
RESEARCH ARTICLE

In vivo differentiation of induced pluripotent

stem cells into neural stem cells by chimera

formation

Hyun Woo Choi1,2‡, Yean Ju Hong1‡, Jong Soo Kim1, Hyuk Song1, Ssang Gu Cho1,

Hojae Bae3, Changsung Kim4, Sung June Byun5, Jeong Tae Do1*

1 Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University,

Gwangjin-gu, Seoul, Republic of Korea, 2 Department of Cell and Developmental Biology, Max Planck

Institute for Molecular Biomedicine, Münster, Germany, 3 Department of Bioindustrial Technologies, College

of Animal Bioscience and Technology, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea,

4 Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Korea, 5 Animal

Biotechnology Division, National Institute of Animal Science, RDA, Iseo-myeon, Wanju-gun, Jeollabuk-do,

Korea

‡ These authors are co-first authors on this work.

* dojt@konkuk.ac.kr

Abstract

Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all

three germ layers in an in vitro system. Here, we developed a new technology for obtaining

neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment.

iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified

and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs

expressed NSC markers, and their gene-expression pattern more closely resembled that of

fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for

differentiating pluripotent stem cells into specialized cell types whose differentiation proto-

cols are not well established.

Introduction

Pluripotent stem cells are currently considered a valuable resource for studying regenerative

biology and medicine due to their tremendous differentiation potential into all cell types

within the body. To be physiologically relevant, cells differentiated from pluripotent stem cells

in vitro should behave very similarly to their in vivo counterparts in both molecular and func-

tional terms. Therefore, developing proper protocols for differentiating pluripotent stem cells

into specific cell types is a critical step for studying developmental biology and advancing

applications to the clinical stage. For these purposes, long-term expandable somatic cell types

have been derived from pluripotent stem cells, including embryonic stem cell (ESC)- or

induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) [1–3].

Neural stem cells (NSCs) are self-renewing multipotent stem cells that can differentiate into

neurons, astrocytes, and oligodendrocytes [4]. Thus, NSCs can potentially aid the study of
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neural development/differentiation and various neurodegenerative disorders [5]. NSCs were

initially derived and maintained in vitro as 3-dimensional (3D) aggregates known as neuro-

spheres [6–8], which are relatively heterogeneous cell populations showing graduated develop-

mental stages of neural subtypes [9–11]. Defined adherent 2D cultures, which enable the

continuous expansion of pure NSC populations, were established by adding growth factors,

such as fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF), to the culture

media [2]. Recently, Waele et al. developed a new in vitro NSC culture system using decellular-

ized mouse brain sections, which support the long-term culture of undifferentiated NSCs [12].

However, in vitro NSC populations in neurospheres and adherent cultures did not faithfully

represent the properties of NSCs in vivo [7], as the in vivo NSC niche is the most complex sys-

tem of the body and is yet to be fully understood [13]. Thus, in vitro NSCs cannot fully recapit-

ulate in vivo system.

Here, we developed a new approach for differentiating NSCs that is based on the chimera-

forming ability of iPSCs. Chimera formation is one of the most stringent assay to test functional

pluripotency of in vivo embryonic cells or in vitro expanded pluripotent stem cells. When plu-

ripotent stem cells are injected into a normal blastocyst, they become incorporated into the

inner cell mass (ICM) and form a chimeric blastocyst, which develops into a chimeric embryo

after transfer to a surrogate mother. Naïve pluripotent stem cells should form a chimera, which

contains cells of 2 different origins (the blastocyst and injected pluripotent stem cells), in vari-

ous tissue types, including endodermal, ectodermal, and mesodermal tissues. In this study,

iPSCs successfully contributed to the brain tissue of chimeric embryos, from which iPSC-

derived NSCs could be isolated and cultured. The in vivo NSCs derived from chimeric brain tis-

sue were very similar to fetal brain-derived NSCs and, thus, were further characterized.

Materials and methods

Animal use ethical statement

Experiments were carried out in accordance with the approved guidelines and all experimental

protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of

Konkuk University. All mouse strains were bred and housed at the mouse facility of the Kon-

kuk University or were bought from Orient-Bio Inc. (Gyeonggi-do, Korea; http://www.orient.

co.kr). Animal welfare was under control of local committees. Mice were housed in a tempera-

ture-controlled room with automated darkness-light cycle system, fed with a regular ad libi-

tum feeding. Before oocyte harvesting, mice were sacrificed by carbon dioxide inhalation.

