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This study attempted to investigate how clonal structure evolves, along with potential
regulatory networks, as a result of multiline therapies in relapsed/refractory multiple
myeloma (RRMM). Eight whole exome sequencing (WES) and one single cell RNA
sequencing (scRNA-seq) were performed in order to assess dynamic genomic
changes in temporal consecutive samples of one RRMM patient from the time of
diagnosis to death (about 37 months). The 63-year-old female patient who suffered
from MM (P1) had disease progression (PD) nine times from July 2017 [newly
diagnosed (ND)] to Aug 2020 (death), and the force to drive branching-pattern
evolution of malignant PCs was found to be sustained. The mutant-allele tumor
heterogeneity (MATH) and tumor mutation burden (TMB) initially exhibited a downward
trend, which was then upward throughout the course of the disease. Various somatic
single nucleotide variants (SNVs) that had disappeared after the previous treatment were
observed to reappear in later stages. Chromosomal instability (CIN) and homologous
recombination deficiency (HRD) scores were observed to be increased during periods of all
progression, especially in the period of extramedullary plasmacytoma. Finally, in
combination with WES and scRNA-seq of P1-PD9 (the nineth PD), the intro-
heterogeneity and gene regulatory networks of MM cells were deciphered. As verified
by the overall survival of MM patients in the MMRF CoMMpass and GSE24080 datasets,
RUNX3 was identified as a potential driver for RRMM.
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INTRODUCTION

Multiple myeloma (MM) is a plasma cell malignancy that is
characterized by highly intra-clonal heterogeneity. Despite
emerging novel therapeutic strategies, response to treatment
and final outcomes continue to vary in MM patients, and the
disease is considered to be mostly incurable. During MM
progression, therapeutic pressure may bestow a selective
advantage on sub-clonal expansion through which the fittest
subclone will dominate. In turn, the presence of sub-clonal
mutations may affect the subsequent efficacy of the targeted
therapy, resulting in a vicious cycle. The development of anti-
MM therapy requires an understanding of driver genetic
alterations, gene regulatory networks as well as an
appreciation of the evolutionary processes of malignant plasma
cells (PCs).

Recently, large-scale genomic sequencing studies have
provided deep insights into the genetic landscape of MM
(Robiou du Pont et al., 2017; Walker et al., 2018), which may
provide potential targeted candidates for personalized therapy.
However, most of these studies obtained only a single, or at most
two, samples from each individual patient. Little is known about
the temporal clonal evolutionary processes in refractory or
multiple relapsed MM. In 2012, three landmark studies
provided insight into the intra-clonal heterogeneity early at the
diagnosis and different stages of MM after relapse (Egan et al.,
2012; Keats et al., 2012; Walker et al., 2012), suggesting a
Darwinian model of tumor evolution in MM.

In this study, whole exome sequencing (WES) and single cell
RNA-sequencing (scRNA-seq) are simultaneously applied in order
to determine dynamic genomic changes among eight temporal
consecutive samples of one relapsed and refractory MM (RRMM)
patient from the time of diagnosis to death (about 37 months). By
searchingdatasets from the Multiple Myeloma Research
Foundation (MMRF) CoMMpass (Clinical Outcomes in MM to
Personal Assessment of Genetic Profile) study (n � 766) and Gene
Expression Omnibus (accession GSE24080, n � 559), RUNX3, a
member of runt-related transcription factor family (referred to as
RUNXs), is shown to serve as a potential driver for RRMM or
secondary plasma cell leukemia (PCL). Accordingly, from
genomics to single cell transcriptomes, the manner in which the
clonal structure and regulatory networks evolved under the
pressure of multiline therapies was investigated.

