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Abstract

Xenopus laevis eggs are used as a biological model system for studying fertilization

and early embryonic development in vertebrates. Most methods used for their

molecular analysis require elaborate sample preparation including separate

protocols for the water soluble and lipid components. In this study, laser ablation

electrospray ionization (LAESI), an ambient ionization technique, was used for

direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to

five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal

poles, and embryos through the 32-cell stage were analyzed. Fifty two small

metabolite ions, including glutathione, GABA and amino acids, as well as numerous

lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36

phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally,

some proteins, for example thymosin b4 (Xen), were also detected. On the

subcellular level, the lipid profiles were found to differ between the animal and

vegetal poles of the eggs. Radial profiling revealed profound compositional

differences between the jelly coat vitelline/plasma membrane and egg cytoplasm.

Changes in the metabolic profile of the egg following fertilization, e.g., the decline of

polyamine content with the development of the embryo were observed using

LAESI-MS. This approach enables the exploration of metabolic and lipid changes

during the early stages of embryogenesis.
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Introduction

The early stages of embryonic development following fertilization in animals are

characterized by synchronous cell divisions, the onset of transcription of genes

that will pattern the embryo, and local signaling events that transition a ball of

equipotent cells into regions that express different tissue fates [1, 2]. These events

are common across different species of animals, but can occur for different lengths

of times and at different stages of morphogenesis.

The African clawed frog, Xenopus laevis, has been used extensively to study the

cellular and molecular events of early embryogenesis. This species is used because

they are easily bred in the laboratory, are disease resistant, have a reproductive

response that is independent of season, and produce a large number of eggs per

spawning. In particular, the large size of the oocytes, ova (unfertilized eggs) and

embryos make them easy to manipulate and analyze by standard biochemical and

molecular biology approaches [3, 4, 5, 6, 7].

X. laevis oocytes and eggs have been an important source of material for

elucidating the molecular regulation of the cell cycle. For example, traditional

protein chemistry approaches led to the identification of maturation promoting

factor and the cyclin proteins [8, 9]. More recently, the oocyte has been used to

identify the proteins involved in nuclear transport and DNA replication [6]. To

reveal the biochemical makeup, elucidate low abundance proteins, and study the

kinetics of developmental and cellular events, X. laevis oocytes have been analyzed

by high performance liquid chromatography (HPLC) [10, 11][12], time-of-flight

(TOF) secondary ion mass spectrometry (SIMS) [13], gas chromatography (GC)

mass spectrometry (MS) [14], 2D gel electrophoresis followed by electrospray

ionization (ESI) MS [15], and liquid chromatography-tandem MS (LC-MS/MS)

[2]. To study the types and amounts of lipids extracted from Xenopus eggs, HPLC

methods were developed for the detection of multiple species [10, 12]. Similarly,

with an HPLC method for characterizing the carbohydrates in the jelly coat of

Xenopus eggs, specific oligosaccharides were identified and assigned to the three

specific layers of the coat [11, 16]. In another study, LC-MS/MS was used to

monitor the amounts of alanine in the early embryo, resulting in a new hypothesis

for the increase in cell cycle time at the mid-blastula transition [2]. Using a GC-

MS method for analyzing metabolites from volume-limited samples, e.g., X. laevis

eggs, good reproducibility was shown for volumes as small as 10 nL. However, the

method required silylation of some metabolites to increase their volatility for

analysis using GC [14]. On a subcellular scale, 3D molecular images of freeze dried

Xenopus oocytes were obtained under optimized sample preparation conditions

using TOF-SIMS [13]. While all of these methods for X. laevis oocytes and

embryo analysis have been shown to capture important aspects of its

biochemistry, most of them require elaborate sample preparation prior to analysis

that might alter subcellular localization of important developmental molecules.

An advantage of direct analysis methods is that they can report on the

unperturbed composition of biological specimens, ideally in their living, natural

state. Recently, the analysis of single oocytes and embryos of mice and bovine
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species by desorption electrospray ionization (DESI) mass spectrometry provided

new insight into lipid metabolism changes during early embryonic development

[17, 18].

In another direct analysis technique, laser ablation electrospray ionization

(LAESI) MS, the energy from a focused mid-infrared laser pulse is absorbed by the

water molecules in a cell or tissue leading to the ablation sampling of adjacent

cellular content [19]. Each consecutive laser pulse ablates a successive layer of the

sample enabling analysis at a defined subcellular depth or of an entire cell [20, 21].

Combination of LAESI with microdissection of plant cells reveals subcellular

metabolite gradients between the cytoplasm and the nucleus [22]. Diverse

applications of LAESI-MS include the analysis of virally infected immune cells as

well as comparative analysis of plant cell phenotypes [23, 24]. Because the

developing egg is a spatially and temporally dynamic system that is sensitive to

environmental and thus preparatory changes, we used the direct LAESI-MS

analysis of individual X. laevis eggs and embryos to explore subcellular

asymmetries and potential changes during significant developmental transitions.

Using LAESI-MS to probe these specimens required minimal sample preparation,

was performed at atmospheric pressure, and each ablation event occurred

instantaneously (in less than a second) on the developmental time scale. The

analyses were performed on living eggs and embryos that were minimally

perturbed from their natural state.

Some of the metabolic profiles of the unfertilized egg obtained from the LAESI-

MS analyses were compared to results reported previously in the literature and

showed good agreement, thus validating the approach. In addition we identified

subtle differences between the unfertilized egg, in which the first meiotic division

is completed, and the fertilized egg and early cleavage stage embryos. Importantly,

we found differences between the animal and vegetal poles of the egg, which are

predisposed to different developmental fates. Since these early developmental

events are shared across animals, a direct analysis of the cellular constituents

should provide fundamental information about the common biochemical

processes that regulate them. This simple approach using a single, live embryo in

its natural state should be ideal for analyses of other embryos that are difficult to

collect and are small in size.