Generation and culture of iPSCs

iPSCs were generated using the same protocol reported previously [14]. MEFs obtained from

OG2+/-/ROSA26+/- double-transgenic mice which were carrying Oct4-GFP and neo/lacZ were

infected with retroviruses encoding 4 transcription factors (Oct4, Sox2, Klf4, and c-Myc). After

retroviral infection, Oct4-GFP-positive colonies were transferred onto inactivated MEF feeder

layers, trypsinized, re-plated, and cultured in ESC medium (Dulbecco’s modified Eagle’s

medium (DMEM; Gibco) supplemented with 15% fetal bovine serum (FBS; Gibco), 1× penicil-

lin/streptomycin/glutamine, 1 mM nonessential amino acids (NEAA; Gibco), 0.1 mM β-mer-

captoethanol (Gibco), and 1000 U/ml leukemia inhibitory factor (LIF; ESGRO, Chemicon) [14].

Generation and culture of fetal brain-NSCs

To derive Fetal brain-NSCs, brain tissue was collected from 13.5 days postcoitum (dpc) fetuses,

which were ROSA26/OG2 heterozygous double transgenic. Neurospheres cultured from brain
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tissue were prepared as described in detail in our previous article [15]. In Brief, brain tissue

was enzymatically dissociated in HBSS (with 2 mM glucose) containing 0.7 mg/ml hyaluronic

acid, 0.2 mg/ml kynurenic acid, and 1.33 mg/ml trypsin at 37‘C for 30 min. The dissociated

cells were passed through a 70um nylon mesh to remove large cell clusters. The cells were then

centrifuged at 200 g for 5 min and collected by centrifugation in 0.9 M sucrose in 0.5× HBSS at

750 g for 10 min. The cell pellet was resuspended in 2 ml of culture medium, placed on top of

10 ml of 4% bovine serum albumin (BSA) in EBSS solution, and centrifuged at 200 g for 7 min.

The culture medium was supplemented with 20 ng/ml epidermal growth factor (EGF; Gibco

BRL), 20 ng/ml basic fibroblast growth factor (bFGF), B27 supplement (Gibco BRL), 8 mM

HEPES, 2 mM glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin in DMEM-F12

medium (Gibco BRL). Primary neurospheres were replated onto gelatinized dishes in NSC

expansion medium: NS-A media (Euroclone) supplemented with N2 supplement, 10 ng/ml of

EGF, and bFGF (Invitrogen), 50 mg/ml bovine serum albumin (BSA Fraction V; Gibco BRL),

1× penicillin/streptomycin/glutamine, and 1 × nonessential amino acids (Gibco BRL). Out-

growing cells were trypsinized, replated, and cultured in NSC expansion medium. NSCs were

established by dissociation and replated onto gelatin-coated dishes in NSC expansion

medium.

Differentiation of iPSCs into NSCs in vitro and in vivo

For in vitro differentiation, iPSCs (passage 22) were cultured for 2–3 days with MEF medium

supplemented with 15% FBS, 1× penicillin/streptomycin/glutamine, 0.1 mM non-essential

amino acids, and 1 mM β-mercaptoethanol in Dulbecco’s Modified Eagle’s Medium

(DMEM). After 2–3 days in culture, the ESCs were cultured for an additional 2 days without

feeder cells in suspension culture dishes containing N2B27 medium (1:1 mixture of DMEM/

F-12 medium [Gibco BRL] and Neurobasal Medium [Invitrogen], which was supplemented

with EGF [10 ng/ml; Gibco BRL], basic fibroblast growth factor [bFGF; 10 ng/ml; Invitrogen],

N2 supplement, B27 supplement [Gibco BRL], and 1× penicillin/streptomycin/glutamine).

Then, the cells were plated in 0.1% Gelatin-coated dishes containing NSC expansion medium:

DMEM/F12 supplemented with N2 supplement, EGF (10 ng/ml), bFGF (10 ng/ml), bovine

serum albumin (BSA; 50 mg/ml; Gibco BRL), and 1× penicillin/streptomycin/glutamine; this

step was followed by culture for 3 days. For in vivo differentiation, Clumps of iPSCs (4–10

cells, passage 22) were aggregated with denuded, post-compacted, 8-cell-stage B6C3F1

embryos to obtain aggregated embryo. The aggregated blastocysts were transferred into a uter-

ine horn of 2.5-dpc pseudopregnant recipients. After 10 days, the whole brain from each chi-

meric embryo was trypsinized and dissociated into single-cell suspensions. To form

neurospheres, these cells were cultured in N2B27 medium for 8–10 days. The formed neuro-

spheres were transferred to Gelatin-coated dishes in NSC expansion medium.