MATERIALS AND METHODS

Patients and Samples
A 63-year-old female patient with MM (P1) suffered progressive
disease (PD) nine times from July 12, 2017 (new diagnosis (ND)) to
August 8, 2020 (death) at Zhongshan Hospital, Fudan University.
Since she also suffered from coronary atherosclerotic heart disease
and undergone twice percutaneous coronary intervention in the
period from ND to PD2, she missed benefiting from the best
opportunity for receiving autologous hematopoietic stem cells.
Eight temporal consecutive samples (ND, PD1, PD2, PD3, PD4,
PD6, PD8, and PD9) were collected. The samples fromND to PD6

were CD138 positive PCs from bone marrow, while PD8 sample
were tissues from extramedullary plasmacytoma. In the end-stage
of MM (PD9), malignant PCs appeared in her peripheral blood
(PB), the proportion of which reached 10%. The patient refused to
undergo bone marrow aspiration again. Therefore, for PD9,
CD138 positive PCs from PB were used for WES, PB
mononuclear cells (PBMC) were used for scRNA-seq.

The diagnosis for MM, International Staging System stage
(ISS), and Durie-Salmon stage (DS) were determined in
accordance with the criteria of International Myeloma
Working Group (IMWG), 2018 (Kumar and Rajkumar, 2018).
The definition of progressive disease (PD) adhered to the IMWG
consensus criteria for response in 2016 (Kumar et al., 2016). Time
to progression (TTP) was calculated from the initiation of therapy
to progression. Electronic records of this RRMM patient were
reviewed. Written informed consent was provided by the patient
according to the Declaration of Helsinki. This study was
approved by the ethics committee of Fudan University,
Zhongshan Hospital (B2017-031R).

Collection of Mononuclear Cells and
CD138+/CD138- Cell Sorting
Collecting mononuclear cells from bone marrow (BM) aspirate
and peripheral blood (PB), along with sorting CD138+/CD138-
plasma cells from BM mononuclear cells (BMMC), were
performed as previously described (Xu et al., 2020).

Deoxyribonucleic Acid Extraction, Library
Construction and Whole Exome
Sequencing Basic Data Analysis
Genomic DNA were extracted from the sorted CD138 + plasma
cells and matched PB mononuclear cells (PBMC) by utilizing the
QIAamp DNA Mini kit (250) (51,306, QIAGEN). DNA was
subsequently quantified using the Qubit 3.0 (Invitrogen) and
Nanodrop spectrophotometer (Thermo Fisher Scientific), while
integrity was assessed using 1% agarose electrophoresis. Genomic
libraries were then captured using the Agilent SureSelect Human
All Exon V6 kit (Agilent Technologies, United States).
Approximately 2–3 μg genomic DNA was sheared to
150–220 bp small fragments using a sonicator (Covaris, Inc.,
Woburn, MA). DNA was purified and treated with reagents
supplied with the kit according to the given protocol. Adapters
from Agilent were ligated onto the polished ends, and the libraries
were amplified using polymerase chain reaction. The amplified
libraries were then hybridized with the Agilent SureSelect Human
All Exon V6 (Müeller-Pillasch et al., 1997) probes. The DNA
fragments bound with the probes were washed and eluted with the
buffer provided in the kit. These libraries were sequenced on the
Illumina sequencing platform (HiSeq X-10, Illumina, Inc., San
Diego, CA), after which 150 bp paired-end reads were generated.

The raw data (FASTQ format) were pre-processed with fastp
(version: 0.19.5) (Chen et al., 2018). Reads containing less than 70%
baseswith average quality value below 20 (Q20)were filtered out using
the NGSQC toolkit (version 2.3.2). Bases with a quality below Q20
were trimmed from the 3’ end. Reads with ambiguous bases or those
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shorter than 75 bp were also removed. High quality and clean reads
were aligned to the reference human genome (GRCh37/hg19) using
the Burrows-Wheeler aligner (BWA) (version 0.7.12) (Li and Durbin,
2009). Duplicate reads were removed using Picard (version 4.1.0.0).
The mapped reads were sorted and indexed using the Sequence
Alignment Map tool (SAMtools, version 1.4) (Li et al., 2009). The
Genome Analysis Toolkit (GATK, version 4.1.0.0) (McKenna et al.,
2010) was used for the recalibration of base quality score and
realignment of single nucleotide polymorphisms (SNPs) and short
insertion/deletions (INDELs). The final BAM files were used as input
files for variant calling. Variants were annotated using ANNOVAR
(Wang et al., 2010). The somatic mutations including somatic single
nucleotide variants (SNVs) and somatic INDELswere screened out by
comparing the variants between CD138+ plasma cells and the
matched PBMC using MuTect2 (version 1.1.7) (Cibulskis et al.,
2013). Identification of copy number alterations (CNA) were called
using the Control-FREEC software (Boeva et al., 2012). The whole
exome sequencing was conducted by OE Biotech Co., Ltd (Shanghai,
China).