Materials and Methods

Ova and Embryos

X. laevis eggs and sperm were obtained from mature animals kept in 30 gallon

aquaria at 21 C̊ in natural daylight and fed frog brittle 2 times per week. Oocyte

maturation was induced by injecting frogs with 1000 U human chorionic

gonadotropin (Sigma) 12 hours prior to removal of eggs as described elsewhere

[25]. Mature eggs were gently squeezed from female frogs into Petri dishes; some

were collected prior to fertilization and others were fertilized in vitro and collected

at various stages after sperm entry. Sperm were obtained from minced testes of
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sacrificed males that were anesthetized by submersion in an ice bath with tricaine

methanesulfonate. Eggs were fertilized in vitro by adding the released sperm to the

eggs and adding 0.16 MBS (16588 mM NaCl, 1 mM KCl, 1 mM MgSO4,

0.7 mM CaCl2, 5 mM HEPES, pH 7.8 and 2.5 mM NaHCO3) [26]. The jelly coat

was removed from some samples by washing the eggs with 2% cysteine solution

(pH 8.0, adjusted by 10 M NaOH) for 4 minutes followed by washing in 0.16
Steinberg’s solution (16560 mM NaCl, 0.67 mM KCl, 0.83 mM MgSO4,

0.34 mM Ca(NO3)2, 4 mM Tris-HCl, 0.66 mM Tris Base and pH 7.4). For some

experiments the vitelline membrane was manually removed from each egg using

sharpened forceps. Unfertilized eggs of X. laevis were also purchased from

Xenopus Express, Inc. (Brooksville, FL) for some confirmatory studies. All

animals use in these experiments followed the U.S. Public Health Service Policy of

Humane Care and Use of Laboratory Animals and were approved by the George

Washington University (GWU Animal Study Protocol: #A-3205-01; A237).

Chemicals

All chemicals for egg preparation were reagent grade and obtained from Sigma.

For the electrospray solution, highly purified spectral-grade methanol and water

solvents were obtained from Acros Organics (Geel, Belgium), and glacial acetic

acid was purchased from Fluka (Munich, Germany). All of the chemicals were

used without further purification.

LAESI-MS

The LAESI ion source used was similar to those described earlier [19]. Briefly,

mid-infrared laser pulses at 2940 nm wavelength and 20 Hz repetition rate were

produced by a Nd:YAG laser driven optical parametric oscillator system (Opolette

100, Opotek, Carlsbad, CA). Laser pulses with an average 320 mJ/pulse energy

were focused to about 200–300 mm diameter spot with either a 150 mm focal

length CaF2 lens or a 75 mm ZnSe lens. The eggs/embryos were placed on a pre-

cleaned microscope glass slide held 15 mm below the electrospray axis that was in

line with the mass spectrometer orifice. In the home-built electrospray system, a

syringe pump supplied 50% methanol solution containing 0.1% acetic acid

through a tapered tip metal emitter (length 5 cm, tube OD 320 mm and tip ID

50 mm) at a flow rate of 300–400 nL/min. The electrospray emitter was held at

2800–3300 V. Positive ions were collected by either an orthogonal acceleration

TOF mass spectrometer (Q-TOF Premier, Waters Co., Milford, MA) with a mass

range of m/z 50–2000 and a typical resolution of 8,000 (FWHM) or with a high

performance TOF mass spectrometer (Synapt G2S, Waters Co., Milford, MA)

with a mass range of m/z 50–2000 and a typical resolution of 30,000 (FWHM)

[27].
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Data Analysis

The electrospray background ion signal was subtracted from the collected LAESI

mass spectra in the MassLynx 4.1 software (Waters Co., Milford, MA). Putative

peak assignments for metabolites and lipids were based on accurate mass

measurements, isotope distribution patterns, database searches, data mining of

the related literature, and in some cases tandem MS analysis. Multiple databases

were used for the metabolite and lipid searches, including METLIN [28], MetaCyc

[29], Lipid Maps [30], HMDB [31] and KEGG [32, 33]. They were last accessed

on August 12, 2014. The NIST Isotope Calculator program (ISOFORM, Version

1.02) was used to calculate monoisotopic masses.

Results and Discussions

Ovum Analysis

A single X. laevis egg is ,1.4 mm in diameter and has an approximate volume of

400 nL. A typical LAESI mass spectrum from a single unfertilized X. laevis egg

without the removal of its jelly coat is shown in Fig. 1. Most of the ions below m/z

450 correspond to small metabolites, whereas many ions between m/z 450 and 900

are assigned to lipids. For a typical unfertilized X. laevis ovum, putative

assignments of the ions generally found in the m/z ,550 region reveals 52 small

metabolites (see Table 1). Many of these metabolites, e.g., amino acids, organic

acids, and redox buffering agents, fulfill an essential role in cell development and

serve as building blocks for cellular biosynthesis. Using liquid extraction and LC-

MS/MS, a previous study followed 48 metabolites in X. laevis embryos [2]. In

Table 1, sixteen metabolites found by both the LC-MS/MS and LAESI-MS

methods are marked by asterisks. The advantage of LAESI-MS over conventional

techniques is that it rapidly (within seconds) identifies metabolites in a single egg

with minimum perturbation before analysis. It also provides complementary data

for improved coverage of the small metabolites.

In the mass spectra we noticed the presence of multiply charged peaks at m/z

835, 1,002, and 1,251 with charge states of 6+, 5+ (see Fig. 1) and 4+, respectively.

