADI) MS Diet 60% NL toddler	day) 1.45	(in % of ADI) 25%	group of commodities Milk: Cattle		(in % of ADI)	group of commodities Spinaches		(in % of ADI) 4%	group of commodities Apples	32%	2
	30% NL child	0.73	10%	Milk: Cattle		7% 4%	Sugar beet roots		4%	Apples	15%	1
	28% DE child	0.68	8%	Milk: Cattle		5%	Apples		2%	Spinaches	14%	1
	26% UK infant	0.61	16%	Milk: Cattle		1%	Potatoes		1%	Wheat	19%	e
	25% FR toddler 2 3 yr 24% FR child 3 15 yr	0.61	12% 10%	Milk: Cattle Milk: Cattle		1% 2%	Spinaches Wheat		1% 2%	Apples Sugar beet roots	16% 15%	9
	19% GEMS/Food G11	0.46	3%	Milk: Cattle		2%	Potatoes		2%	Soyabeans	8%	1
	19% UK toddler	0.46	9%	Milk: Cattle		2%	Wheat		1%	Potatoes	12%	7
	18% DK child	0.42	5%	Milk: Cattle		2%	Rye		2%	Wheat	8%	S
	18% SE general	0.42	5%	Milk: Cattle		2%	Bovine: Muscle/meat		2%	Potatoes	9%	8
	18% ES child 17% GEMS/Food G06	0.42	5% 3%	Milk: Cattle Wheat		2% 1%	Wheat Tomatoes		1% 1%	Lettuces Milk: Cattle	10% 5%	8 1:
	17% GEMS/Food G10	0.41	2%	Milk: Cattle		2%	Wheat		1%	Soyabeans	7%	1
	17% GEMS/Food G07	0.41	3%	Milk: Cattle		2%	Wheat		2%	Potatoes	8%	9
	17% GEMS/Food G08	0.41	2%	Milk: Cattle		2%	Wheat		2%	Potatoes	7%	1
	16% IE adult 16% GEMS/Food G15	0.39	2% 3%	Milk: Cattle Milk: Cattle		1% 2%	Sweet potatoes Wheat		1% 1%	Spinaches Potatoes	6% 7%	10
	16% RO general	0.39	5%	Milk: Cattle		2%	Wheat		2%	Potatoes	7%	9
	16% DE women 14-50 yr	0.38	5%	Milk: Cattle		2%	Sugar beet roots		1%	Apples	8%	7
	16% FR infant	0.38	7%	Milk: Cattle		2%	Spinaches		0.9%	Leeks	8%	8
	15% DE general	0.37	5%	Milk: Cattle		2%	Sugar beet roots		1%	Apples	8%	7
	14% NL general 11% ES adult	0.34	4% 2%	Milk: Cattle Milk: Cattle		1% 1%	Spinaches Lettuces		1% 1.0%	Sugar beet roots Wheat	6% 5%	8
	10% FR adult	0.23	2%	Milk: Cattle		1.0%	Wine grapes		0.9%	Wheat	5%	5
	9% IT toddler	0.22	3%	Wheat		0.8%	Lettuces		0.6%	Other cereals	1%	8
	9% PT general	0.21	2%	Potatoes		2%	Wheat		1%	Wine grapes	2%	7
	8% IT adult 8% FI 3 yr	0.20	2% 2%	Wheat Potatoes		1.0%	Lettuces Spinaches		0.9%	Spinaches Bananas	0.9% 2%	7
	8% Fladult	0.20	2%	Coffee beans		0.5%	Potatoes		0.6%	Lettuces	2% 5%	3
	7% DK adult	0.17	2%	Milk: Cattle		0.5%	Potatoes		0.5%	Wheat	4%	3
	7% LT adult	0.17	2%	Milk: Cattle		1%	Potatoes		0.8%	Apples	3%	4
	7% UK vegetarian 7% FI 6 yr	0.17	1% 2%	Milk: Cattle Potatoes		0.9%	Wheat Spinaches		0.6%	Potatoes Wheat	3% 1%	4
	7% FI 6 yr 6% UK adult	0.16	2%	Potatoes Milk: Cattle		0.5%	Spinaches Wheat		0.4%	Vvneat Potatoes	1%	5
	4% PL general	0.10	1%	Potatoes		0.9%	Apples		0.4%	Tomatoes	0.3%	4
	3% IE child	0.08	1%	Milk: Cattle		0.5%	Wheat		0.3%	Potatoes	2%	1

310

Acute risk assessment/adults/general population

Details – acute risk assessment/children

Details - acute risk assessment/adults

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

Show results of IESTI calculation only for crops with GAPs under assessment

Unprocessed commodities	Results for children No. of commodities exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
go	IESTI				IESTI			
sse			MRL/input				MRL/input	
e	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
DIG.	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)
5	78%	Kaki/Japanese persimmons	0.4/0.4	19	46%	Chards/beet leaves	30/0.58	11
_	64%	Leeks	3/0.26	15	37%	Kaki/Japanese persimmons	0.4/0.4	8.8
	55%	Spinaches	30/0.58	13	14%	Leeks	3/0.26	3.4
	40%	Lettuces	15/0.26	9.7	13%	Lettuces	15/0.26	3.1
	38%	Chards/beet leaves	30/0.58	9.1	11%	Head cabbages	4/0.07	2.7
	28%	Rhubarbs	15/0.18	6.7	10%	Spinaches	30/0.58	2.3
	17%	Spring onions/green onions	4/0.26	4.1	8%	Cardoons	15/0.18	1.9
	17%	Melons	0.6/0.03	4.0	7%	Rhubarbs	15/0.18	1.7
	14%	Watermelons	0.6/0.03	3.2	6%	Red mustards	15/0.26	1.4
	12%	Head cabbages	4/0.07	2.9	5%	Spring onions/green onions	4/0.26	1.2
	12%	Pears	0.5/0.02	2.8	5%	Purslanes	30/0.58	1.1
	9%	Apples	0.5/0.02	2.2	4%	Watermelons	0.6/0.03	1.1
	6%	Sweet peppers/bell peppers	2/0.03	1.5	4%	Melons	0.6/0.03	1.0
	6%	Potatoes	0.05/0.01	1.5	3%	Florence fennels	20/0.04	0.71
	6%	Celeries	20/0.04	1.4	3%	Pears	0.5/0.02	0.61
	Expand/collapse list							
	Total number of co children and adult (IESTI calculation)	mmodities exceeding the AR diets	fD/ADI in					
Processed commodities	Results for children No of processed corr is exceeded (IESTI):	mmodities for which ARfD/ADI			Results for adults No of processed cor is exceeded (IESTI):	nmodities for which ARfD/ADI		
Ĕ	IESTI				IESTI			
ŭ			MRL/input				MRL/input	
sec	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
es	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)
ĕ	75%	Chards/beet leaves/boiled	30/0.58	18	30%	Chards/beet leaves/boiled	30/0.58	7.3
ā	62%	Leeks/boiled	3/0.26	15	20%	Spinaches/frozen; boiled	30/0.58	4.8
	34%	Spinaches/frozen; boiled	30/0.58	8.1	19%	Leeks/boiled	3/0.26	4.5
	28%	Rhubarbs/sauce/puree	15/0.18	6.7	11%	Rhubarbs/sauce/puree	15/0.18	2.6
	10%	Pumpkins/boiled	0.6/0.03	2.4	10%	Purslanes/boiled	30/0.58	2.4
	8%	Broccoli/boiled	4/0.02	1.9	9%	Cardoons/boiled	15/0.18	2.2
	070	Dioccoll/bolled	10.02	1.0	070		10/0.10	<u> </u>

Conclusion:

7% 7% 5%

4%

3% 2%

2%

2%

2%

Expand/collapse list

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of PAM (metabolite of penthiopyrad) is unlikely to present a public health risk.

20/0.04

4/0.02

0.5/0.12

0.05/0.01

0.7/0.02

0 05/0 05

0.5/0.01

0.6/0.01

0.6/0.01

1.7

1.7

1.1

0.93

0.64

0.59

0.54

0.51

0.51

6% 5% 4% 3% 2% 2% 2%

2%

1%

Pumpkins/boiled

Cauliflowers/boiled

Florence fennels/boiled

Sugar beets (root)/sugar Courgettes/boiled

Celeries/boiled

Broccoli/boiled

Beetroots/boiled

Apples/juice

For processed commodities, no exceedance of the ARfD/ADI was identified.

Florence fennels/boiled

Sugar beets (root)/sugar

Potatoes/dried (flakes)

Cauliflowers/boiled

Potatoes/fried

Apples/juice

Turnips/boiled

Parsnips/boiled

Courgettes/boiled

0.6/0.03

20/0.04

4/0.02

20/0.04

4/0.02 0.5/0.12

0.7/0.02

0.6/0.01

0.5/0.01

1.5

1.3

1.00

0.74

0.58

0 44

0.41

0.39

0.33

-	efsa			Picoxystrobi	n			Input	t values		
10			LOQs (mg/kg) range f		to:	15.0	Details – o	chronic risk	Supplementary res	ults –	
				Toxicological reference v ay): No ADI			asses	sment	chronic risk assessi	ment	
F	European Food Safety Authority		ADI (mg/kg bw per da	ay): No ADI	ARfD (mg/kg bw):	not assessed	Details –	acute risk	Details – acute r	isk	
	EFSA PRIMo revision 3.1; 2019/03/19		Source of ADI: Year of evaluation:		Source of ARfD: Year of evaluation:		assessmer	nt/children	assessment/adu	lts	
Commer											
				Norm	al mode						
				Chronic risk assessmen							
			No of diets exceeding							Exposure	resulting from
							1			MRLs set at the LOQ	commodities no under assessme
	Calculated exposure	Expsoure (µg/kg bw per		Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI)	
	(% of ADI) MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
I											
(uoi											
umpt											
cons											
food											
rage											
n ave											
sed o											
n (ba											
latio											
TMDI/NEDI/IEDI calculation (based on average food consumption)					1						
IEDI											
NEDI											
MDI/I											
	Conclusion:	elew the AD'	1	1		1		1	1	1	1
i i	The estimated long-term dietary intake (TMDI/NEDI/IEDI) was b The long-term intake of residues of Picoxystrobin is unlikely to p		ealth concern.								

Acute risk assessment/adults/general population

Details – acute risk assessment/children Details – acute risk assessment/adults

The acute risk assessment is based on the ADI, since acute effects have not been assessed. The calculation is based on the large portion of the most critical consumer group.

			Sho	ow result	s for all crops	5		
Unprocessed commodities	Results for children No. of commodities t exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
o p	IESTI				IESTI			
esse			MRL/input				MRL/input	
loce	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)
dur	AND/ADI	Commodities	(iiig/kg)	(µg/kg bw)	AND/ADI	Commodules	(ilig/kg)	(µg/kg bw)
<u> </u>								
	Expand/collapse list							
		mmodities exceeding the A	RfD/ADI in					
	children and adult of	diets						
	(IESTI calculation)							
ies	Results for children				Results for adults			
odit	No of processed con is exceeded (IESTI):	nmodities for which ARfD/AD	l		No of processed cor is exceeded (IESTI):	nmodities for which ARfD/ADI		
Processed commodities	IS EXCEEDED (IESTI).				IS EXCEEDED (IESTI).			
8	IE311		MRL/input		12311		MRL/input	
sec	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
sece	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)
Pro								
	Expand/collapse list							
	Expand/collapse list							

A short-term intake of residues of Picoxystrobin is unlikely to present a public health risk.

For processed commodities, no exceedance of the ARfD/ADI was identified.

*•etsa
European Food Safety Authority

Pota	ssium Phosp	onates		Input values				
LOQs (mg/kg) range from:	0.5 kicological reference v	to: values	5.0	ſ	Details – chronic risk assessment	Supplementary results – chronic risk assessment		
ADI (mg/kg bw per day):	Potassium Phospo 0.5 Toxicological reference v 1 EFSA 2018	ARfD (mg/kg bw):	not necessary	\sim				
Source of ADI: Year of evaluation:		Source of ARfD: Year of evaluation:	EFSA 2018		Details – acute risk ssessment/children	Details – acute risk assessment/adults		

men	its:									
				Refined o	calculation mode					
			•	Chronic risk assessm	nent: JMPR methodo	ology (IEDI/TMDI)				
			No of diets exceeding	the ADI :					Exposure	
									MRLs set at the LOQ	t comn under
		Expsoure	Highest contributor to	o	2nd contributor to	a 19.7	3rd contributor to MS		(in % of ADI	
	Calculated exposure (% of ADI) MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities	MS diet (in % of ADI)	Commodity/ group of commodities	diet (in % of ADI)	Commodity/ group of commodities	(~
_	98% NL toddler	976.04	(iii % 01 ADI) 25%	Apples	(III % 01 ADI) 11%	Potatoes	10%	Pears		
	95% DE child	947.63	29%	Apples	15%	Oranges	10%	Wheat		
	86% GEMS/Food G06	859.43	27%	Tomatoes	17%	Wheat	6%	Watermelons		
	63% NL child	626.48	13%	Apples	10%	Wheat	9%	Potatoes		
	60% RO general	603.29	15%	Tomatoes	12%	Wheat	10%	Potatoes		
	56% GEMS/Food G08	558.71	11%	Potatoes	9%	Wheat	9%	Tomatoes		
	56% GEMS/Food G15	558.51	11%	Wheat	10%	Potatoes	9%	Tomatoes		
	54% GEMS/Food G11	543.91	11%	Potatoes	8%	Wheat	7%	Tomatoes		
	53% GEMS/Food G07	532.69	10%	Potatoes	10%	Wheat	8%	Tomatoes		
	53% GEMS/Food G10	530.93	10%	Tomatoes	9%	Wheat	8%	Potatoes		
	52% FR child 3 15 yr	521.83	13%	Oranges	11%	Wheat	6%	Tomatoes		
	48% PT general	477.43	14%	Potatoes	9%	Wheat	7%	Tomatoes		
	47% IE adult	465.03	6%	Potatoes	5%	Wheat	4%	Oranges		
	45% ES child	448.14	10%	Wheat	8%	Oranges	7%	Tomatoes		
	44% SE general	439.75	11%	Potatoes	7%	Wheat	6%	Tomatoes		
	41% UK toddler	411.71	9%	Potatoes	9%	Wheat	7%	Oranges		
	41% IT toddler	411.64	15%	Wheat	11%	Tomatoes	2%	Potatoes		
	40% FR toddler 2 3 yr 40% DE women 14-50 yr	400.49 396.56	7% 7%	Apples	7% 6%	Wheat	5% 6%	Oranges Tomatoes		
	40% DE women 14-50 yr 38% DK child	396.83	10%	Oranges Wheat	6% 7%	Apples Potatoes	6% 5%	Apples		
	36% DK child 36% DE general	376.83	6%	oranges	6%	Apples	5%	Tomatoes		
	33% NL general	334.68	7%	Potatoes	4%	Wheat	4%	Oranges		
	33% FI 3 yr	333.33	13%	Potatoes	4%	Tomatoes	47% 3%	Wheat		
	33% IT adult	328.28	10%	Wheat	9%	Tomatoes	2%	Apples		
	33% ES adult	325.50	6%	Tomatoes	5%	Wheat	5%	Oranges		
	31% UK infant	305.05	9%	Potatoes	6%	Wheat	5%	Oranges		
	27% FI 6 yr	273.80	10%	Potatoes	3%	Tomatoes	2%	Wheat		
	27% FR adult	273.33	6%	Wine grapes	5%	Wheat	3%	Tomatoes		
	27% PL general	266.25	9%	Potatoes	7%	Tomatoes	5%	Apples		
	26% UK vegetarian	257.89	5%	Wheat	5%	Tomatoes	4%	Potatoes		
	23% LT adult	228.78	9%	Potatoes	5%	Tomatoes	4%	Apples		
	21% UK adult	205.71	4%	Wheat	4%	Potatoes	3%	Tomatoes		
	20% DK adult	202.40	4%	Tomatoes	3%	Potatoes	3%	Wheat		
	20% FR infant	201.34	5%	Potatoes	4%	Apples	2%	Wheat		
	16% Fl adult	161.38	4% 3%	Tomatoes	3% 2%	Potatoes	2% 0.8%	Oranges		
	7% IE child	70.06	3%	Wheat	2%	Potatoes	0.8%	Apples		

is unlikely to present a public of the Automation Production Production is unlikely to present a public health concern. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union.

Acute risk assessment/children Acute risk assessment/adults/general population

Details – acute risk assessment/adults

As an ARfD is not necessary/not applicable, no acute risk assessment is performed.

Details - acute risk assessment/children

			Sho	ow result	s for all crops	5		
Unprocessed commodities	Results for childrer No. of commodities t exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities f exceeded (IESTI):	or which ARfD/ADI is		
8	IESTI				IESTI			
sec	12311		MRL/input		Lon		MRL/input	
proces	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)
5	Expand/collapse list Total number of co children and adult o (IESTI calculation)	mmodities exceeding the AR	tfD/ADI in					
es	Results for children	ı			Results for adults			
diti		nmodities for which ARfD/ADI				nmodities for which ARfD/ADI		
Ĕ	is exceeded (IESTI):				is exceeded (IESTI):			
Col	IESTI		MDL formert		IESTI		MDI formet	
ed	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure
Processed commodities	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)
Pro								
	Expand/collapse list							
	Conclusion:							

*	*	-			Propiconazol	е			Input	values			
*		1		LOQs (mg/kg) range		to:	4.0	Details – ch	ronic risk	Supplementar	v results –		
-	`* * e	fsa			Toxicological reference v			assessr		chronic risk as			
-				ADI (mg/kg bw per da	vy): 0.04	ARfD (mg/kg bw):	0.1	Details – a	cute risk	Details – ao	ute risk		
		d Safety Authority evision 3.1; 2019/03/19		Source of ADI: Year of evaluation:		Source of ARfD: Year of evaluation:		assessment		assessment			
nts:	SA FIXIMO TO	EFSA 2015				1							
					Refined calc	ulation mode							
				I	Chronic risk assessment	JMPR methodo	ology (IEDI/TMDI)						
			-	No of diets exceeding	the ADI :						Exposure MRLs set at		
Cal	lculated exposur		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/			Commodity/	(in % of ADI)	(in %	
	(% of ADI) 2%	MS Diet IT adult	day) 0.64	(in % of ADI) 2%	group of commodities Peaches	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		2	
1	2%	PT general	0.61	2%	Peaches		FRUIT AND TREE NUTS					2	
1	1% 1%	IT toddler	0.59	1% 1%	Peaches		FRUIT AND TREE NUTS FRUIT AND TREE NUTS					1	
1	1% 1%	IE adult DE child	0.54	1%	Peaches Peaches		FRUIT AND TREE NUTS						
	1%	NL toddler	0.46	1%	Peaches		FRUIT AND TREE NUTS					1	
	1%	GEMS/Food G06	0.44	1%	Peaches		FRUIT AND TREE NUTS					1	
	0.9%	GEMS/Food G08	0.37	0.9%	Peaches		FRUIT AND TREE NUTS					0	
	0.9% 0.9%	ES adult NL child	0.36	0.9%	Peaches Peaches		FRUIT AND TREE NUTS FRUIT AND TREE NUTS					0.	
	0.8%	ES child	0.33	0.8%	Peaches		FRUIT AND TREE NUTS					0	
	0.7%	GEMS/Food G10	0.29	0.7%	Peaches		FRUIT AND TREE NUTS					0	
	0.6%	DE women 14-50 yr	0.25	0.6%	Peaches		FRUIT AND TREE NUTS					0.	
	0.6% 0.6%	GEMS/Food G07 FR child 3 15 yr	0.25	0.6%	Peaches Peaches		FRUIT AND TREE NUTS FRUIT AND TREE NUTS					0.	
	0.6%	SE general	0.25	0.6%	Peaches		FRUIT AND TREE NUTS					0.	
	0.5%	FR adult	0.22	0.5%	Peaches		FRUIT AND TREE NUTS					0	
	0.5%	DE general	0.22	0.5%	Peaches		FRUIT AND TREE NUTS					0.	
	0.5%	GEMS/Food G15	0.21	0.5%	Peaches		FRUIT AND TREE NUTS					0.	
1	0.5% 0.5%	FI 3 yr DK child	0.19	0.5%	Peaches Peaches		FRUIT AND TREE NUTS FRUIT AND TREE NUTS					0.	
1	0.4%	RO general	0.17	0.4%	Peaches		FRUIT AND TREE NUTS					0.	
1	0.4%	FI 6 yr	0.17	0.4%	Peaches		FRUIT AND TREE NUTS					0.	
1	0.3%	DK adult UK toddler	0.12	0.3%	Peaches Peaches		FRUIT AND TREE NUTS FRUIT AND TREE NUTS					0.	
1	0.3%	GEMS/Food G11	0.12	0.3%	Peaches		FRUIT AND TREE NUTS					0.	
1	0.3%	PL general	0.10	0.3%	Peaches		FRUIT AND TREE NUTS					0.	
1	0.2%	NL general	0.10	0.2%	Peaches		FRUIT AND TREE NUTS					0.	
1	0.2%	UK infant	0.08	0.2%	Peaches		FRUIT AND TREE NUTS					0.	
1	0.1% 0.1%	UK vegetarian UK adult	0.05	0.1%	Peaches Peaches		FRUIT AND TREE NUTS FRUIT AND TREE NUTS					0.	
1	0.1%	Fladult	0.03	0.1%	Peaches		FRUIT AND TREE NUTS					0.	
1	0.1%	FR toddler 2 3 yr	0.03	0.1%	Peaches		FRUIT AND TREE NUTS					0.	
1	0.1% 0.0%	FR infant IE child	0.03	0.1%	Peaches Peaches		FRUIT AND TREE NUTS FRUIT AND TREE NUTS					0.	
	0.0%	ing official	0.01	0.076	i caunce		INGI AND TREE NOTS					0.	
Ger	nclusion:		I			1	1				I	L	
		term dietary intake (TMDI/NEDI/IEDI) w											

Acute risk assessment/adults /general population

Details - acute risk assessment/children

Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

			Sho	ow result	s for all crops	5		
Unprocessed commodities	Results for childrer No. of commodities f exceeded (IESTI):	۱ or which ARfD/ADI is		1	Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
l S d	IESTI				IESTI			
orocesse	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
5	238% Expand/collapse list Total number of co children and adult o (IESTI calculation)	Peaches mmodities exceeding the Af	4/2.5 RfD/ADI in	238	47%	Peaches	4/2.5	47
nodities	Results for children No of processed con is exceeded (IESTI):	n nmodities for which ARfD/ADI			Results for adults No of processed corr is exceeded (IESTI):	nmodities for which ARfD/ADI		
umo	IESTI				IESTI			
Processed commodities	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Proc	65% 28%	Peaches/juice	4/2.5 4/1.7	65 28	20%	Peaches/canned	4/2.5	20
	Expand/collapse list				I			
	Conclusion: The estimated short-	term intake (IESTI) exceeded	the toxicologica	al reference val	ue for 1 commodities.			