Clonal Evolution Analysis
All somatic mutations of the eight consecutive samples at
different stages (ND-PD1-PD2-PD3-PD4-PD6-PD8-PD9) were
merged. Nonsynonymous somatic mutations and INDELs that
changed the protein amino acid sequence were then filtered out.
The sites with maf >0.01 in the population database of 1000 g,
exac, gnomad, esp6500, as well as sites with a depth of less than
30, were then removed. Pyclone software was used to analyze the
clone type of each sample. Based on the results of Pyclone,
ClonEvol was used to analyze the evolution of clones between
samples. According to the ClonEvol findings, the fishplot R
package was used to draw a fish pattern (Roth et al., 2014).

Screening of Known Driver Genes
In order to identify the mutated driver genes, all somatic
variations in each sample were then compared with the known
driver genes. The sources of the driver genes for comparison were:
1) CGC513: driver gene listed in Cancer Gene Census list; 2) Bert
Vogelstein125 (Vogelstein et al., 2013): 125 mut-driver genes in
Bert Vogelstein’s paper; and 3) SMG127: a significantly mutated
gene found via TCGA pan-cancer data. The potential driver genes
in these MM samples were screened out.

DNA Ploidy Profiling
Hypodiploidy or whole chromosome deletion is defined by a total
of less than 45 whole chromosomes. However, hyper-diploidy is
defined by chromosome amplification in the form of trisomies or
tetrasomies of odd number chromosomes (48–74 chromosomes).
Estimation of ploidy was analyzed using the Sequenza2 software
(Favero et al., 2015).

Tumor Mutation Burden, Homologous
Recombination Deficiency Scores and
Mutant-Allele Tumor Heterogeneity
TMB � Number of nonsynonymous somatic mutations in the
area of coding sequence (CDS)/Length of CDS. HRD scores were

calculated as previously described using the scarHRD R package
(Davies et al., 2017). MATH � 100 × median absolute deviation
(MAD)/median (Mayakonda et al., 2018).

Chromium 10× Single-Cell 3’ mRNA
Sequencing and Data Processing
The main steps of scRNA-seq for PD9 were cell preparation,
cDNA synthesis, library construction, and sequencing. This
protocol refers specifically to the
CG00052_SingleCell3_ReagentKitv2UserGuide_RevD, which is
downloadable from the 10× Genomics website. The three PBMC
samples of the healthy people were taken from official Chromium
10× (PBMC1 https://cg.10xgenomics.com/samples/cell-exp/3.0.
0/pbmc_10k_v3/pbmc_10k_v3_fastqs.tar;PBMC2 https://cg.
10xgenomics.com/samples/cell-exp/4.0.0/Parent_NGSC3_DI_
PBMC/Parent_NGSC3_DI_PBMC_fastqs.tar; PBMC3 https://cg.
10xgenomics.com/samples/cell-exp/4.0.0/SC3_v3_NextGem_
DI_PBMC_10K/SC3_v3_NextGem_DI_PBMC_10K_fastqs.tar).
The Cell Ranger software pipeline (version 3.1.0) provided by
10 × Genomics was used to demultiplex cellular barcodes, map
reads to the genome and transcriptome using the STAR aligner,
and down-sample reads as required to generate normalized
aggregate data across samples, thereby producing a matrix of
gene counts versus cells. The Seurat R package (version 3.1.1) was
used to process the unique molecular identifier (UMI) count
matrix, remove low quality cells and likely multiplet captures,
obtain the normalized count and gene expression, perform graph-
based clustering and identify marker genes of each cluster. Cells
were visualized using a 2-dimensional t-distributed stochastic
neighbor embedding (t-SNE) algorithm. Differentially expressed
genes (DEGs) were identified using the FindMarkers function. p
value <0.05 and |log2foldchange| > 0.58 were set as the thresholds
for significantly differential expression. Cell trajectory was carried
out by Monocle. Single-cell regulatory network inference, and
clustering (SCENIC) analysis was performed in order to infer the
regulon activity score (Hänzelmann et al., 2013; Trapnell et al.,
2014; Haghverdi et al., 2016).

