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ABSTRACT
Background: The primary objective of this review was to explore the contribution of oxidative stress
to the pathogenesis of genetically-triggered thoracic aortic aneurysm (TAA). Genetically-triggered
TAAs manifest substantial variability in onset, progression, and risk of aortic dissection, posing a
significant clinical management challenge. There is a need for non-invasive biomarkers that
predict the natural course of TAA and therapeutics that prevent aneurysm progression.
Methods: An online systematic search was conducted within PubMed, MEDLINE, Scopus and
ScienceDirect databases using keywords including: oxidative stress, ROS, nitrosative stress,
genetically triggered thoracic aortic aneurysm, aortic dilatation, aortic dissection, Marfan
syndrome, Bicuspid Aortic Valve, familial TAAD, Loeys Dietz syndrome, and Ehlers Danlos syndrome.
Results: There is extensive evidence of oxidative stress and ROS imbalance in genetically triggered
TAA. Sources of ROS imbalance are variable but include dysregulation of redox mediators leading
to either insufficient ROS removal or increased ROS production. Therapeutic exploitation of redox
mediators is being explored in other cardiovascular conditions, with potential application to TAA
warranting further investigation.
Conclusion: Oxidative stress occurs in genetically triggered TAA, but the precise contribution of ROS
to pathogenesis remains incompletely understood. Further research is required to define causative
pathological relationships in order to develop therapeutic options.
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Introduction

Thoracic aortic aneurysm (TAA) is a clinically silent phenom-
enon, with subsequent aortic dissection the leading cause
of morbidity and early mortality. Genetically triggered TAA
accounts for 30% of all TAA pathology, which presents
either in the context of a clinically recognisable syndrome:
Marfan (MFS), Loeys Dietz (LDS), vascular Ehlers-Danlos
(vEDS), or in individuals with no syndromic features: Bicuspid
Aortic Valve (BAV), and familial Thoracic Aortic Aneurysm and
Dissection (fTAAD). Further details can be found in The
National Registry of Genetically Triggered Thoracic Aortic
Aneurysms and Cardiovascular Conditions (GenTAC) [1].

All genetically triggered TAAs demonstrate heterogeneity
in clinical severity, indicating a complex multifactorial pattern
of disease that remains unclear. Aneurysm size is a poor indi-
cator of dissection risk, with dissections occurring at normal
aortic diameters in some patients and TAAs stabilising in
others [2, 3]. However, given aortic dissection carries a mor-
tality rate of up to 50% [4], prophylactic surgery is usually per-
formed if the aorta progressively dilates, as no current
medical treatments stop or reverse the dilatation [5].
Surgery still carries a mortality risk of 1-5% for elective
repair [6] and up to 12% for emergency intervention [7].
Therefore, there is a need for improved understanding of
the pathomechanics of TAA formation to improve detection
and management.

Aortic dilatation, aneurysm and dissection are, at their
core, a varying continuum of manifestations of a central

biomechanical failure. Dysfunctional protein interactions
and signalling within the aortic wall lead to failed mechano-
transduction, namely the ability of intramural cells to sense
their mechanical environment and produce appropriate bio-
chemical responses [8]. Thus, repair and restorative mechan-
isms that continually maintain wall homeostasis become
dysfunctional, causing medial degeneration, characterised
by extracellular matrix (ECM) accumulation and proteolytic
degeneration, vascular smooth muscle cell (VSMC) pheno-
type switching and apoptosis [9]. Compounded by the large
cyclical haemodynamic pressures in the aortic wall, particu-
larly greatest in the aortic root and ascending aorta, localised
weakness results in dilatation and aneurysm formation [10].
This is evident in the pathogenic gene variants that give
rise to TAA, which all have structural and/or functional roles
in aortic wall homeostasis. These include genes that encode
proteins responsible for (i) ECM regulation (FBN1, COL3A1,
LOX, MFAP5, BGN), (ii) the VSMC contractile apparatus
(MYH11, ACTA2, MYLK, FLNA, PRKG1), or (iii) transforming
growth factor-beta (TGF-β) signalling (TGFB2, TGFB3,
TGFBR1, TGFBR2, SMAD3) [11].