For processed commodities, no exceedance of the ARfD/ADI was identified.

efsa			Pydiflumetofen	(F)		Inpu	t values		
		LOQs (mg/kg) range	from: 0.01	to:	40.0	Details – chronic risk	Supplementary	results –	
			Toxicological reference v	alues		assessment	chronic risk asse	essment	
		ADI (mg/kg bw per da	ay): 0.09	ARfD (mg/kg bw):	0.3				
n Food Safety Authority		Source of ADI:		Source of ARfD:		Details – acute risk	Details – acu		
RIMo revision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:		assessment/children	assessment/a	idults	
		•		•					
			<u>Norma</u>	ll mode					
			Chronic risk assessment	JMPR methodo	ology (IEDI/TMDI)				
		No of diets exceeding	the ADI :						resulting fi
	_							MRLs set at the LOQ	commodit under asse
exposure	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/	3rd contributor to MS diet	Commodity/	(in % of ADI)	(in % of
ADI) MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		
% NL toddler	15.72	10%	Spinaches	3%	Escaroles/broad-leaved endives	1%	Milk: Cattle	0.2%	17
% ES adult % IT adult	9.88 9.22	7% 5%	Lettuces Lettuces	1% 1%	Chards/beet leaves Spinaches	1% 0.9%	Spinaches Other spinach and similar	0.0%	11 10
% ESchild	8.61	6%	Lettuces	1%	Spinaches	1%	Chards/beet leaves	0.1%	99
% GEMS/Food G10	7.54	5%	Lettuces	0.9%	Cress and other sprouts and shoots	0.7%	Spinaches	0.1%	8
% SE general	7.46	6%	Lettuces	0.9%	Spinaches	0.3%	Milk: Cattle	0.1%	89
% IT toddler	7.41	4%	Lettuces	0.8%	Chards/beet leaves	0.8%	Spinaches	0.0%	89
% NL child	7.31	3%	Spinaches	1%	Escaroles/broad-leaved endives	1%	Lettuces	0.1%	8
% GEMS/Food G11	7.13	1%	Celeries	1%	Spinaches	1%	Lamb's lettuce/corn salads	0.1%	89
% GEMS/Food G08 % DE child	6.56 6.45	3% 3%	Lettuces Spinaches	1.0% 1%	Lamb's lettuce/corn salads Lettuces	0.4%	Spinaches Milk: Cattle	0.1%	79
% DE child % GEMS/Food G07	6.45	3%	Lettuces	0.6%	Celeries	0.4%	Spinaches	0.1%	79
% IE adult	6.09	2%	Spinaches	1%	Rhubarbs	1%	Lettuces	0.1%	79
% NL general	5.53	2%	Spinaches	1%	Escaroles/broad-leaved endives	1%	Lettuces	0.0%	69
% GEMS/Food G06	5.19	1%	Lettuces	0.9%	Tomatoes	0.7%	Spinaches	0.1%	69
% FR infant	4.82	4%	Spinaches	0.4%	Chards/beet leaves	0.4%	Milk: Cattle	0.0%	5%
% GEMS/Food G15	3.82	2%	Lettuces	0.4%	Celeries	0.3%	Wheat	0.1%	49
% DE women 14-50 yr % FR toddler 2 3 yr	3.73 3.65	2% 2%	Lettuces Spinaches	0.7%	Spinaches Milk: Cattle	0.3%	Lamb's lettuce/corn salads Wheat	0.1%	49
% DK child	3.47	2%	Lettuces	0.4%	Rye	0.3%	Wheat	0.0%	49
% FR child 3 15 vr	3.44	1%	Spinaches	0.5%	Milk: Cattle	0.3%	Wheat	0.1%	4
% DE general	3.42	1%	Lettuces	0.6%	Spinaches	0.3%	Milk: Cattle	0.0%	4
% UK vegetarian	3.15	2%	Lettuces	0.5%	Spinaches	0.2%	Wine grapes	0.0%	39
% PT general	2.93	1%	Lettuces	0.7%	Wine grapes	0.3%	Wheat	0.0%	39
% FR adult % FI adult	2.56 2.49	0.7% 2%	Spinaches Lettuces	0.7%	Wine grapes Spinaches	0.3%	Lamb's lettuce/corn salads Tomatoes	0.0%	39
% UK adult	2.49	2%	Lettuces	0.2%	Wine grapes	0.1%	Spinaches	0.0%	3
% FI6yr	2.38	1%	Lettuces	0.8%	Spinaches	0.1%	Tomatoes	0.0%	3
	2.12	1%	Lettuces	0.3%	Wine grapes	0.2%	Spinaches	0.0%	29
% DK adult	2.09	0.9%	Spinaches	0.5%	Lettuces	0.1%	Oat	0.0%	29
% DK adult % FI 3 yr									29
% DK adult % FI 3 yr % UK toddler									29
% DK adult % Fl 3 yr % UK toddler % RO general	1.71	0.9%		0.2%	Vvneat Tomatoes	0.2%	Spinacnes Milk: Cattle	0.0%	29
% DK adult % Fl 3 yr % UK toddler % RO general % UK infant		0.2%	Tomatoes	0.2%	Lettuces	0.1%	Table grapes	0.0%	0.7
% DK adult % FI 3 yr % UK toddler % RO general % UK infant % LT adult % PL general						0.40/	Mille Cottlo	0.0%	0.5
	FI 6 yr DK adult FI 3 yr UK toddler RO general UK infant LT adult	F1 6 yr 2.38 DK adult 2.12 F1 3 yr 2.09 UK loddler 2.01 RO general 1.91 UK infant 1.71 LT adut 1.40	F1 6 yr 2.38 1% DK adutt 2.12 1% F1 3 yr 2.09 0.9% UK toddler 2.01 0.5% RC general 1.91 0.5% UK infant 1.71 0.9% LT adutt 1.40 0.9%	F1 6 yr 2.38 1% Lettuces DK adult 2.12 1% Lettuces F1 3 yr 2.09 0.9% Spinaches UK toddler 2.01 0.5% Milk: Cattle RO general 1.91 0.5% Wine grapes UK Infant 1.71 0.9% Milk: Cattle LT adult 1.40 0.9% Lettuces PL general 0.68 0.2% Tomatoes	FI 6 yr 2.38 1% Lettuces 0.8% DK adult 2.12 1% Lettuces 0.3% FI 3 yr 2.09 0.9% Spinaches 0.5% UK toddler 2.01 0.5% Milk: Cattle 0.4% RO general 1.91 0.5% Milk: Cattle 0.4% UK infant 1.71 0.9% Milk: Cattle 0.2% L'a dult 1.40 0.9% Lettuces 0.2% PL general 0.688 0.2% 0.2% 0.2%	F16 yr 2.38 1% Lettuces 0.8% Spinaches DK adult 2.12 1% Lettuces 0.3% Wine grapes F13 yr 2.09 0.9% Spinaches 0.5% Lettuces UK toddier 2.01 0.5% Mik: Cattle 0.4% Spinaches RO general 1.91 0.5% Wine grapes 0.5% Tomatoes UK infant 1.71 0.9% Mik: Cattle 0.2% Wheat LT adult 1.40 0.9% Lettuces 0.2% Tomatoes PL general 0.68 0.2% Tomatoes 0.2% Tomatoes	F16 yr 2.38 1% Lettuces 0.8% Spinaches 0.1% DK adult 2.12 1% Lettuces 0.3% Wine grapes 0.2% F13 yr 2.09 0.9% Spinaches 0.5% Lettuces 0.1% UK toddier 2.01 0.5% Mik: Cattle 0.4% Spinaches 0.3% RO general 1.91 0.5% Wine grapes 0.5% Tomatoes 0.4% UK infant 1.71 0.9% Mik: Cattle 0.4% 0.5% Wheat 0.2% LT adult 1.40 0.9% Lettuces 0.2% Tomatoes 0.1% PL general 0.68 0.2% Tomatoes 0.2% 0.1% 0.1%	F16 yr 2.38 1% Lettuces 0.8% Spinaches 0.1% Tomatoes DK adult 2.12 1% Lettuces 0.3% Wine grapes 0.2% Spinaches F13 yr 2.09 0.9% Spinaches 0.5% Lettuces 0.1% Tomatoes UK toddier 2.01 0.5% Mile: Cattle 0.4% Spinaches 0.3% Lettuces RO general 1.91 0.5% Wine grapes 0.5% Tomatoes 0.4% Weat UK infant 1.71 0.9% Mile: Cattle 0.2% Wheat 0.2% Spinaches LT adult 1.40 0.9% Lettuces 0.2% Tomatoes 0.1% Mile: Cattle PL general 0.68 0.2% Tomatoes 0.2% Tomatoes 0.1% Mile: Cattle	F1 6 yr 2.38 1% Lettuces 0.8% Spinaches 0.1% Tomatoes 0.0% DK adult 2.12 1% Lettuces 0.3% Wine grapes 0.1% Tomatoes 0.0% F1 3 yr 2.09 0.9% Spinaches 0.5% Lettuces 0.1% Oat 0.0% UK toddler 2.01 0.5% Milk: Cattle 0.4% Spinaches 0.3% Lettuces 0.1% Oat 0.0% UK toddler 2.01 0.5% Milk: Cattle 0.4% Spinaches 0.3% Lettuces 0.1% RO general 1.91 0.5% Milk: Cattle 0.2% Tomatoes 0.4% Wheat 0.0% UK radnt 1.74 0.9% Milk: Cattle 0.2% Tomatoes 0.2% Spinaches 0.0% UK radnt 1.40 0.9% Lettuces 0.2% Tomatoes 0.1% Milk: Cattle 0.0%

Acute risk assessment/adults/general population

Details – acute risk assessment/children

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

Results for children	1			Results for adults			
No. of commodities for	or which ARfD/ADI is				for which ARfD/ADI is		
exceeded (IESTI):			5	exceeded (IESTI):			
IESTI				IESTI			
Liber at 0/ af		MRL/input	F	Links at 0/ of		MRL/input	E
Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exp (µg/l
228%	Escaroles/broad-leaved	40/17	(µg/kg bw) 683	114%	Escaroles/broad-leaved	40/17	(µg/i
216%	Lettuces	40/17	647	107%	Chards/beet leaves	40/17	3
128%	Spinaches	40/17	384	69%	Lettuces	40/17	2
116%	Celeries	15/9.3	348	58%	Florence fennels	15/9.3	1
115%	Rhubarbs	15/9.3	346	50%	Celeries	15/9.3	1
88%	Chards/beet leaves	40/17	265	40%	Globe artichokes	15/9.3	1
55%	Globe artichokes	15/9.3	164	32%	Cardoons	15/9.3	
50%	Florence fennels	15/9.3	151	29%	Rhubarbs	15/9.3	
30%	Kales	4/2.05	90	23%	Spinaches	40/17	
29%	Table grapes	2/1.19	87	13%	Table grapes	2/1.19	
16%	Lamb's lettuce/corn salads	40/17	48	13%	Kales	4/2.05	
14%	Melons	0.4/0.27	41	11%	Purslanes	40/17	
11%	Watermelons	0.4/0.27	33	11%	Lamb's lettuce/corn salads	40/17	
9%	Tomatoes	0.9/0.45	26	9%	Wine grapes	2/1.19	
	Sweet peppers/bell peppers	0.5/0.42	25	4%	Aubergines/egg plants	0.5/0.42	
8%							
Expand/collapse list Total number of cor children and adult d (IESTI calculation)	mmodities exceeding the ARf liets		6				
Expand/collapse list Total number of con children and adult d (IESTI calculation) Results for children No of processed com	mmodities exceeding the ARf liets			Results for adults No of processed co	mmodities for which ARfD/ADI		
Expand/collapse list Total number of cor children and adult d (IESTI calculation) Results for children No of processed com is exceeded (IESTI):	nmodities exceeding the ARf liets		6	Results for adults No of processed co is exceeded (IESTI)	mmodities for which ARfD/ADI		
Expand/collapse list Total number of con children and adult d (IESTI calculation) Results for children No of processed com	nmodities exceeding the ARf liets	D/ADI in		Results for adults No of processed co	mmodities for which ARfD/ADI	MRL/input	
Expand/collapse list Total number of cor children and adult d (IESTI calculation) Results for children No of processed com is exceeded (IESTI):	nmodities exceeding the ARf liets			Results for adults No of processed co is exceeded (IESTI)	mmodities for which ARfD/ADI	MRL/input for RA	Exp
Expand/collapse list Total number of cor children and adult d (IESTI calculation) Results for children No of processed com is exceeded (IESTI): IESTI	nmodities exceeding the ARf liets	D/ADI in	4	Results for adults No of processed co is exceeded (IESTI) IESTI	mmodities for which ARfD/ADI		Exp (µg/l
Expand/collapse list Total number of cor children and adult d (IESTI calculation) Results for children No of processed com is exceeded (IESTI): IESTI Highest % of	mmodities exceeding the ARf liets	D/ADI in MRL/input for RA	4 Exposure	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of	mmodities for which ARfD/ADI	for RA	(μg/l
Expand/collapse list Total number of cor children and adult d (IESTI calculation) Results for children No of processed com is exceeded (IESTI): IESTI Highest % of ARfD/ADI	mmodities exceeding the ARf liets mmodities for which ARfD/ADI	D/ADI in MRL/input for RA (mg/kg)	4 Exposure (μg/kg bw)	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI	mmodities for which ARfD/ADI	for RA (mg/kg)	
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of AR(D/ADI 376%	mmodities exceeding the ARf liets mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi	D/ADI in MRL/input for RA (mg/kg) 40/17	4 Exposure (µg/kg bw) 1127	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARtD/ADI 116%	mmodities for which ARfD/ADI	for RA (mg/kg) 40/17	(μg/l
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com is exceeded (IESTI): IESTI Highest % of ARfD/ADI 376% 176%	mmodities exceeding the ARf liets mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled	D/ADI in MRL/input for RA (mg/kg) 40/17 40/17	4 Exposure (µg/kg bw) 1127 529	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI 116% 105%	mmodities for which ARfD/ADI	for RA (mg/kg) 40/17 15/9.3	(µg/l 3
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com is exceeded (IESTI): IESTI Highest % of AR(D/ADI 376% 176% 141%	mmodities exceeding the ARf liets mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled	D/ADI in MRL/input for RA (mg/kg) 40/17 40/17 15/9.3	4 Exposure (µg/kg bw) 1127 529 422	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 116% 105% 71%	mmodities for which ARfD/ADI	for RA (mg/kg) 40/17 15/9.3 40/17	(µg/) 3 3 2
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of ARfD/ADI 376% 176% 141% 141%	mmodities exceeding the ARf liets mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Rhubarbs/sauce/puree	D/ADI in MRL/input for RA (mg/kg) 40/17 40/17 15/9.3 15/9.3	4 Exposure (µg/kg bw) 1127 529 422 347	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI 116% 105% 71% 60%	mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Florence fennels/boiled	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3	(µg// 3 2 1 1
Expand/collapse list Total number of cor- children and adult di (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of AR(D/ADI 376% 176% 141% 116% 79%	mmodities exceeding the ARf liets mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Florence fennels/boiled Spinaches/frozen; boiled	D/ADI in MRL/input for RA (mg/kg) 40/17 40/17 15/9.3 15/9.3 40/17	4 Exposure (µg/kg bw) 1127 529 422 347 236	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARID/ADI 116% 105% 71% 60% 47%	Processed commodities Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Spinaches/frozen; boiled	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3 40/17	(μg// 3 2 1 1 1
Expand/collapse list Total number of cor- children and adult di (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of AR(D/ADI 376% 176% 141% 116% 79% 19%	mmodities exceeding the ARf liets mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Rhubarbs/sauce/puree Spinaches/frozen; boiled Kales/boiled	D/ADI in MRL/input for RA (mg/kg) 40/17 40/17 15/9.3 15/9.3 40/17 4/2.05	4 Exposure (µg/kg bw) 1127 529 422 347 236 57	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARID/ADI 116% 105% 71% 60% 47% 45%	mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Florence fennels/boiled Spinaches/frozen; boiled Rhubarbs/sauce/puree	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3 40/17 15/9.3	(μg// 3 2 1 1 1 1
Expand/collapse list Total number of cor- children and adult di (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of ARRD/ADI 376% 176% 141% 116% 79% 19% 8% 4% 3%	mmodities exceeding the ARf liets Inmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Florence fennels/boiled Florence fennels/boiled Florence fennels/boiled Kales/boiled Pumpkins/boiled Wine grapes/juice Courgettes/boiled	D/ADI in MRL/input for RA (mg/kg) 40/17 40/17 15/9.3 15/9.3 40/17 4/2.05 0.4/0.27 2/0.27 0.4/0.27	4 Exposure (µg/kg bw) 1127 529 422 347 236 57 24 236 57 24 12 9.6	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARID/ADI 116% 105% 71% 60% 47% 45% 38% 23% 5%	Processed commodities Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Florence fennels/boiled Spinaches/frozen; boiled Rhubarbs/sauce/puree Cardoons/boiled	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3 40/17 15/9.3 15/9.3 40/17 0.4/0.27	(μg/) 3 2 1 1 1 1
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of ARfD/ADI 376% 176% 141% 116% 79% 19% 8% 4% 3%	mmodities exceeding the ARf liets mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Rhubarbs/sauce/puree Spinaches/frozen; boiled Kales/boiled Pumpkins/boiled Wine grapes/juice	D/ADI in MRL/input for RA (mg/kg) 40/17 15/9.3 15/9.3 15/9.3 40/17 4/2.05 0.4/0.27 2/0.27	4 Exposure (µg/kg bw) 1127 529 422 347 236 57 24 12	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 116% 105% 71% 60% 47% 45% 38% 23% 5% 4%	Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Florence fennels/boiled Spinaches/frozen; boiled Rhubarbs/sauce/puree Cardoons/boiled Purslanes/boiled	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3 40/17 15/9.3 15/9.3 40/17	(μg/) 3 2 1 1 1 1
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of ARfD/ADI 376% 176% 141% 116% 79% 19% 8% 4% 3% 3%	mmodities exceeding the ARf liets Inmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Florence fennels/boiled Florence fennels/boiled Florence fennels/boiled Kales/boiled Pumpkins/boiled Wine grapes/juice Courgettes/boiled	D/ADI in MRL/input for RA (mg/kg) 40/17 40/17 15/9.3 15/9.3 40/17 4/2.05 0.4/0.27 2/0.27 0.4/0.27	4 Exposure (µg/kg bw) 1127 529 422 347 236 57 24 236 57 24 12 9.6	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARtD/ADI 116% 105% 71% 60% 47% 38% 23% 5% 4% 2%	Processed commodities Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Florence fennels/boiled Spinaches/frozen; boiled Rhubarbs/sauce/puree Cardoons/boiled Purslanes/boiled Purslanes/boiled Wine grapes/wine Table grapes/vains	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3 40/17 15/9.3 40/17 0.4/0.27 2/1.19 2/5.59	(μg/) 3 2 1 1 1 1
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of ARfD/ADI 376% 176% 141% 141% 141% 18% 79% 19% 8% 4% 3% 3% 2%	mmodities exceeding the ARf liets Immodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Rhubarbs/sauce/puree Spinaches/frozen; boiled Kales/boiled Pumpkins/boiled Wine grapes/juice Courgettes/boiled Broccoli/boiled Potatoes/fried Cauliflowers/boiled	D/ADI in MRL/input for RA (mg/kg) 40/17 15/9.3 15/9.3 15/9.3 40/17 4/2.05 0.4/0.27 2/0.27 0.4/0.27 0.1/0.08 0.07/0.09	4 Exposure (µg/kg bw) 1127 529 422 347 236 57 24 12 9.6 9.5 7.8 6.3	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI 116% 105% 71% 60% 47% 45% 38% 23% 5% 4% 2% 2%	mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Florence fennels/boiled Spinaches/frozen; boiled Rhubarbs/sauce/puree Cardoons/boiled Purslanes/boiled Purslanes/boiled Pumpkins/boiled Wine grapes/raisins Courgettes/boiled	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3 40/17 15/9.3 40/17 0.4/0.27 2/1.19 2/5.59 0.4/0.27	(µg// 3 2 1 1 1 1 1 1 4 (
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of ARfD/ADI 376% 176% 141% 116% 79% 19% 8% 4% 3% 3%	mmodities exceeding the ARf liets mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Rhubarbs/sauce/puree Spinaches/frozen; boiled Kales/boiled Pumpkins/boiled Wine grapes/juice Courgettes/boiled Broccol/boiled Potatoes/fried	D/ADI in MRL/input for RA (mg/kg) 40/17 40/17 15/9.3 15/9.3 40/17 4/2.05 0.4/0.27 2/0.27 0.4/0.27 0.15/0.12 0.10.08	4 Exposure (µg/kg bw) 1127 529 422 347 236 57 24 12 9.6 9.5 7.8	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARtD/ADI 116% 105% 71% 60% 47% 38% 23% 5% 4% 2%	Processed commodities Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Florence fennels/boiled Spinaches/frozen; boiled Rhubarbs/sauce/puree Cardoons/boiled Purslanes/boiled Purslanes/boiled Wine grapes/wine Table grapes/vains	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3 40/17 15/9.3 40/17 0.4/0.27 2/1.19 2/5.59	(μg/) 3 2 1 1 1 1
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of ARTD/ADI 376% 176% 141% 116% 79% 19% 8% 4% 3% 3% 3% 3% 2% 2% 1%	mmodities exceeding the ARf liets mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Rhubarbs/sauce/puree Spinaches/frozen; boiled Kales/boiled Pumpkins/boiled Wine grapes/juice Courgettes/boiled Broccoil/boiled Potatoes/fried Cauliflowers/boiled Gherkins/pickled Sweet potatos/boiled	D/ADI in MRL/input for RA (mg/kg) 40/17 15/9.3 15/9.3 15/9.3 40/17 4/2.05 0.4/0.27 2/0.27 0.4/0.27 0.4/0.27 0.1/0.08 0.07/0.09 0.4/0.27 0.1/0.08	4 Exposure (µg/kg bw) 1127 529 422 347 236 57 24 12 9.6 9.5 7.8 6.3 6.3 6.2 4.2	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 116% 105% 71% 60% 47% 38% 23% 5% 4% 2% 1%	mmodities for which ARfD/ADI Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Florence fennels/boiled Spinaches/frozen; boiled Rhubarbs/sauce/puree Cardoons/boiled Pumpkins/boiled Wine grapes/wine Table grapes/wine Table grapes/juice Cauliflowers/boiled	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3 40/17 15/9.3 15/9.3 15/9.3 40/17 0.4/0.27 2/1.19 2/5.59 0.4/0.27 2/0.27 0.07/0.09	(µg/ 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Expand/collapse list Total number of cor- children and adult d (IESTI calculation) Results for children No of processed com- is exceeded (IESTI): IESTI Highest % of ARfD/ADI 376% 176% 141% 116% 79% 19% 8% 4% 3% 3% 3% 2%	mmodities exceeding the ARf liets Processed commodities Escaroles/broad-leaved endi Chards/beet leaves/boiled Florence fennels/boiled Florence fennels/boiled Florence fennels/boiled Pumpkins/boiled Pumpkins/boiled Wine grapes/juice Courgettes/boiled Broccoli/boiled Potatoes/fried Cauliflowers/boiled Gherkins/pickled	D/ADI in MRL/input for RA (mg/kg) 40/17 40/17 40/17 15/9.3 15/9.3 40/17 4/2.05 0.4/0.27 2/0.27 0.4/0.27 0.4/0.27 0.1/0.08 0.07/0.09 0.4/0.27	4 Exposure (µg/kg bw) 1127 529 422 347 236 57 24 12 9.6 9.5 7.8 6.3 6.2	Results for adults No of processed co is exceeded (IESTI) IESTI Highest % of ARfD/ADI 116% 105% 71% 60% 47% 45% 38% 23% 5% 4% 2% 2%	Processed commodities Escaroles/broad-leaved Celeries/boiled Chards/beet leaves/boiled Florence fennels/boiled Spinaches/frozen; boiled Spinaches/frozen; boiled Rhubarbs/sauce/puree Cardoons/boiled Purslanes/boiled Purghanes/boiled Wine grapes/vine Table grapes/raisins Courgettes/boiled Wine grapes/juice	for RA (mg/kg) 40/17 15/9.3 40/17 15/9.3 40/17 15/9.3 40/17 0.4/0.27 2/1.19 2/5.59 0.4/0.27 2/0.27	(µg// 3 2 1 1 1 1 1 1 4 (

For processed commodities, the toxicological reference value was exceeded in one or several cases.