RESULTS

Interpretation of Therapy-Induced Evolution
of MM Cells Through Analyzing Eight
Temporal Consecutive WES Data
Treatment timeline for P1 is shown in Figure 1A. WES was
conducted with a mean coverage depth of 167× (range: 126-
220X) for CD138 + plasma cells and 173× for PBMCs (control),
consistent with the recommendations for WES. The vast majority
of genomic sequences (99.78–99.97%) were mapped to the hg19
(GRCh37) reference genome. The detailed clinical data of
baseline, as well as each progression of P1, are given in
Supplementary Table S1. The total number of different types
of somatic single nucleotide variants (SNVs) and short insertion/
deletions (INDELs), summary of quality control and mapping
results in the eight consecutive samples are summarized in
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FIGURE 1 | (A) Treatment timeline for P1: After diagnosis with active MM (2017.7.12), P1 received Bortezomib/Dexamethasone (BD) as the primary therapy. After
four cycles of BD, P1 suffered the first PD (PD1, day 1–148, TTP � 148 days). The second line therapy were Bortezomib/Cyclophosphamide/Dexamethasone (VCD).
After three cycles of VCD, P1 suffered the second PD (PD2, day 148–266, TTP � 119 days). Lenalidomide/Adriamycin/Dexamethasone (RAD) were selected as the third
line therapy regimen. The third PD (PD3, day 266–414, TTP � 149 days) occurred after three cycles of RAD. After three cycles of the fourth-line therapy, Ixazomib/
Lenalidomide/Dexamethasone (IRD), P1 suffered the fourth PD (PD4, day 414–503, TTP � 89 days). Ixazomib/Cyclophosphamide/Dexamethasone (ICD) were the fifth-
line therapy regimen. After four cycles of ICD, P1 had a clinical relapse (PD5, day 503–640, TTP � 138 days). The therapy further changed to Melphalan/Prednisone/

(Continued )
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Supplementary Figure S1, Supplementary Table S2 and
Supplementary Table S3, respectively.

In order to investigate the changes in the clonal architecture
and decipher the clonal evolution of MM cells in light of different
treatments, Pyclone and ClonEvol were used. Heterogeneity
(Figure 1B) and the branching-pattern phylogenetic
relationships in these malignant PCs were then detected
(Figure 1C). Notably, after conducting internal balances
between red cluster and dark blue cluster (ND-PD3) four
times, a new clonal cluster (purple) was acquired under the
pressure of multiple-line therapy interventions on PD4.
Branch lengths of the phylogenetic tree were found to be
proportional to the number of nonsynonymous mutations
separating the branching points. The trunk (the dark blue
cluster), which were the most persistent clones, existed
throughout the entire course and formed the mutational
profile of the founder population. The non-trunk cluster,
namely, the red cluster, purple cluster, light blue cluster and
green cluster, were present in some stages.

According to the known driver genes from annotations of
three pan-cancer databases, including CGC513, BV125 and
SMG127, a total of 18 driver variants were identified
(Supplementary Table S4). These driver genes were found to
be scattered along the phylogenetic tree. Surprisingly, the number
of driver genes in the non-trunk cluster (6.0%) was observed to be
higher than that of the trunk cluster (0.8%) (Figure 1D). This
indicated that the force to drive branching-pattern evolution of
malignant PCs was sustained. In view of the heterogeneity and
complex regulating network in MM progression, trunk and non-
trunk genes were enriched into multiple pathways and functions
using the Gene Ontology (GO) databases (Supplementary
Figure S2).