A pro-oxidant environment

Oxidative stress and nitrosative stress occur from imbal-
ances in the production and clearance of reactive oxygen
species (ROS) and reactive nitrogen species (RNS), which are
highly reactive free radicals (a molecule with one or more
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unpaired electrons in its outer shell) that are capable of
damaging all cellular constituents including DNA, proteins,
and lipids, resulting in loss of function and tissue injury [12].
ROS and RNS are natural by-products of aerobic metabolism
and oxidative enzymes, and under normal conditions are con-
tinually eliminated or neutralised by antioxidant defences.
Low levels of ROS/RNS are essential for physiological homeo-
stasis, while excess levels – either through increased gener-
ation or insufficient removal – are widely implicated in
disease [13].

Biomarkers that are specific for oxidative and nitrosative
stress are useful for characterising redox pathways in
disease, including the oxidant source, specific effects on
tissue, and assist in developing candidate targets for thera-
peutics. For example, isoprostane, malondialdehyde and oxi-
dised low-density lipoprotein (ox-LDL) levels are markers of
lipid peroxidation, while nitrotyrosine, chlorotyrosine, carbo-
nylation and S-glutathionylation are products of oxidative
protein modifications. Alternatively, evaluation of redox
status may be determined by gene and protein levels of
redox enzymes [14, 15].

In genetically triggered TAA, oxidative stress has been
widely demonstrated in aortic tissue from animal models
[16] and patients with MFS [17–20], BAV [20–25], LDS [26]
and in multi-phenotype TAA cohorts [27]. In the aortic wall,
oxidative stress disrupts mechanosignalling [28], promotes
expression of ECM-degrading matrix metalloproteinases
(MMP), and induces pathological VSMC phenotypic switching
and apoptosis, which all precipitate aortic wall degeneration
and TAA formation [29]. Human TAA subjects have higher
peak wall stress, which correlates with histological obser-
vations of ROS accumulation and pathological synthetic
VSMC populations [30].

In MFS, which is defined by pathogenic variants in FBN1,
the relationship between oxidative stress and TAA is likely
due to altered biomechanics resulting from abnormal
fibrillin-1 protein product [31]. Fibrillin-1 contributes to
elastic fibre formation throughout the body, and importantly,
the aortic wall. The normally elastin-rich aortic wall is there-
fore intrinsically weakened from birth leading to TAA and/
or dissection as early as childhood [32]. While the pathophy-
siology of TAA in MFS is still unclear, aberrant TGF-β signalling
is known to occur and is purported to cause disrupted ECM
homeostasis precipitating aortopathy [33].

Recent data have shown a role of oxidative stress in the
pathogenesis of MFS, although the source and contribution
of ROS are unknown. Plasma from MFS patients is deficient
in total antioxidant capacity (TAC), which correlates with clini-
cal severity, consistent with a more extensive contribution of
oxidative stress in the multisystem manifestations of MFS
[34]. Studies using MFS mice have demonstrated impaired
aortic contraction and relaxation of the aorta in vivo, with
increased lipid peroxidation, increased pro-oxidant enzyme
expression and decreased expression of the major ROS-clear-
ing antioxidant, superoxide dismutase (SOD), within the
aortic wall [16]. Furthermore, increased ROS production has
shown to be limited only to the aneurysmal site and not
extending to normal aortic tissue distally [35]. Importantly,
restoration of normal redox homeostasis with respective
treatments (ROS inhibition or antioxidant supplementation)
improved vasomotor function and attenuated aneurysmal
dilatation, providing scope for ROS as a future therapeutic
target.

BAV is a complex cardiovascular condition characterised
by abnormal fusion of aortic valve cusps resulting in a two-
cusped valve of variable morphology and function [36]. The
aetiology is unknown but at least partly gene-mediated
given its strong inheritance patterns. TAA occurs in up to
45% of patients with BAV and the pathomechanics are simi-
larly unexplained but are thought to associate with altered
haemodynamics arising from the abnormal valve, leading to
asymmetrically increased wall stress [37, 38]. Advances in
imaging over the last decade have demonstrated the
altered flow dynamics in BAV-TAA, with further research indi-
cating an association with oxidative stress [37, 39, 40]. Para-
doxically, levels of the superoxide anion (O2-) are
significantly greater in aortic non-aneurysmal vs aneurysmal
human BAV specimens, suggesting a more prominent role
for ROS in early aortopathy and that the characteristic
VSMC loss may be a direct consequence of ROS-mediated
cell damage [21].