*	***				Pyflubi	umide					Input values		J
*				LOQs (mg/kg) range	from:	0.01	to:	0.01	Details – cł		Supplementary results – ch	nronic risk	
	. C			ADI (mg/kg bw per da	Toxicological re	terence values 0.007	ARfD (mg/kg bw):	0.008	assess	ment	assessment		
Eur	opean Food	d Safety Authority		Source of ADI:		JMPR 2019	Source of ARfD:	JMPR 2019	Details – a assessment		Details – acute ris assessment/adult		
	SA PRIMo rev	vision 3.1; 2019/03/19		Year of evaluation:			Year of evaluation:		assessment	i/chiluren	assessment/addit	<u>،</u>	
ents:													
					Normal I	mode							
					Chronic risk assessment: J	JMPR methodology (IE	DI/TMDI)						
				No of diets exceeding	the ADI :		-					Exposure	
							2nd contributor to		0-1-	ontributor to MS		MRLs set at the LOQ	under a
Ca	lculated exposure	0	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/	3rd c	diet	Commodity/	(in % of ADI)	l) (in %
-	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	(1	n % of ADI)	group of commodities		
	82%	DE child	5.74	73%	Apples		3%	Milk: Cattle		2%	Tea (dried leaves of Camellia sinensis)	3%	1
	81% 46%	NL toddler	5.70 3.19	63% 34%	Apples		9% 3%	Milk: Cattle Milk: Cattle		2% 3%	Tea (dried leaves of Camellia sinensis) Tea (dried leaves of Camellia sinensis)	7% 4%	
	34%	NL child FR adult	2.40	27%	Apples Tea (dried leaves of Camellia sinensis)		4%	Apples			Milk: Cattle	4%	
	34%	IE adult	2.40	25%	Tea (dried leaves of Camelia sinensis)		4%	Apples		0.6%	Milk: Cattle	3%	
	29%	UK infant	2.00	11%	Tea (dried leaves of Camellia sinensis)		9%	Apples		6%	Milk: Cattle	2%	
	27%	FR toddler 2 3 vr	1.87	19%	Apples		4%	Milk: Cattle		0.9%	Tea (dried leaves of Camellia sinensis)	2%	
	25%	DE women 14-50 yr	1.78	15%	Apples		6%	Tea (dried leaves of Camellia sir	nensis)	2%	Milk: Cattle	2%	
	25%	DE general	1.72	14%	Apples		6%	Tea (dried leaves of Camellia sir	nensis)	2%	Milk: Cattle	2%	
	22%	FR child 3 15 yr	1.53	10%	Apples		5%	Tea (dried leaves of Camellia sir		3%	Milk: Cattle	3%	
	22%	GEMS/Food G11	1.53	9%	Apples		7%	Tea (dried leaves of Camellia sir		1%	Milk: Cattle	3%	
	21%	UK toddler	1.50	10%	Apples		5%	Tea (dried leaves of Camellia sir	nensis)	3%	Milk: Cattle	3%	
	20%	GEMS/Food G07	1.43	9%	Tea (dried leaves of Camellia sinensis)		6%	Apples		0.9%	Milk: Cattle	3%	
	20%	GEMS/Food G06	1.43	10%	Tea (dried leaves of Camellia sinensis)		5%	Apples		1%	Wheat	4%	
	19% 19%	NL general DK child	1.34	9% 14%	Apples Apples		7% 2%	Tea (dried leaves of Camellia sin Milk: Cattle	iensis)	1% 0.8%	Milk: Cattle Rye	2% 3%	
	18%	GEMS/Food G08	1.34	7%	Apples		6%	Tea (dried leaves of Camellia sir	oneie)		Milk: Cattle	3%	
	15%	GEMS/Food G10	1.07	6%	Tea (dried leaves of Camellia sinensis)		4%	Apples	1011313)	0.8%	Milk: Cattle	3%	
	15%	UK vegetarian	1.05	10%	Tea (dried leaves of Camellia sinensis)		3%	Apples		0.5%	Milk: Cattle	1%	
	15%	UK adult	1.03	10%	Tea (dried leaves of Camellia sinensis)		2%	Apples		0.4%	Milk: Cattle	1.0%	
	14%	GEMS/Food G15	1.00	6%	Apples		3%	Tea (dried leaves of Camellia sir	nensis)	1%	Milk: Cattle	3%	
	14%	FR infant	0.97	10%	Apples		2%	Milk: Cattle		0.3%	Potatoes	1%	
	13%	RO general	0.94	8%	Apples		2%	Milk: Cattle		0.7%	Wheat	2%	
	13%	PL general	0.91	12%	Apples		0.5%	Potatoes		0.1%	Tomatoes	0.9%	
	13%	LT adult	0.91	11%	Apples		0.6%	Milk: Cattle		0.5%	Potatoes	1%	
	12% 11%	ES child	0.81	7% 6%	Apples		2% 2%	Milk: Cattle Milk: Cattle		0.6% 0.6%	Wheat Bovine: Muscle/meat	2% 2%	
	10%	SE general DK adult	0.67	6%	Apples Apples		2%	Tea (dried leaves of Camellia sir	oneie)	0.8%	Milk: Cattle	0.8%	
	9%	PT general	0.63	6%	Apples		0.8%	Potatoes	1011313)	0.6%	Wheat	2%	
	8%	FI 3 yr	0.54	6%	Apples		0.7%	Potatoes	1	0.2%	Bananas	2%	1
	7%	IT toddler	0.52	5%	Apples		0.9%	Wheat	1	0.2%	Other cereals	2%	
	7%	ES adult	0.51	5%	Apples		0.7%	Milk: Cattle	1	0.3%	Wheat	1%	1
	6%	IT adult	0.44	5%	Apples		0.6%	Wheat	1	0.2%	Tomatoes	1%	
	5%	FI 6 yr	0.36	3%	Apples		0.6%	Potatoes		0.1%	Wheat	2%	
	5% 3%	FI adult	0.36	3% 2%	Apples Apples		0.8%	Coffee beans Milk: Cattle		0.2% 0.4%	Potatoes Tea (dried leaves of Camellia sinensis)	2% 0.4%	
		IE child	0.24										

-								
		Details – acute risk assessment/ch	ildren			Details – acute risk assessment/	adults	
		isment is based on the ARID. sed on the large portion of the most critical consumer gr Show results of	-	lation on	ly for crops v	vith GAPs under assessment		
	Results for children	1 or which ARID/ADI is exceeded (IESTI);		2	Results for adults	or which ARfD/ADI is exceeded (IESTI):		1
F		or which ARID/ADLIS exceeded (IESTI).		2		or which ARID/ADLIS exceeded (IES11).		
4	ESTI		MDL		IESTI		MDI 6	
	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Expos
T	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
F	741%	Apples	1/0.55	59	193%	Apples	1/0.55	15
I	258%	Tea (dried leaves of Camellia sinensis)	0.01/13.5	21	84%	Tea (dried leaves of Camellia sinensis)	0.01/13.5	6.8
ſ	2%	Poultry: Muscle/meat	0.01/0.01	0.17	1%	Poultry: Muscle	0.01/0.01	0.1
L	2%	Eggs: Chicken	0.01/0.01	0.12	0.7%	Bovine: Muscle	0.01/0.01	0.0
L	2%	Swine: Muscle/meat	0.01/0.01	0.12	0.6%	Swine: Muscle/meat	0.01/0.01	0.0
L	1%	Bovine: Liver	0.01/0.01	0.08	0.6%	Equine: Muscle/meat	0.01/0.01	0.0
	0.9%	Bovine: Edible offals (other than liver and kidney)	0.01/0.01	0.07	0.6%	Sheep: Muscle/meat	0.01/0.01	0.0
	0.9%	Bovine: Muscle/meat	0.01/0.01	0.07	0.6%	Poultry: Liver	0.01/0.01	0.0
L	0.8%	Equine: Muscle/meat	0.01/0.01	0.06	0.5%	Eggs: Chicken	0.01/0.01	0.0
	0.7% 0.5%	Sheep: Muscle/meat Bovine: Kidney	0.01/0.01 0.01/0.01	0.05 0.04	0.5%	Bovine: Liver Bovine: Edible offals (other than liver and kidney)	0.01/0.01 0.01/0.01	0.0
	0.5%	Swine: Edible offals (other than liver and kidney)	0.01/0.01	0.04	0.4%	Sheep: Liver	0.01/0.01	0.0
	0.4%	Bovine: Fat tissue	0.01/0.01	0.03	0.3%	Sneep. Liver Swine: Edible offals (other than liver and kidney)	0.01/0.01	0.0
L	0.2%	Swine: Fat tissue	0.01/0.01	0.02	0.3%	Swine: Edible onais (other than liver and kidney) Swine: Kidney	0.01/0.01	0.0
	0.2%	Swine: Kidney	0.01/0.01	0.02	0.3%	Bovine: Kidney	0.01/0.01	0.0
E	Expand/collapse list							
	Total number of co (IESTI calculation)	mmodities exceeding the ARfD/ADI in children and a	dult diets	2				
Т								
	Results for children			1	Results for adults			1
F		nmodities for which ARfD/ADI is exceeded (IESTI):		1		nmodities for which ARfD/ADI is exceeded (IESTI):		1
Ľ	ESTI				IESTI			
			MRL/input	-			MRL/input	-
1	Highest % of ARfD/ADI	Decenced commediation	for RA	Exposure	Highest % of ARfD/ADI	Processed commodities	for RA	Expos
H	277%	Processed commodities Apples/juice	(mg/kg) 1/0.41	(µg/kg bw) 22	ARtD/ADI 171%	Apples/juice	(mg/kg) 1/0.41	(µg/kg 14
ŀ	59%	Apples/Juice Tea (dried leaves of Camellia sinensis)/infusion	0.01/0.14	4.7	34%	Apples/juice Tea (dried leaves of Camellia sinensis)/infusion	0.01/0.14	2.7
	Expand/collapse list Conclusion: The estimated short-	term intake (IESTI) exceeded the toxicological reference	value for 2 comm	odities.				

	*	~			Pyraclostr	obin (F)				nput values		
	×. ∩	Safety Authority		LOQs (mg/kg) range		0.01 to:	0.50	Details – chr		Supplementary results – chi	onic risk	
	••E			ADI (mg/kg bw per da	Toxicological refe	0.03 ARfD (mg/kg bw):	0.03	assessm	nent	assessment)
Б.	Ironoon Eoo	d Safety Authority			y).		0.03	Details – ac	ute risk			
				Source of ADI: Year of evaluation:		Source of ARfD: Year of evaluation:		assessment/		Details - acute risk assessme	nt/adults	
ments		vision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:						
mente	».				Refined	calculation mode						
						ment: JMPR methodology (IEDI/	ſMDI)					
				No of diets exceeding	the ADI :							e resulting
			_								MRLs set a the LOQ	at commod under ass
	Calculated exposure		Expsoure	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet		31	rd contributor to MS diet		(in % of AD	
	(% of ADI)	MS Diet	(µg/kg bw per dav)	(in % of ADI)	commonity/ aroup of commodities	(in % of ADI)	Commodity/ aroup of commodities		(in % of ADI)	Commodity/ aroup of commodities	(.,
-	(% 01 ADI) 18%	NL toddler	5.30	(III % 0I ADI) 5%	Apples	(II % 01 ADI) 2%	Pears		(III % 0I ADI) 2%	Table grapes	0.0%	18
	14%	DE child	4.28	6%	Apples	2%	Table grapes		0.9%	Oranges	0.0%	1
	11%	NL child	3.25	3%	Apples	1%	Table grapes		1%	Sugar beet roots	0.0%	1
	9%	GEMS/Food G11	2.55	2%	Wine grapes	0.9%	Barley			Apples	0.0%	
	8%	GEMS/Food G07	2.51	2%	Wine grapes	0.7%	Barley			Apples	0.0%	8
	8%	GEMS/Food G08	2.49	2%	Wine grapes	1%	Barley			Apples	0.0%	8
	8%	GEMS/Food G15	2.28	2%	Wine grapes	0.9%	Barley		0.5%	Apples	0.0%	8
	7%	GEMS/Food G06	2.25	1%	Table grapes	1%	Tomatoes			Wheat	0.0%	
	7%	PT general	2.12	4%	Wine grapes	0.5%	Apples		0.4%	Potatoes		1
	7%	IE adult	2.09	2%	Wine grapes	0.3%	Blackberries		0.3%	Apples	0.0%	7
	7%	DE general	2.06	1%	Wine grapes	1%	Apples			Barley	0.0%	
	7%	DE women 14-50 yr	2.06	1%	Wine grapes	1%	Apples			Sugar beet roots	0.0%	7
	7%	GEMS/Food G10	2.04	0.7%	Barley	0.7%	Wine grapes			Cress and other sprouts and shoots	0.0%	7
	7%	RO general	2.04	3%	Wine grapes	0.7%	Apples		0.6%	Tomatoes		7
	6%	FR child 3 15 yr	1.92	0.8%	Apples	0.8%	Oranges		0.6%	Wine grapes	0.0%	e
	6%	FR adult	1.88	4%	Wine grapes	0.4%	Apples		0.2%	Tomatoes	0.0%	6
	6%	DK child	1.71	1%	Apples	0.8%	Cucumbers		0.5%	Carrots		6
	6%	FR toddler 2 3 yr	1.68	1%	Apples	0.4%	Sugar beet roots		0.4%	Wine grapes	0.0%	e
	5%	NL general	1.53	0.9%	Wine grapes	0.7%	Apples			Sugar beet roots	0.0%	5
	5%	FI 3 yr	1.47	0.7%	Oat	0.5%	Raspberries (red and yellow)			Cucumbers	0.0%	5
	5%	UK toddler	1.45	0.8%	Apples	0.5%	Oranges			Sugar beet roots	0.0%	5
	5%	SE general	1.38	0.7%	Bovine: Muscle/meat	0.5%	Apples			Carrots		5
	4%	UK infant	1.26	0.7%	Apples	0.5%	Carrots			Oranges		4
	4%	ES adult	1.14	0.7%	Wine grapes	0.6%	Barley			Apples		4
	4%	ES child	1.11	0.5%	Apples	0.5%	Oranges		0.3%	Tomatoes		4
	4%	DK adult	1.11	2%	Wine grapes	0.4%	Apples		0.2%	Table grapes	0.0%	4
	3%	FI 6 yr	1.03	0.4%	Raspberries (red and yellow)	0.4%	Oat		0.4%	Cucumbers	0.0%	3
	3%	UK adult	1.00	2%	Wine grapes	0.2%	Apples		0.1%	Tomatoes	0.0%	3
	3%	UK vegetarian	1.00	1%	Wine grapes	0.3%	Apples		0.2%	Tomatoes	0.0%	
	3%	FR infant	0.96	0.8%	Apples	0.4%	Carrots		0.2%	Leeks	0.0%	
	3%	IT toddler	0.88	0.5%	Tomatoes	0.4%	Wheat			Apples		1
	3%	FI adult	0.88	0.6%	Coffee beans	0.5%	Wine grapes		0.3%	Apples	0.0%	1
	3%	PL general	0.87	1.0%	Apples	0.4%	Table grapes		0.3%	Tomatoes	0.05	3
	3%	IT adult	0.76	0.4%	Tomatoes	0.4%	Apples		0.3%	Wheat	0.0%	3
	3% 0.8%	LT adult IE child	0.75	0.9%	Apples Apples	0.2%	Potatoes Currants (red, black and white)		0.2%	Tomatoes Wheat	0.0%	0
							,					
	Conclusion:											

Details – acute risk assessment/children				Details – acute risk assessment/adults				
	ssment is based on the ARfD. used on the large portion of the most critical consume	r droup						
		• •	tion only	for crops wit	h GAPs under assessment			
Results for children				Results for adults				
No. of commodities f	for which ARfD/ADI is exceeded (IESTI):		3	No. of commodities t	for which ARfD/ADI is exceeded (IESTI):			
IESTI				IESTI				
		MRL/input				MRL/input		
Highest % of ARfD/ADI	0	for RA	Exposure	Highest % of ARfD/ADI	0	for RA	Exp	
134%	Commodities Pears	(mg/kg) 0.5/0.29	(µg/kg bw) 40	100%	Commodities Wine grapes	(mg/kg) 2/1.27	(µg/	
109%	Table grapes	1/0.45	33	74%	Red mustards	10/4.16		
103%	Apples	0.5/0.29	31	64%	Blueberries	4/2.1		
92%	Mangoes	0.6/0.35	28	62%	Globe artichokes	3/1.44		
90%	Cucumbers	0.5/0.41	27	53%	Cherries (sweet)	3/1.6		
89%	Kales	1.5/0.61	27	51%	Chinese cabbages/pe-tsai	1.5/0.61		
84%	Globe artichokes	3/1.44	25	51%	Chards/beet leaves	1.5/0.81		
80%	Oranges	2/0.18	24	51%	Table grapes	1/0.45		
76%	Celeries	1.5/0.61	23	46%	Currants (red, black and white)	3/2.1		
73%	Apricots	1/0.63	22	39%	Kales	1.5/0.61		
73%	Melons	0.5/0.15	22	38%	Cucumbers	0.5/0.41		
65%	Chinese cabbages/pe-tsai	1.5/0.61	20	38%	Florence fennels	1.5/0.61		
65% 59%	Cherries (sweet)	3/1.6	20 18	36% 34%	Blackberries	3/1.3 0.5/0.3		
58%	Watermelons Plums	0.5/0.15 0.8/0.41	18	34%	Swedes/rutabagas Celeries	1.5/0.61	ç	
57%	Beetroots	0.5/0.3	17	32%	Gooseberries (green, red and yellow)	3/2.1	9	
57%	Leeks	0.8/0.29	17	31%	Head cabbages	0.4/0.22	ç	
55%	Celeriacs/turnip rooted celeries	0.5/0.3	17	30%	Mangoes	0.6/0.35	ģ	
55%	Currants (red, black and white)	3/2.1	17	30%	Pears	0.5/0.29	Ē	
52%	Swedes/rutabagas	0.5/0.3	16	27%	Apples	0.5/0.29	Ē	
51%	Carrots	0.5/0.24	15	26%	Lamb's lettuce/corn salads	10/4.16	7	
50%	Tomatoes	0.3/0.26	15	24%	Plums	0.8/0.41	7	
50%	Sweet peppers/bell peppers	0.5/0.25	15	24%	Strawberries	1.5/0.78	7	
46%	Blackberries	3/1.3	14	23%	Aubergines/egg plants	0.3/0.26	7	
42%	Strawberries	1.5/0.78	13	23%	Raspberries (red and yellow)	3/1.3	7	
42%	Chards/beet leaves	1.5/0.81	13	23%	Beetroots	0.5/0.3	6	
42%	Courgettes	0.5/0.27	13	23%	Apricots	1/0.63	6	
42%	Blueberries	4/2.1	13	21%	Courgettes	0.5/0.27	6	
41%	Peaches	0.3/0.13	12 12	20% 19%	Watermelons	0.5/0.15		
41% 40%	Gooseberries (green, red and yellow)	3/2.1 3/1.3	12	19%	Melons	0.5/0.15	5	
40%	Raspberries (red and yellow) Wine grapes	3/1.3 2/1.27	12	19%	Escaroles/broad-leaved endives Oranges	0.4/0.28 2/0.18	5	
39%	Lamb's lettuce/corn salads	10/4.16	12	16%	Roman rocket/rucola	10/4.16	4	
37%	Escaroles/broad-leaved endives	0.4/0.28	11	16%	Carrots	0.5/0.24		
37%	Roman rocket/rucola	10/4.16	11	15%	Rose hips	3/2.1	-	
37%	Cauliflowers	0.5/0.19	11	15%	Broccoli	0.5/0.19	4	
36%	Parsnips	0.5/0.3	11	15%	Quinces	0.5/0.29	4	
36%	Turnips	0.5/0.3	11	15%	Cauliflowers	0.5/0.19	4	
34%	Grapefruits	2/0.13	10	14%	Parsnips	0.5/0.3	4	
33%	Florence fennels	1.5/0.61	9.9	14%	Tomatoes	0.3/0.26	4	
32%	Head cabbages	0.4/0.22	9.7	14%	Sweet peppers/bell peppers	0.5/0.25	4	
31%	Cranberries	3/2.1	9.4	13%	Leeks	0.8/0.29	3	
31%	Spring onions/green onions and Welsh onions	1.5/0.6	9.4	12%	Celeriacs/turnip rooted celeries	0.5/0.3	1	
31%	Salsifies	0.5/0.3	9.3	11%	Turnips	0.5/0.3	:	
Expand/collapse list								

No or processed co	mmodities for which ARfD/ADI is exceeded (IESTI):			NO OI PIOCESSED COI	mmodities for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposur
ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg b
92%	Florence fennels/boiled	1.5/0.61	28	69%	Celeries/boiled	1.5/0.61	21
90%	Currants (red, black and white)/juice	3/0.94	27	53%	Pumpkins/boiled	0.5/0.29	16
86%	Oranges/juice	2/0.49	26	40%	Wine grapes/wine	2/1.27	12
86%	Pumpkins/boiled	0.5/0.29	26	40%	Currants (red, black and white)/juice	3/0.94	12
84%	Chards/beet leaves/boiled	1.5/0.81	25	39%	Florence fennels/boiled	1.5/0.61	12
70%	Wine grapes/juice	2/0.48	21	39%	Beetroots/boiled	0.5/0.3	12
62%	Escaroles/broad-leaved endives/boiled	0.4/0.28	19	34%	Chards/beet leaves/boiled	1.5/0.81	10
56%	Kales/boiled	1.5/0.61	17	33%	Wine grapes/juice	2/0.48	10.0
55%	Leeks/boiled	0.8/0.29	17	29%	Elderberries/juice	3/0.94	8.6
51%	Turnips/boiled	0.5/0.3	15	26%	Cauliflowers/boiled	0.5/0.19	7.9
51%	Parsnips/boiled	0.5/0.3	15	25%	Oranges/juice	2/0.49	7.4
50%	Elderberries/juice	3/0.94	15	21%	Parsnips/boiled	0.5/0.3	6.4
50%	Broccoli/boiled	0.5/0.19	15	21%	Courgettes/boiled	0.5/0.27	6.2
44%	Beetroots/boiled	0.5/0.3	13	20%	Grapefruits/juice	2/0.54	5.9
44%	Cauliflowers/boiled	0.5/0.19	13	19%	Turnips/boiled	0.5/0.3	5.7

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 4 commodities. For processed commodities, no exceedance of the ARfD/ADI was identified.

commodities					Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI):				
am o	IESTI				IESTI				
			MRL/input				MRL/input		
se	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	
Sec	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	
Processed	92%	Florence fennels/boiled	1.5/0.61	28	69%	Celeries/boiled	1.5/0.61	21	
_ ≏	90%	Currants (red, black and whit	3/0.94	27	53%	Pumpkins/boiled	0.5/0.29	16	
	86%	Oranges/juice	2/0.49	26	40%	Wine grapes/wine	2/1.27	12	
	86%	Pumpkins/boiled	0.5/0.29	26	40%	Currants (red, black and	3/0.94	12	
	84%	Chards/beet leaves/boiled	1.5/0.81	25	39%	Florence fennels/boiled	1.5/0.61	12	
	70%	Wine grapes/juice	2/0.48	21	39%	Beetroots/boiled	0.5/0.3	12	
	62%	Escaroles/broad-leaved endi	0.4/0.28	19	34%	Chards/beet leaves/boiled	1.5/0.81	10	
	56%	Kales/boiled	1.5/0.61	17	33%	Wine grapes/juice	2/0.48	10.0	
	55%	Leeks/boiled	0.8/0.29	17	29%	Elderberries/juice	3/0.94	8.6	
	51%	Turnips/boiled	0.5/0.3	15	26%	Cauliflowers/boiled	0.5/0.19	7.9	
	51%	Parsnips/boiled	0.5/0.3	15	25%	Oranges/juice	2/0.49	7.4	
	50%	Elderberries/juice	3/0.94	15	21%	Parsnips/boiled	0.5/0.3	6.4	
	50%	Broccoli/boiled	0.5/0.19	15	21%	Courgettes/boiled	0.5/0.27	6.2	
	44%	Beetroots/boiled	0.5/0.3	13	20%	Grapefruits/juice	2/0.54	5.9	
	44%	Cauliflowers/boiled	0.5/0.19	13	19%	Turnips/boiled	0.5/0.3	5.7	
	Expand/collapse list								

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 4 commodities.

For processed commodities, no exceedance of the ARfD/ADI was identified.

European F	efsa			Pyriofenone					Input values		
European F	ersa		LOQs (mg/kg) range f	rom: 0.01	to:	0.01	Details – cł	aronic risk	Supplementary re	- sults	
European F				Toxicological reference v	alues		assessi		chronic risk asses		
European F			ADI (mg/kg bw per da	y): 0.07	ARfD (mg/kg bw):	Not applicable	<u> </u>			$ \rightarrow$	
	ood Safety Authority		Source of ADI:		Source of ARfD:		Details – a		Details – acut		
ients:	o revision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:		assessment	/children	assessment/ac	luits	
	EFSA 2019										
				Normal mo	de						
				Chronic risk assessment: JMP	_	IEDI/TMDI)					
			No of diets exceeding			,				Exposure	resulting f
										MRLs set at the LOQ	commoditi under asse
Calculated exp	inci ire	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI)	(in % of
(% of ADI) MS Diet	(µg/kg bw per day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
1%	NL toddler	0.81	0.9%	Milk: Cattle	0.2%	Table grapes		0.1%	Wheat		0.0
0.6%	UK infant	0.43	0.6%	Milk: Cattle	0.0%	Wheat		0.0%	Bovine: Muscle/meat		0.0
0.6%	NL child	0.40	0.3%	Milk: Cattle	0.1%	Table grapes		0.1%	Wheat		0.0
0.6%	DE child	0.39	0.3%	Milk: Cattle Milk: Cattle	0.2%	Table grapes Wheat		0.1%	Wheat		0.0
0.5%	FR toddler 2 3 yr FR child 3 15 yr	0.36	0.4%	Milk: Cattle	0.1%	Wheat		0.0%	Wine grapes Table grapes		0.0
0.5%	RO general	0.36	0.3%	Wink: Cattle Wine grapes	0.1%	wheat Milk: Cattle		0.1%	Wheat		0.0
0.4%	UK toddler	0.29	0.3%	Milk: Cattle	0.1%	Wheat		0.0%	Table grapes		0.0
0.4%	GEMS/Food G07	0.28	0.2%	Wine grapes	0.1%	Milk: Cattle		0.1%	Wheat		0.0
0.4%	FR adult	0.27	0.3%	Wine grapes	0.1%	Milk: Cattle		0.0%	Wheat		0.0
0.4%	PT general	0.27	0.3%	Wine grapes	0.1%	Wheat		0.0%	Table grapes		
0.4%	DK child	0.26	0.2%	Milk: Cattle	0.1%	Rye		0.1%	Wheat		0.0
0.4%	DE women 14-50 yr	0.26	0.2%	Milk: Cattle	0.1%	Wine grapes		0.0%	Table grapes		0.0
0.4%	GEMS/Food G11	0.26	0.1%	Wine grapes	0.1%	Milk: Cattle		0.1%	Table grapes		0.0
0.4%	DE general	0.25	0.2%	Milk: Cattle	0.1%	Wine grapes		0.0%	Table grapes		0.0
0.4%	GEMS/Food G15 GEMS/Food G08	0.25 0.23	0.1%	Wine grapes	0.1%	Milk: Cattle Milk: Cattle		0.1%	Wheat Wheat		0.0
0.3%	GEMS/Food G08 GEMS/Food G06	0.23	0.1%	Wine grapes Table grapes	0.1%	Milk: Cattle Wheat		0.1%	Wheat Milk: Cattle		0.0
0.3%	IE adult	0.22	0.2%	Vine grapes	0.1%	Milk: Cattle		0.0%	Table grapes		0.0
0.3%	SE general	0.20	0.2%	Milk: Cattle	0.1%	Bovine: Muscle/meat		0.0%	Wheat		0.0
0.3%	ES child	0.19	0.2%	Milk: Cattle	0.1%	Wheat		0.0%	Bovine: Muscle/meat		0.0
0.3%	NL general	0.19	0.1%	Milk: Cattle	0.1%	Wine grapes		0.0%	Table grapes		0.0
0.3%	FR infant	0.18	0.2%	Milk: Cattle	0.0%	Wheat		0.0%	Bovine: Muscle/meat		0.0
0.3%	GEMS/Food G10	0.18	0.1%	Milk: Cattle	0.1%	Wheat		0.0%	Wine grapes		0.0
0.2%	DK adult	0.17	0.1%	Wine grapes	0.1%	Milk: Cattle		0.0%	Table grapes		0.0
0.2%	UK adult	0.15	0.1%	Wine grapes	0.0%	Milk: Cattle		0.0%	Wheat		0.0
0.2%	UK vegetarian	0.13	0.1%	Wine grapes	0.0%	Milk: Cattle		0.0%	Wheat		0.0
0.2%	ES adult IT toddler	0.12	0.1%	Milk: Cattle Wheat	0.0%	Wine grapes Table grapes		0.0%	Wheat Barley		0.0
0.1%	LT adult	0.08	0.1%	Milk: Cattle	0.0%	Rye		0.0%	Wheat		0.0
0.1%	IT adult	0.05	0.1%	Wheat	0.0%	Table grapes		0.0%	Barley	1	5.0
0.1%	IE child	0.05	0.1%	Milk: Cattle	0.0%	Wheat		0.0%	Table grapes		0.0
0.1%	FI 3 yr	0.05	0.0%	Table grapes	0.0%	Wheat		0.0%	Rye	1	1
0.1%	Fladult	0.04	0.0%	Wine grapes	0.0%	Table grapes		0.0%	Rye	1	1
0.1%	FI 6 yr PL general	0.04 0.03	0.0%	Table grapes Table grapes	0.0%	Wheat FRUIT AND TREE NUTS		0.0%	Rye		1
	r L general	0.03	0.076	i anio Arahos		I NOT AND TREE NOTS					
Conclusion:	ong-term dietary intake (TMDI/NEDI/IEDI) was i										-