Single cell clonal expansion of NSCs

To generate single cell-derived NSC line, single cells of each NSC line were plated onto the

96well-round-bottom plate with culture medium. The culture medium was supplemented

with 20 ng/ml epidermal growth factor (EGF; Gibco BRL), 20 ng/ml basic fibroblast growth

factor (bFGF), B27 supplement (Gibco BRL), 8 mM HEPES, 2 mM glutamine, 100 U/ml peni-

cillin, and 100 mg/ml streptomycin in DMEM-F12 medium (Gibco BRL). Single cells were

expanded for 14 days on average. Expanded neurospheres were replated onto gelatinized

dishes in NSC expansion medium: NS-A media (Euroclone) supplemented with N2 supple-

ment, 10 ng/ml of EGF, and bFGF (Invitrogen), 50 mg/ml bovine serum albumin (BSA Frac-

tion V; Gibco BRL), 1× penicillin/streptomycin/glutamine, and 1 × nonessential amino acids
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(Gibco BRL). Outgrowing cells were trypsinized, replated, and cultured in NSC expansion

medium. Single cell derived-NSC lines were established by dissociation and replated onto gela-

tin-coated dishes in NSC expansion medium.

Differentiation of NSCs into neurons and glial cells

For neuronal differentiation, NSCs were differentiated in N2B27 medium (1:1 mixture of

DMEM/F12 medium; (Gibco), Neurobasal medium (Gibco) supplemented with N2 supple-

ment, B27 supplement (Gibco), 1× penicillin/streptomycin/glutamine, and bFGF (10 ng/ml))

for 3days. NSCs were further differentiated for additional 8 days in N2B27 medium (1:1 mix-

ture of DMEM/F12 medium (Gibco), Neurobasal medium (Gibco) supplemented with N2

supplement, B27 supplement (Gibco BRL), 1× penicillin/streptomycin/glutamine, and ascor-

bic acid (200uM)). For glial differentiation, NSCs were differentiated for 2 weeks in glial differ-

entiation medium (1:1 mixture of DMEM/F12 medium (Gibco), Neurobasal medium (Gibco)

supplemented with 1% fetal bovine serum (Gibco), N2 supplement (Gibco), B27 supplement

(Gibco), 1 × penicillin/streptomycin/glutamine (Gibco)).

X-gal staining

Chimeric embryos and chimera-derived NSCs cells were rinsed with phosphate-buffered

saline (PBS) and fixed in paraformaldehyde (4%) for 20 min at 4˚C. Cells were rinsed 3 times

at room temperature in PBS containing ethylene glycol tetraacetic acid (5 mM), doxycholate

(0.01%), NP40 (0.02%), and MgCl2 (2 mM). Cells were washed with PBS and stained in X-gal

staining solution: PBS supplemented with 5-bromo-r-chloro-3-indolyl-galactosidase (X-gal; 1

mg/mL; Promega), K2Fe(CN)6 (5 mM), K4Fe(CN)6 (5 mM), and MgCl2 (1 mM). Blue staining

was visualized by light microscopy.

Immunocytochemistry

For immunocytochemistry, cells were fixed in paraformaldehyde (4%) for 20 min at 4˚C. After

washing with PBS, the cells were treated with PBS containing BSA (3%) and Triton X-100

(0.03%) for 45 min at room temperature. The primary antibodies used were anti-Nestin (Nes-

tin; monoclonal, 1:500, Millipore, MAB353) anti-Sox2 (Sox2; polyclonal, 1:500, Millipore,

AB5603), anti-MAP2 (MAP2; polyclonal, 1:200, Cell signalling, 4542S), and anti-GFAP

(GFAP; polyclonal, 1:1000, abcam, ab7260). For detection purposes, fluorescently labelled

(Alexa Fluor 488 or 568; Molecular Probes, Eugene, OR, USA) secondary antibodies were

used, according to the specifications of the manufacturer.