An increase in connective tissue growth factor (CTGF)
expression in TAA has been associated with excess ROS.
CTGF, a member of the TGF-β family, is increased in both
human and mouse TAA tissue [30], with a positive correlation
between TAA diameter and CTGF mRNA and protein
expression, in addition to osteopontin, a marker of synthetic
VSMC phenotype [41], supporting earlier studies which
showed increased collagen and CTGF expression in dissected
TAA aortic specimens [42]. Furthermore, cultured aortic
VSMCs treated with hydrogen peroxide (H2O2) had ROS-
induced VSMC phenotype switching from contractile to syn-
thetic, mediated through CTGF [30], supporting its role in
ECM synthesis and VSMC proliferation via ROS-mediated oxi-
dative damage.

Sources of ROS imbalance

Insufficient ROS removal

The human host is equipped with a three-tier system of anti-
oxidant defences for efficient ROS/RNS removal [43]. Tier 1 are
the small molecule antioxidants which directly scavenge ROS/
RNS to prevent the initiation of oxidative stress: the gluta-
thione (GSH) system, metallothionein (MT), uric acid, and vita-
mins C and E. Tier 2 are the antioxidant enzymes which
detoxify RNS/RNS into less reactive species: superoxide dis-
mutases (SOD), catalase, glutathione peroxidases (GPx) and
peroxiredoxins (PRX). Tier 3 are enzymes involved in
damage control and repair.

Impaired functioning of the GSH system occurs in both
MFS and LDS, with low GSH observed in TAA tissue in
concert with decreased total antioxidant capacity, increased
lipid peroxidation and increased carbonylation [26, 44]. The
GSH system, involving glutathione peroxidase (GPx), gluta-
thione S-transferases (GST), and glutathione reductase (GR),
is the most important and abundant small molecular
weight antioxidant in cells with myriad protective functions
in addition to neutralising oxidative stress [45, 46]. The ratio
of glutathione in its reduced (GSH) to oxidised (GSSG) state
is a recognised indicator of local redox status, with a low
ratio indicating oxidative stress [47]. Loss of GSH homeostasis
as a key primary defence against ROS/RNS results in endo-
thelial and smooth muscle cell dysfunction, and is implicated
in many chronic degenerative diseases across multiple body
systems [48]. The mechanisms of its dysregulation are an
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area of active research, with hope for utilisation of GSH as a
biomarker or pharmacological target [49].

A reduction in MT gene and protein expression has been
observed in BAV-TAA tissue and isolated VSMC cultures in
concert with increased aortic MMP-9 expression [24].
Altered MT expression is also described in multiple pathol-
ogies including cardiovascular disease, diabetes, obesity,
renal and liver toxicity, and carcinogenesis [50]. MTs are
metal-binding antioxidant proteins with diverse biological
functions including heavy metal detoxification, MMP regu-
lation and scavenging of free radicals [51], thus low levels
may contribute to MMP-mediated ECM degradation. While
inducers of MTs are established and include ROS among
other stimuli [51], suppressors of MT expression are less
well known [52] but at least include gene silencing by DNA
methylation [53]; alternatively, reduced levels might reflect
an impaired capacity of damaged cells to induce MT
expression [24].

Reduced levels of SOD and catalase have been observed
in aortic media homogenates from dissected TAAs in concert
with increased lipid peroxidation [54]. Similar results have
been observed in murine MFS-TAA studies [16]. Meanwhile,
regional variability in the expression of SOD isoforms was
shown in BAV-TAA tissue, which corresponded to aortic diam-
eter and aortic wall segment [22]. The regional differences in
BAV-TAA cohorts demonstrate particularly well the notion of
oxidative stress as an intermediary between haemodynamic
stress and aortic dilatation. Indeed, certain subgroups of
BAV-TAA with comorbid aortic stenosis have eccentric flow
jets that regionally correspond with wall shear stress in the
ascending aorta [2]. Importantly, overexpression of both
SOD and catalase have been shown to be cardioprotective
[43]. Given a wide range of cytokines and growth factors
are capable of altering SOD expression [55], further studies
that elucidate the upstream source of dysregulation will be
useful.