From first diagnosis to the nineth relapse, the MATH of each
sample was determined to be 64.80, 59.65, 50.64, 43.83, 48.47,
43.46, 77.74, and 85.13. Meanwhile, the TMB of each sample was
1.55, 0.99, 0.96, 0.34, 2.14, 1.93, 4,35, and 5.16, respectively. The
trend of MATH and TMB presented an initial gradual downward
trend followed by an upward trend throughout the course of the
disease (Figure 1E). PD3 showed the lowest MATH and TMB in
the eight continues samples. Moreover, only the dark blue cluster

(Trunk) was detected in PD3, which was actually an imbalanced
status of the bulk malignant PCs. In conjunction with the clinical
data presented in Figure 1A, this status actually led to the shortest
TTP as well as a strong and rapid counterattack of the red and
purple clusters (PD4). Accordingly, we attempted to understand
this phenomenon from an evolutionary perspective;
administration according to a fixed and linear protocol is a
selective perturbation that may lead to the emergence of drug-
resistant subclones. Dynamic imbalances may not be conducive
to stabilizing malignant MM cells. Adaptive therapy based on
evolutionary law may provide a potential strategy for RRMM
treatment to attain a fixed tumor population and prolong PFS
rather than reducing malignant cells entirely.

The trinucleotide mutational spectrum of trunk (up) and non-
trunk (down) mutations based on the phylogenetic tree is shown
in Figure 1F. Among all mutations, C > T transitions were found
to be the predominant change. In addition, T [C > T]T (12.61%)
and T [C > T]A (8.11%) transitions dominated the trunk
mutations, while G [C > T]G and G [C > T]C transitions
(8.57 and 8.57%) dominated the non-trunk mutations.

During therapy, most MM patients initially go into remission,
however, drug-resistant mutations may later cause disease
progression. The mutational spectrum was further analyzed
based on the timeline of mutation acquisition (Figure 1G).
This figure illustrates the temporal distribution of depth >50,
copy number >0 and nonsynonymous SNVs detected by WES in
a heat map, with dark blue or red indicating the presence of a
mutation and gray indicating the absence of a mutation. The eight
color bars above the heat map indicate classification of these
SNVs according to the total number of occurrences in the
samples. In terms of gene names, red indicated that the
mutation may be a known driver gene, while black indicated a
passenger gene. Here, only four identical somatic passenger
mutations (FOS, RASAL1, CYB5R1, and DNAH11) were
found to be ubiquitously detectable in all samples. No known-
driver gene was shared between the eight specimens. By observing
the genomics of P1, some SNVs that had disappeared after the
previous treatment were observed to reappear in later stages (red
blocks). Mutations were further classified into susceptible SNVs
and resistant SNVs for each treatment course. GO and Kyoto