Acute risk assessment/children	Acute risk assessment/adults/general population
Details – acute risk assessment/children	Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

			Show	results fo	or all crops			
Unprocessed commodities	Results for childre	n for which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities (IESTI):	for which ARfD/ADI is exceeded		
S p	IESTI				IESTI			
orocessed	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
		mmodities exceeding the ARfD/ADI in c	hildren and					
ŝ	adult diets (IESTI calculation) Results for childre	n			Results for adults			
noditi	No of processed cor (IESTI):	mmodities for which ARfD/ADI is exceeded	1		No of processed cor exceeded (IESTI):	mmodities for which ARfD/ADI is		
m	IESTI				IESTI			
Processed commodities	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Pro	5% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%	Wine grapes/juice Wheat/milling (flour) Wheat/milling (wholemeal)-baking Rye/boiled Oat/boiled Barley/cooked Rye/milling (wholemeal)-baking Oat/milling (flakes) Barley/milling (flour)	0.3/0.08 0.01/0.01 0.01/0.01 0.03/0.01 0.03/0.01 0.03/0.01 0.03/0.01 0.03/0.01	3.5 0.12 0.06 0.04 0.04 0.04 0.04 0.04 0.03 0.02	7% 4% 2% 0.1% 0.05% 0.05% 0.05%	Table grapes/vine Wine grapes/juice Barley/beer Wheat/breat/pizza Wheat/pasta Wheat/bread (wholemeal) Oat/boiled	0.3/4.23 0.3/0.3 0.3/0.08 0.03/0 0.01/0.01 0.01/0.01 0.01/0.01 0.03/0.01	5.2 2.8 1.7 0.07 0.04 0.04 0.03 0.02
	Expand/collapse list							

Conclusion:

No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Pyriofenone is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

				Pyriproxyfen				Ir	iput values		
			LOQs (mg/kg) range f		to:	0.05	Details –	hronic risk	Supplementary results – ch	ronic risk	
	European Food Safety Authority			Toxicological reference values				sment	assessment		
			ADI (mg/kg bw per da	y): 0.05	ARfD (mg/kg bw):	1			·	\rightarrow	í.
E	European Food Safety Authority		Source of ADI:		Source of ARfD:		Details – assessmer	acute risk	Details – acute ris assessment/adults		
	EFSA PRIMo revision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:		assessitier	it/children	assessment/auurs)
ien)	nts:										
				Normal mode							_
				Chronic risk assessment: JMPR metho	dology (IEDI/TM	ווס					
			No of diets exceeding			51,				Exposure	re resulting
Ι			Ĭ							MRLs set al the LOQ	at comm
	Calculated exposure	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI	
	(% of ADI) MS Diet	(pgrig bit pcr day)	(in % of ADI)	group of commodities	(in % of ADI)	aroup of commodities		(in % of ADI)	group of commodities		
1	22% NL toddler	10.89	6%	Milk: Cattle	4%	Apples		3%	Oranges	10%	
I	18% DE child	9.01	5%	Apples	5%	Oranges		2%	Tomatoes	4%	
I	15% GEMS/Food G06 12% NL child	7.41 6.21	7% 2%	Tomatoes Milk: Cattle	1% 2%	Oranges Apples		1.0% 2%	Sweet peppers/bell peppers Oranges	3% 5%	
I	12% FR child 3 15 vr	5.90	4%	Oranges	2%	Apples Milk: Cattle		2%	Tomatoes	5%	
I	10% FR toddler 2 3 yr	5.00	3%	Mik: Cattle	2%	Oranges		1%	Apples	5%	
I	10% RO general	4.85	4%	Tomatoes	1%	Milk: Cattle		0.8%	Sweet peppers/bell peppers	3%	
I	9% UK infant	4.58	4%	Milk: Cattle	2%	Oranges		0.7%	Tomatoes	6%	
I	9% GEMS/Food G10	4.52	3%	Tomatoes	1%	Oranges		0.5%	Milk: Cattle	3%	
I	9% UK toddler	4.44	2%	Oranges	2%	Milk: Cattle		1%	Tomatoes	4%	
I	9% DE women 14-50 yr	4.42	2%	Oranges	1%	Tomatoes		1%	Milk: Cattle	3%	
	9% GEMS/Food G07	4.42	2%	Tomatoes	2%	Oranges		0.6%	Mik: Cattle	3%	
	9% GEMS/Food G15 9% IE adult	4.39 4.37	2% 1%	Tomatoes Oranges	1% 1%	Sweet peppers/bell peppers Tea (dried leaves of Carnellia	-lanasia)	0.8%	Oranges Grapefruits	3% 3%	
	9% ES child	4.37	3%	Oranges Oranges	2%	Tomatoes	sinensis)	1%	Milk: Cattle	3%	
	9% GEMS/Food G11	4.35	2%	Tomatoes	0.9%	Oranges		0.8%	Milk: Cattle	3%	
I	8% GEMS/Food G08	4.13	2%	Tomatoes	0.6%	Sweet peppers/bell peppers		0.6%	Mik: Catle	3%	
	8% DE general	4.04	2%	Oranges	1%	Tomatoes		1%	Milk: Cattle	3%	
	8% SE general	3.79	2%	Tomatoes	1%	Milk: Cattle		0.9%	Oranges	3%	
I	7% DK child	3.43	1%	Milk: Cattle	1%	Tomatoes		0.9%	Apples	3%	
I	6% NL general	2.96	1%	Oranges	0.8%	Milk: Cattle		0.8%	Tomatoes	2%	
I	6% IT toddler	2.95	3%	Tomatoes	0.7%	Wheat		0.6%	Oranges	1%	
	6% ES adult 5% PT general	2.91 2.74	2% 2%	Tomatoes Tomatoes	2% 0.7%	Oranges Oranges		0.5%	Milk: Cattle Potatoes	2% 2%	
I	5% FR adult	2.74	1%	Tea (dried leaves of Camellia sinensis)	0.9%	Tomatoes		0.5%	Oranges	2%	
	5% IT adult	2.30	2%	Tomatoes	0.4%	Oranges		0.4%	Wheat	0.8%	
	5% UK vegetarian	2.29	1%	Tomatoes	1%	Oranges		0.4%	Tea (dried leaves of Camellia sinensis)	1%	
I	4% FR infant	2.08	2%	Milk: Cattle	0.7%	Apples		0.3%	Oranges	3%	
I	4% FI 3 yr	1.95	1%	Tomatoes	0.5%	Potatoes		0.5%	Mandarins	1%	
	4% PL general	1.85	2%	Tomatoes	0.8%	Apples		0.3%	Potatoes	0.6%	
I	4% LT adult	1.82	1%	Tomatoes	0.7%	Apples		0.4%	Milk: Cattle	1%	
I	4% DK adult 4% UK adult	1.79	1% 0.9%	Tomatoes	0.5%	Milk: Cattle		0.4%	Apples	1% 1%	
I	4% UK adult 3% Fi adult	1.79	0.9%	Tomatoes Tomatoes	0.7%	Oranges Coffee beans		0.4%	Tea (dried leaves of Camellia sinensis) Oranges	1%	
	3% FI6 yr	1.62	0.9%	Tomatoes	0.4%	Mandarins		0.5%	Potatoes	1.0%	
	1% IE child	0.57	0.4%	Milk: Cattle	0.1%	Apples		0.1%	Wheat	0.7%	
	Conclusion:		I	1		1		1	1	-	
	The estimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI.										
	The long-term intake of residues of Pyriproxyfen is unlikely to present a public health										

Acute risk assessment/adults/general population

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for children				Results for adults			
	which ARfD/ADI is exceeded (IESTI):				for which ARfD/ADI is exceeded (IESTI):		
IESTI				IESTI			
ESTI		MRL/input		12311		MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expos
	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
	Oranges	0.6/0.6	80	3%	Aubergines/egg plants	1/1	27
	Bananas	0.7/0.7	68	2%	Oranges	0.6/0.6	1
	Sweet peppers/bell peppers	1/1	60	2%	Sweet peppers/bell peppers	1/1	1
	Tomatoes	1/1	58	2%	Tomatoes	1/1	10
5%	Peaches	0.5/0.5	48	1%	Bananas	0.7/0.7	1
5%	Grapefruits	0.6/0.6	47	1%	Mandarins	0.6/0.6	1.
4%	Mandarins	0.6/0.6	36	1%	Grapefruits	0.6/0.6	1
3%	Pears	0.2/0.2	28	1%	Cherries (sweet)	1/1	10
3%	Aubergines/egg plants	1/1	25	0.9%	Peaches	0.5/0.5	9.
	Melons	0.07/0.15	23	0.6%	Pears	0.2/0.2	6.
	Apples	0.2/0.2	22	0.6%	Melons	0.07/0.15	5.
	Lemons	0.6/0.6	21	0.6%	Apples	0.2/0.2	5
	Plums	0.3/0.3	13	0.5%	Lemons	0.6/0.6	5.
	Cherries (sweet)	1/1	12	0.5%	Plums	0.3/0.3	5.
							5. 4.
10/							
Expand/collapse list	Limes modifies exceeding the ARfD/ADI in children and	0.6/0.6 I adult diets	12	0.4%	Limes	0.6/0.6	4.
Expand/collapse list Total number of com (IESTI calculation)			12		Lmes	0.6/0.6	4.
Expand/collapse list Total number of com (IESTI calculation) Results for children	modities exceeding the ARfD/ADI in children and			Results for adults		0.6/0.6	
Expand/collapse list Total number of comi (IESTI calculation) Results for children No of processed comm				Results for adults No of processed cor	Imes mmodities for which ARfD/ADI is exceeded (IESTI):	0.6/0.6	
Expand/collapse list Total number of com (IESTI calculation) Results for children	modities exceeding the ARfD/ADI in children and	l adult diets		Results for adults			
Expand/collapse list Total number of comi (IESTI calculation) Results for children No of processed comm IESTI	modities exceeding the ARfD/ADI in children and	I adult diets		Results for adults No of processed cor IESTI		MRL/input	
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of	modities exceeding the ARfD/ADI in children and	I adult diets MRL/input for RA	 Exposure	Results for adults No of processed cor IESTI Highest % of	nmodities for which ARID/ADI is exceeded (IESTI):	MRL/input for RA	 Expo
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARID/ADI	modities exceeding the ARfD/ADI in children and nodities for which ARfD/ADI is exceeded (IESTI):	d adult diets MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Results for adults No of processed cor IESTI Highest % of ARID/ADI	nmodities for which ARfD/ADI is exceeded (IESTI):	MRL/input for RA (mg/kg)	Expo (µg/kg
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARTD/ADI 3%	modities exceeding the ARfD/ADI in children and nodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice	MRL/input for RA (mg/kg) 0.6/0.6	Exposure (µg/kg bw) 32	Results for adults No of processed cor IESTI Highest % of ARfD/ADI 0.9%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Oranges/juice	MRL/input for RA (mg/kg) 0.6/0.6	 Ехро <u>(µg/kg</u> 9.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARTD/ADI 3% 2%	modities exceeding the ARfD/ADI in children and nodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/Juice Tomatoes/Juice	MRL/input for RA (mg/kg) 0.6/0.6 1/1	Exposure (µg/kg bw) 32 19	Results for adults No of processed cor IESTI Highest % of ARfD/ADI 0.9%	nmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/suce/puree	MRL/input for RA (mg/kg) 0.6/0.6 1/1	 Ехро (µg/kg 9. 8.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARTD/ADI 3% 2%	modities exceeding the ARfD/ADI in children and nodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice	MRL/input for RA (mg/kg) 0.6/0.6	Exposure (µg/kg bw) 32	Results for adults No of processed cor IESTI Highest % of ARfD/ADI 0.9%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Oranges/juice	MRL/input for RA (mg/kg) 0.6/0.6	 Ехро (µg/kg 9. 8.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARD/ADI 3% 2% 1%	modities exceeding the ARfD/ADI in children and nodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/Juice Tomatoes/Juice	MRL/input for RA (mg/kg) 0.6/0.6 1/1	Exposure (µg/kg bw) 32 19	Results for adults No of processed cor IESTI Highest % of ARfD/ADI 0.9%	nmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/suce/puree	MRL/input for RA (mg/kg) 0.6/0.6 1/1	 Ехро (µg/kg 9. 8. 6.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARTD/ADI 3% 2% 1%	modities exceeding the ARID/ADI in children and nodities for which ARID/ADI is exceeded (IESTI): Processed commodities Oranges/Juice Tomates/Juice Peaches/canned	A adult diets MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.5/0.5	Exposure (µg/kg bw) 32 19 13	Results for adults No of processed cor IESTI Highest % of ARID/ADI 0.9% 0.8% 0.7%	Processed commodities Oranges/juice Tomatoes/sauce/puree Apples/juice	MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.2/0.2	Expo (µg/kg 9. 8. 6.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARTD/ADI 3% 2% 1% 1% 1.0%	modities exceeding the ARfD/ADI in children and nodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/juice Peaches/canned Apples/juice	A adult diets MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.5/0.5 0.2/0.2	 (µg/kg bw) 32 19 13 11	Results for adults No of processed cor IESTI Highest % of ARID/ADI 0.9% 0.8% 0.7%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/sauce/puree Apples/juice Grapefruiks/juice	MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.2/0.2 0.6/0.6	 Ехро (µg/kg 9. 8. 6. 6. 4.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARID/ADI 3% 2% 1% 1% 1.0% 0.7%	modities exceeding the ARfD/ADI in children and modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomates/juice Preaches/canned Apples/juice Tomates/sauce/puree	MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.5/0.5 0.2/0.2 1/1	Exposure (µg/kg bw) 32 19 13 11 9.5	Results for adults No of processed cor IESTI Highest % of ARID/ADI 0.9% 0.7% 0.7% 0.4%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/sauce/puree Apples/juice Grapefruits/juice Peaches/canned Pumpkins/bolled	MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.2/0.2 0.6/0.6 0.5/0.5	 Ехро (µg/kg 9. 8. 6. 6. 4. 2.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARID/ADI 3% 2% 1% 1.0% 0.7% 0.6%	modities exceeding the ARfD/ADI in children and nodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/Juice Tomatoes/Juice Peaches/canned Apples/Juice Tomatoes/sauce/puree Pears/Juice Tomatoes/Juice Tomatoes/Juice	A adult diets MRL/input for RA (mg/kg) 0.6/0.6 1/11 0.5/0.5 0.2/0.2 1/1 0.2/0.2	 Exposure (µg/kg bw) 32 19 13 11 9.5 6.5	Results for adults No of processed cor IESTI Highest % of ARTD/ADI 0.9% 0.8% 0.7% 0.7% 0.7% 0.3%	Processed commodities Oranges/juice Tomatoes/sauce/puree Apples/juice Grapefruits/juice Grapefruits/juice	MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.2/0.2 0.6/0.6 0.5/0.5 0.55/0.5	 (µg/kg 9. 8. 6. 6. 4. 2. 2.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARID/ADI 2% 1% 1% 1% 1% 0.7% 0.6%	modities exceeding the ARfD/ADI in children and modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Peaches/canned Apples/juice Tomatoes/sauce/puree Pears/juice	A adult diets MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.5/0.5 0.2/0.2 1/1 0.2/0.2 1/1	Exposure (µg/kg bw) 32 19 13 11 9.5 6.5 5.8	Results for adults No of processed cor IESTI Highest % of ARID/ADI 0.9% 0.7% 0.7% 0.3% 0.3% 0.3% 0.2%	Processed commodities Processed commodities Oranges/juice Tomatoes/succ/purce Apples/juice Grapefruits/juice Peaches/canned Pumpkins/boiled Sugar bets (root)sugar	MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.2/0.2 0.6/0.6 0.5/0.5 0.05/0.05	Expo (µg/kg 9. 8. 6. 6. 4. 2. 2.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARTD/ADI 3% 2% 1% 1.0% 0.7% 0.6% 0.6% 0.5%	modities exceeding the ARfD/ADI in children and modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/Juice Tomatoes/Juice Tomatoes/Juice Peaches/canned Apples/Juice Cranberries/Juice Cranberries/Juice Cranberries/Juice Sugar beets (root)/sugar Potatoes/Fired	A adult diets MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.5/0.5 0.2/0.2 1/1 0.05/0.6 0.05/0.05	Ехрозиге (µg/kg bw) 32 19 13 11 9.5 6.5 6.5 5.8 5.5 4.7	Highest % of ARTD/ADI 0.9% 0.7% 0.7% 0.4% 0.2% 0.2%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatces/sauce/puree Apples/juice Grapefruits/juice Peaches/canned Pumpkins/boiled Sugar beets (root)/sugar Cauliflowers/boiled Beetroots/boiled	MRL/input for RA (mg/kg) 0.6/0.6 11/1 0.2/0.2 0.6/0.6 0.05/0.05 0.05/0.05 0.05/0.05	Expo (µg/kg 9. 8. 6. 6. 6. 4. 2. 2. 2. 1.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARID/ADI 2% 1% 1% 1% 0,6% 0,6% 0,5% 0,4%	modities exceeding the ARfD/ADI in children and modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomates/suce Peaches/canned Apples/juice Tomatoes/suce/puree Pears/juice Cranberries/juice Sugar beets (root)/sugar Potatoes/fried Pumpkins/boiled	1 adult diets MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.5/0.5 0.2/0.2 1/1 0.2/0.2 1/1 0.5/0.6 0.05/0.05	 (µprosure (µprosure (µprosure) 19 13 11 9 5 5 6.5 5 5.5 4.7 4.4	Results for adults No of processed cor IESTI Highest % of ARD/ADI 0.9% 0.8% 0.7% 0.7% 0.3% 0.2% 0.2% 0.2%	Processed commodities Oranges/juice Tomatoes/sauce/puree Apples/juice Grapefruits/juice Grapefruits/juice Grapefruits/juice Paeches/canned Pumpkins/boiled Sugar beets (root)/sugar Calufilowers/boiled Beetroots/boiled	MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.2/0.2 0.6/0.6 0.5/0.05 0.05/0.05 0.05/0.05 0.05/0.05	 Ехро (µg/kg 9. 8. 6. 6. 6. 6. 4. 2. 2. 2. 2. 1.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARID/ADI 3% 2% 1% 1.0% 0.7% 0.6% 0.6% 0.6% 0.4%	modities exceeding the ARfD/ADI in children and modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Orranges/juice Tomatoes/juice Peaches/canned Apples/juice Tomatoes/sauce/purce Pears/juice Cranberries/juice Sugar beets (root)/sugar Putates/fried Pumpkins/boiled	A adult diets MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.5/0.5 0.2/0.2 1/1 0.05/0.65 0.05/0.05 0.05/0.05	 Exposure (µg/kg bw) 32 19 13 11 9.5 5.8 5.5 5.8 5.5 5.8 5.5 5.8 5.5 4.7 4.4	Highest for adults No of processed cor IESTI Highest % of ARID/ADI 0.9% 0.7% 0.7% 0.3% 0.2% 0.2% 0.2% 0.2%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/sauce/puree Apples/juice Grapefruits/juice Peaches/canned Pumpkin5/boiled Sugar bets (root)/sugar Cauliflowers/boiled Detros/boiled Ceteries/boiled Ceteries/boiled	MRL/input for RA (mg/kg) 0.6/0.6 0.5/0.5 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05 1/1	 Ехра (µg/kg 9. 8. 6. 6. 6. 6. 6. 4. 2. 2. 2. 1. 1. 1.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARD/ADI ARD/ADI ARD/ADI 1% 1% 1% 1% 0.6% 0.6% 0.6% 0.6% 0.4% 0.4%	modities exceeding the ARfD/ADI in children and modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomates/juice Peaches/canned Apples/juice Tomatoes/sauce/puree Pears/juice Sugar beets (root)/sugar Potatees/fried Pumpkins/boiled	1 adult diets MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.5/0.5 0.2/0.2 1/1 0.2/0.2 1/1 0.5/0.05 0.05/0.05 0.05/0.05	 Exposure (μg/kg bw) 32 19 13 11 15 5.6.5 5.8 5.5 4.7 4.4 4.4 4.3.9	Results for adults No of processed cor IESTI Highest % of ARID/ADI 0.9% 0.7% 0.7% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2	Processed commodities Oranges/juice Tomatoes/sauce/puree Apples/juice Grapefruits/juice Grapefruits/juice Grapefruits/juice Grapefruits/juice Peaches/canned Pumpkins/boiled Sugar beets (root)/sugar Cauliflowers/boiled Beetroots/boiled Ceteries/boiled Okra, jady's fingers/boiled Broccoli/boiled	MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.2/0.2 0.6/0.6 0.5/0.5 0.05/0.05 0.05/0.05 1/1 0.05/0.05	 Ехро (µg/kg 9. 8. 6. 6. 4. 2. 2. 2. 1. 1. 1. 1.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARID/ADI 3% 2% 1% 1% 1.0% 0.6% 0.6% 0.6% 0.6% 0.6% 0.4% 0.4% 0.4% 0.4% 0.3%	modities exceeding the ARfD/ADI in children and modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatose/juice Tomatose/juice Peaches/canned Apples/juice Cranberries/juice Cranberries/juice Cranberries/juice Sugar best (cot)/sugar Polatoes/fried Wittoofs/boiled Wittoofs/boiled Broccoli/boiled Cauliflowers/boiled	A adult diets MRL/input for RA (mg/kg) 0.6/0.6 0.2/0.2 1/1 0.2/0.2 1/1 0.5/0.65 0.5/0.05 0.05/0.05 0.05/0.05	Exposure (µg/kg bw) 32 19 13 11 9.5 5.8 5.5 5.5 4.7 4.4 4.4 3.5	Highest % of ARD/ADI 0.9% 0.7% 0.7% 0.7% 0.7% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.1%	nmodities for which ARID/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/sauce/puree Apples/juice Grapefruits/juice Peaches/canned Pumpkin5/boiled Sugar beets (root)/sugar Cauliflowers/boiled Beetroots/boiled Celeries/boiled Okra, lady's fingers/boiled Brococil/boiled Courgettes/boiled	MRL/input for RA (mg/kg) 0.6(0.6 0.5(0.5 0.05(0.05 0.05(0.05 0.05(0.05 0.05(0.05 0.05(0.05 0.05(0.05 0.05(0.05 1/1 0.05(0.05	 Ехрос (µg/kg 9. 8. 6. 6. 6. 6. 4. 2. 2. 2. 2. 1. 1. 1. 1. 1. 1.
Expand/collapse list Total number of comm (IESTI calculation) Results for children No of processed comm IESTI Highest % of ARTD/ADI 3% 2% 1% 1% 1.0% 0.6% 0.6% 0.6% 0.6% 0.6% 0.4% 0.4% 0.4% 0.3%	modities exceeding the ARfD/ADI in children and modities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomates/juice Peaches/canned Apples/juice Tomatoes/sauce/puree Pears/juice Sugar beets (root)/sugar Potatees/fried Pumpkins/boiled	1 adult diets MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.5/0.5 0.2/0.2 1/1 0.2/0.2 1/1 0.5/0.05 0.05/0.05 0.05/0.05	 Exposure (μg/kg bw) 32 19 13 11 15 5.6.5 5.8 5.5 4.7 4.4 4.4 4.3.9	Results for adults No of processed cor IESTI Highest % of ARID/ADI 0.9% 0.7% 0.7% 0.3% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2	Processed commodities Oranges/juice Tomatoes/sauce/puree Apples/juice Grapefruits/juice Grapefruits/juice Grapefruits/juice Grapefruits/juice Peaches/canned Pumpkins/boiled Sugar beets (root)/sugar Cauliflowers/boiled Beetroots/boiled Ceteries/boiled Okra, jady's fingers/boiled Broccoli/boiled	MRL/input for RA (mg/kg) 0.6/0.6 1/1 0.2/0.2 0.6/0.6 0.5/0.5 0.05/0.05 0.05/0.05 1/1 0.05/0.05	Ехро (µg/kg 9.9. 8. 6. 6. 4. 2. 2. 2. 2. 1. 1. 1. 1.

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Pyriproxyfen is unlikely to present a public health risk. For processed commodities, no exceedance of the ARtD/ADI was identified.