Deconvolution of these peaks revealed that they corresponded to thymosin b4

(Xen) (see the inset in Fig. 1). This 44-residue peptide in Xenopus has been highly

conserved throughout evolution as it only differs from the human thymosin b4 in

three amino acid residues [34]. A typical defolliculated oocyte contains 0.5 and 10

picomoles of thymosin b4 (Xen) in stage I and stage VI of the oogenesis,

respectively [34]. Our results show that unfertilized eggs, the next step after stage

VI oocytes, continue to contain thymosin b4 (Xen) in significant quantities.

Radial Profiling of Ovum

The X. laevis egg is surrounded by a jelly coat that must be penetrated by the

sperm during fertilization. The LAESI mass spectra of the jelly coat were

dominated by sodiated disaccharide, trisaccharide, and tetrasaccharide molecules
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at m/z 365.108, 527.192 and 689.286, respectively. The Xenopus egg jelly is known

to contain a 21,073 Da protein, allurin, that serves as a chemoattractant for the

sperm [35]. The LAESI mass spectra of the jelly coat did not show the ions for

allurin, but exhibited strong signal for multiply charged ions corresponding to a

protein with a molecular weight of 11,728¡1 Da (see Fig. 2) [36].

Radial profiling of an unfertilized X. laevis egg with a jelly coat was conducted

by ablating the same area with multiple laser pulses, producing a mass spectrum

for each shot (see Fig. 3). The first approximately six laser shots produced mass

spectra similar to that of the jelly coat (see the top panel in Fig. 3). This

observation was consistent with the ,30 mm ablation depth per laser shot and the

,200 mm thickness of typical jelly coats. Once the jelly coat-related signal

diminished, multiply charged thymosin b4 (Xen) peptide ions were detected (see

the middle panel in Fig. 3). From its radial localization, it seems that this peptide

is associated with the vitelline and/or plasma membranes. After approximately

two additional laser shots, metabolites and lipid species characteristic to the egg

cytoplasm composition were detected in the mass spectra (see bottom panel in

Fig. 3).

Lipid Composition of Unfertilized Ovum

The cytoplasm of the unfertilized egg contains a high percentage of yolk platelets

composed of proteins and lipids for nourishment of the embryonic cells [37]. The

major peaks observed between m/z 400 and 900 in the LAESI mass spectrum are

attributed to lipids. Earlier studies on phospholipid extracts from X. laevis eggs

showed that the major lipid components were phosphatidylcholines (PC) at

,20 nmol/egg, followed by phosphatidylethanolamines (PE) at ,10 nmol/egg,

phosphatidylinositols (PI) at ,4 nmol/egg, lysophosphatidylcholines (LPC) at

Fig. 1. A typical positive ion LAESI mass spectrum of a single unfertilized X. laevis egg is dominated
by numerous metabolite and lipid peaks. Protonated thymosin b4 (Xen) peptide in the 6+ and 5+ charge
states (m/z 835 and 1002, respectively) is also present in the spectrum. Deconvolution of the peptide peaks,
shown in the inset, yields a mass of 5004 Da corresponding to the molecular mass of thymosin b4 (Xen).

doi:10.1371/journal.pone.0115173.g001
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Table 1. Putative identification of metabolite ions from LAESI-MS of an unfertilized X. laevis egg.

Metabolite Chemical formula Monoisotopic mass Measured mass Dm (mDa)

carbamate CH2NO2 82.998 (Na+) 82.997 21

putrescine C4H12N2 89.108 (H+) 89.106 22

alanine* C3H7NO2 90.056 (H+) 90.054 22

choline* C5H13NO 104.108 (H+) 104.106 21

propionic acid C3H6O2 113.001 (K+) 113.012 11

creatinine C4N3H7O 114.067 (H+) 114.064 23

propanediol C3H8O2 115.016 (H+) 115.022 6

proline* C5H9NO2 116.071 (H+) 116.071 0

138.053 (Na+) 138.053 0

niacinamide C6H6N2O 123.056 (H+) 123.049 27

hydroxyethylphosphonate C2H7O4P 127.016 (H+) 127.023 7

butyric acid C4H8O2 127.016 (K+) 127.023 7

octenol C8H16O 129.128 (H+) 129.135 7

creatine C4H9N3O2 132.077 (H+) 132.075 22

imidazole acetaldehyde (or) C5H6N2O 133.038 (Na+) 133.033 25

N-acetylimidazole C5H6N2O 133.038 (Na+) 133.033 25

malic acid* C4H6O5 135.029 (H+) 135.030 1

adenine C5H5N5 136.062 (H+) 136.053 29

threonic acid or erythronic acid C4H8O5 137.045 (H+) 137.044 21

hexenal C6H10O 137.037 (K+) 137.044 7

valeric acid or pentanoic acid C5H10O2 141.032 (K+) 141.038 6

gamma aminobutyric acid amide C4H10N2O 141.043 (K+) 141.038 25

gamma-hydroxybutyric acid C4H8O3 143.011 (K+) 143.018 7

spermidine C7H19N3 146.166 (H+) 146.164 22

guaiacol C7H8O2 147.042 (Na+) 147.048 6

glutamate* C5H9NO4 148.061 (H+) 148.058 23

methionine* C5H11NO2S 150.059 (H+) 150.047 12

guanine* or hydroxyadenine C5H5N5O 152.057 (H+) 152.054 23

174.039 (Na+) 174.038 21

190.013 (K+) 190.012 21

dihydroorotic acid C5H6N2O4 159.041 (H+) 159.040 20

homospermidine C8H21N3 160.181 (H+) 160.180 21

urocanic acid C6H6N2O2 161.033 (Na+) 161.029 24

carnitine* C7H15NO3 162.113 162.102 11

aspartic acid* C4H7NO4 172.001 (K+) 172.008 7

glycerol 3-phosphate* C3H9O6P 173.022 (H+) 173.028 6

arginine C6H14N4O2 175.120 (H+) 175.117 23

cys gly C5H10N2O3S1 179.049 (H+) 179.046 23

phosphocholine C5H14NO4P 184.074 (H+) 184.070 24

206.056 (Na+) 206.050 26

histidine* C6H9N3O2 194.033 (H+) 194.033 0

phosphocreatine C4H10N3O5P 212.044 (H+) 212.042 22

N-formylmethionine C6H11NO3S 216.010 (H+) 216.010 0

citrate* C6H8O7 215.0168 (Na+) 215.010 27
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Table 1. Cont.