FIGURE 1 | Chidamide (MP + Chi). However, P1 had another PD (PD6, day 640–704, TTP � 65 days). The patient received Pomadomide (Pom) as the seventh-line
therapy until the seventh PD (PD7, day 704–811, TTP � 107 days). The eighth-line therapy was Daratumumab and Cyclophosphamide, Thalidomide and
Dexamethasone (CTD) which sustained 171 days until extramedullary plasmacytoma occurred on May 28, 2020 (PD8, day 811–982, TTP � 171 days). Finally, P1
received radiotherapy and Bendamustine/Bortezomib/Dexamethasone (BVD) for three cycles. In the end-stage of disease, malignant PCs appeared in her peripheral
blood (PB), the proportion of which reached 10%. She passed away on Aug 24th, 2020. (B) Fish model showing heterogeneity of malignant PCs from P1 was analyzed
by Pyclone and ClonEvol. After four times internal balances between red cluster and dark blue cluster (ND-PD3), a new clonal cluster (purple) was acquired under the
pressure of multiple-line therapy interventions on PD4. Malignant PCs of PD9 consisted of 1) the always-existing dark-blue trunk sub-group, 2) the purple non-trunk sub-
group evolved from PD4, and 3) the newly emerging green non-trunk sub-group. (C) The branching-pattern phylogenetic relationships in all malignant PCs from P1. (D)
These driver genes were scattered along the phylogenetic tree, surprisingly, the number of driver genes in the non-trunk cluster (6.0%) was higher than the trunk cluster
(0.8%). (E) From the first diagnosis to the nineth relapse, MATH of each sample was 64.80, 59.65, 50.64, 43.83, 48.47, 43.46, 77.74, and 85.13. TMB of each sample
was 1.55, 0.99, 0.96, 0.34, 2.14, 1.93, 4,35 and 5.16, respectively. (F) Among all mutations, C > T transitions were the predominant change. In addition, T [C > T]T (12.
61%) and T [C > T]A (8.11%) transitions dominated the trunk mutations, while G [C > T]G and G [C > T]C transitions (8.57 and 8.57%) dominated the non-trunk
mutations. (G) The temporal distribution of depth >50, copy number >0 and nonsynonymous SNVs detected by WES in a heat map, with dark blue or red indicating the
presence of amutation and gray indicating the absence of a mutation. The eight color bars above the heat map indicate classification of these SNVs according to the total
number of occurrences in the samples. For the gene names, red indicates that the mutation maybe a known driver gene, and black indicates a passenger gene. (H)
Heterogeneity at the copy number (CN) level was analyzed. The ploidy of ND-PD9 samples were 2.029, 3.532, 2.768, 2.753, 2.873, 2.817, 4.556, and 2.774,
respectively.
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Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were conducted, as shown in Supplementary Figure
S3 and Supplementary Figure S4. Based on personal genomics, a
potential treatment strategy—recycle therapy may be considered.

The heterogeneity at the copy number (CN) level was then
analyzed (Figure 1H). The ploidy of ND-PD9 samples were
found to be 2.029, 3.532, 2.768, 2.753, 2.873, 2.817, 4.556, and
2.774, respectively. Remarkably, compared to the ND sample, the
PD samples were observed to possess higher-ploidy karyotypes,
indicating that chromosomal instability (CIN) increased during
the period of progression. Among the PD samples, PD8
(extramedullary plasmacytoma) had the highest ploidy after
the eighth-line therapy, which combined Daratumumab with
Cyclophosphamide, Thalidomide and Dexamethasone (CTD).

HRD scores of each sample are summarized in Table 1, for
which the HRD-sum scores [Loss of Heterozygosity (LDH) +
Number of Telomeric Allelic Imbalances (TAI) + Large Scale
Transitions (LST)] of each sample were found to be 5, 63, 44, 50,
64, 52, 67, and 60. In MM, extramedullary progression is always
associated with treatment resistance as well as a high mortality
rate. The changing trend of HRD scores were observed to be
consistent with ploidy.

CombinationWith Genomics and Single Cell
Transcriptomes Deciphered the
Heterogeneity and Distinct Evolutional
Subpopulations in MM Cells
Next, the single-cell transcriptome data of PD9, from peripheral
blood of P1 (about 10% PCs), were analyzed. After conducting
quality control, 553 356 446 sequence reads and 39 525 reads per
cell for an estimated 14 000 cells were obtained, with 87.3%
confidently mapped to the human reference transcriptome
GRCh38–3.0.0. On average, 937 genes and 2,369 unique
molecular identifiers (UMIs) per cell were detected.

In order to explore the cellular composition of PBMC from
P1_PD9, a comparison was made with the data of three healthy
PBMC controls from the 10 × platform database described in
supplementary methods, while unsupervised clustering was
applied to distinguish the cell types. Finally, PCs, B cells,
monocytes, neutrophils, nature killer cells (NK) and T cells
were categorized and visualized using t-distributed stochastic
neighbor embedding (t-SNE) (Figure 2A). Stacked bar plots

(Figure 2B) demonstrated that, compared to normal
specimens, PCs were significantly increased in the P1 sample.
Identification of PCs subpopulations (cluster 8) was then
performed according to gene markers, including SDC1
(CD138) and MZB1 (Figure 2C).