***	. 0	fsa		LOQs (mg/kg) range	from:	rotetramat	to:	0.10		Supplementary		
	C.					ical reference values			assessment	chronic risk ass	essment	
_				ADI (mg/kg bw per da	y):	0.05	ARfD (mg/kg bw):	1	Details – acute risk	Details – ac	uto siele	
Europea	an Food	Safety Authority		Source of ADI:		EFSA	Source of ARfD:	EFSA	assessment/children	assessment		
	RIMo rev	sion 3.1; 2021/01/06		Year of evaluation:		2013	Year of evaluation:	2013		assessmenty	auuits)
nts:												
						Normal mode						
					Chronic risk ass	essment: JMPR methodology	(IEDI/TMDI)	ľ				
-				No of diets exceeding	the ADI :	-				1	Exposur	
			-								MRLs set a the LOQ	t comm under a
Calculate	d exposure		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/	3rd contributor to M diet	Commodity/	(in % of ADI	
	of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		
	27%	NL toddler	13.25	5%	Spinaches		3%	Apples	2%	Beans (with pods)	0.6%	
	9%	DE child	9.51	4%	Apples		2%	Oranges	1%	Spinaches	0.4%	
	5% 5%	IE adult GEMS/Food G06	7.62 7.40	3% 4%	Other leafy brassica Tomatoes		1% 0.9%	Wine grapes Soyabeans	1.0%	Peaches Table grapes	0.4%	
		GEMS/Food G10	7.36	4%	Sovabeans		2%	Lettuces	1%	Tomatoes	0.6%	
	5%	NL child	7.30	2%	Spinaches		2%	Apples	0.9%	Table grapes	0.3%	
	4%	GEMS/Food G11	6.83	3%	Soyabeans		0.9%	Tomatoes	0.9%	Wine grapes	0.4%	
		GEMS/Food G07	6.80	2%	Lettuces		1%	Soyabeans	1%	Wine grapes	0.4%	
1	3%	IT adult	6.66	3%	Lettuces		2%	Other lettuce and other salad plants	1%	Tomatoes	0.2%	
		GEMS/Food G08	6.48	2%	Soyabeans		1%	Lettuces	1%	Tomatoes	0.4%	
	2%	SE general	5.90	3%	Lettuces		1%	Chinese cabbages/pe-tsai	0.9%	Potatoes	0.2%	
		IT toddler	5.86	2%	Lettuces		2%	Other lettuce and other salad plants	1%	Tomatoes	0.3%	
		GEMS/Food G15	5.81	1%	Soyabeans		1%	Tomatoes	0.9%	Wine grapes	0.4%	
		FR child 3 15 yr ES child	5.63 5.44	2% 3%	Other lettuce and other salad plants Lettuces		1%	Oranges Tomatoes	1% 0.9%	Beans (with pods)	0.4%	
	1%	PT general	5.44	3% 2%	Wine grapes		1%	Kales	0.9%	Oranges Potatoes	0.3%	
	0%	ES adult	5.24	4%	Lettuces		0.8%	Tomatoes	0.7%	Polatoes	0.2%	
	0%	RO general	4.75	2%	Tomatoes		1%	Wine grapes	1%	Head cabbages	0.3%	
		FR toddler 2 3 vr	4.59	2%	Beans (with pods)		1%	Spinaches	0.9%	Apples	0.3%	
	9%	DE women 14-50 vr	4.48	0.8%	Lettuces		0.8%	Oranges	0.8%	Tomatoes	0.3%	
	9%	NL general	4.35	1%	Spinaches		0.7%	Escaroles/broad-leaved endives	0.7%	Lettuces	0.2%	
1	9%	FR adult	4.33	2%	Other lettuce and other salad plants		2%	Wine grapes	0.6%	Beans (with pods)	0.2%	
	8%	DE general	4.13	0.7%	Wine grapes		0.7%	Lettuces	0.7%	Apples	0.3%	
	6%	UK toddler	3.17	0.8%	Oranges		0.8%	Potatoes	0.6%	Tomatoes	0.2%	
	6%	FR infant	3.07	2%	Spinaches		1%	Beans (with pods)	0.5%	Apples	0.0%	
		UK infant	3.05	0.7%	Potatoes		0.6%	Peas (without pods)	0.5%	Oranges	0.2%	
	6%	DK child	2.89 2.71	1% 1%	Lettuces Potatoes		0.7%	Apples	0.6%	Tomatoes	0.4%	
		FI 3 yr UK vegetarian	2.71 2.68	1% 1%	Potatoes Lettuces		0.6%	Tomatoes Wine grapes	0.5%	Spinaches Tomatoes	0.2%	1
		PL general	2.68	1%	Tomatoes		0.7%	vvine grapes Potatoes	0.6%	Apples	0.1%	
	5%	Fladult	2.35	1%	Coffee beans		1%	Lettuces	0.6%	Tomatoes	1%	
	5%	FI6 yr	2.34	0.9%	Potatoes		0.6%	Lettuces	0.5%	Tomatoes	0.2%	
		UK adult	2.23	0.9%	Wine grapes		0.9%	Lettuces	0.5%	Tomatoes	0.1%	
	4%	DK adult	2.15	0.8%	Wine grapes		0.7%	Lettuces	0.5%	Tomatoes	0.1%	
1 :	3%	LT adult	1.66	0.7%	Potatoes		0.6%	Tomatoes	0.5%	Apples	0.1%	
1	1%	IE child	0.52	0.1%	Potatoes		0.1%	Beans (without pods)	0.1%	Apples	0.1%	
Conclusio	on:				1			1				
		m dietary intake (TMDI/NEDI/IEDI) was below th										

Acute risk assessment/chil	dren
Details - acute risk assessment	t/children

Acute risk assessment/adults/general population

The acute risk assessment is based on the ARID. DISCLAIMER: Dietary data from the UK were included in PRIMO when the UK was a member of the European Union. The calculation is based on the large portion of the most critical consumer group.

	Results for childre No. of commodities	n for which ARfD/ADI is exceeded (IESTI):			Results for adults No. of commodities	for which ARfD/ADI is exceeded (IESTI):		
	IESTI				IESTI			
Ī			MRL/input				MRL/input	
	Highest % of	0	for RA	Exposure	Highest % of	0	for RA	Exposure
ŀ	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)
	29% 26%	Kales Escaroles/broad-leaved endives	7/6.5 7/6.5	286 261	16% 13%	Chinese cabbages/pe-tsai Escaroles/broad-leaved endives	7/6.5 7/6.5	165 131
	25%	Lettuces	7/6.5	247	13%	Escal oles/broad-leaved endives Kales	7/6.5	125
	25%	Chinese cabbages/pe-tsai	7/6.5	247	13%	Chards/beet leaves	7/6.5	125
	21%	Peaches	3/1.92	209	12%	Head cabbages	2/2.14	123
	18%	Spinaches	3/1.92	182	9% 8%	Lettuces	2/2.14	90 79
	15%	Spinacnes Kiwi fruits (green, red, yellow)	3/1.97	147	8% 5%	Table grapes	2/1.4	79 47
	12%	Litchis/lychees	15/9.88	122	4%	Florence fennels	4/2.04	38
	12%	Table grapes	2/1.4	102	4%	Plaches	3/1.92	36
	10%	Chards/beet leaves	2/1.4	102	4%	Red mustards	7/6.5	35
	9%	Head cabbages	2/2.14	95	3%	Plums	3/1.92	34
	9%	Pears	0.7/0.64	95 88	3%	Wine grapes	2/1.4	33
	9%	Plums	3/1.92	81	3%	Celeries	4/2.04	33
	8%	Celeries	4/2.04	76	3%	Strawberry leaves	50/50	30
			4/2.04	/0	370	Strawberry leaves	50/50	
		Bhubarba	4/2.04	76	20/	Auborginos/ogg plants	1/1.06	20
	8% Expand/collapse list	ommodities exceeding the ARfD/ADI in childre	4/2.04 en and adult	76	3%	Aubergines/egg plants	1/1.06	29
	8% Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed co	ommodities exceeding the ARfD/ADI in childre			Results for adults			29
	8% Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed co (IESTI):	ommodities exceeding the ARfD/ADI in childre			Results for adults No of processed cor	Aubergines/egg plants		
	8% Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed co	ommodities exceeding the ARfD/ADI in childre	en and adult		Results for adults		T1):	
	8% Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed co (IESTI): IESTI	ommodities exceeding the ARfD/ADI in childre	en and adult		Results for adults No of processed cor IESTI		TI): MRL/input	
	8% Expand/collapse list Total number of cr diets (IESTI calculation) Results for childre No of processed co (IESTI): IESTI Highest % of	mmodities exceeding the ARfD/ADI in childre n mmodities for which ARfD/ADI is exceeded	MRL/input for RA	Exposure	Results for adults No of processed cor IESTI Highest % of	nmodities for which ARID/ADI is exceeded (IES	TI): MRL/input for RA	 Exposure
	8% Expand/collapse list Total number of co diets (IESTI calculation) Results for childre No of processed co (IESTI): IESTI Highest % of ARTD/ADI	mmodities exceeding the ARID/ADI in children mmodities for which ARID/ADI is exceeded Processed commodilies	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Results for adults No of processed cor IESTI Highest % of ARID/ADI	nmodilies for which AR(D/ADI is exceeded (IES	TI): MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
	8% Expand/collapse list Total number of cc diets (IESTI calculation) Results for childre No of processed co (IESTI): IESTI Highest % of ARTD/ADI 43%	mmodities exceeding the ARID/ADI in childre n mmodities for which ARID/ADI is exceeded Processed commodities Escaroles/broad-leaved endives/boiled	MRL/input for RA (mg/kg) 7/6.5	Exposure (µg/kg bw) 431	Results for adults No of processed cor IESTI Highest % of ARTD/ADI 13%	nmodities for which ARID/ADI is exceeded (IES Processed commodities Escaroles/broad-leaved endives/boiled	TI): MRL/input for RA (mg/kg) 7/6.5	Exposure (µg/kg bw) 133
	8% Expand/collapse list Total number of cd diets (IEST) calculation) Results for childre No of processed co (IEST): IEST) Highest % of ARTD/ADI 43% 20%	n mmodities exceeding the ARfD/ADI in childre n mmodities for which ARfD/ADI is exceeded Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled	MRL/input for RA (mg/kg) 7/6.5	Exposure (µg/kg bw) 431 202	Results for adults No of processed cor IESTI Highest % of ARTD/ADI 13%	nmodities for which ARfD/ADI is exceeded (IES Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled	TI): MRL/input for RA (mg/kg) 7/8.5 7/8.5	 Exposure (μg/kg bw) 133 81
	B% Expand/collapse list Total number of cd diets (IESTI calculation) Results for childre (No of processed co (IESTI): IESTI Highest % of ARID/ADI 43% 20% 18%	mmodities exceeding the ARID/ADI in children mmodities for which ARID/ADI is exceeded Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Kales/boiled	MRL/input for RA (mg/kg) 7/6.5 7/6.5	 Exposure (µg/kg bw) 431 202 179	Results for adults No of processed cor IESTI Highest % of ARTD/ADI 13% 8% 7%	Processed commodities Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Chards/beet leaves/boiled	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 4/2.04	Exposure (µg/kg bw) 133 81 69
	B% Expand/collapse list Expand/collapse list (IEST) calculation) Results for childre No of processed co (IEST): IESTI Highest % of ARID/ADI 43% 20% 18% 9%	n mmodities exceeding the ARfD/ADI in childre n mmodities for which ARfD/ADI is exceeded Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Kales/boiled Florence femnels/boiled	MRL/input for RA (mg/kg) 7/6.5 7/6.5 4/2.04	Exposure (µg/kg bw) 431 202 179 92	Results for adults No of processed cor IESTI Highest % of ARID/ADI 13% 8% 7% 5%	nmodities for which AR/D/ADI is exceeded (IES Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Ceteries/boiled Spinaches/frozen, boiled	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 4/2.04 7/6.5	 (µg/kg bw) 133 81 69 54
	B% Expand/collapse list Total number of cd (letST calculation) Results for childre No of processed co (IEST): IESTI Highest % of ARID/ADI 43% 20% 18% 9%	mmodities exceeding the ARID/ADI in childre mmodities for which ARID/ADI is exceeded Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Florence fennels/boiled Florence fennels/boiled	MRL/input for RA (mg/kg) 7/6.5 7/6.5 7/6.5 7/6.5	Exposure (µg/kg bw) 431 202 179 92 90	Results for adults No of processed cor IESTI Highest % of ARID/JADI 13% 8% 7% 5% 4%	Processed commodilies Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Chards/beet leaves/boiled Spinaches/frozen; boiled Cauliflower/soliel	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 7/6.5 1/1.05	 (μg/kg bw) 133 81 69 54 44
	B% Expand/collapse list Total number of cr diets (IEST1 calculation) Results for childre No of processed co (IEST1): EST1 Highest % of ARTD/AD1 43% 20% 18% 9% 9% 8%	Processed commodities Processed commodities Processed commodities Escaroles/broad-leaved endives/boiled Kales/boiled Spinaches/frozen; boiled Spinaches/frozen; boiled Broccol/boiled	MRL/input for RA (mg/kg) 7/6.5 7/6.5 4/2.04 7/6.5 1/1.05	 (µg/kg bw) 431 202 179 92 90 83	Results for adults No of processed cor IESTI Highest % of ARID/ADI 13% 8% 9% 5% 4% 4%	mmodities for which AR/D/ADI is exceeded (IES Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Celeries/boiled Caleries/boiled Caleries/boiled Caleries/boiled Florence fennes/boiled	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 7/6.5 1/1.05 1/1.05 1/1.05	 Exposure (µg/kg bw) 133 81 69 54 44 40
	B% B% Total number of cr diets (IESTI calculation) Results for childre (IESTI): IESTI Highest % of ARID/ADI 43% 20% 18% 9% 8% 8%	mmodities exceeding the ARID/ADI in childre mmodities for which ARID/ADI is exceeded Processed commodilies Escendes/broad-leaved endives/boiled Chards/beet leaves/boiled Kales/boiled Florence fennels/boiled Spinaches/broad-leave/puree	MRL/input for RA (mg/kg) 7/6.5 7/6.5 7/6.5 4/2.04 7/6.5 1/1.05 1/1.05	Exposure (µg/kg bw) 431 202 179 92 90 83 76	Results for adults No of processed cor IESTI Highest % of ARID/ADI 13% 8% 7% 5% 4% 4% 4% 3%	Processed commodilies Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Chards/beet leaves/boiled Cateries/boiled Spinaches/frozen, boiled Cauliflowers/boiled Florence fennels/boiled Florence fennels/boiled	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 4/2.04 7/6.5 1/1.05 4/2.04 4/2.04	Exposure (µg/kg bw) 133 81 69 54 44 40 30
	B% Expand/collapse list Total number of cr diets (IEST1 calculation) Results for childre No of processed co (IESTI): EESTI Highest % of ARID/ADI 43% 20% 18% 9% 9% 8% 8% 8% 8%	mmodities exceeding the ARID/ADI in childre mmodities for which ARID/ADI is exceeded Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Kates/boiled Florence femels/boiled Spinaches/frozen; boiled Broccoli/boiled Rrubarbs/sauce/puree Caulificevers/boiled	MRL/input for RA (mg/kg) 7/6.5 7/6.5 7/6.5 1/1.05 4/2.04 1/1.05	 (ug/kg bw) 431 202 179 92 90 83 76 73	Results for adults No of processed cor IESTI Highest % of ARD/ADI 13% 7% 5% 4% 4% 3% 3%	Processed commodities Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Calerice/boiled Spinaches/frozen; boiled Cauliflowers/boiled Rhubarbs/sauce/puree Purslanes/boiled	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 7/6.5 1/1.05 1/1.05 1/2.04 4/2.04 4/2.04 7/6.5	 (µg/kg bw) 133 81 69 54 44 40 30 27
	B% B% Total number of cr diets (IESTI calculation) Results for childre No of processed co (IESTI): IESTI Highest % of ARID/ADI 43% 20% 18% 9% 9% 9% 8% 8% 8% 5%	mmodities exceeding the ARID/ADI in childre mmodities for which ARID/ADI is exceeded Processed commodilies Escendes/broad-leaved endires/boiled Chards/beel leaves/boiled Kates/boiled Florence fennels/boiled Spinaches/broach/sauce/puree Cauliflowers/boiled Probabi-sauce/puree Cauliflowers/boiled Peaches/canned	MRL/input for RA (mg/kg) 7/6.5 7/6.5 7/6.5 1/1.05 1/1.05 1/1.05 3/1.92	 Exposure (μg/kg bw) 431 202 179 92 90 83 76 73 76 73 50	Results for adults No of processed cor IESTI Highets % of ARID/ADI 13% 9% 5% 5% 5% 4% 4% 4% 4% 3% 3%	Processed commodilies Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beel leaves/boiled Coleries/boiled Spinaches/frozen; boiled Califilowers/boiled Ficrence fennels/boiled Ficre	TI): MRL/input for RA (mg/kg) 7/8.5 7/8.5 7/8.5 4/2.04 7/8.5 1/1.05 4/2.04 7/8.5 1/1.05	Exposure (µg/kg bw) 133 81 69 54 44 40 30 27 25
	B% Expand/collapse list Total number of cr diets (IEST) calculation) Results for childre No of processed co (IEST): EESTI Highest % of AR(D/AD) 43% 20% 9% 9% 9% 9% 8% 8% 8% 8% 6% 4%	mmodities exceeding the ARID/ADI in childre mmodities for which ARID/ADI is exceeded Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Florence femeis/boiled Florence femeis/boiled Spinaches/tracer, boiled Broccoliboiled Rrubarbs/sauce/puree Cauliflowers/boiled Peaches/canned Potatees/iried	MRL/input for RA (mg/kg) 7/6.5 7/6 7/6 7/6	 (µgkg bw) 431 202 179 92 90 90 83 76 73 50 45	Results for adults No of processed cor IESTI Highest % of ARD/ADI 8% 7% 5% 4% 4% 4% 4% 4% 3% 3% 3% 3% 3%	Processed commodities Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Chards/beet leaves/boiled Coleries/boiled Spinaches/frozen; boiled Cauliflowers/boiled Fiorence femels/boiled Rhubarbs/sauce/puree Purslanes/boiled Broccoll/boiled Broccoll/boiled Purshins/boiled	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 1/1.05 4/2.04 7/6.5 1/1.05 4/2.04 4/2.04 4/2.04 1/1.05 1/1.05 0.2/0.38	Exposure (µg/kg bw) 133 81 69 54 44 40 30 27 25 21
	B% Expand/collapse list Total number of cr diets (IEST calculation) Results for childre No of processed co (IESTI): Highest % of AR(D/AD) 43% 20% 18% 9% 9% 9% 8% 8% 8% 5% 4% 3%	mmodities exceeding the ARID/ADI in childre mmodities for which ARID/ADI is exceeded Processed commodities Processed commodities Escenoles/broad-leaved endives/boiled Chards/beat leaves/boiled Spinaches/frozen, boiled Brocooliboiled Protes/sauce/puree Caulificewars/boiled Peaches/sauce/puree Caulificewars/boiled	MRL/input for RA (mg/kg) 7/6.5	Exposure (µg/kg bw) 431 202 90 92 90 83 76 73 76 73 50 45 34	Results for adults No of processed cor IESTI Highest % of ARID/ADI 13% 8% 7% 4% 4% 3% 3% 3% 3% 2% 2%	Processed commodilies Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Calificwers/boiled Calificwers/boiled Ficorance fennels/boiled Ficorance fennels/boiled Ficorance fennels/boiled Prubarb/sizeuce/puree Pursianes/boiled Parceoli/boiled Pumpkins/boiled Pumpkins/boiled Paches/canned	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 1/1.05 4/2.04 4/2.04 4/2.04 7/6.5 1/1.05 0.2/0.38 3/1.92	Exposure (µg/kg bw) 133 81 69 54 44 40 30 27 25 21 16
	B% Expand/collapse list Total number of cr diots (IEST) calculation) Results for childre No of processed co (IEST): IESTI Highest % of AR(D/AD) 43% 20% 9% 9% 9% 9% 8% 8% 8% 8% 6% 4% 3%	mmodities exceeding the ARID/ADI in childre mmodities for which ARID/ADI is exceeded Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Chards/beet leaves/boiled Florence fennels/boiled Florence fennels/boiled Brocool/boiled Protates/ritozen; boiled Patates/ritozen; boiled Beans (with pods)/boiled Beans (with pods)/boiled Beans (with pods)/boiled Beans (with pods)/boiled	MRL/input for RA (mg/kg) 7/6.5 7/6.5 1/1.05 4/2.04 1/1.05 3/1.92 0.80.48 22.75 0.2/0.38	 (μg/kg bw) 431 202 179 92 90 83 76 83 76 83 73 50 83 45 34 53 45	Results for adults No of processed cor IESTI Highest % of ARID/ADI B% 7% 5% 4% 4% 4% 4% 3% 3% 3% 3% 3% 3% 2% 2% 2% 1%	Processed commodities Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Chards/beet leaves/boiled Colefreis/boiled Florence fennels/boiled Florence fennels/boiled Florence fennels/boiled Purslanes/boiled Purslanes/boiled Purslanes/boiled Paches/canned Kohrables/boiled Paches/canned	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 7/6.5 1/1.05 4/2.04 4/2.04 4/2.04 4/2.04 7/6.5 1/1.05 0.2/0.38 3/1.92 1.5/0.64	 (μg/kg bw) 133 81 69 54 44 40 30 27 25 21 16 14
	B% B% Total number of cd diets (IESTI calculation) Results for childre No of processed co (IESTI): Highest % of ARID/ADI 43% 20% 18% 8% 8% 8% 8% 8% 8% 8% 5% 5% 5% 3% 3%	mmodities exceeding the ARID/ADI in childre mmodities for which ARID/ADI is exceeded Processed commodilies Escaroles/broad-leaved endives/boiled Chards/beat leaves/boiled Kates/boiled Spranches/frozen; boiled Broccoli/boiled Proches/sauce/puree Caulifices/fried Peaches/canned Potacles/fried Beans (with pods)/boiled Puachs/suice	MRL/input for RA (mg/kg) 7/6.5	Exposure (μg/kg bw) 431 202 90 83 76 73 50 45 50 45 34 33 26	Results for adults No of processed cor IEST Highest % of ARID/ADI 13% 8% 7% 4% 4% 3% 3% 3% 2% 1% 9%	Immodities for which ARfD/ADI is exceeded (IES Processed commodities Escaroles/broad-leaves/boiled Calerias/boiled Calerias/boiled Forence fensels/boiled Forence fensels/boiled Rhubarbs/sauce/puree Purslanes/boiled Broccoli/boiled Pumpkins/boiled Pumpkins/boiled Paches/canned Kohrlabies/boiled Pas (with pods/boiled	TI): MRL/input for RA (mg/kg) 7/8.5 4/2.04 7/8.5 4/2.04 4/2.04 4/2.04 4/2.04 4/2.04 1/1.05 0.2/0.38 3/1.92 1.5/0.64 2/2.75	Exposure (µg/kg bw) 133 81 69 54 44 40 30 27 25 21 16 14 9,4
	B% Expand/collapse list Total number of cr diots (IEST) calculation) Results for childre No of processed co (IEST): IESTI Highest % of AR(D/AD) 43% 20% 9% 9% 9% 9% 8% 8% 8% 8% 6% 4% 3%	mmodities exceeding the ARID/ADI in childre mmodities for which ARID/ADI is exceeded Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Chards/beet leaves/boiled Florence fennels/boiled Florence fennels/boiled Brocool/boiled Protates/ritozen; boiled Patates/ritozen; boiled Beans (with pods)/boiled Beans (with pods)/boiled Beans (with pods)/boiled Beans (with pods)/boiled	MRL/input for RA (mg/kg) 7/6.5 7/6.5 1/1.05 4/2.04 1/1.05 3/1.92 0.80.48 22.75 0.2/0.38	 (μg/kg bw) 431 202 179 92 90 83 76 83 76 83 73 50 83 45 34 53 45	Results for adults No of processed cor IESTI Highest % of ARID/ADI B% 7% 5% 4% 4% 4% 4% 3% 3% 3% 3% 3% 3% 2% 2% 2% 1%	Processed commodities Processed commodities Escaroles/broad-leaved endives/boiled Chards/beet leaves/boiled Chards/beet leaves/boiled Colefreis/boiled Florence fennels/boiled Florence fennels/boiled Florence fennels/boiled Purslanes/boiled Purslanes/boiled Purslanes/boiled Paches/canned Kohrables/boiled Paches/canned	TI): MRL/input for RA (mg/kg) 7/6.5 7/6.5 7/6.5 1/1.05 4/2.04 4/2.04 4/2.04 4/2.04 7/6.5 1/1.05 0.2/0.38 3/1.92 1.5/0.64	 (μg/kg.bw) 133 81 69 54 44 40 30 27 25 21 16 14

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short-term intake of residues of Spirotetramat is unlikely to present a public health risk. For processed commodities, no exceedance of the ARtD/ADI was identified.