Metabolite Chemical formula Monoisotopic mass Measured mass Dm (mDa)

dopaquinone C9H9NO4 234.017 (K+) 234.022 5

homocarnosine or balenine C10H16N4O3 241.130 (H+) 241.131 1

pantothenate* C9H17NO5 242.100 (Na+) 242.088 212

258.074 (K+) 258.070 24

methylthio propylmalic acid C8H14O5S 245.046 (Na+) 245.050 4

261.020 (K+) 261.027 7

acetyldihydrolipoamide C10H19NO2S2 250.094 (H+) 250.091 23

glutathione* C10H17N3O6S 308.092 (H+) 308.090 22

330.074 (Na+) 330.068 26

346.048 (K+) 346.047 21

hydroxydesipramine C18H22N2O 321.137 (K+) 321.127 210

disaccharide or trehalose* C12H22O11 365.106 (Na+) 365.107 1

381.080 (K+) 381.080 0

cholesterol C27H46O 369.352 (H+, -H2O) 369.354 2

adenosine monophosphate (AMP) C10H14N5O7P 386.027 (K+) 386.017 210

adenosine diphosphate (ADP)* C10H15N5O10P2 428.037 (H+) 428.032 25

450.019 (Na+) 450.006 213

465.993 (K+) 465.981 212

adenosine triphosphate (ATP)* C10H16N5O13P3 508.004 (H+) 508.002 22

529.986 (Na+) 529.975 211

*Metabolites also detected in Ref. [2].

doi:10.1371/journal.pone.0115173.t001

Fig. 2. Positive ion LAESI mass spectrum of X. laevis egg jelly coat primarily shows sodiated
oligosaccharide ions with a set of multiply charged ions at higherm/z corresponding to a species with
molecular weight of 11728¡1 Da.

doi:10.1371/journal.pone.0115173.g002
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,2 nmol/egg, and phosphatidylserines (PS) at ,1 nmol/egg [12]. In addition to

phospholipids, triacylglycerols (TAG) were the major neutral lipid components

found in the Xenopus eggs along with fatty acids (FA), cholesterol and

diacylglycerols (DAG) [38].

The LAESI mass spectra gave additional insight into the nature of the lipids

present in the ovum. A wide variety of lipid classes were identified, including 14

FAs, 13 LPCs, 36 PCs and 29 TAGs. Most of the abundant lipid peaks in these

spectra corresponded to PCs, where one of the acyl chains was palmitic acid

(16:0), whereas the other acyl chain length and saturation varied between (14:0)

and (22:6) (see Table 2). The acyl chain length assignments were based on the

tandem mass spectra of the lithiated lipids, [M+Li]+, generated by reactive LAESI.

In this technique Li+ ions from the electrospray solution react with the lipid

molecules from the ablated sample [39]. For example, tandem MS of a protonated

lipid ion at m/z 760.582 produced a single fragment ion corresponding to its

phosphocholine head group at m/z 184.073 resulting in the overall assignment of

PC(34:1) showing only the combined length and number of double bonds for the

acyl chains (see Fig. 4a). Further information on the individual acyl chains was

obtained by producing and fragmenting the corresponding lithiated species,

Fig. 3. Radial profiling of jellied unfertilized X. laevis egg by consecutive laser shots generated mass
spectra at each shot corresponding to increasing depths. The first ,6 laser shots produced mass spectra
similar to that of the jelly coat (top spectrum). This was followed by a mass spectrum that showed presence of
multiply charged thymosin b4 (Xen) peptide (middle spectrum). After an additional ,2 laser pulses, other
metabolites and lipids characteristic of the cytoplasm were detected (bottom spectrum).

doi:10.1371/journal.pone.0115173.g003
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Table 2. Putative peak assignments for fatty acid and lipid ions from LAESI-MS of an unfertilized X. laevis egg.

Lipid Chemical formula Monoisotopic mass Measured mass Dm (mDa)