PCR

The PCR primers used were as follows: Oct4 TG sense 5'-GACGGCATCGCAGCTTGGATA-
3', Oct4 TG antisense 5'-CCAATACCTCTGAGCCTGGT-3'; Sox2 TG sense 5'-GACGGC
ATCGCAGCTTGGATA-3', Sox2 TG antisense 5'-CGCTTGGCCTCGTCGATGAA-3'; Klf4 TG

sense 5'-GACGGCATCGCAGCTTGGATA-3', Klf4 TG antisense 5'-GGGAAGTCGCTTCAT
GTGAG-3'; c-Myc TG sense 5'-GACGGCATCGCAGCTTGGATA-3', c-Myc TG antisense

5'-ACCGCAACATAGGATGGAGA-3'; and Oct4-GFP sense 5'-GCAAGCTGACCCTGAAG
TTCA-3', Oct4-GFP antisense 5'-TCACCTTGATGCCGTTCTTCT-3'.

RNA isolation and real-time (q) RT-PCR analysis

Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Venlo, Netherlands, http://www.

qiagen.com) and was treated with DNase to remove genomic DNA contamination. One
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microgram of total RNA was reverse-transcribed with Super-Script III Reverse Transcriptase

Kit (Invitrogen) and oligo(dT) primer (Invitrogen) according to the manufacturer’s instruc-

tions. Quantitative polymerase chain reaction (PCR) reactions were set up in duplicate with

the Power SYBR Green Master Mix (Takara) and analyzed with the Roche LightCycler 5480

(Roche). The primers for qRT-PCR used were as follows: Nestin (endo) sense 5'-AAG TTC
CCA GGC TTC TCT TG-3', Nestin (endo) antisense 5'-GTC TCA AGG GTA TTA GGC AAG
G-3'; Sox2 (endo) sense 5'-CAT GAG AGC AAG TAC TGG CAA G-3', Sox2 (endo) anti-

sense 5'-CCA ACG ATA TCA ACC TGC ATG G-3', Oct4 TG sense 5’-GACGGCATCG
CAGCTTGGATA-30, Oct4 TG antisense 5’-CCAATACCTCTGAGCCTGGT-3’; Sox2 TG

sense 50-GACGGCATCGCAGCTTGGATA-30, Sox2 TG antisense 5’-CGCTTGGCCTCGT
CGATGAA-30; Klf4 TG sense 5’-GACGGCATCGCAGCTTGGATA-3’, Klf4 TG antisense

5’-GGGAAGTCGCTTCATGTGAG-3’; c-Myc TG sense 5’-GACGGCATCGCAGCTTGGATA-
30, c-Myc TG antisense 50-ACCGCAACATAGGATGGAGA-30; ACTB sense 5’-CGCCATGG
ATGACGATATCG-3’, and ACTB antisense 5’-CGAAGCCGGCTTTGCACATG-3’.

Microarray

Fetal brain-NSCs (from 13.5dpc fetuses, ROSA26/OG2 heterozygous double transgenic),

iPS-NSCs #1, #3 (In vitro differentiated), iPS-cNSCs (In vivo differentiated, chimeric),

NED-NSCs (normal embryo-derived), MEFs (from 13.5dpc fetuses, ROSA26/OG2 heterozy-

gous double transgenic), and ESCs (OG2 heterozygous double transgenic) were used for analy-

sis. Total RNA was isolated using the RNeasy Mini Kit (Qiagen) and digested with DNase I

(RNase-free DNase, Qiagen), according to the manufacturer’s instructions. Total RNA was

amplified, biotinylated, and purified using the Ambion Illumina RNA Amplification Kit

(Ambion), according to the manufacturer’s instructions. Labelled cRNA samples (750 ng)

were hybridized to MouseRef-8 v2 Expression BeadChip. Signal detection was performed with

Amersham Fluorolink Streptavidin-Cy3 (GE Healthcare Bio-Science), according to the bead

array manual. Arrays were scanned with an Illumina Bead Array Reader, according to the

manufacturer’s instructions.