While fewer studies have specifically examined catalase in
genetically triggered TAAs, a putative role is suggested from
research in abdominal aortic aneurysms (AAA). In murine AAA
models, studies have shown a loss of catalase in aortic tissue
sections, while catalase overexpression prevented early
pathological wall remodelling [56] and inhibited AAA for-
mation [57].

Excess ROS generation

Virtually all cells within the vessel wall are capable of ROS/RNS
generation [13]. These include the enzymic sources: NADPH
oxidase (NOX), xanthine oxidase (XO), myeloperoxidase
(MPO), lipoxygenase (LOX), cyclooxygenase (COX), uncoupled
endothelial nitric oxide synthase (eNOS), other amine oxi-
dases, and non-enzymic sources including electron leakage
from the mitochondrial electron transport chain. ROS are
also produced from the endoplasmic reticulum (ER) during
ER stress, as the ER is highly sensitive to the local redox
status and changes to both extracellular and intracellular
homeostasis [58].

Evidence of mitochondrial dysfunction leading to
reduced mitochondrial respiration and ROS is speculated to
have a role in genetically triggered TAA pathogenesis, with
existing associations established in AAA, cardiovascular
disease and normal vascular ageing [59], but so far limited
research in TAA cohorts. A fibulin-4R/R murine model of

genetically triggered TAA demonstrated altered mitochon-
drial protein composition and decreased oxygen consump-
tion in concert with increased ROS, with genomic studies
showing a dysregulation of metabolic pathways [60].
Fibulin-4 is a structural glycoprotein found in the aortic
media, necessary for integrity and elasticity of the aortic
wall [61]. The mitochondrial electron transport chain constitu-
tively secretes ROS as a by-product of normal aerobic respir-
ation which is cleared under redox homeostasis [13].
However, excess ROS in the local environment can cause oxi-
dative damage to mitochondrial DNA, leading to further ROS
production and potentially a vicious cycle of ROS-induced
ROS damage [59].

Increased NOX4 expression and tyrosine nitration were
observed in the aortic wall and cultured VSMCs of MFS-TAA
patients, which corresponded with increased H2O2 pro-
duction and oxidative damage to multiple cytoskeletal and
contractile proteins [17]. The involvement of NOX4 in TAA
was also examined in a murine NOX4-deficient MFS mouse
model which showed less aortic root dilatation and elastic
fibre degradation at nine months [17]. NOX is the major
ROS producer in the vasculature and increased levels are
established in a range of pathological conditions including
hypertension, diabetes and hypercholesterolaemia [13].
NOX inhibitors are under intensive investigation for thera-
peutics [62–64], especially given their sole function is ROS
production unlike other sources which produce ROS as by-
products or only under stress [64].

Xanthine oxidase (XO) was shown in murine MFS-TAA
models to be a major contributor of ROS production
leading to impaired aortic contraction and relaxation, as
reversal of these effects were demonstrated by selective XO
inhibition [16]. XO is localised to endothelial cells, and cata-
lyses oxidation of hypoxanthine and xanthine, producing
superoxide and H2O2 as by-products [65]. Increased XO
activity and oxidative stress are also demonstrated in coron-
ary artery disease [65] and ruptured cerebral aneurysm [66].
Notably, oscillatory shear stress is an inducer of XO [67], as
well as ECM degrading enzymes that trigger aortic wall remo-
delling [68], therefore, it is biomechanically possible that
deranged haemodynamics may precipitate ROS-induced
TAA development.

SmgGDS (Small GTP-Binding Protein GDP Dissociation
Stimulator) is also implicated in TAA pathogenesis due to
decreased expression in human TAA tissue [69]. Among
other roles, SmgGDS maintains VSMCs in the contractile phe-
notype necessary for normal aortic function [69, 70]. In a
SmgGDS-deficient TAA mouse model there was more
severe aortic dilatation and more extensive elastin fragmen-
tation, higher levels of ROS, MMPs and inflammatory cell
migration, with dilatation reversed by delivery of a SmgGDS
gene construct. Cultured human aortic VSMCs deficient in
SmgGDS also showed decreased expression of multiple con-
tractile genes, further supporting a role for SmgGDS in main-
tenance of aortic function [70, 71].