Propionic acid (3:0) C3H6O2 113.001 (K+) 112.992 29

Butenoic acid or Crotonic acid (4:1) C4H6O2 125.001 (K+) 124.998 23

Butyric acid (4:0) C4H8O2 127.016 (K+) 127.010 26

Pentanoic acid C5H10O2 141.032 (K+) 141.039 7

Caprylic acid (8:0) C8H16O2 183.079 (K+) 183.072 27

FA(14:0) C14H28O2 267.173 (K+) 267.167 26

FA(15:0) C15H30O2 281.188 (K+) 281.184 24

FA(16:1) C16H30O2 277.214(Na+) 277.200 214

293.188 (K+) 293.179 29

FA(16:0) C16H32O2 279.230 (Na+) 279.217 213

295.204 (K+) 295.195 29

FA(18:5) C18H26O2 297.183 (Na+) 297.194 11

FA(18:4) C18H28O2 299.199 (Na+) 299.186 213

315.173 (K+) 315.157 216

FA(18:3) C18H30O2 317.188 (K+) 317.183 25

FA(18:2) C18H32O2 303.230 (Na+) 303.223 27

319.204 (K+) 319.195 29

FA(18:1) C18H34O2 321.220 (K+) 321.214 26

FA(18:0) C18H36O2 323.235 (K+) 323.226 29

FA(20:5) C20H30O2 325.214 (Na+) 325.204 210

341.188 (K+) 341.181 27

FA(20:4) C20H32O2 327.230 (Na+) 327.222 28

343.204 (K+) 343.200 24

FA(22:6) C22H32O2 351.230 (Na+) 351.239 9

367.204 (K+) 367.201 23

FA(22:5) C22H34O2 369.220 (K+) 369.210 210

LPC(14:0) C22H46NO7P 468.309 (H+) 468.313 4

C22H44NO6P 450.302 (H+, -H2O) 450.299 24

LPC(15:0) C23H48NO7P 482.325 (H+) 482.333 8

C23H46NO6P 464.314 (H+, -H2O) 464.329 15

LPC(16:1) C24H48NO7P 494.325 (H+) 494.329 4

266.644 (H+K)2+ 266.639 25

C24H46NO6P 476.314 (H+, -H2O) 476.312 22

LPC(16:0) C24H50NO7P 496.340 (H+) 496.342 2

518.322 (Na+) 518.329 7

267.652 (H+K)2+ 267.64 25

478.330 (H+, -H2O) 478.330 0

258.647 (H+K)2+ 258.641 26

LPC(18:4) C26H46NO7P 516.309 (H+) 516.315 6

LPC(18:3) C26H48NO7P 518.329 (H+) 518.325 24

C26H46NO6P 500.314 (H+, -H2O) 500.301 213

LPC(18:2) C26H50NO7P 520.340 (H+) 520.339 21

C26H48NO6P 502.330 (H+, -H2O) 502.333 3

LPC(O-18:1) C26H54NO6P 508.377 (H+) 508.380 3
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Table 2. Cont.

Lipid Chemical formula Monoisotopic mass Measured mass Dm (mDa)

273.670 (H+K)2+ 273.663 27

LPC(18:1) C26H52NO7P 522.356 (H+) 522.353 23

280.660 (H+K)2+ 280.656 24

C26H46NO6P 504.345 (H+, -H2O) 504.347 2

LPC(18:0) C26H54NO7P 524.372 (H+) 524.381 9

C26H52NO6P 506.361 (H+, -H2O) 506.360 21

LPC(20:5) C28H48NO7P 542.325 (H+) 542.327 2

290.644 (H+K)2+ 290.648 4

524.314 (H+, -H2O) 524.320 6

LPC(20:4) C28H50NO7P 544.340 (H+) 544.349 9

C28H48NO6P 526.330 (H+, -H2O) 526.324 26

LPC(22:6) C30H50NO7P 568.340 (H+) 568.348 8

303.652 (H+K)2+ 303.652 0

550.349 (H+, -H2O) 550.349 0

PA(O-37:1) C40H79O7P 703.564 (H+) 703.575 11

PC(16:0/14:1)* C38H74NO8P 704.523 (H+) 704.524 1

371.743 (H+K)2+ 371.747 4

PC(16:0/14:0)* C38H74NO8P 706.530 (H+) 706.541 11

PC(31:2) or PE(34:2) C39H74NO8P 716.523 (H+) 716.538 15

PC(O-32:1) or PE(O-35:1) C40H80NO7P 718.566 (H+) 718.567 1

PC (16:0/15:0) C39H78NO8P 720.554 (H+) 720.557 3

PE(O-36:6) C41H72NO7P 722.513 (H+) 722.512 21

PC(32:2) or PE(35:2) C40H76NO8P 730.538 (H+) 730.544 6

PC(16:0/16:1)* C40H78NO8P 732.554 (H+) 732.553 21

385.759 (H+K)2+ 385.752 27

PC(33:5) or PE(36:5) C39H74NO9P 738.507 (H+) 738.522 15

PC(O-34:2)) C42H82NO7P 744.591 (H+) 744.587 24

PC(O-34:1) C42H84NO7P 746.606 (H+) 746.593 213

PS(O-34:1) C40H78NO9P 748.541 (H+) 748.542 1

PC(34:4) or PE(37:4) C42H76NO8P 754.531 (H+) 754.536 5

PC(16:0/18:3)* C42H78NO8P 756.554 (H+) 756.557 3

PC(16:0/18:2)* C42H80NO8P 758.570 (H+) 758.570 0

PC(16:0/18:1)* C42H82NO8P 760.586 (H+) 760.582 24

399.775 (H+K)2+ 399.778 3

PC(16:0/18:0)* C42H84NO8P 762.601 (H+) 762.592 29

PS(34:0) or C40H78NO10P 764.544 (H+) 764.552 8

PC(O-36:6) C44H78NO7P 764.559 (H+) 764.552 27

PC(35:5) C43H76NO8P 766.538 (H+) 766.555 17

PC(35:4) C43H78NO8P 768.554 (H+) 768.561 7

PC(16:0/20:6)* C44H76NO8P 778.539 (H+) 778.547 8

PC(16:0/20:5)* C44H78NO8P 780.553 (H+) 780.551 22

409.759 (H+K)2+ 409.760 1

PC(16:0/20:4)* C44H80NO8P 782.570 (H+) 782.572 2

PC(16:0/20:3)* C44H82NO8P 784.586 (H+) 784.588 2
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Table 2. Cont.