Raw data were extracted using the software provided by the manufacturer (Illumina Geno-

meStudio v2011.1, Gene Expression Module v1.9.0). Array data were filtered using a detection

p value < 0.05 in at least 50% of the samples. Selected probe signals were log-transformed and

normalized using the quantile method. Comparative analysis was performed using the local-

pooled-error test and fold-change. The false discovery rate was controlled by adjusting the p
value with the Benjamini–Hochberg algorithm. Hierarchical clustering was performed using

complete linkage and the Pearson distance as a measure of similarity. MDS analysis was per-

formed using expression data of sample. Distance matrix within sample was calculated by

Euclidean method. Caculation was performed with classical multidimensional scaling. The

gene expression profiling files are available from the GEO database (accession number

GSE87597)

Results

Differentiation of iPSCs into NSCs in vivo by chimera formation

First, we generated iPSCs using murine embryonic fibroblasts (MEFs) obtained from

OG2+/-/ROSA26+/- double-transgenic mice. MEFs were infected with retroviruses encoding

4 transcription factors, namely Oct4, Sox2, Klf4, and c-Myc. The pluripotency of these iPSC

lines was confirmed previously, as was the expression of pluripotency markers, reactivation

of the inactive X chromosome, and formation of germline chimera [14]. We endeavoured to

differentiate iPSCs into NSCs using an in vivo system (Fig 1A). We utilized the fact that ESCs

In Vivo NSCs through chimera formation
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or iPSCs could form a chimera after blastocyst injection or morula aggregation followed by

transfer into a surrogate mother [16, 17]. ESCs or iPSCs can contribute throughout the

whole body of a chimera, including the germ cells. To distinguish the cellular origin (embry-

onic or pluripotent cells), it is essential to use iPSCs that express selection markers. As iPSCs

were derived from MEFs containing Oct4-GFP and neo/lacZ in the Rosa locus, they expressed

GFP in the pluripotent state and ubiquitously expressed the neo/lacZ transgene. Thus, differ-

entiated cells from these iPSCs lose GFP expression, but maintain neo/lac Z expression,

which confers them with neomycin resistance and positive X-gal staining [15, 18].

For the in vivo differentiation of iPSCs, we aggregated iPSCs with morulas to form chime-

ric blastocysts (Fig 1B). After transferring them to a pseudo-pregnant mother, chimeric

embryos were formed (Fig 1C). X-gal staining showed that iPSCs contributed to the chimeric

embryo (Fig 1C). Whole brain tissue was dissected from the chimeric embryos, dissociated

Fig 1. In vivo differentiation of iPSCs into NSCs after chimera formation. (A) Scheme of in vivo

differentiation of iPSCs into NSCs. (B) Aggregated embryo with iPSCs. iPSCs could incorporate into the ICM

(Oct4-GFP+). (C) X-gal staining of chimeric embryos (iPSCs). (D) Neurosphere formation and (E) 2D culturing

of NSCs derived from a chimeric embryo. X-gal-positive staining of in vivo-differentiated NSCs derived from

iPSCs. (F) X-gal staining of iPS-cNSCs and NED-cNSCs. iPS-cNSCs were positive for X-gal staining, but

NED-cNSCs were not. (G) iPS-cNSCs expressed NSC markers, such as NESTIN and SOX2, as determined

by immunocytochemistry. (H) Genotyping of transgenes in iPSCs, iPS-NSCs (#1 and #2), iPS-cNSCs, NED-

cNSCs, and control NSCs (OG2+/-/ROSA26+/-). iPSCs and iPS-derived cells contained transgenes.

doi:10.1371/journal.pone.0170735.g001
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into single cells by trypsinization, and cultured in neurosphere medium to form neuro-

spheres (Fig 1D). The neurospheres were re-plated into NSC medium containing neomycin.

Initially, the chimeric embryo-derived NSCs contained a small population of X-gal-positive

cells among mostly negative cells (Fig 1E). After culturing for 10 days in neomycin-contain-

ing NSC medium, pure populations of iPSC-derived NSCs were obtained (Fig 1F). There-

fore, we could successfully established iPSC-derived NSC cell lines from chimeric embryos,

which are referred to here as iPS-cNSCs (Fig 1F). We also established X-gal- negative NSCs

from chimeric embryos as a negative control, which were normal embryo-derived NSCs

(NED-cNSCs; Fig 2F). The iPS-cNSCs expressed neural stem cell markers such as Nestin and

Sox2 (Fig 2G, S1 Fig). To determine whether iPS-cNSCs have normal differentiation poten-

tial in clonal level, we established and characterized iPS-cNSC-Single cell line (iPS-cNSC-S)

from the single clone (S2 Fig). They could differentiate into neural or glial subtypes. GFAP

and MAP2 staining revealed their differentiation potential is similar for NED-NSCs (S3 Fig).