According to the above WES results of evolutionary tree from
P1 (Figures 1B,C), malignant PCs of PD9 consisted of: 1) the
always-existing dark-blue trunk sub-group; 2) the purple non-
trunk sub-group evolved from PD4; and 3) the newly emerging
green non-trunk sub-group. In view of the mutational profiling of
the above sub-groups, the expression levels of these mutant genes
between PCs from normal control (PBMC1, 2, 3) and P1 were
then compared (Figure 2D). Genes that were not expressed in the
displayed cells were filtered out and not shown on the heatmap.
Based on the results of the heatmap, PCs from P1 was further
grouped as three sub-clusters: 1) PCs expressed higher level of
MNDA (MNDA+, the green non-trunk sub-group); 2) PCs
expressed higher level of C5AR1 but no MNDA (C5AR1+
MNDA-, the purple non-trunk sub-group); and 3) PCs
expressed higher level of FOS or RRBP1 but no MNDA and
C5AR1 (MNDA-C5AR1-RRBP1/FOS+, the dark-blue trunk sub-
group) (Figure 2E). Minimum spanning tree (MST) of malignant
PCs performed by pseudo-time analysis verified that the MNDA
+ sub-cluster evolved from MNDA-C5AR1-RRBP1/FOS + sub-
cluster (Figures 2F,G). The different expression profiles of the
three sub-clusters are illustrated in the corresponding heatmap
(Figure 2H), reflecting dynamic gene expression profiles during
the malignant evolution of MM cells. The AddModuleScore tool
from Seurat was then utilized in order to calculate the module
scores for cell proliferation and cell migration expression in the
three sub-clusters, respectively. Compared to the trunk cluster,
the MNDA + cluster exhibited significantly higher scores in cell
proliferation (p � 0.0187) and cell migration (p < 0.0001)
(Figure 2I). Together, the corresponding data highlighted the
heterogeneity and 180 distinct evolutional subpopulations among
MM cells.

Gene Regulatory Networks Revealed by
scRNA-seq Identify RUNX3 Gene as a
Potential Driver for RRMM
Transcription factors (TFs) and their targeted genes comprise a
complex gene network regulation, referred to as a regulon, that
could determine cell functional identity. Single-cell regulatory
network inference and clustering (SCENIC) analysis was
performed to infer the regulon activity score (RAS) for the
MNDA+, C5AR1+ MNDA- and MNDA-C5AR1-RRBP1/FOS
+ sub-clusters, respectively (Figure 3A). Five regulon modules
were then identified for the three sub-groups according to the
Connection Specificity Index (CSI), indicatinga significant
correlation between different regulons with minimization of
the effects of non-specific crosstalk (Figure 3B). Inter-gene
expression correlations as well as the specifically involved
genes in each module are shown in Figure 3C.

In terms of the most malignant sub-cluster, namely the
MNDA + sub-cluster, the intersection of TFs marked with red
boxes in Figures 3A,B were determined by incorporating the

TABLE 1 | HRD-scores of the P1 patient.

Samples ID LOH* TAI* LST* HRD-sum*

ND 0 3 2 5
PD1 0 39 24 63
PD2 0 36 8 44
PD3 0 32 18 50
PD4 0 37 27 64
PD6 0 31 21 52
PD8 0 39 28 67
PD9 0 34 26 60

Abbreviations: LOH: Loss of Heterozygosity; TAI: Number of Telomeric Allelic
Imbalances; LST: Large Scale Transitions; HRD-sum: Heterozygosity scar.
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FIGURE 2 | (A)Comparing with the data of three healthy PBMC controls from the 10× platform database described above, cell types were identified in P1_PD9 and
were visualized by t-SNE (16 clusters in total). (B) Stacked bar plots show that compared with normal specimens, plasma cells significantly increased and B cells
significantly decreased in the P1 sample. (C) According to gene markers, including SDC1 (CD138) and MZB1, cluster 8 was finally determined to be the malignant PCs.
(D) According to theWES results of evolutionary tree from P1 in Figure 1B and themutational profiling of trunk and non-trunk, the mRNA expression levels of these
mutant genes between PCs from normal control (PBMC1, 2, 3) and malignant PCs from P1 were compared and showed in the heatmap. (E)Malignant PCs in P1 was
further grouped as three sub-clusters: 1) PCs expressed higher level of MNDA (MNDA+, the green non-trunk sub-group inWES results); 2) PCs expressed higher level of