Lipid Chemical formula Monoisotopic mass Measured mass Dm (mDa)

PC(16:0/20:2)* C44H84NO8P 786.601 (H+) 786.596 25

PS(36:1) or C42H80NO10P 790.560 (H+) 790.568 8

PC(O-38:7) C46H80NO7P 790.575 (H+) 790.568 27

PS(36:0) C42H82NO10P 792.576 (H+) 792.584 8

PC(37:5) or PE(40:5) C45H80NO8P 794.570 (H+) 794.5828 13

PS(O-38:5) C44H78NO9P 796.549 (H+) 796.551 2

PC(38:8) C46H76NO8P 802.5387 (H+) 802.547 8

PC(38:7) C46H78NO8P 804.554 (H+) 804.558 4

PC(16:0/22:6)* C46H80NO8P 806.570 (H+) 806.569 21

422.767 (H+K)2+ 422.762 25

PC(16:0/22:5)* C46H80NO8P 808.586 (H+) 808.587 1

PS(38:4) C44H78NO10P 812.544 (H+) 812.551 7

PS(38:1) C44H84NO10P 818.591 (H+) 818.595 4

PC(39:6) or PE(42:6) C47H82NO8P 820.586 (H+) 820.584 22

PS(O-40:6) C46H80NO9P 822.565 (H+) 822.574 9

PS(O-40:5) C46H82NO9P 824.580 (H+) 824.578 22

PC(40:9) C48H78NO8P 828.554 (H+) 828.550 24

PC(40:7) C48H82NO8P 832.586 (H+) 832.585 21

PS(40:5) C46H80NO10P 838.560 (H+) 838.566 6

PS(40:4) C46H82NO10P 840.575 (H+) 840.584 9

PS(38:1) C44H84NO10P 840.573 (Na+) 840.584 11

PG(42:9) C48H77O10P 845.533(H+) 845.529 24

PG(40:6) C46H79O10P 845.531 (Na+) 845.529 22

PC(42:10) C50H80NO8P 854.570 (H+) 854.561 29

TAG(54:8) C57H94O6 875.713 (H+) 875.710 23

TAG(52:5) C55H96O6 875.711 (Na+) 875.710 21

TAG(54:7) C57H96O6 877.729 (H+) 877.725 24

TAG(52:4) C55H98O6 877.726 (Na+) 877.725 21

TAG(54:6) C57H98O6 879.744 (H+) 879.740 24

901.726(Na+) 901.727 1

TAG(52:3) C55H100O6 879.742 (Na+) 879.740 22

TAG(54:5) C57H100O6 881.760 (H+) 881.755 25

903.749 (Na+) 903.741 28

TAG(52:2) C55H102O6 881.757 (Na+) 881.755 22

TAG(54:4) C57H102O6 883.775 (H+) 883.771 24

905.757 (Na+) 905.756 21

TAG(52:1) C55H104O6 883.773 (Na+) 883.771 22

PC(44:4) C52H96NO8P 894.695 (H+) 894.708 13

PC(44:3) C52H98NO8P 896.711 (H+) 896.721 10

918.693 (Na+) 918.702 9

PC(42:0) C50H100NO8P 896.708 (Na+) 896.721 13

PC(44:2) C52H100NO8P 898.726 (H+) 898.733 7

PC(44:1) C52H102NO8P 900.742 (H+) 900.741 21

TAG(56:9) C59H96O6 901.729 (H+) 901.727 22
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which showed fragments for the loss of oleic acid (18:1) and palmitic acid (16:0)

at m/z 510.3631 and 484.3452, respectively (see Fig. 4b). Another major class of

lipids in the spectra is LPC that is structurally similar to PC without the acyl

group at sn-2. Phospholipase A2 is known to degrade PC into LPC and facilitate

fertilization. Similar to PC, the major LPC is 16:0, and others include acyl chains

between 14:0 and 22:6 (see Table 2). Because LPCs contain a free –OH group on

the glycerol moiety, they undergo a loss of H2O during protonation and most ions

are detected as [MH-H2O]+. These fragments are often more abundant than the

protonated peaks. A few weak peaks corresponding to PE and PS can also be

detected in the spectra. The major lipids found in the LAESI experiments and

their fatty acid compositions are in good agreement with the literature reports

based on extraction, HPLC separation and GC-based fatty acid analysis [12]. A

Table 2. Cont.

Lipid Chemical formula Monoisotopic mass Measured mass Dm (mDa)

TAG(56:8) C59H98O6 903.744 (H+) 903.741 23

925.726 (Na+) 925.739 13

TAG(56:7) C59H100O6 905.760 (H+) 905.754 26

927.742 (Na+) 927.741 21

TAG(56:6) C59H102O6 907.776 (H+) 907.771 25

929.757 (Na+) 929.754 24

TAG(54:3) C57H104O6 907.773 (Na+) 907.772 22

TAG(56:5) C59H104O6 909.791 (H+) 909.788 23

TAG(54:2) C57H106O6 909.789 (Na+) 909.788 21

PC(46:6) C54H96NO8P 918.695 (H+) 918.702 7

TAG(58:11) C61H96O6 925.727 (H+) 925.739 12

TAG(58:10) C61H98O6 927.744 (H+) 927.741 23

949.726 (Na+) 949.737 11

TAG(58:9) C61H100O6 929.760 (H+) 929.754 26

951.749 (Na+) 951.749 0

PC(46:5) C50H97NO13 942.686 (Na+) 942.697 11

PC(46:3) C54H102NO8P 946.724 (Na+) 946.726 2

TAG(60:13) C63H96O6 949.729 (H+) 949.737 8

971.711 (Na+) 971.714 3

TAG(60:12) C63H98O6 951.744 (H+) 951.749 5

TAG(60:11) C63H100O6 953.760 (H+) 953.757 23

975.742 (Na+) 975.754 12

TAG(58:8) C61H102O6 953.757 (Na+) 953.757 0

TAG(60:10) C63H102O6 955.776 (H+) 955.765 211

TAG(58:7) C61H104O6 955.773 (Na+) 955.765 28

TAG(59:13) C62H94O6 957.695 (Na+) 957.688 27

TAG(62:16) C65H94O6 971.713 (H+) 971.714 1

TAG(62:14) C65H98O6 975.744 (H+) 975.754 10

*Lipids assignment based on tandem mass spectrometry.

doi:10.1371/journal.pone.0115173.t002
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putative list of the assigned lipids observed in the LAESI mass spectra of de-jellied

unfertilized X. laevis egg is shown in Table 2. LAESI mass spectra with

annotations for selected FA, LPC and PC species are shown in Fig. 5.