PCR analysis confirmed that iPSCs (passage 22), iPS-NSCs (in vitro differentiated, #1 and

#2) [14], and iPS-cNSCs contained transgenes of viral origin (4 reprogramming factors) and

Oct4-GFP (Fig 1H), but that NED-cNSCs did not, indicating that iPSC-derived cells and

NED cells could be successfully purified. Moreover, we confirmed these transgenes were suc-

cessfully silenced in iPS-cNSCs (S4 Fig). This approach represents a new technology for dif-

ferentiating iPSCs into NSCs in an in vivo environment. We speculate that NSCs established

from iPSCs through in vivo differentiation systems may display different molecular charac-

teristics and, thus, these cells were further characterized to compare the molecular signature

of the in vitro and in vivo differentiation systems.

Fig 2. Gene-expression pattern of iPS-derived NSCs, in vitro and in vivo. (A) Heatmap analysis of MEFs, ESCs, iPS-NSCs (#1 and #3), iPSC-

cNSCs, brain-derived NSCs, and NED-cNSCs. (B) Hierarchical clustering analysis of MEFs, ESCs, iPS-NSCs (#1 and #3), iPSC-cNSCs, brain-

derived NSCs, and NED-cNSCs. (C–D) MDS and scatter-plot analysis of MEFs, ESCs, iPS-NSCs (#1 and #2), iPSC-cNSCs, brain-derived NSCs,

and NED-cNSCs.

doi:10.1371/journal.pone.0170735.g002
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Gene expression patterns of iPS-NSCs and iPS-cNSCs

To compare the similarity of iPS-NSCs (in vitro system) and iPS-cNSCs to the fetal brain-

derived NSCs (brain-NSCs), we performed mRNA microarray analysis with MEFs, ESCs,

iPS-NSCs, iPS-cNSCs, NED-cNSCs, and fetal brain-NSCs (Fig 2A–2D). The heap map and

scatter plot analyses showed that all NSCs derived from iPSCs through the in vitro and in vivo
systems showed similar gene-expression profiles compared to fetal brain-NSCs (Fig 2A and

2D). However, hierarchical clustering and MDS plot analyses showed small differences in the

plot distributions detected between the different iPSC-derived NSCs (in vitro- and in vivo-

derived). Gene-expression patterns of iPS-cNSCs (in vivo-derived) were closer to fetal brain-

NSCs than those of iPS-NSCs (in vitro-derived cell lines, iPS-NSCs #1 and #3), as shown in Fig

2B and 2C. Interestingly, the gene-expression pattern of in vivo control NED-cNSCs was

slightly more similar to that of the fetal brain-NSCs than the iPS-cNSCs (Fig 2B and 2C).

These results indicated that both the differentiation environment and the cell source may

influence the characteristics of their differentiation products.

Differential gene expression in iPS-NSCs and iPS-cNSCs

To analyse differentially expressed genes in iPSC-derived NSCs, we compared up-regulated

genes or down-regulated genes between iPS-NSCs and iPS-cNSCs (fold-change [FC] > 2). In

iPS-NSCs, 323 genes were up-regulated compared to fetal brain-derived NSCs (Fig 3A). In

total, 407 genes were up-regulated in iPS-cNSCs compared to the corresponding expression

levels in fetal brain-derived NSCs. In addition, 68 genes were identified as up-regulated genes

in both iPS-NSCs (21%) and iPS-cNSCs (16.7%). We also identified 196 and 256 genes that

were down-regulated in iPS-NSCs and iPS-cNSCs, respectively, compared to their expression

levels in fetal brain-derived NSCs. Further analysis revealed that 51 genes were down-regulated

in both iPS-NSCs (26%) and iPS-cNSCs (19.8%).