Te	ebuconaz	zole	
Status of the active substance:		Code no.	
LOQ (mg/kg bw):		Proposed LOQ:	
Toxi	cological end	points	
ADI (mg/kg bw per day):	0.03	ARfD (mg/kg bw):	0.03
Source of ADI:	EFSA	Source of ARfD:	EFSA
Year of evaluation:	2008	Year of evaluation:	2008

			mir 3	(range) in % of ADI nimum–maximum 17				
		No of diets excee	•					
Highest calculated		Highest contributo		2nd contributor to		3rd contributor to		pTMRLs at
TMDI values in %		to MS diet	Commodity/	MS diet	Commodity/	MS diet	Commodity/	LOQ
of ADI	MS Diet	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of AD
16.5	WHO Cluster diet B	2.4	Tomatoes	2.2	Wine grapes	1.7	Beans (without pods)	
14.7	DE child	5.2	Apples	1.0	Milk and cream,	0.7	Tomatoes	
14.5	IE adult	2.8	Barley	1.5	Wine grapes	1.2	Beans (without pods)	
13.1	NL child	2.7	Apples	2.0	Milk and cream,	0.8	Wheat	
12.5	WHO cluster diet E	2.0	Wine grapes	1.8	Barley	1.5	Beans (without pods)	
10.9	FR toddler	2.6	Milk and cream,	1.2	Carrots	1.2	Beans (with pods)	
9.1	PT General population	3.1	Wine grapes	1.7	Beans (without pods)	0.7	Tomatoes	
8.8	WHO regional European diet	1.6	Peas (with pods)	0.8	Tomatoes	0.7	Barley	
8.4	FR all population	4.9	Wine grapes	0.5	Wheat	0.3	Tomatoes	
8.2	WHO Cluster diet F	1.4	Barley	0.7	Wine grapes	0.6	Wheat	
7.7	DK child	1.0	Apples	0.9	Wheat	0.9	Oats	
7.6	UK Infant	2.6	Milk and cream,	0.7	Apples	0.7	Carrots	
7.3	FR infant	1.7	Milk and cream.	1.3	Carrots	1.1	Apples	
7.3	ES child	0.8	Milk and cream.	0.8	Tomatoes	0.7	Wheat	
7.0	SE general population 90th percentile	0.8	Milk and cream.	0.6	Tomatoes	0.6	Beans (without pods)	
6.9	WHO cluster diet D	1.1	Wheat	0.8	Tomatoes	0.5	Barley	
6.5	NL general	0.8	Barley	0.8	Wine grapes	0.5	Apples	
6.4	ES adult	1.1	Barley	0.6	Tomatoes	0.5	Wine grapes	
6.3	UK Toddler	1.4	Milk and cream.	0.7	Apples	0.7	Wheat	
4.8	DK adult	1.7	Wine grapes	0.4	Milk and cream.	0.3	Apples	
4.3	IT kids/toddler	1.1	Wheat	1.1	Tomatoes	0.4	Apples	
4.2	UK vegetarian	1.0	Wine grapes	0.5	Tomatoes	0.3	Wheat	
3.9	UK Adult	1.3	Wine grapes	0.3	Tomatoes	0.3	Rice	
3.8	LT adult	0.8	Apples	0.5	Tomatoes	0.3	Swine: Meat	
3.6	IT adult	0.9	Tomatoes	0.7	Wheat	0.3	Apples	
3.2	PL general population	0.9	Apples	0.7	Tomatoes	0.4	Beans (without pods)	
3.0	FI adult	0.4	Milk and cream.	0.4	Wine grapes	0.4	Tomatoes	

Conclusion:

The estimated Theoretical Maximum Daily Intakes (TMDI), based on pTMRLs were below the ADI. A long-term intake of residues of Tebuconazole is unlikely to present a public health concern.

Acute risk assessment/children – refined calculations

Acute risk assessment/adults/general population – refined calculations

The acute risk assessment is based on the ARfD.

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS, an average European unit weight was used for the IESTI calculation.

In the IESTI 1 calculation, the variability factors were 10, 7 or 5 (according to JMPR manual 2002); for lettuce, a variability factor of 5 was used.

In the IESTI 2 calculations, the variability factors of 10 and 7 were replaced by 5. For lettuce, the calculation was performed with a variability factor of 3.

Threshold MRL is the calculated residue level which would leads to an exposure equivalent to 100% of the ARfD.

commodities	No of commoditie is exceeded (IEST	es for which ARfD/AD FI 1):		No of commoditie ARfD/ADI is excee			No of commoditie is exceeded (IES]	es for which ARfD/AD T 1):	I 	No of commoditie (IESTI 2):	s for which ARfD/ADI is exceede	d
III O	IESTI 1	*)	**)	IESTI 2	*)	**)	IESTI 1	*)	**)	IESTI 2	*)	**)
cessed	Highest % of ARfD/ADI	Commodities	pTMRL/ threshold MRL (mg/kg)	Highest % of ARfD/ADI	Commodities	pTMRL/ threshold MRL (mg/kg)	Highest % of ARfD/ADI	Commodities	pTMRL/ threshold MRL (mg/kg)	Highest % of ARfD/ADI	Commodities	pTMRL/ threshold MRL (mg/kg)
Unpro	59.4 30.9	Mandarins Oranges	0.32/- 0.07/-	44.6 22.4	Mandarins Oranges	0.32/- 0.07/-	14.3 6.0	Mandarins Oranges	0.32/- 0.07/-	11.1 4.9	Mandarins Oranges	0.32/- 0.07/-
	No of critical MRI	Ls (IESTI 1)					No of critical MR	.s (IESTI 2)				

nodities	No of commodities for which ARfD/ADI is exceeded:		No of commodities for which ARfD/ADI is exceeded:	
Ē	***)		***	**)
essed cc	pTMRL/ Highest % of Processed threshold MRL ARfD/ADI commodities (mg/kg)		Highest % of Processed th ARfD/ADI commodities	pTMRL/ threshold MRL (mg/kg)
Proc				
	*) The results of the IESTI calculations are reported for at leas **) pTMRL: provisional temporary MRL. ***) pTMRL: provisional temporary MRL for unprocessed com		commodities, all IESTI values > 90% of ARfD) are reported.
	Conclusion:			
	For Tebuconazole, IESTI 1 and IESTI 2 were calculated for for		r which consumption data are available.	
	No exceedance of the ARfD/ADI was identified for any unproc			
	For processed commodities, no exceedance of the ARfD/ADI	was identified.		

• Thiabendazole: Scenario 1

		fea		LOQs (mg/kg) range	from: 0.01	to:	0.05	Details – chronic risk	Supplementar	/ results –	
	**e	Sdo			Toxicological reference val			assessment	chronic risk as	sessment	
	-	fsa		ADI (mg/kg bw per da	ay): 0.1	ARfD (mg/kg bw):	0.1	Details – acute risk	Details – ac	uto rick	
	uropean Food	d Safety Authority		Source of ADI:	EFSA	Source of ARfD:	EFSA	assessment/children	assessment		
	EFSA PRIMo re	vision 3.1; 2019/03/19		Year of evaluation:	2014	Year of evaluation:	2014	assessment/children	assessment	auults)
'n	ts:	Acute exposure assessment for Mango:	: Scenario 1 based on th	e HR for the whole frui	t (4.5 mg/kg). Refined calcula	tion mode					
					Chronic risk assessment: JM		y (IEDI/TMDI)				<u></u>
				No of diets exceeding		-				Exposure	e resulting
1										MRLs set at	t commo
			Expsoure	Highest contributor to		2nd contributor to		3rd contributor to		the LOQ (in % of ADI)	under as (in %
I	Calculated exposure (% of ADI)	MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities	MS diet (in % of ADI)	Commodity/ aroup of commodities	diet (in % of ADI	Commodity/ group of commodities	(// 0. /////	1
	39%	NL toddler	38.52	(III % 01 ADI) 19%	Apples	(in % of ADI) 10%	Milk: Cattle	(iii % 0i Abi	Pears		3
	29%	DE child	29.24	22%	Apples	3%	Milk: Cattle	2%	Eggs: Chicken		2
	21%	IE adult	21.10	17%	Sweet potatoes	1%	Apples	0.8%	Pears		2
	18%	NL child	18.06	10%	Apples	4%	Milk: Cattle	2%	Pears		1
	13% 12%	FR toddler 2 3 yr UK infant	12.79 12.12	6% 6%	Apples Milk: Cattle	5% 3%	Milk: Cattle Apples	1% 2%	Eggs: Chicken Eggs: Chicken		1
	12%	FR child 3 15 yr	9.80	4%	Milk: Cattle	3%	Apples	2%	Eggs: Chicken		1
	9%	DK child	9.35	4%	Apples	2%	Milk: Cattle	1%	Eggs: Chicken		
	9%	UK toddler	8.58	3%	Milk: Cattle	3%	Apples	2%	Eggs: Chicken		9
	8%	DE women 14-50 yr	7.83	5%	Apples	2%	Milk: Cattle	0.6%	Eggs: Chicken		8
	7%	DE general	7.43	4%	Apples	2%	Milk: Cattle	0.5%	Eggs: Chicken		1
	7% 7%	SE general ES child	7.01	2% 2%	Milk: Cattle Apples	2% 2%	Apples Milk: Cattle	2% 1%	Eggs: Chicken Eggs: Chicken		7
	6%	FR infant	6.48	3%	Apples	2%	Milk: Cattle	0.3%	Pears		é
	6%	RO general	5.96	3%	Apples	2%	Milk: Cattle	1%	Eggs: Chicken		é
	6%	GEMS/Food G11	5.69	3%	Apples	1%	Milk: Cattle	0.8%	Kumquats		6
	5%	NL general	5.18	3%	Apples	1%	Milk: Cattle	0.6%	Eggs: Chicken		Ę
	5%	LT adult	4.98	3%	Apples	0.6%	Milk: Cattle	0.6%	Eggs: Chicken		5
	4% 4%	PL general GEMS/Food G15	4.23 4.03	4% 2%	Apples	0.5%	Pears Milk: Cattle	0.0%	Potatoes Pears		4
	4%	DK adult	4.03	2%	Apples Apples	0.8%	Milk: Cattle	0.3%	Eggs: Chicken		
	4%	GEMS/Food G08	3.99	2%	Apples	0.9%	Milk: Cattle	0.3%	Kumquats		
	4%	GEMS/Food G07	3.99	2%	Apples	1%	Milk: Cattle	0.3%	Pears		
	4%	ES adult	3.85	1%	Apples	0.8%	Eggs: Chicken	0.8%	Milk: Cattle		4
	4%	GEMS/Food G10	3.57	1%	Apples	0.9%	Milk: Cattle	0.4%	Sweet potatoes		4
	4% 3%	GEMS/Food G06 FR adult	3.52 3.32	2% 1%	Apples Apples	0.5% 0.7%	Sweet potatoes Eggs: Chicken	0.4%	Milk: Cattle Milk: Cattle		4
	3%	PT general	2.93	2%	Apples	0.6%	Eggs: Chicken Pears	0.7%	Sweet potatoes		
	2%	UK vegetarian	2.43	1%	Apples	0.6%	Eggs: Chicken	0.5%	Milk: Cattle		
	2%	IT toddler	2.29	2%	Apples	0.6%	Pears	0.0%	Bananas		2
	2%	FI 3 yr	2.16	2%	Apples	0.3%	Pears	0.1%	Bananas		2
	2% 2%	UK adult	2.03	0.7%	Apples	0.5%	Eggs: Chicken	0.5%	Milk: Cattle		2
	2% 2%	IT adult IE child	1.89 1.55	1% 0.6%	Apples Apples	0.4%	Pears Milk: Cattle	0.0%	Bananas Eggs: Chicken		2
	1%	FI 6 yr	1.47	1%	Apples	0.3%	Pears	0.1%	Bananas		1
	1%	FI adult	1.20	1%	Apples	0.1%	Pears	0.0%	Bananas		1

333

Details – acute risk assessment/children

Acute risk assessment/adults/general population Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

Results for childre No. of commodities (IESTI):	n for which ARfD/ADI is exceeded		4	Results for adults No. of commodities (IESTI):	for which ARfD/ADI is exceeded		2
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expos
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
415%	Pears	4/3	415	145%	Sweet potatoes	9/6.97	14
354%	Mangoes	7/4.5	354	116%	Mangoes	7/4.5	11
323%	Apples	4/3	323	92%	Pears	4/3	92
216%	Papayas	10/5.1	216	84%	Apples	4/3	84
74%	Avocados	20/1.47	74	71%	Papayas	10/5.1	71
49%	Quinces	3/2	49	30%	Quinces	3/2	30
37%	Sweet potatoes	9/6.97	37	22%	Avocados	20/1.47	22
28%	Medlar	3/2	28	14%	Medlar	3/2	14
22%	Eggs: Chicken	2/1.74	22	7%	Eggs: Chicken	2/1.74	7.4
20%	Milk: Cattle	0.2/0.16	20	6%	Milk: Cattle	0.2/0.16	6.2
10%	Bananas	6/0.1	9.7	3%	Milk: Goat	0.2/0.17	3.1
9%	Kumquats	7/5.2	9.3	3%	Milk: Sheep	0.2/0.17	2.6
5%	Oranges	7/0.03	4.5	2%	Eggs: Quail	2/1.74	2.4
4%	Milk: Goat	0.2/0.17	4.1	2%	Bananas	6/0.1	2.1
3%	Potatoes	0.04/0.02	3.1	1%	Bovine: Kidney	1/0.6	1.3
Expand/collapse list							

No of processed co exceeded (IESTI):	mmodities for which ARfD/ADI is		1	No of processed co exceeded (IESTI):	mmodities for which ARfD/ADI is		1	
IESTI		IESTI						
Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	
351%	Sweet potatoes/boiled	9/6.97	351	107%	Sweet potatoes/boiled	9/6.97	107	
97%	Apples/juice	4/1.8	97	60%	Apples/juice	4/1.8	60	
59%	Pears/juice	4/1.8	59	15%	Oranges/juice	7/0.98	15	
52%	Oranges/juice	7/0.98	52	11%	Grapefruits/juice	7/0.98	11	
5%	Quinces/jam	3/1.7	5.1	2%	Quinces/jam	3/1.7	2.1	
4%	Witloofs/boiled	0.05/0.05	4.4	2%	Lemons/juice	7/0.98	1.9	
3%	Lemons/jam	7/0.98	3.0	0.9%	Witloofs/boiled	0.05/0.05	0.92	
2%	Potatoes/fried	0.04/0.02	1.9	0.08%	Potatoes/chips	0.04/0.01	0.08	
0.6%	Potatoes/dried (flakes)	0.04/0.05	0.59	0.07%	Beans/canned	0.01/0.01	0.07	
0.1%	Beans (with pods)/boiled	0.01/0.01	0.13	0.06%	Potatoes/dried (flakes)	0.04/0.05	0.06	
0.1%	Limes/juice	7/0.98	0.09	0.05%	Beans (without pods)/boiled	0.01/0.01	0.05	
0.1%	Lentils/boiled	0.01/0.01	0.08	0.03%	Peas (with pods)/boiled	0.01/0.01	0.03	
0.1%	Peas (without pods)/canned	0.01/0.01	0.08	0.03%	Peas (without pods)/boiled	0.01/0.01	0.03	
0.1%	Peas/canned	0.01/0	0.07	0.03%	Peas/canned	0.01/0	0.03	

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 5 commodities.

For processed commodities, the toxicological reference value was exceeded in one or several cases.

• Thiabendazole: Scenario 2

-	×. *	1		LOQs (mg/kg) range		abendazole	to:	0.05	Details – cl	hronic risk	Supplementary	results –	
	***	fsam			Toxicolog	jical reference value	s		assess		chronic risk asse		
				ADI (mg/kg bw/day):		0.1	ARfD (mg/kg bw):	0.1	<u> </u>				Ś
E	uropean Foo	d Safety Authority		Source of ADI:		EFSA	Source of ARfD:	EFSA	Details – a		Details – acut		
	EFSA PRIMo re	vision 3.1; 2019/03/19		Year of evaluation:		2014	Year of evaluation:	2014	assessmen	t/children	assessment/a	iduits	
en	its:	Acute exposure assessment for Mango:	Scenario 2 based on HR e	dible part of the crop	measured immediately after the treatment	(DAT 0 days) (0.03 mg/kg).							
					<u>R</u>	efined calculation	mode						
					Chronic risk	assessment: JMPR	methodology (I	EDI/TMDI)					
				No of diets exceeding	the ADI :								e resulting
												MRLs set at the LOQ	under as:
	Calculated exposu	re .	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of ADI	
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	39%	NL toddler	38.52	19%	Apples		10%	Milk: Cattle		8%	Pears		
	29% 21%	DE child IE adult	29.24 21.10	22% 17%	Apples Sweet potatoes		3% 1%	Milk: Cattle Apples		2% 0.8%	Eggs: Chicken Pears		1
	18%	NL child	18.06	10%	Apples		4%	Milk: Cattle		2%	Pears		
	13%	FR toddler 2 3 yr	12.79	6%	Apples		5%	Milk: Cattle		1%	Eggs: Chicken		
	12%	UK infant	12.12	6%	Milk: Cattle		3%	Apples		2%	Eggs: Chicken		
	10%	FR child 3 15 yr	9.80	4%	Milk: Cattle		3%	Apples		2%	Eggs: Chicken		
	9%	DK child	9.35	4%	Apples		2%	Milk: Cattle		1%	Eggs: Chicken		
	9% 8%	UK toddler DE women 14-50 yr	8.58 7.83	3% 5%	Milk: Cattle Apples		3% 2%	Apples Milk: Cattle		2% 0.6%	Eggs: Chicken Eggs: Chicken		
	7%	DE general	7.43	4%	Apples		2%	Milk: Cattle		0.5%	Eggs: Chicken		
	7%	SE general	7.01	2%	Milk: Cattle		2%	Apples		2%	Eggs: Chicken		
	7%	ES child	6.61	2%	Apples		2%	Milk: Cattle		1%	Eggs: Chicken		
	6%	FR infant	6.48	3%	Apples		3%	Milk: Cattle		0.3%	Pears		
	6%	RO general	5.96	3%	Apples		2%	Milk: Cattle		1%	Eggs: Chicken		
	6%	GEMS/Food G11	5.69	3%	Apples		1%	Milk: Cattle Milk: Cattle		0.8%	Kumquats		
	5% 5%	NL general LT adult	5.18 4.98	3% 3%	Apples Apples		1% 0.6%	Milk: Cattle Milk: Cattle		0.6%	Eggs: Chicken Eggs: Chicken		
	4%	PL general	4.90	4%	Apples		0.5%	Pears		0.0%	Potatoes		
	4%	GEMS/Food G15	4.03	2%	Apples		1%	Milk: Cattle		0.3%	Pears		
	4%	DK adult	4.00	2%	Apples		0.8%	Milk: Cattle		0.6%	Eggs: Chicken		
	4%	GEMS/Food G08	3.99	2%	Apples		0.9%	Milk: Cattle		0.3%	Kumquats		
	4%	GEMS/Food G07	3.99	2%	Apples		1%	Milk: Cattle		0.3%	Pears		
	4% 4%	ES adult GEMS/Food G10	3.85 3.57	1% 1%	Apples Apples		0.8%	Eggs: Chicken Milk: Cattle		0.8%	Milk: Cattle Sweet potatoes		
	4%	GEMS/Food G06	3.52	2%	Apples		0.5%	Sweet potatoes		0.4%	Milk: Cattle		
	3%	FR adult	3.32	1%	Apples		0.7%	Eggs: Chicken		0.7%	Milk: Cattle		
	3%	PT general	2.93	2%	Apples		0.6%	Pears		0.3%	Sweet potatoes		
	2%	UK vegetarian	2.43	1%	Apples		0.6%	Eggs: Chicken		0.5%	Milk: Cattle		
	2%	IT toddler	2.29	2%	Apples		0.6%	Pears		0.0%	Bananas		
	2% 2%	FI 3 yr UK adult	2.16 2.03	2% 0.7%	Apples Apples		0.3%	Pears		0.1%	Bananas Milk: Cattle		
	2%	IT adult	2.03	1%	Apples		0.4%	Eggs: Chicken Pears		0.0%	Milk: Cattle Bananas		
	2%	IE child	1.55	0.6%	Apples		0.6%	Milk: Cattle		0.3%	Eggs: Chicken		
	1%	FI 6 yr	1.47	1%	Apples		0.3%	Pears		0.1%	Bananas		
	1%	FI adult	1.20	1%	Apples		0.1%	Pears		0.0%	Bananas		