Elevated levels of the pro-inflammatory enzyme myelo-
peroxidase (MPO) are widely implicated in the pathogenesis
of AAA [72–74], intracranial aneurysms [75–77], in other cardi-
ovascular diseases [78], and in inflammation across multiple
body systems [79]. MPO, a haem peroxidase, is produced pre-
dominantly by neutrophils [80], and its expression in vascular
inflammation is localised to the endothelium and sub-endo-
thelial space [78]. MPO catalyses a unique conversion of
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H2O2 to the highly reactive hypochlorous acid (HOCl). High
levels of HOCl cause vascular damage through multiple path-
ways including lipid and protein oxidation [81], reduced
eNOS stability and NO production, causing impaired vasore-
laxation [82, 83], and increased MMP activation causing
ECM degradation [78], together contributing to aneurysm
formation.

Key markers of MPO-mediated oxidative damage via
excessive HOCl activity are the generation of 3-nitrotyrosine
and 3-chlorotyrosine protein modifications [81]. Activation
of the extracellular signal-regulated kinase (ERK) 1/2 has
been correlated with both 3-nitrotyrosine and 3-chlorotyro-
sine modifications, and promotes human aortic VSMC
migration [84, 85], consistent with the pathological synthetic
phenotype associated with TAA pathogenesis [86].

Increased MPO has been observed in aortic wall specimens
from a mixed cohort of TAA patients [72]. Additionally, a MFS
mouse model showed increased MPO expression in the
aneurysmal aorta, along with increased MMP-2 and -9
expression, increased ECM fragmentation and apoptosis,
increased 3-nitrotyrosine levels and increased ROS staining
compared to wildtype [87]. Conversely, MPO-deficient MFS
mice had no markers of ROS damage or MMP overexpression,
preserved aortic architecture and smaller aneurysmal diam-
eter. In a small study of human BAV-TAA, increased plasma
MPO correlated with increasing valve and endothelial dys-
function, but did not correlate with TAA severity, however,
this may be due to lack of statistical power [88].

Endothelial dysfunction, Nitric Oxide & NOS enzymes

Endothelial dysfunction is a major contributor to aneurysm
formation [89] and is observed in MFS-TAA [90, 91], AAA
[92] and cardiovascular disease more broadly [93]. Endothelial
cells modulate vascular homeostasis through multiple
complex interactions with both the contents of the vessel
lumen and the cellular constituents of the vessel wall,
where important mechanosensing and signal transduction
processes guide maintenance of vascular tone and responses
to stress [68]. Most of these interactions are mediated
through nitric oxide (NO), a short-lived but potent vasodila-
tor, produced by multiple NO synthase isoforms: neuronal
(nNOS/NOS1), inducible (iNOS/NOS2) and endothelial
(eNOS/NOS3) [94].

Endothelial dysfunction is both triggered by and propa-
gates oxidative stress, leading to abnormal VSMC prolifer-
ation and/or apoptosis, increased endothelial permeability,
and increased expression of inflammatory adhesion mol-
ecules, which altogether promote vascular dysfunction and
pathological aortic wall remodelling [95]. Supporting this
mechanism, an angiotensin II (Ang-II) infusion mouse model
of TAA has shown increased endothelial-specific ROS associ-
ated with aortic dissection [96].

There is evidence of dysregulated eNOS and NO
expression in genetically triggered TAA. In BAV-TAA, multiple
studies have documented decreased eNOS in aortic tissue
samples [97], including regional reductions in the greater cur-
vature, which is the region most susceptible to haemo-
dynamic stress and dilatation [98]. Decreased eNOS
expression was also shown to correlate with increasing
aortic diameter [99]. These human studies are supported by
data from eNOS-knockout mouse models, which

demonstrate a high prevalence of both BAV and aneurysm
formation [100].