Next, we performed Gene Ontology (GO) analysis of the differentially expressed genes

identified in iPS-NSCs and iPS-cNSCs. (S1 and S2 Tables) Functional annotation clustering of

differentially expressed genes using GO analysis revealed that the up-regulated genes in

iPS-NSCs were significantly enriched for GO terms linked to ‘blood vessel development’, ‘actin

cytoskeleton organization’, ‘embryonic organ development’, ‘regulation phosphorylation’,

‘cholesterol and sterol biosynthetic process’, ‘membrane invagination’, and ‘regulation protein

kinase activity’. The up-regulated genes in iPS-cNSCs were enriched for GO terms linked to

‘acetyl-CoA and coenzyme metabolic process’, ‘energy derivation by oxidation’, ‘nucleotide

biosynthetic process’, ‘regulation of neurological system process’, ‘cellular homeostasis’, and

‘regulation of nervous system development’. Pathway analysis (KEGG pathway) revealed that

up-regulated genes in iPS-NSCs were enriched for terms associated with ‘small cell lung can-

cer’ and ‘cardiomyopathy’. The up-regulated genes in iPS-cNSCs were enriched for terms asso-

ciated with ‘oxidative phosphorylation’ and ‘Alzheimer‘s disease’ (Fig 3B and 3C, S1 Table).

The down-regulated genes in iPS-NSCs were enriched for terms linked to ‘cell-cell adhesion’

and ‘regulation neurogenesis’. The down-regulated genes in iPS-cNSCs were enriched for

terms linked to ‘tube development’, ‘epithelial tube morphogenesis’, ‘chordate embryonic

development’, ‘neural tube formation’, ‘embryonic skeletal system morphogenesis’, ‘cell mor-

phogenesis’, and ‘pyrimidine nucleotide biosynthetic process’ (Fig 3D and 3E, S2 Table).

Discussion

Here, we established in vivo differentiated NSCs (iPS-cNSCs) from iPSCs by chimera forma-

tion, which were similar to fetal brain-derived NSCs in terms of morphology and gene-expres-

sion patterns. These results indicated that iPSCs contributed to the neural lineage in chimeras
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(in vivo environment), which could be purified and then directly cultured as NSCs in vitro.

NSCs established from iPSCs through in vitro and in vivo differentiation systems are very simi-

lar to fetal brain-derived NSCs, but NSCs differentiated from an in vivo system were slightly

more similar to fetal brain-derived NSCs than in vitro-differentiated NSCs. Araki et al. (2013)

used in vivo-differentiated somatic cells from iPSCs for transplantations. They transplanted

Fig 3. Differentially expressed genes in iPS-NSCs and iPS-cNSCs. (A) Up-regulated or down-regulated genes in iPS-NSCs or iPS-

cNSCs, compared with the corresponding expression levels in brain-derived NSCs. (B) GO analysis of genes that were up-regulated in

iPS-NSCs, when compared with brain-derived NSCs. (C) GO analysis of genes that were up-regulated in iPS-cNSCs, when compared with

brain-derived NSCs. (D) GO analysis of down-regulated genes in iPS-NSCs. (E) GO analysis of down-regulated genes in iPS-cNSCs.

doi:10.1371/journal.pone.0170735.g003
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skin cells, a type of in vivo-differentiated somatic cells, from the tails of chimeric mice and

showed that the transplanted cells were sustained over 10 months, which exceeded the period

in which in vitro-differentiated somatic cells were sustained post-transplantation [19]. There is

another useful approach for in vivo differentiation system. Specific cell types could be isolated

from pluripotent stem cells through teratoma formation, which was based on the ideas of tera-

toma contained diverse cell types [20–22]. We also found that in vivo differentiation through

teratoma formation could be used to differentiate PSCs into NSCs [23]. Chimera-derived dif-

ferentiated NSCs also were more similar to fetal brain-derived NSCs than to NSCs derived by

in vitro differentiation. These results suggested that the differentiation environment influences

gene expression in differentiated cells and could be a crucial factor determining the character-

istics of the differentiated cells from iPSCs.

Differentiating pluripotent stem cells into specialized cell types is potentially useful, not

only for clinical transplantation applications, but also as a research tool for studying the basic

mechanisms of diseases. Recently, pluripotent stem cells such as ESCs and iPSCs were reported

to be differentiated into NSCs in vitro, which could be maintained in culture, while retaining

the ability to differentiate into neuronal or glial cells [2, 14]. However, data from a recent study

showed that the low efficiency of differentiation from iPSCs was associated with transgene

reactivation [24]. Transgenes of reprogramming factors can be integrated into the genomes of

iPSCs using retroviral, lentiviral, or plasmid vector systems [25]. The in vitro differentiation of

retrovirus-derived iPSCs into NSCs was slower (4–7 weeks) than that of ESCs (1–2 weeks)

[14]. Here we showed that in vivo differentiation following chimera formation could overcome

the differentiation delay problem of retrovirus-derived iPSCs. The iPSCs developed using ret-

roviral transgene expression efficiently differentiated into NSCs through chimera formation

without a delay of NSC formation in brain tissue. Furthermore, we could not see re-repro-

gramming in the iPS-cNSCs, which was observed in NSCs differentiated in vitro [14].