Acute risk assessment/children	Acute risk assessment/adults/general population
Details – acute risk assessment/children	Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for children							
	r which ARfD/ADI is exceeded			Results for adults			
(IESTI):			3		for which ARfD/ADI is exceeded (IES	TI):	
IESTI				IESTI		,	
12311		MRL/input		IESTI		MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expo
	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/k
	Pears	4/3	415	145%	Sweet potatoes	9/6.97	1
	Apples	4/3	323	92%	Pears	4/3	ç
	Papavas	10/5.1	216	84%	Apples	4/3	8
	Avocados	20/1.47	74	71%	Papayas	10/5.1	7
	Quinces	3/2	49	30%	Quinces	3/2	. 3
	Sweet potatoes	9/6.97	37	22%	Avocados	20/1.47	2
	Medlar	3/2	28	14%	Mediar	3/2	1
	Eggs: Chicken	2/1.74	22	7%	Eggs: Chicken	2/1.74	7
	Milk: Cattle	0.2/0.16	20	6%	Milk: Cattle	0.2/0.16	6
	Bananas	6/0.1	9.7	3%	Milk: Goat	0.2/0.17	3
	Kumquats	7/5.2	9.3	3%	Milk: Sheep	0.2/0.17	2
	Oranges	7/0.03	4.5	2%	Eggs: Quail	2/1.74	2
	Milk: Goat	0.2/0.17	4.1	2%	Bananas	6/0.1	2
						1/0.6	
	Potatoes	0.04/0.02	3.1	1%	Bovine: Kidnev		1
3%	Potatoes Grapefruits	0.04/0.02 7/0.03	3.1 2.7	1% 1%	Bovine: Kidney Oranges	7/0.03	
3% I 3% C Expand/collapse list		7/0.03		. , *	-		1. 1.
3% I 3% C Expand/collapse list Total number of comm	Grapefruits	7/0.03		. , *	-		
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation)	Grapefruits	7/0.03	2.7	1%	-		
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation) Results for children	Grapefruits	7/0.03	2.7	1% Results for adults	Oranges		
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation) Results for children	Grapefruits	7/0.03	2.7	1% Results for adults	-		1
3% 3% Expand/collapse list Total number of cominant and adult diets (IESTI calculation) Results for children No of processed comm	Grapefruits	7/0.03	2.7	1% Results for adults No of processed con exceeded (IESTI):	Oranges		1
3% 3% Expand/collapse list Total number of command adult diets (IESTI calculation) Results for children No of processed commexceeded (IESTI):	Grapefruits	7/0.03	2.7	1% Results for adults No of processed cor	Oranges		
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation) Results for children No of processed comm exceeded (IESTI): IESTI Highest % of	Grapefruits	7/0.03 DI in children MRL/input for RA	2.7 4 1 Exposure	1% Results for adults No of processed co exceeded (IESTI): IESTI Highest % of	Oranges	7/0.03 MRL/input for RA	Expo
3% 3% Expand/collapse list Total number of comi and adult diets (IESTI calculation) Results for children No of processed comme exceeded (IESTI): IESTI Highest % of ARTD/ADI	Grapefruits modities exceeding the ARfD/AD nodities for which ARfD/ADI is Processed commodities	7/0.03 DI in children MRL/input for RA (mg/kg)	2.7 4 1 Exposure (µg/kg bw)	1% Results for adults No of processed co exceeded (IESTI): IESTI Highest % of ARTD/ADI	Oranges mmodities for which ARfD/ADI is Processed commodities	7/0.03 MRL/input for RA (mg/kg)	1 Ехри (µg/k
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation) Results for children No of processed comm exceeded (IESTI): IESTI Highest % of ARTD/ADI 351%	Grapefruits modities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97	2.7 4 1 Exposure (µg/kg bw) 351	1% Results for adults No of processed cos exceeded (IESTI): IESTI Highest % of ARTD/ADI 107%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled	7/0.03 MRL/input for RA (mg/kg) 9/6.97	Ехро (µg/k
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation) Results for children No of processed comme exceeded (IESTI): IESTI Highest % of ARID/ADI 351% 97%	Grapefruits amodities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8	2.7 4 1 Exposure (µg/kg bw) 351 97	1% Results for adults No of processed cor exceeded (IESTI): IESTI Highest % of ARID/ADI 107% 60%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8	Ехри (µg/k 1
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation) Results for children No of processed comme exceeded (IESTI): IESTI Highest % of ARTD/ADI 351% 97% 59%	Grapefruits modities exceeding the ARfD/AU modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Pears/juice	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8	2.7 4 1 Exposure (µg/kg bw) 351 97 59	1% Results for adults No of processed co exceeded (IESTI): IESTI Highest % of ARTD/ADI 107% 60% 15%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98	Ехро (µg/k 11 е 1
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation) Results for children No of processed comm exceeded (IESTI): IESTI Highest % of ARTD/ADI 351% 397% 59%	Grapefruits modities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Pears/juice Oranges/juice	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98	2.7 4 1 Exposure (µg/kg bw) 351 97 59 52	1% Results for adults No of processed col exceeded (IESTI): IESTI Highest % of ARD/ADI 107% 60% 15% 11%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Grapefruits/juice	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 7/0.98	Expr (μg/k 1 1 1 1
3% 3% 3% 3% Expand/collapse list 3% Total number of command adult diets (IESTI calculation) Results for children No of processed commexceeded (IESTI): IESTI Highest % of AR(D/AD) 351% 97% 59% 5%	Grapefruits modities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Pears/juice Oranges/juice Quinces/jam	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 4/1.8 4/1.8 3/1.7	2.7 4 1 Exposure (µg/kg bw) 351 97 59 52 5.1	I% Results for adults No of processed corexceeded (IESTI): IESTI Highest % of ARID/ADI 107% 60% 15% 11% 2%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Grapefruits/juice Quinces/jam	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7	Expr (μg/k 1 6 1 1 2
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation) Results for children No of processed comme exceeded (IESTI): IESTI Highest % of ARTD/ADI 351% 97% 59% 1 52% 4%	Grapefruits amodities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatees/boiled Apples/juice Pears/juice Oranges/juice Quinces/jam Witloof/s/boiled	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 4/1.8 7/0.98 3/1.7 0.05/0.05	2.7 4 1 Exposure (µg/kg bw) 351 97 59 52 5.1 4.4	1% Results for adults No of processed conexceeded (IESTI): IESTI Highest % of ARID/ADI 107% 60% 15% 11% 2%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Grapefruits/juice Grapefruits/juice Lemons/juice	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 7/0.98 3/1.7 7/0.98	Ехри (µg/k 1 6 1 1 2 1
3% 3% 3% 3% Expand/collapse list Total number of command adult diets (IESTI calculation) Results for children No of processed comme exceeded (IESTI): IESTI Highest % of ARTD/ADI 351% 59% 52% 6% 4%	Grapefruits modities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Quinces/jam Wittoofs/boiled Lemons/jam	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7 0.05/0.05 7/0.98	2.7 4 1 (µg/kg bw) 351 97 59 52 5.1 4.4 3.0	1% Results for adults No of processed colexceeded (IESTI): IESTI Highest % of ARD/ADI 107% 60% 15% 11% 2% 2% 0.9%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Grapefruits/juice Quinces/jam Lemons/juice Witloofs/boiled	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7 7/0.98 0.05/0.05	Expr (μg/k 1 6 1 1 2 1 0.
3% 3% 3% 3% 3% 3% Total number of command adult diets (IESTI calculation) Results for children No of processed commexceeded (IESTI): IESTI Highest % of ARtD/ADI 351% 97% 59% 52% 4% 2%	Grapefruits amodities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatees/boiled Apples/juice Pears/juice Oranges/juice Quinces/jam Witloof/s/boiled	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 4/1.8 7/0.98 3/1.7 0.05/0.05	2.7 4 1 Exposure (µg/kg bw) 351 97 59 52 5.1 4.4 3.0 1.9	1% Results for adults No of processed conexceeded (IESTI): IESTI Highest % of ARID/ADI 107% 60% 15% 11% 2%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Grapefruits/juice Grapefruits/juice Lemons/juice	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 7/0.98 3/1.7 7/0.98	Expr (μg/k 1 1 2 1 1 0.00
3% 3% Expand/collapse list Total number of comm and adult diets (IESTI calculation) Results for children No of processed comm exceeded (IESTI): IESTI Highest % of ARtD/ADI 351% 97% 59% 1 52% 0 5% 0 4% 2% 0.6%	Grapefruits amodities exceeding the ARfD/AU modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Pears/juice Oranges/juice Oranges/juice Oranges/juice Oranges/juice Dotatoes/fried Potatoes/fried P	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 4/1.8 7/0.98 3/1.7 0.05/0.05 7/0.98 0.04/0.05	2.7 4 Exposure (µg/kg bw) 351 97 59 52 5.1 4.4 3.0 1.9 0.59	I% Results for adults No of processed colexceeded (IESTI): IESTI Highest % of ARID/ADI 107% 60% 15% 11% 2% 2% 0.9% 0.08% 0.07%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Oranges/juice Quinces/jam Lemons/juice Witloofs/boiled Potatoes/chips Beans/canned	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7 7/0.98 3/1.7 7/0.98 0.05/0.05 0.04/0.01 0.01/0.01	Expp (μg/k 1 2 1 2 1 0. 0. 0. 0.
3% 3% 3% 3% Expand/collapse list 3% Total number of command adult diets (IESTI calculation) 3% Results for children No of processed commexceeded (IESTI): 16 IESTI 4% 47% 3% 97% 4% 52% 6 4% 3% 2% 0.6% 0.1% 1%	Grapefruits modities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Quinces/jam Witloofs/boiled Lemons/jam Potatoes/dried (flakes) Beans (with pods/boiled	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7 0.05/0.05 7/0.98 0.04/0.02 0.04/0.02	2.7 4 1 Exposure (µg/kg bw) 351 97 59 52 5.1 4.4 3.0 1.9 0.59 0.13	I% Results for adults No of processed colexceeded (IESTI): IESTI Highest % of ARtD/ADI 107% 60% 15% 11% 2% 2% 2% 0.9% 0.08% 0.07% 0.06%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Oranges/juice Quinces/jam Lemons/juice Witloofs/boiled Potatoes/chips Beans/canned Potatoes/dried (flakes)	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7 7/0.98 3/1.7 7/0.98 0.05/0.05 0.04/0.01 0.01/0.01	Expp(µg/k) (µg/k) 1 1 6 1 1 1 2 2 1 1 0.0 0.0 0.0 0.0
3% 3% 3% 3% Expand/collapse list 3% Total number of command adult diets (IESTI calculation) 3% Results for children No of processed commexceeded (IESTI): 16 IESTI 4% 47% 3% 97% 4% 52% 6 4% 3% 2% 0.6% 0.1% 1%	Grapefruits amodities exceeding the ARfD/AU modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Pears/juice Oranges/juice Oranges/juice Oranges/juice Oranges/juice Dotatoes/fried Potatoes/fried P	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 4/1.8 7/0.98 3/1.7 0.05/0.05 7/0.98 0.04/0.05	2.7 4 Exposure (µg/kg bw) 351 97 59 52 5.1 4.4 3.0 1.9 0.59	I% Results for adults No of processed colexceeded (IESTI): IESTI Highest % of ARID/ADI 107% 60% 15% 11% 2% 2% 0.9% 0.08% 0.07%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Oranges/juice Quinces/jam Lemons/juice Witloofs/boiled Potatoes/chips Beans/canned	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7 7/0.98 3/1.7 7/0.98 0.05/0.05 0.04/0.01 0.01/0.01	Expp(µg/k) (µg/k) 1 1 6 1 1 1 2 2 1 1 0.0 0.0 0.0 0.0
3% 3% 3% 3% 3% 3% Expand/collapse list Total number of command adult diets (IESTI calculation) Results for children No of processed commexceeded (IESTI): IESTI Highest % of ARfD/ADI 351% 97% 59% 1 52% 0 3% 2% 0.6% 0.1%	Grapefruits modities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Quinces/jam Witloofs/boiled Lemons/jam Potatoes/dried (flakes) Beans (with pods/boiled	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7 0.05/0.05 7/0.98 0.04/0.02 0.04/0.02	2.7 4 1 Exposure (µg/kg bw) 351 97 59 52 5.1 4.4 3.0 1.9 0.59 0.13	I% Results for adults No of processed colexceeded (IESTI): IESTI Highest % of ARtD/ADI 107% 60% 15% 11% 2% 2% 2% 0.9% 0.08% 0.07% 0.06%	Oranges mmodities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Oranges/juice Quinces/jam Lemons/juice Witloofs/boiled Potatoes/chips Beans/canned Potatoes/dried (flakes)	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7 7/0.98 3/1.7 7/0.98 0.05/0.05 0.04/0.01 0.01/0.01	Expr (µg/k/ 11 1 1 1 1 1 1 1 1 1 1 0.0 0.0 0.0 0.0
3% 3% 3% 3% Stand/collapse list 3% Total number of command adult diets (IESTI calculation) Results for children No of processed commexceeded (IESTI): IESTI Highest % of ARTD/ADI 351% 3 97% 59% 52% 0 4% 3% 2% 0.6% 0.1% 0.1%	Grapefruits modities exceeding the ARfD/AD modities for which ARfD/ADI is Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Quinces/jam Witloofs/boiled Lemons/jam Potatoes/fried Potatoes/fried Potatoes/fried Potatoes/fried Eeans (with pods)/boiled Limes/juice	7/0.03 DI in children MRL/input for RA (mg/kg) 9/6.97 4/1.8 4/1.8 4/1.8 3/1.7 0.05/0.05 7/0.98 0.04/0.02 0.04/0.02 0.04/0.02	2.7 4 Exposure (µg/kg bw) 351 97 59 52 5.1 4.4 3.0 1.9 0.59 0.13 0.09	I% Results for adults No of processed colexceeded (IESTI): IESTI Highest % of ARID/ADI 107% 60% 15% 11% 2% 2% 0.9% 0.08% 0.07% 0.06% 0.05%	Oranges Processed commodities Processed commodities Sweet potatoes/boiled Apples/juice Oranges/juice Oranges/juice Quinces/jam Lemons/juice Witloofs/boiled Potatoes/chips Beans/canned Potatoes/dried (flakes) Beans/canned Potatoes/boiled	7/0.03 MRL/input for RA (mg/kg) 9/6.97 4/1.8 7/0.98 3/1.7 7/0.98 0.05/0.05 0.05/0.05 0.04/0.01 0.01/0.01	1

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 4 commodities.

For processed commodities, the toxicological reference value was exceeded in one or several cases

1	**	fsa			Tolclofos-met				out values		
	× 0	tca		LOQs (mg/kg) range f			0.05	Details – chronic risk	Supplementary res		
	* * E				Toxicological reference			assessment	chronic risk assess	nent	
_				ADI (mg/kg bw per da	uy): 0.06	4 ARfD (mg/kg bw):	0.14		Dataila anna a	:-1:	
E	uropean Foo	d Safety Authority		Source of ADI: Year of evaluation:	EFS 201		EFSA 2018	Details – acute risk assessment/children	Details – acute r assessment/adu		
	EFSA PRIMO re	evision 3.1; 2019/03/19		roar or oralidation.	201						<u> </u>
					<u>Nor</u>	mal mode					
				I	Chronic risk assessm	ent: JMPR method	ology (IEDI/TMDI)			1	
_	-			No of diets exceeding	the ADI :				-		e resulting
	Calculated exposur	e	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/	3rd contributor to diet	MS Commodity/	MRLs set at the LOQ (in % of ADI)	under as
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		
1	3% 2%	NL toddler NL child	1.85 1.12	0.9%	Milk: Cattle Potatoes	0.8%	Potatoes Milk: Cattle	0.2%	Escaroles/broad-leaved endives Sugar beet roots	0.9%	2
1	2%	NL child SE general	1.12	0.6%	Potatoes Potatoes	0.4%	Milk: Cattle Lettuces	0.1%	Sugar beet roots Milk: Cattle	0.5%	1
	2%	DE child	0.98	0.5%	Potatoes	0.3%	Milk: Cattle	0.2%	Apples	0.6%	0.9
	2%	UK infant	0.97	0.6%	Potatoes	0.6%	Milk: Cattle	0.0%	Wheat	0.2%	1
	1%	GEMS/Food G11	0.95	0.7%	Potatoes	0.1%	Milk: Cattle	0.1%	Lamb's lettuce/corn salads	0.4%	1
	1%	GEMS/Food G08	0.95	0.7%	Potatoes	0.1%	Lettuces	0.1%	Milk: Cattle	0.4%	1
	1%	GEMS/Food G07	0.91	0.7%	Potatoes	0.2%	Lettuces	0.1%	Milk: Cattle	0.4%	1
	1%	GEMS/Food G10	0.89	0.6%	Potatoes	0.2%	Lettuces	0.1%	Milk: Cattle	0.4%	1
	1%	UK toddler	0.84	0.7%	Potatoes	0.3%	Milk: Cattle	0.1%	Wheat	0.3%	1
	1%	PT general	0.84	1.0%	Potatoes	0.1%	Lettuces Milk: Cattle	0.1%	Wheat	0.2%	1
	1%	GEMS/Food G15	0.83	0.7%	Potatoes	0.1%	Milk: Cattle Milk: Cattle	0.1%	Lettuces	0.4%	0.9
	1% 1%	RO general FR toddler 2 3 yr	0.80	0.7%	Potatoes Milk: Cattle	0.2%	Milk: Cattle Potatoes	0.1%	Wheat Apples	0.3%	1.0
	1%	FR child 3 15 yr	0.78	0.3%	Milk: Cattle	0.3%	Potatoes	0.0%	Other lettuce and other salad plants	0.3%	0.8
	1%	ES child	0.75	0.3%	Potatoes	0.3%	Lettuces	0.2%	Milk: Cattle	0.3%	0.9
	1%	DK child	0.73	0.5%	Potatoes	0.2%	Milk: Cattle	0.1%	Lettuces	0.3%	0.8
	1%	FI 3 yr	0.71	0.9%	Potatoes	0.0%	Lettuces	0.0%	Bananas	0.2%	0.9
	1%	GEMS/Food G06	0.68	0.4%	Potatoes	0.1%	Wheat	0.1%	Lettuces	0.5%	0.0
	1%	NL general	0.66	0.5%	Potatoes	0.1%	Milk: Cattle	0.1%	Escaroles/broad-leaved endives	0.2%	0.0
	1.0%	IE adult	0.63	0.4%	Potatoes	0.1%	Milk: Cattle	0.1%	Lettuces	0.4%	0.0
	0.9%	FI 6 yr	0.61	0.7%	Potatoes	0.1%	Lettuces	0.0%	Cocoa beans	0.2%	0.6
	0.9%	DE women 14-50 yr	0.56	0.2%	Potatoes	0.2%	Milk: Cattle	0.1%	Lettuces	0.3%	0.5
	0.9%	DE general	0.56	0.2%	Potatoes	0.2%	Milk: Cattle Potatoes	0.1%	Sugar beet roots	0.3%	0.0
	0.8%	Fl adult LT adult	0.54	0.4%	Coffee beans Potatoes	0.2%	Potatoes Milk: Cattle	0.1%	Lettuces Lettuces	0.5%	0.3
	0.8%	ES adult	0.54	0.6%	Lettuces	0.1%	Potatoes	0.1%	Milk: Cattle	0.1%	0.1
	0.8%	FR infant	0.55	0.4%	Potatoes	0.3%	Milk: Cattle	0.0%	Apples	0.1%	0.
	0.8%	PL general	0.49	0.6%	Potatoes	0.0%	Apples	0.0%	Tomatoes	0.1%	0.1
	0.7%	IT toddler	0.44	0.2%	Lettuces	0.2%	Potatoes	0.1%	Wheat	0.2%	0.
	0.7%	IT adult	0.43	0.2%	Lettuces	0.1%	Other lettuce and other salad plants	0.1%	Potatoes	0.2%	0.5
	0.6%	FR adult	0.39	0.1%	Potatoes	0.1%	Other lettuce and other salad plants	0.1%	Milk: Cattle	0.2%	0.4
	0.6%	UK vegetarian	0.36	0.3%	Potatoes	0.1%	Lettuces	0.1%	Milk: Cattle	0.1%	0.4
	0.5%	DK adult	0.34	0.2%	Potatoes	0.1%	Milk: Cattle	0.1%	Lettuces	0.1%	0.4
	0.5%	UK adult IE child	0.34 0.15	0.3%	Potatoes Potatoes	0.1%	Lettuces Milk: Cattle	0.0%	Milk: Cattle Wheat	0.1%	0.4
ļ											1 0.1

Acute risk assessment/adults/general population

Details – acute risk assessment/children

Details – acute risk assessment/adults

The acute risk assessment is based on the ARfD.

The calculation is based on the large portion of the most critical consumer group.

Results for childr No. of commoditie exceeded (IESTI):	en s for which ARfD/ADI is		1	Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of	-	for RA	Expo
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
138%	Potatoes	0.3/1.26	194	27%	Potatoes	0.3/1.26	38
22%	Escaroles/broad-leaved	0.9/0.78	31	11%	Escaroles/broad-leaved	0.9/0.78	10
21%	Lettuces	2/0.78	30	7%	Lettuces	2/0.78	9.
2%	Lamb's lettuce/corn salads	0.9/0.78	2.2	3%	Red mustards	0.9/0.78	4.
1%	Roman rocket/rucola	0.9/0.78	2.1	1%	Lamb's lettuce/corn salads	0.9/0.78	1.
1%	Melons	0.01/0.01	1.5	0.7%	Roman rocket/rucola	0.9/0.78	0.9
1%	Radishes	0.1/0.06	1.5	0.6%	Head cabbages	0.01/0.02	0.8
1.0%	Pears	0.01/0.01	1.4	0.4%	Radishes	0.1/0.06	0.6
0.9%	Oranges	0.01/0.01	1.3	0.3%	Broccoli	0.01/0.02	0.4
0.9%	Milk: Cattle	0.01/0.01	1.2	0.3%	Cauliflowers	0.01/0.02	0.4
0.9%	Watermelons	0.01/0.01	1.2	0.3%	Watermelons	0.01/0.01	0.4
0.8%	Cauliflowers	0.01/0.02	1.2	0.3%	Melons	0.01/0.01	0.3
0.8%	Apples	0.01/0.01	1.1	0.3%	Milk: Cattle	0.01/0.01	0.3
0.7%	Pineapples	0.01/0.01	1.0	0.2%	Swedes/rutabagas	0.01/0.01	0.3
0.7%	Chervil	0.7/0.78	1.0	0.2%	Table grapes	0.01/0.01	0.3
Expand/collapse lis Total number of c children and adul (IESTI calculation	commodities exceeding the AR t diets)	fD/ADI in	1	Results for adults			
Total number of c children and adul (IESTI calculation Results for childr No of processed c	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI	fD/ADI in		No of processed cor	nmodities for which ARfD/ADI		
Total number of c children and adul (IESTI calculation Results for childr No of processed c is exceeded (IEST	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI	fD/ADI in	1	No of processed cor is exceeded (IESTI):			
Total number of c children and adul (IESTI calculation Results for childr No of processed c	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI			No of processed cor		MRL/input	
Total number of c children and adul (IESTI calculation Results for childr No of processed c. is exceeded (IEST IESTI	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI	MRL/input		No of processed cor is exceeded (IESTI): IESTI		MRL/input for RA	
Total number of c children and adul (IESTI calculation Results for childr No of processed c is exceeded (IEST IESTI Highest % of	commodities exceeding the AR t diets) ren ommodities for which ARfD/ADI)):	MRL/input for RA	 Exposure	No of processed cor is exceeded (IESTI): IESTI Highest % of		for RA	Expo
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI	commodities exceeding the AR t diets)) en ommodities for which ARfD/ADI I): Processed commodities	MRL/input for RA (mg/kg)	 Exposure (μg/kg bw)	No of processed con is exceeded (IESTI): IESTI Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Expo (µg/kg
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84%	en ommodities for which ARfD/ADI I): Processed commodities Potatoes/fried	MRL/input for RA (mg/kg) 0.3/1.26	 Exposure (µg/kg bw) 118	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI 11%	Processed commodities Escaroles/broad-leaved	for RA (mg/kg) 0.9/0.78	Expo (µg/kg
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37%	en ommodities for which ARfD/ADI I): Processed commodities Potatoes/fried Escaroles/broad-leaved endi	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78	 Exposure (µg/kg bw) 118 52	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 0.7%	Processed commodities Escaroles/broad-leaved Potatoes/chips	for RA (mg/kg) 0.9/0.78 0.3/0.12	Expo (µg/kg 16
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37% 5%	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI I): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/dried (flakes)	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55	 (µg/kg bw) 118 52 7.1	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 0.7% 0.6%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled	for RA (mg/kg) 0.9/0.78 0.3/0.12 0.01/0.02	Expo (μg/kg 16 1.1
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37% 5% 1%	en ommodities exceeding the AR t diets) en ommodities for which ARfD/ADI)): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/dried (flakes) Broccoli/boiled	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.3/0.55	 (µg/kg bw) 118 52 7.1 1.6	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 0.7% 0.6% 0.5%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes)	for RA (mg/kg) 0.9/0.78 0.3/0.12 0.01/0.02 0.3/0.55	Expo (µg/kg 10 1.0 0.8 0.6
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARtD/ADI 84% 37% 5% 1% 1.0%	en ommodities exceeding the AR t diets) en ommodities for which ARfD/ADI I): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/dried (flakes) Broccoli/boiled Cauliflowers/boiled	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.01/0.02 0.01/0.02	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4	No of processed coris exceeded (IESTI): IESTI Highest % of ARID/ADI 11% 0.7% 0.6% 0.5% 0.4%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled	for RA (mg/kg) 0.9/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.01	Expo (µg/kg 1.0 0.8 0.6 0.5
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37% 5% 1% 1.0% 0.8%	en ommodities exceeding the AR t diets)) en ommodities for which ARfD/ADI I): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/fried (flakes) Broccoil/boiled Cauliflowers/boiled Sugar beets (root)/sugar	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.01/0.02 0.01/0.02 0.01/0.12	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4 1.1	No of processed coris exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 0.7% 0.6% 0.4% 0.3%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled Broccoii/boiled	for RA (mg/kg) 0.9/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.01 0.01/0.02	Expor (µg/kg 1.0 0.8 0.6 0.5 0.4
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37% 5% 1% 1.0% 0.8% 0.6%	en ommodities exceeding the AR t diets) en ommodities for which ARfD/ADI); Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/dried (flakes) Broccoli/boiled Cauliflowers/boiled Sugar beets (root)/sugar Pumpkins/boiled	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.01/0.02 0.01/0.02 0.01/0.12 0.01/0.01	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4 1.1 0.89	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 0.7% 0.6% 0.5% 0.4% 0.3% 0.3%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled Broccoli/boiled Sugar beets (root)/sugar	for RA (mg/kg) 0.9/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.01 0.01/0.02 0.01/0.12	Expo (μg/kg 1. 0.ε 0.6 0.5 0.4 0.4
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37% 5% 1% 1.0% 0.8% 0.6%	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI)): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/fried Escaroles/broad-leaved endi Potatoes/dried (flakes) Broccoli/boiled Cauliflowers/boiled Sugar beets (root)/sugar Pumpkins/boiled	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.01/0.02 0.01/0.02 0.01/0.02 0.01/0.01	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4 1.1 0.89 0.89	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 0.7% 0.6% 0.5% 0.5% 0.4% 0.3% 0.3%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled Broccoli/boiled Sugar beets (root)/sugar Beetroots/boiled	for RA (mg/kg) 0.9/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.01 0.01/0.02 0.01/0.12 0.01/0.01	Expo (µg/kg 1. 0.8 0.6 0.5 0.4 0.4 0.4 0.3
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARtD/ADI 84% 37% 5% 1% 1.0% 0.8% 0.6% 0.6% 0.4%	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI I): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/dried (flakes) Broccoli/boiled Cauliflowers/boiled Sugar beets (root)/sugar Pumpkins/boiled Wittoofs/boiled Leeks/boiled	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.01/0.02 0.01/0.02 0.01/0.02 0.01/0.01 0.01/0.01	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4 1.1 0.89 0.89 0.57	No of processed cor is exceeded (IESTI): IESTI Highest % of ARID/ADI 11% 0.7% 0.6% 0.5% 0.4% 0.3% 0.3% 0.3% 0.2%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled Broccoli/boiled Sugar beets (root)/sugar Beetroots/boiled Celeries/boiled	for RA (mg/kg) 0.9/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.01 0.01/0.01 0.01/0.02 0.01/0.12 0.01/0.01	Expo (µg/kg 1.0 0.8 0.6 0.5 0.4 0.4 0.3 0.3
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37% 5% 1% 1.0% 0.8% 0.6% 0.4% 0.4%	commodities exceeding the AR t diets)) en ommodities for which ARfD/ADI I): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/fried (flakes) Broccoli/boiled Cauliflowers/boiled Sugar beets (root)/sugar Pumpkins/boiled Witloofs/boiled Leeks/boiled Apples/juice	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.01/0.02 0.01/0.02 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4 1.1 0.89 0.89 0.57 0.54	No of processed cor is exceeded (IESTI): IESTI Highest % of ARID/ADI 11% 0.7% 0.6% 0.6% 0.6% 0.4% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled Broccoli/boiled Sugar beets (root)/sugar Beetroots/boiled Celeries/boiled Apples/juice	for RA (mg/kg) 0.9/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.01 0.01/0.02 0.01/0.12 0.01/0.01 0.01/0.01	Expo (µg/kg 1. 0.8 0.6 0.5 0.4 0.4 0.3 0.3 0.3
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37% 5% 1% 1.0% 0.8% 0.6% 0.4% 0.4% 0.4%	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI); Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/fried Escaroles/broad-leaved endi Potatoes/fried Cauliflowers/boiled Sugar beets (root)/sugar Pumpkins/boiled Witloofs/boiled Leeks/boiled Apples/juice Oranges/juice	MRL/input for RA (mg/kg) 0.3/1.26 0.3/0.78 0.3/0.55 0.01/0.02 0.01/0.02 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4 1.1 0.89 0.89 0.57 0.54 0.53	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 0.6% 0.5% 0.6% 0.5% 0.4% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled Broccoli/boiled Sugar beets (root)/sugar Beetroots/boiled Celeries/boiled Apples/juice Coffee beans/extraction	for RA (mg/kg) 0.3/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.01 0.01/0.02 0.01/0.12 0.01/0.01 0.01/0.01 0.01/0.01 0.05/0.01	Expo (µg/kg 1. 0.6 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.3
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37% 5% 1% 1.0% 0.6% 0.6% 0.6% 0.4% 0.4% 0.4%	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI)): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/fried Escaroles/broad-leaved endi Potatoes/dried (flakes) Broccoli/boiled Cauliflowers/boiled Sugar beets (root)/sugar Pumpkins/boiled Leeks/boiled Leeks/boiled Apples/juice Oranges/juice Turnips/boiled	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.01/0.02 0.01/0.02 0.01/0.02 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4 1.1 0.89 0.89 0.57 0.54 0.53 0.51	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 0.7% 0.6% 0.5% 0.4% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled Broccoli/boiled Sugar beets (root)/sugar Beetroots/boiled Celeries/boiled Apples/juice Coffee beans/extraction Courgettes/boiled	for RA (mg/kg) 0.3/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.02 0.01/0.12 0.01/0.01 0.01/0.01 0.01/0.01 0.05/0.01 0.01/0.01	Expo (µg/kg 1.0 0.8 0.6 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARtD/ADI 84% 37% 5% 1% 1.0% 0.8% 0.6% 0.6% 0.4% 0.4% 0.4% 0.4% 0.4%	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI I): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/dried (flakes) Broccoli/boiled Cauliflowers/boiled Sugar beets (root)/sugar Pumpkins/boiled Wittoofs/boiled Leeks/boiled Leeks/boiled Apples/juice Oranges/juice Tumips/boiled Parsnips/boiled	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.01/0.02 0.01/0.02 0.01/0.02 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4 1.1 0.89 0.57 0.54 0.53 0.51	No of processed cor is exceeded (IESTI): IESTI Highest % of ARID/ADI 11% 0.7% 0.6% 0.5% 0.5% 0.4% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled Broccoli/boiled Sugar beets (root)/sugar Beetroots/boiled Celeries/boiled Apples/juice Coffee beans/extraction Courgettes/boiled Parsnips/boiled	for RA (mg/kg) 0.9/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.05/0.01 0.01/0.01 0.01/0.01	Expo (µg/kg 1. 0.8 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2
Total number of c children and adul (IESTI calculation No of processed c is exceeded (IEST IESTI Highest % of ARfD/ADI 84% 37% 5% 1% 1.0% 0.6% 0.6% 0.6% 0.4% 0.4% 0.4%	commodities exceeding the AR t diets) en ommodities for which ARfD/ADI)): Processed commodities Potatoes/fried Escaroles/broad-leaved endi Potatoes/fried Escaroles/broad-leaved endi Potatoes/dried (flakes) Broccoli/boiled Cauliflowers/boiled Sugar beets (root)/sugar Pumpkins/boiled Leeks/boiled Leeks/boiled Apples/juice Oranges/juice Turnips/boiled	MRL/input for RA (mg/kg) 0.3/1.26 0.9/0.78 0.3/0.55 0.01/0.02 0.01/0.02 0.01/0.02 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	Exposure (µg/kg bw) 118 52 7.1 1.6 1.4 1.1 0.89 0.89 0.57 0.54 0.53 0.51	No of processed cor is exceeded (IESTI): IESTI Highest % of ARfD/ADI 11% 0.7% 0.6% 0.5% 0.4% 0.3% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2%	Processed commodities Escaroles/broad-leaved Potatoes/chips Cauliflowers/boiled Potatoes/dried (flakes) Pumpkins/boiled Broccoli/boiled Sugar beets (root)/sugar Beetroots/boiled Celeries/boiled Apples/juice Coffee beans/extraction Courgettes/boiled	for RA (mg/kg) 0.3/0.78 0.3/0.12 0.01/0.02 0.3/0.55 0.01/0.02 0.01/0.12 0.01/0.01 0.01/0.01 0.01/0.01 0.05/0.01 0.01/0.01	Expo (µg/kg 1.) 0.6 0.6 0.5 0.4 0.4 0.3 0.3 0.3 0.2 0.2

The estimated short-term intake (IESTI) exceeded the toxicological reference value for 1 commodities.