Animal Pole vs. Vegetal Pole

The unfertilized X. laevis egg is polarized, with a highly pigmented animal pole

and a weakly pigmented vegetal pole separated by an unpigmented equatorial

zone. During oogenesis, mRNAs and proteins are synthesized and differentially

stored in the cytoplasm of these regions for use by the embryo after fertilization.

In particular, mRNAs that direct ectodermal development are enriched in the

Fig. 4. (a) Tandem LAESI mass spectrum of a protonated PC lipid produced a single head group fragment, (b)
whereas the tandem MS of its lithiated counterpart produced structure specific fragments enabling the
identification of its acyl side chains.

doi:10.1371/journal.pone.0115173.g004
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animal pole whereas mRNAs that direct endoderm and gamete development are

enriched in the vegetal pole [40, 41]. This molecular asymmetry is altered after

fertilization by a cytoplasmic reorganization that occurs in response to sperm

entry. This reorganization is critical for establishing the dorsal axis of the embryo.

Because the mRNAs in the animal versus vegetal regions of the egg have very

different developmental functions that are essential to establishing the vertebrate

body plan, the corresponding metabolic and lipid profiles were investigated by

LAESI-MS.

As seen in Fig. 6, numerous lipids were found in higher abundance at the

vegetal pole compared to the animal pole. This finding was consistent with

magnetic resonance imaging studies of the animal and vegetal poles in X. laevis

oocytes that had shown two to three times higher abundance for TAGs in the

vegetal region [42]. Among the many lipids detected at the vegetal pole, we found

an LPC at m/z 478, which was consistent with the presence of yolk platelets there.

A previous report suggested that LPC lipids played a role in assisting fertilization

[12]. In addition, there were many small metabolites found at both poles and their

putative identifications can be found in Table 1. Although differences in the small

metabolite abundances at the two poles were clearly discernable, they exhibited

significant variance between eggs. As an example, the ion abundance ratios

between vegetal and animal poles are shown in Table 3 for certain metabolites and

lipids. To establish reliable abundance ratios, further analysis is needed.

Fertilized Ovum and Early Embryos

A number of critical developmental events occur after the X. laevis egg is fertilized,

including: sperm nucleus entry into the cytoplasm and an influx of calcium, the

completion of meiosis II, the initiation of synchronous cell cycles, and the

initiation of low levels of gene transcription at the 32-cell stage [37]. In the

unfertilized egg, the cell cycle is arrested in metaphase of the second meiotic

division, but all of the components for cell division, cytokinesis, gene

transcription and protein synthesis have previously been produced in the oocyte.

We directly analyzed unperturbed eggs by LAESI-MS at 30 minute intervals

after fertilization, and cleavage stage embryos at 8-cells and 32-cells. Most of the

major metabolites and lipids found during these early stages after fertilization

were similar to those in unfertilized Xenopus eggs (see Fig. 7). These results are

consistent with the prevailing concept that the synthesis of the major cellular

components occurs during oogenesis. However, some subtle differences between

the some key metabolites were observed in the spectra. Most notably, spermine

was consistently detected in the unfertilized eggs, but was absent in the 32-cell

stage embryos. It is well documented that the concentration of spermine decreases

during oogenesis leading to the reduction of total polyamines required for

maturation [43, 44].

In both jellied and dejellied systems, the intensities for the following ions from

stage 8 embryos were consistently lower than from unfertilized eggs: m/z 113.884,

114.892, 150.009, 175.118 (arginine), 199.991, 231.934, 239.919 and 277.199.
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Fig. 5. Positive LAESI mass spectra of unfertilized X. laevis egg with annotations for selected (a) fatty
acids (FA), (b) lysophosphatidylcholines (LPC), and (c) phosphatidylcholines (PC). A complete list of the
detected lipid ions is presented in Table 2.

doi:10.1371/journal.pone.0115173.g005
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Conversely, the following ions showed higher abundances in stage 8 embryos:

113.104, 131.111 (acetylputrescine), 157.127, 261.075, 239.101, 277.054, 283.066,

299.038, 315.015, 239.236, 241.098, 284.066, 295.021, 542.052 and 660.618

(Cer(d18:0/23:0)). Furthermore, there is a higher abundance of most TAGs in

stage 8 embryos compared to unfertilized dejellied Xenopus eggs.

Conclusions

There has been extensive of the transcriptome that regulates the major

developmental transitions in X. laevis at the subcellular level. These investigations

have been limited to the detection of mRNAs by in situ hybridization and RT-PCR

approaches and to the detection of proteins by immunohistochemistry or Western

blotting techniques. The latter have been hampered by the lack of antibodies

against proteins of interest. In addition, these approaches reliably detect mRNAs

and proteins that are in high abundance. Metabolites and lipids have not been

studied in detail at in single eggs because of the lack of appropriately sensitive

technologies that can assess these molecules in the living egg/embryo in its natural

state. Therefore, evaluation of eggs and embryos with LAESI-MS was performed

to determine whether subtle changes in metabolites and lipids and their

subcellular profiles are detectable.