The results of several studies have suggested that lentiviral or retroviral transgenes were re-

expressed when the iPSCs were differentiated in vitro [14, 24]. iPSC-derived neurospheres

contained undifferentiated Nanog-GFP-positive cells, which could form teratomas in NOD/

SCID mice [26]. Exogenous Oct4 expression was detected in Nestin-positive neural progenitor

cells and in TuJ1- and TH-positive neurons differentiated from human iPSCs induced by a

lentivirus [24]. Moreover, we showed that NSCs differentiated from iPSCs could be reverted

into the pluripotent state after 10 passages. The integrated transgenes in iPSCs were reactivated

after differentiation into NSCs, following the down-regulation of DNA methyltransferases and

DNA methylation of the transgenes [14]. However, only about 33% (1/3) of the NSC lines

reverted into pluripotent cells, indicating that not all transgenes were reactivated when iPSCs

differentiated. Here, we showed that in vivo-differentiated NSCs did not contain undifferenti-

ated cells (S5 Fig). We derived 2 iPS-cNSC lines, which did not show any sign of reprogram-

ming into the pluripotent state after more than 10 passages. Moreover, exogenous factors were

silenced in all iPS-cNSC cell lines (S4 Fig).

In this study, we successfully differentiated and isolated NSCs from iPSCs after chimera for-

mation. This system could be applied to obtain various differentiated cell types from iPSCs,

such as hepatocytes or endothelial cells. In addition, the in vivo differentiation method based

on chimera formation can be used for differentiating pluripotent stem cells into cell types

whose differentiation protocols have not been well established. Although ethical consider-

ations challenge translating the chimera-formation method to humans, as a therapeutic

resource, as naïve human pluripotent stem cells were established recently [27–29], there is a

possibility for cross-species chimera formation. Also, an efficient differentiation protocol or

mimic of the in vivo environment should be developed for human applications, such as with

an in vitro 3D cerebral organoid culture system.
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Supporting information

S1 Fig. Neural stem cell marker expression of iPS-NSCs and iPS-cNSCs. (A) Gene expres-

sion levels of the NSC marker Nestin and Sox2 in brain-derived NSCs, iPS-NSCs, and iPS-

cNSCs. Data are presented as mean±SD of triplicates (n = 3).

(TIF)

S2 Fig. Establishment of iPS-cNSC-single cell line (iPS-cNSC-S). (A) Neurosphere formation

and establishment of iPS-cNSC-Single cell-line (iPS-cNSC-S) from single cell. (B) iPS-cNSCs

expressed NSC markers, such as NESTIN and SOX2, as determined by immunocytochemistry.

(TIF)

S3 Fig. Differentiation potential of NED-NSCs and iPS-cNSCs. (A) iPS-cNSC-S and

NED-NSCs could differentiate into glial (GFAP+) or neural (MAP2+) lineage. (B) Quantifica-

tion of the lineage-specific differentiation efficiency by NED-NSCs and iPS-cNSC-S. Error

bars indicate the standard error of the mean.

(TIF)

S4 Fig. Transgene expression of iPS-cNSCs. (A) Expression levels of exogenous 4 Factor

(Oct4-TG, Klf4-TG, Sox2-TG, and c-Myc-TG) in iPSCs (Negative control), iPS-NSCs (Positive

control, Transgene re-expressed, established in our previous article [14]), iPS-cNSCs, and

NSCs 4F (Positive control). NSCs 4F were control, infected retroviral four factors in, respec-

tively. Data are presented as mean±SD of triplicates (n = 3).

(TIF)

S5 Fig. Inactivation of Oct4-GFP in iPS-derived NSCs. (A) iPS-cNSC-S and iPS-NSCs were

negative for Oct4-GFP transgene expression.

(TIF)

S1 Table. GO analysis and KEGG-pathway analysis of genes that were up-regulated in

iPS-NSCs, when compared with brain-derived NSCs.

(PDF)

S2 Table. GO analysis and KEGG-pathway analysis of genes that were down-regulated in

iPS-NSCs, when compared with brain-derived NSCs.

(PDF)
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