Uncoupling of eNOS has been observed in human BAV-
TAA tissue [101] and a murine MFS-TAA model through a
novel pathologic TGF-β/NOX4 axis [102]. Uncoupled eNOS
is a hallmark feature of cardiovascular disease [103] and
results in the production of ROS at the expense of NO, shifting
its role from vasorelaxant to pro-oxidant and inducing ROS-
mediated cellular damage [104]. Uncoupled eNOS has been
correlated with AAA development [105, 106] and aortic
rupture [106] in murine studies, and a similar mechanism is
likely to occur in TAA pathogenesis. Notably, eNOS recou-
pling induced by infusion of dihydrofolate reductase (folic
acid) was shown to ameliorated AAA formation [105] and
attenuated Ang-II mediated vascular remodelling [106].
Causes of eNOS uncoupling are many but include excessive
Ang-II, TGF-β, and ROS itself, which propagates a positive
feedback loop of ROS-induced ROS formation [103]. Pharma-
cological modulation of the eNOS ‘redox switch’ is thus an
active area of inquiry [103].

Inducible NOS (iNOS) is abnormally increased in human
MFS-TAA tissue [107], and across a mixed cohort of various
other forms of aortopathy [20]. iNOS is not expressed in the
vasculature under physiological conditions but upregulated
during oxidative stress and inflammation [13]. Results of a
murine study suggest dysregulation in MFS may occur
through a pathological Ang-II-Adamts1-NOS2/iNOS axis
[107]. In addition to generation of NO, iNOS also produces
peroxynitrite (ONOO-) which leads to further vascular
damage and as such its dysregulation is implicated in
several vascular [93] and systemic diseases [108].

Future directions

There is extensive evidence of ROS dysregulation in geneti-
cally triggered TAA. It remains unknown whether this is a
cause or consequence of TAA, and exactly what the patho-
logical contribution of ROS is to aneurysm progression. If
ROS do contribute to disease, their effective prevention or
neutralisation requires an understanding of the specific
pathological pathways and mediators involved, in addition
to their physiological functions so that interventions do not
cause further harm.

Identifying the specificity of ROS pathway mediators and
cellular targets will always be plagued by the nature of ROS
interactions, which occur at the atomic as opposed to macro-
molecular level [109], thus lacking target specificity, their
short biological half-life thus impairing detection, and the
redundancy of ROS scavengers facilitating their clearance,
thus impeding pinpointing specific targets for manipulation.
In light of these challenges, readers are directed to the most
recent statement by the American Heart Association [110]
which reviews the myriad available methods for detecting
ROS and ROS-damage, including their strengths, limitations
and suitability for different research objectives.

Antioxidant therapy involving either non-specific interven-
tions (e.g. dietary [111]) or targeted approaches (e.g. xanthine
oxidase inhibitors [112]), has been widely examined in cardi-
ovascular disease and other disease contexts with both posi-
tive and negative findings, however, so far most have failed to
confer benefit to all-cause mortality [113]. Similarly, while
antioxidant interventions in animal TAA models have been
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shown to be effective, this has not been replicated in human
clinical trials [13, 114, 115].

Efforts focusing on agents that block ROS production have
provedmore fruitful [62]. Selective inhibition of NOX enzymes
(GKT136901/137831, Genkyotex; and VAS2870/3947, Vaso-
pharm) have been shown to be well tolerated and efficacious
in inflammatory diseases in clinical trials and are continuing
to be assessed in cardiovascular and other diseases [62,
113]. Over 90 clinical trials in phase I-IV are underway asses-
sing NRF-2 (nuclear factor (erythroid-derived 2) – like 2) acti-
vators in cardiovascular disease and its comorbid conditions
[116, 117]. Drugs that target eNOS dysregulation in endo-
thelial dysfunction are also being explored in small clinical
trials, but data are so far inconclusive [103].

Other innovative methods being explored for high-pre-
cision ROS detection and targeted treatment in aneurysmal
disease include the use of nanotechnology [118–120], in
vivo fluorescent probes [119], and MRI-based methods
[120]. The collaborative research efforts from pathology,
redox physiology and biotechnology should continue to
yield valuable insight into the nature of redox imbalance in
genetically triggered TAA and will hopefully translate into
clinical gains at the bedside to improve morbidity and mor-
tality for patients.

Conclusion

There is an emerging body of evidence that confirms a role of
oxidative stress in the pathogenesis of genetically triggered
TAA but further research is required. End products of ROS-

mediated cell damage present suitable candidates for bio-
marker development for staging and prognosis but the chal-
lenge lies in reliable, non-invasive quantitation. Therapeutic
exploitation of ROS pathways may additionally prove
effective in mitigating aneurysmal development and warrants
continued investigation Figure 1.
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