In this report the direct atmospheric pressure analysis of X. laevis eggs and early

cleavage stages embryos is presented. The results of the LAESI-MS metabolic and

lipidomic profiles of the Xenopus eggs were compared to previous literature results

and showed a wide coverage for lipids and small metabolites. Reactive-LAESI MS/

MS, with in-plume cationization of PC lipids without sample preparation, was

Fig. 6. Comparison of positive ion LAESI mass spectra of animal and vegetal poles for unfertilized X.
laevis ovum. The vegetal pole shows increased abundance of lipids relative to the animal pole. Average
diameter of the egg in the overlaid image is ,1.4 mm.

doi:10.1371/journal.pone.0115173.g006
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Table 3. Metabolite and lipid ion abundance ratios for vegetal and animal poles of X. laevis egg.

Metabolite or Lipid Ion m/z Abundance ratio vegetal/animal Abundance ratio animal/vegetal

choline [+] 104.1 3.7 0.3

adenine [H+] 136.1 1.0 1.0

guanine or hydroxyadenine [Na+] 174.0 4.9 0.2

arginine [H+] 175.1 1.8 0.6

phosphocholine [H+] 184.1 5.2 0.2

monosaccharide [Na+] 203.1 1.2 0.9

acetyldihydrolipoamide [H+] 250.1 2.8 0.4

glutathione [Na+] 330.1 0.6 1.7

glutathione [K+] 346.0 0.7 1.5

disaccharide or trehalose [Na+] 365.1 1.9 0.5

disaccharide or trehalose [K+] 381.1 2.8 0.4

unknown m/z 374.033 - 374.0 7.5 0.1

cholesterol [H+-H2O] 369.4 4.7 0.2

adenosine diphosphate (ADP) [H+] 428.0 0.5 1.9

adenosine diphosphate (ADP) [Na+] 450.0 1.7 0.6

unknown m/z 467.101 - 467.1 0.1 17.0

LPC(16:1) [H+-H2O] 476.3 4.1 0.2

LPC(16:0) [H+-H2O] 478.3 4.8 0.2

adenosine triphosphate (ATP) [H+] 508.0 1.4 0.7

adenosine triphosphate (ATP) [Na+] 530.0 0.6 1.8

unknown m/z 522.590 - 522.6 1.3 0.7

trisaccharides [Na+] 527.2 2.4 0.4

unknown m/z 541.126 - 541.1 1.2 0.8

Cer(d 40:1) [Na+] 660.6 0.1 11.6

unknown m/z 689.201 - 689.2 2.0 0.5

PC(16:0/16:1) [H+] 732.6 5.6 0.2

PC(34:4) or PE(37:4) [H+] 754.5 9.2 0.1

PC(16:0/18:3) [H+] 756.6 3.9 0.3

PC(16:0/18:2) [H+] 758.6 3.7 0.3

PC(16:0/18:1) [H+] 760.6 4.3 0.2

PC(16:0/18:0) [H+] 762.6 3.3 0.3

PC(16:0/20:5) [H+] 780.6 5.9 0.2

PC(16:0/20:4) [H+] 782.6 6.6 0.2

PC(16:0/20:3) [H+] 784.6 3.7 0.3

PS(O-38:5) [H+] 796.5 3.0 0.3

PC(16:0/22:6) [H+] 806.6 5.8 0.2

PC(16:0/22:5) [H+] 808.6 5.5 0.2

TAG(54:6)+[H+] or [H+] or 879.7 18.0 0.1

TAG(52:3)+[Na+] [Na+] 879.7 18.0 0.1

TAG(52:3) [K+] 895.7 9.9 0.1

TAG(52:2) [K+] 897.7 9.4 0.1

TAG(56:9) [H+] 901.7 9.2 0.1

TAG(56:8) [H+] 903.7 16.8 0.1

TAG(54:6) [K+] 917.7 9.8 0.1
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utilized to identify the acyl chains. An investigation of the animal and vegetal

poles of the X. laevis ovum showed increased abundance of lipids in the vegetal

pole relative to the animal pole. Radial profiling of a jelly coated egg by LAESI-MS

utilizing consecutive laser pulses revealed dramatic compositional changes

between the jelly coat the vitelline/plasma membranes and the cytoplasm.

Finally, LAESI-MS was used to demonstrate that subtle metabolic profile

changes could be detected after the egg was fertilized and synchronous cell cycles

were initiated. Of particular note, spermine was depleted after fertilization, which

consistent with the reduction of total polyamines required for embryo maturation

[43, 44]. Major differences between the metabolites of unfertilized egg and the

early cleavage stage embryos were not expected because all the needed organelles

and biochemical building blocks needed to carry the embryo through the first

8 hours of development had previously been synthesized and stored in the oocyte.

Nonetheless, the sensitivity of LAESI-MS enabled the detection of a few subtle

differences, and uncovered novel molecules that are asymmetrically distributed

between the animal, ectoderm-forming, and vegetal, endoderm-forming, regions

of the egg. This simple approach, partially validated here for a vertebrate embryo

Table 3. Cont.

Metabolite or Lipid Ion m/z Abundance ratio vegetal/animal Abundance ratio animal/vegetal

TAG(54:5) [K+] 919.7 7.3 0.1

TAG(54:4) [K+] 921.7 6.7 0.1

TAG(60:13) [H+] 949.7 7.3 0.1

doi:10.1371/journal.pone.0115173.t003

Fig. 7. Positive ion LAESI mass spectra of an unfertilized Xenopus ovum and a 32-cell embryo show a
very similar metabolite profiles with some key differences, e.g., the absence of spermine in the
embryo spectrum. The inset shows a Xenopus embryo at the 32-cell stage. The scale bar in the inset is
200 mm.

doi:10.1371/journal.pone.0115173.g007

Subcellular Analysis of X. laevis Eggs by LAESI Mass Spectrometry

PLOS ONE | DOI:10.1371/journal.pone.0115173 December 15, 2014 19 / 22



for which there is abundant traditional biochemical data, should be ideal for the

direct analyses of other embryos that are rare and smaller in size.
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