For processed commodities, no exceedance of the ARfD/ADI was identified.

	****	-			Tolf	enpyrad (F)				Inpu	t values		
	+ 0			LOQs (mg/kg) range t	irom:	0.01	to:	0.01			Supplementary re		
	- E			ADI (mg/kg bw per da		gical reference values	ARfD (mg/kg bw):	0.01	asses	sment	chronic risk assess	ment	
F	uropean Foo	d Safety Authority			y).				Details –	acute risk	Details – acute	risk	
		vision 3.1; 2019/03/19		Source of ADI: Year of evaluation:		JMPR 2013	Source of ARfD: Year of evaluation:	JMPR 2013		nt/children	assessment/ad	ults	
ar	ts:												
						Normal mode							
_						ssment: JMPR methodolog	av (IEDI/TMDI)						
				No of diets exceeding								Exposure	e resultin
1												MRLs set at	commo under a
	Coloriated arrange	_	Expsoure	Highest contributor to MS diet	Commentited		2nd contributor to MS diet	Commentitud		3rd contributor to MS diet	Commodity/	the LOQ (in % of ADI)	(in %
	Calculated exposure (% of ADI)	e MS Diet	(µg/kg bw per dav)	(in % of ADI)	Commodity/ aroup of commodities		MS diet (in % of ADI)	Commodity/ aroup of commodities		diet (in % of ADI)	Commodity/ aroup of commodities		1
	20%	NL toddler	1.23	4%	Mik: Catle		2%	Oranges		2%	Tomatoes		
	17%	GEMS/Food G06	0.99	8%	Tomatoes		1%	Wheat		1%	Oranges		
	15%	DE child	0.89	4%	Oranges		2%	Tomatoes		2%	Apples		
	12%	NL child	0.74	2%	Milk: Cattle		1%	Oranges		1%	Sugar beet roots		
	11%	FR child 3 15 yr	0.69	3%	Oranges		2%	Tomatoes		1%	Milk: Cattle		
	11%	GEMS/Food G07	0.63	2%	Tomatoes		1%	Oranges		0.7%	Wheat		
	10%	GEMS/Food G10	0.62	3%	Tomatoes		1%	Oranges		0.7%	Wheat		
	10%	RO general	0.62	4%	Tomatoes		0.8%	Wheat		0.8%	Sweet peppers/bell peppers		
	10%	GEMS/Food G15	0.62	3%	Tomatoes		1%	Sweet peppers/bell peppers		0.8%	Wheat		
	10%	IE adult	0.60	1%	Sheep: Liver		1%	Oranges		0.9%	Tomatoes		
	10%	GEMS/Food G08	0.57	2%	Tomatoes		0.7%	Wheat		0.7%	Potatoes		
	9%	GEMS/Food G11	0.57	2%	Tomatoes		0.7%	Oranges		0.7%	Potatoes		
	9%	FR toddler 2 3 yr	0.56	2%	Milk: Cattle		1%	Oranges		1%	Mandarins		
	9%	UK infant	0.55	2%	Milk: Cattle		1%	Oranges		0.8%	Tomatoes		
	9%	ES child	0.54	2%	Oranges		2%	Tomatoes		0.8%	Milk: Cattle		
	9%	UK toddler	0.53	2%	Oranges		1%	Milk: Cattle		1%	Tomatoes		
	8%	DE women 14-50 yr	0.49	2%	Oranges		2%	Tomatoes		0.8%	Milk: Cattle		
	8%	SE general	0.47	2%	Tomatoes		0.8%	Milk: Cattle		0.8%	Oranges		
	8%	DE general	0.45	2%	Oranges		1%	Tomatoes		0.8%	Milk: Cattle		
	8% 7%	DK child IT toddler	0.45	1% 3%	Tomatoes		0.9%	Rye Wheat		0.8%	Milk: Cattle		
	6%	PT general	0.40	2%	Tomatoes Tomatoes		0.9%	Potatoes		0.5%	Oranges Wheat		
	6%	ES adult	0.38	2%	Tomatoes		1%	Oranges		0.4%	Wheat		
	6%	NL general	0.36	2%	Oranges		0.9%	Oranges Tomatoes		0.4%	Wheat Milk: Cattle		
	5%	IT adult	0.36	3%	Tomatoes		0.7%	Wheat		0.4%	Oranges		
	5%	FI 3 yr	0.32	1%	Tomatoes		0.8%	Potatoes		0.6%	Mandarins		
	5%	FR adult	0.28	1%	Tomatoes		0.6%	Oranges		0.4%	Wine grapes		
	4%	UK vegetarian	0.26	1%	Tomatoes		0.9%	Oranges		0.3%	Wheat		
	4%	Fladult	0.23	1%	Tomatoes		0.9%	Coffee beans		0.4%	Oranges		
	4%	FI6 yr	0.23	0.9%	Tomatoes		0.6%	Potatoes		0.5%	Mandarins		
	4%	DK adult	0.23	1%	Tomatoes		0.3%	Milk: Cattle		0.2%	Potatoes		
	4%	FR infant	0.23	1%	Milk: Cattle		0.3%	Potatoes		0.3%	Apples		
	4%	LT adult	0.22	1%	Tomatoes		0.5%	Potatoes		0.3%	Apples		
	4%	PL general	0.22	2%	Tomatoes		0.6%	Potatoes		0.3%	Apples		
	3%	UK adult	0.21	0.9%	Tomatoes		0.6%	Oranges		0.3%	Wheat		
	1%	IE child	0.07	0.2%	Milk: Cattle		0.2%	Wheat		0.1%	Tomatoes		0

Acute risk assessment/adults/general population

The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.

Results for child No. of commoditie	ren s for which ARfD/ADI is exceeded (IESTI):		5	Results for adults No. of commodities	for which ARfD/ADI is exceeded (IESTI):		1
IESTI				IESTI			
		MRL/input				MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Expos
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
291%	Tomatoes	0.7/0.5	29	135%	Aubergines/egg plants	0.7/0.5	14
190%	Sweet peppers/bell peppers	0.5/0.32	19	79%	Tomatoes	0.7/0.5	7.9
172%	Oranges	0.6/0.13	17	52%	Sweet peppers/bell peppers	0.5/0.32	5.2
125%	Aubergines/egg plants	0.7/0.5	13	40%	Oranges	0.6/0.13	4.0
107%	Mandarins	0.9/0.18	11	32%	Mandarins	0.9/0.18	3.2
78%	Grapefruits	0.6/0.1	7.8	18%	Grapefruits	0.6/0.1	1.8
62%	Lemons	0.9/0.18	6.2	16%	Lemons	0.9/0.18	1.6
36%	Limes	0.9/0.18	3.6	15%	Bovine: Liver	0.4/0.38	1.5
31%	Bovine: Liver	0.4/0.38	3.1	13%	Limes	0.9/0.18	1.3
28%	Bovine: Edible offals (other than liver and kidney)	0.4/0.38	2.8	13%	Bovine: Edible offals (other than liver and kidney)	0.4/0.38	1.3
14%	Bovine: Kidney	0.4/0.38	1.4	11%	Sheep: Liver	0.4/0.38	1.1
13%	Onions	0.09/0.06	1.3	10%	Swine: Edible offals (other than liver and kidney)	0.4/0.38	0.9
11%	Swine: Edible offals (other than liver and kidney)	0.4/0.38	1.1	8%	Onions	0.09/0.06	0.8
5%	Swine: Kidney	0.4/0.38	0.48	8%	Swine: Kidney	0.4/0.38	0.8
5%	Milk: Cattle	0.01/0	0.40	8%	Bovine: Kidney	0.4/0.38	0.8
Expand/collapse list		0.01/0	0.47	070	Dovine. Ridney	0.4/0.00	0.0
	commodities exceeding the ARfD/ADI in children and	adult diets	5				
Total number of ((IESTI calculation Results for childi	commodities exceeding the ARfD/ADI in children and i)) ren	adult diets		Results for adults			
Total number of (IESTI calculation	commodities exceeding the ARfD/ADI in children and a)	adult diets	5		mmodities for which ARfD/ADI is exceeded (IESTI):		
Total number of (IESTI calculation	commodities exceeding the ARfD/ADI in children and i)) ren				mmodities for which ARfD/ADI is exceeded (IESTI):		
Total number of 0 (IESTI calculation Results for childl No of processed c IESTI	commodities exceeding the ARfD/ADI in children and i)) ren	MRL/input		No of processed co	mmodities for which ARID/ADI is exceeded (IESTI):	MRL/input	
Total number of 6 (IESTI calculation Results for childin No of processed c IESTI Highest % of	commodities exceeding the ARfD/ADI in children and a) ren ommodities for which ARfD/ADI is exceeded (IESTI):	MRL/input for RA	 Exposure	No of processed co IESTI Highest % of		for RA	Expos
Total number of 6 (IESTI calculation Results for childin No of processed c IESTI Highest % of AR(D/ADI	commodities exceeding the ARfD/ADI in children and i)) ren	MRL/input for RA (mg/kg)		No of processed co	mmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities		Expos
Total number of 6 (IESTI calculation Results for childin No of processed c IESTI Highest % of	commodities exceeding the ARfD/ADI in children and a) ren ommodities for which ARfD/ADI is exceeded (IESTI):	MRL/input for RA	 Exposure	No of processed co IESTI Highest % of		for RA	Expos (µg/kg
Total number of 6 (IESTI calculation Results for childin No of processed c IESTI Highest % of ARtD/ADI	commodities exceeding the ARfD/ADI in children and i) ren ommodities for which ARfD/ADI is exceeded (IESTI): Processed commodities	MRL/input for RA (mg/kg)	 Exposure (μg/kg bw)	No of processed co IESTI Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Expos (µg/kg 1.1
Total number of (IESTI calculation) Results for childing No of processed control (IESTI) Highest % of ART(D/ADI) 32%	commodities exceeding the ARfD/ADI in children and i) en ormmodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tornatoes/juice	MRL/input for RA (mg/kg) 0.6/0.06	Exposure (µg/kg bw) 3.2	No of processed co IESTI Highest % of ARfD/ADI 11%	Processed commodities Tomatoes/sauce/puree	for RA (mg/kg) 0.7/0.13	Expos (µg/kg 1.1 0.9
Total number of ((IESTI calculation) Results for childl No of processed c IESTI Highest % of ARtD/ADI 32% 25%	commodities exceeding the ARfD/ADI in children and i i) ren ommodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/julice	MRL/input for RA (mg/kg) 0.6/0.06 0.7/0.13	 Exposure (µg/kg bw) 3.2 2.5	No of processed co IESTI Highest % of ARfD/ADI 11% 9%	Processed commodities Tomatoes/sauce/puree Oranges/juice Onions/boiled	for RA (mg/kg) 0.7/0.13 0.6/0.06	Expos (µg/kg 1.1 0.9 0.5
Total number of f (IESTI calculation Results for childi No of processed c IESTI Highest % of ARTD/ADI 32% 25% 12%	commodities exceeding the ARfD/ADI in children and i) ren ommodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tornatoes/juice Tornatoes/juice Tornatoes/juice	MRL/input for RA (mg/kg) 0.6/0.06 0.7/0.13 0.7/0.13	Ехроsure (µg/kg bw) 3.2 2.5 1.2	No of processed co IESTI Highest % of ARfD/ADI 11% 9% 5%	Processed commodities Tomatoes/sauce/puree Oranges/juice	for RA (mg/kg) 0.7/0.13 0.6/0.06 0.09/0.06	Expos (µg/kg 1.1 0.9 0.5 0.4
Total number of ((IESTI calculation Results for childr No of processed c IESTI Highest % of ARTD/ADI 32% 12% 9%	commodities exceeding the ARfD/ADI in children and i) ren ommodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/juice Tomatoes/juice Tomatoes/juice Shallots/boiled	MRL/input for RA (mg/kg) 0.8/0.013 0.7/0.13 0.01/0.01 0.09/0.06	Exposure (μg/kg bw) 3.2 2.5 1.2 0.93 0.92	No of processed co IESTI Highest % of ART0/ADI 11% 9% 5% 5% 4%	Processed commodities Tomatoes/sauce/puree Oranges/julce Onions/boiled Grapefruits/juice Shaltots/boiled	for RA (mg/kg) 0.7/0.13 0.6/0.06 0.09/0.06 0.6/0.04 0.09/0.06	Expos (µg/kg 1.1 0.9 0.5 0.4 0.3
Total number of f (IEST) calculation Results for child No of processed c IESTI Highest % of ARID/ADI 22% 25% 12% 9%	commodities exceeding the ARfD/ADI in children and it i) en ommodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Orranges/juice Tornatoes/sauce/purce Protatoes/fried Shallots/boiled Protatoes/fried (fakes)	MRL/input for RA (mg/kg) 0.8/0.06 0.7/0.13 0.7/0.13 0.01/0.01	Exposure (µg/kg bw) 3.2 2.5 1.2 0.93	No of processed co IESTI Highest % of ARID/ADI 11% 9% 5% 5%	Processed commodities Tomatoes/sauce/puree Oranges/juice Orans/boiled Grapefruits/juice Shaltos/boiled Lemons/juice	for RA (mg/kg) 0.7/0.13 0.6/0.06 0.09/0.06 0.6/0.04	Expos (µg/kg 0.5 0.4 0.3 0.1 0.0
Total number of ((IESTI calculation Results for child No of processed c IESTI Highest % of ARTD/ADI 32% 25% 25% 12% 9% 9% 6%	commodities exceeding the ARfD/ADI in children and i) ren ommodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/juice Tomatoes/juice Tomatoes/juice Shallots/boiled	MRL/input for RA (mg/kg) 0.6/0.06 0.7/0.13 0.7/0.13 0.01/0.01 0.01/0.05	Exposure (µg/kg bw) 3.2 2.5 1.2 0.93 0.92 0.59	No of processed co IESTI Highest % of ARtD/ADI 11% 9% 5% 4% 2%	Processed commodities Tomatoes/sauce/puree Oranges/julce Onions/boiled Grapefruits/juice Shaltots/boiled	for RA (mg/kg) 0.7/0.13 0.6/0.06 0.09/0.06 0.6/0.04 0.09/0.06 0.9/0.09	Expos (µg/kg 1.1 0.9 0.5 0.4 0.3 0.1
Total number of r (IESTI calculation Results for child No of processed c IESTI Highest % of ARID/ADI 32% 25% 12% 9% 9% 6% 3%	commodities exceeding the ARfD/ADI in children and i in ren ommodities for which ARfD/ADI is exceeded (IESTI): Processed commodities Oranges/juice Tomatoes/juice Tomatoes/juice Tomatoes/juice Potatoes/fried Shailots/boiled Potatoes/fried Shailots/boiled Potatoes/fried (fakes) Lemons/jam	MRL/input for RA (mg/kg) 0.6/0.06 0.7/0.13 0.7/0.13 0.01/0.01 0.09/0.06 0.01/0.05 0.9/0.09	 (µg/kg bw) 3.2 2.5 1.2 0.93 0.92 0.59 0.26	No of processed co IESTI Highest % of ARID/ADI 11% 9% 5% 5% 4% 2% 0.8%	Processed commodities Tomatoes/sauce/puree Oranges/juice Onions/boiled Grapefruits/juice Shallots/boiled Lemons/juice Potatoes/chips	for RA (mg/kg) 0.7/0.13 0.6/0.06 0.69/0.06 0.6/0.04 0.09/0.06 0.9/0.09 0.01/0.01	(hđ

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 5 commodities.

For processed commodities, no exceedance of the ARfD/ADI was identified.

	*	d Safety Authority		LOQs (mg/kg) range f	Valifenala		0.02	Details – o	hronic risk	Supplementar	results –	
	* * E	Sd			Toxicological referen			asses	sment	chronic risk as	sessment	
-		d Cofete Authority		ADI (mg/kg bw per da	y): 0.0	07 ARfD (mg/kg bw):	Not necessary	Details – a	ocuto risk	Details – ac	ito rick	
-	aropeanties	a salocy rachoncy		Source of ADI:		Source of ARfD:		assessmer		assessment		
	EFSA PRIMo ro ts:	evision 3.1; 2019/03/19		Year of evaluation:		Year of evaluation:						<u> </u>
					<u>No</u>	rmal mode						
					Chronic risk assessn	nent: JMPR methodo	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :						Exposure	
			Expsoure	Highest contributor to		2nd contributor to			3rd contributor to MS		MRLs set at the LOQ	under a
	Calculated exposu	re	(µg/kg bw per	MS diet	Commodity/	MS diet	Commodity/		diet	Commodity/	(in % of ADI)) (in %
_	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	001	
	2% 2%	NL toddler GEMS/Food G06	1.59 1.47	0.9%	Milk: Cattle Tomatoes	0.3%	Tomatoes Lettuces		0.2%	Table grapes Table grapes	2% 0.5%	
	2%	GEMS/Food G06 GEMS/Food G10	1.47	0.4%	Tomatoes	0.1%	Lettuces		0.1%	Milk: Cattle	0.5%	
	1%	RO general	1.04	0.6%	Tomatoes	0.4%	Wine grapes		0.2%	Milk: Cattle	0.5%	
	1%	DE child	1.02	0.3%	Tomatoes	0.3%	Milk: Cattle		0.2%	Apples	0.8%	
	1%	GEMS/Food G07	0.99	0.4%	Tomatoes	0.3%	Lettuces		0.2%	Wine grapes	0.5%	
	1%	ES child	0.99	0.6%	Lettuces	0.3%	Tomatoes		0.2%	Milk: Cattle	0.5%	
	1%	SE general	0.97	0.5%	Lettuces	0.3%	Tomatoes		0.2%	Milk: Cattle	0.5%	
	1% 1%	GEMS/Food G08 ES adult	0.94	0.4%	Tomatoes	0.3%	Lettuces		0.1%	Wine grapes Milk: Cattle	0.5%	
	1%	NL child	0.93		Lettuces Milk: Cattle	0.2%	Tomatoes Tomatoes		0.1%	Sugar beet roots	0.3%	
	1%	GEMS/Food G15	0.89	0.4%	Tomatoes	0.2%	Lettuces		0.1%	Wine grapes	0.5%	
	1%	FR child 3 15 yr	0.80		Milk: Cattle	0.3%	Tomatoes		0.1%	Wheat	0.7%	
	1%	GEMS/Food G11	0.79		Tomatoes	0.1%	Wine grapes		0.1%	Milk: Cattle	0.5%	(
	1%	IT toddler	0.79	0.5%	Tomatoes	0.4%	Lettuces		0.1%	Wheat	0.2%	(
	1%	IT adult	0.77	0.5%	Lettuces	0.4%	Tomatoes		0.1%	Wheat	0.1%	
	1%	PT general	0.72	0.3%	Tomatoes	0.3%	Wine grapes		0.1%	Lettuces	0.2%	(
	1%	DE women 14-50 yr	0.71		Tomatoes	0.2%	Milk: Cattle		0.2%	Lettuces	0.5%	0
	1% 1.0%	UK infant DK child	0.70 0.69	0.6%	Milk: Cattle Lettuces	0.1%	Tomatoes Milk: Cattle		0.0%	Potatoes Tomatoes	0.9%	0
	1.0%	FR toddler 2 3 yr	0.69		Milk: Cattle	0.2%	Tomatoes		0.2%	Apples	0.8%	
	1.0%	IE adult	0.68	0.1%	Wink, Califie Wine grapes	0.2%	Tomatoes		0.1%	Lettuces	0.4%	
	0.9%	DE general	0.66	0.2%	Tomatoes	0.2%	Milk: Cattle		0.1%	Lettuces	0.5%	0
	0.9%	UK toddler	0.63		Milk: Cattle	0.2%	Tomatoes		0.1%	Wheat	0.6%	(
	0.8%	NL general	0.54	0.1%	Tomatoes	0.1%	Lettuces		0.1%	Milk: Cattle	0.4%	(
	0.7%	UK vegetarian	0.50	0.2%	Tomatoes	0.2%	Lettuces		0.1%	Wine grapes	0.2%	
	0.7%	FR adult FI adult	0.49		Wine grapes Lettuces	0.2%	Tomatoes Tomatoes		0.1%	Milk: Cattle Coffee beans	0.2%	0
	0.7%	Fl adult DK adult	0.48	0.2%	Lettuces Tomatoes	0.2%	Lettuces		0.2%	Coffee beans Wine grapes	0.2%	
	0.6%	UK adult	0.43	0.2%	Lettuces	0.1%	Tomatoes		0.1%	Wine grapes	0.2%	
	0.5%	FI 3 yr	0.37	0.2%	Tomatoes	0.1%	Potatoes		0.0%	Lettuces	0.2%	
	0.5%	LT adult	0.36	0.2%	Tomatoes	0.1%	Lettuces		0.1%	Milk: Cattle	0.2%	0
	0.5%	PL general	0.35	0.3%	Tomatoes	0.0%	Potatoes		0.0%	Onions	0.1%	0
	0.5%	FI 6 yr	0.34	0.1%	Tomatoes	0.1%	Lettuces		0.1%	Potatoes	0.2%	0
	0.5%	FR infant IE child	0.33		Milk: Cattle Milk: Cattle	0.0%	Tomatoes Tomatoes		0.0%	Potatoes Wheat	0.4%	
	0.270	n_ ormd	0.11	0.170		0.070	10114000		0.070	·····out	0.1/0	1

Acute risk assessment/adults/general population

Details – acute risk assessment/children Details – acu

Details – acute risk assessment/adults

As an ARfD is not necessary/not applicable, no acute risk assessment is performed.

			She	ow result	s for all crop	S		
Unprocessed commodities	Results for childrer No. of commodities t exceeded (IESTI):	1 for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		
S p	IESTI				IESTI			
rocesse	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
	Expand/collapse list Total number of co children and adult o (IESTI calculation)	mmodities exceeding the Al	RfD/ADI in					
Processed commodities	Results for children No of processed con is exceeded (IESTI):	nmodities for which ARfD/ADI			Results for adults No of processed con is exceeded (IESTI)	mmodities for which ARfD/ADI		
- mo	IESTI				IESTI			
cessed	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Proc	Expand/collapse list							
	Conclusion:							