(Continued )
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results of regulation activity and specific modules. Enrichment
analysis using KEGG (Figure 3D) and GO (Figure 3E) of the
9 TFs, including JUNB, CEBPD, IRF1, CEBPB, SPL1, IKZF1,
CEBPA, BACH1, RUNX3, suggested that the TNF signaling
pathway, transcriptional mis-regulation in cancer, regulation of
transcription involved in G1/S transition of mitotic cell cycle may
serve vital roles.

Next, using the MMRF-CoMMpass datasets, a progressive
increase of RUNX3 mRNA expression level with times of PD
were found (Baseline vs. PD 2-4: p � 0.0275, Baseline vs. PD 5-6:
p � 0.0036) (Figure 3F). Moreover, the overall survival (OS) of
the 766 newly diagnosed MM (NDMM) were calculated via
Kaplan-Meier survival analysis in order to estimate the effect
of the above 9 TFs. Accordingly, by univariate survival analysis
(Kaplan-Meier analysis, log-rank test), the RUNX3 mRNA
expression level was found to be the only poor prognostic
factor among the 9 TFs (low vs. high: p � 0.024, median vs.
high: p � 0.025) (Figure 3G). Furthermore, multivariate survival
analysis by Cox regression, including age, Eastern Cooperative
Oncology Group performance status (ECOG) and the Revised
International Staging System (R-ISS), identified the RUNX3 gene
as an independent prognostic factor for OS (Table 2, p � 0.027).
The survival effect of the RUNX3 gene was then validated in the
GSE24080 dataset (Kaplan-Meier analysis, log-rank test, median
vs high: p � 0.013) (Figure 3H). While for the multivariate
survival analysis, including age, cytogenetic abnormalities,
albumin and beta-2 micro-globulin, RUNX3 showed a trend
to be an independent prognositic factor for OS (Table 3, p �
0.070). The corresponding findings suggest that the RUNX3 gene
may be a potential therapeutic target for the treatment of MM.

DISCUSSION

In this study, temporal consecutive genetic analysis provided
evidence of heterogeneity in MM and unmasked the evolutionary
trajectories of PCs derived by multi-line therapies. Based on somatic
mutations, the evolution trajectory was constructed to reflect the
development of this RRMM patient, showing that the dominant
pattern was branch evolution. Final scRNA-seq data provided new
evidence and insights into deciphering the heterogeneity and
evolution in RRMM, which are pivotal in dissecting MM-related
mechanisms in detail. We hypothesized that MM clonal evolution
and progression underlie Darwinian selection, which are mediated
by tumor-intrinsic characteristics as well as extrinsic pressure.

In the past decades, the survival of most MM patients has
improved significantly due to the development of autologous
stem cell transplantation (ASCT) and novel agents, including
proteasome inhibitors, immunomodulatory drugs, and
monoclonal antibodies (Kumar et al., 2008). Despite its overall
improvement, a group of high-risk patients with clinically

aggressive behaviors (PFS less than 18 months, OS less than
1.5–3 years) continues to suffer. Current therapies rarely
consider molecular information to personalized MM therapy. In
order to continually improve MM patients’ outcomes, information
regarding the genomic abnormalities leading to these heterogenous
outcomes should be incorporated into personal clinical care
(Pawlyn and Davies, 2019). Recently, high-throughput
sequencing has brought about personalized treatment according
to the specific genetic composition and molecular phenotype of
patients. Notably, in this study, a majority of known MM driver
genes previously reported did not actually exist in this individual’s
MM genome sequences (Robiou du Pont et al., 2017), suggesting
that MM is a highly heterogeneousmalignant disease, and personal
omics is crucial in clinical management. This is conducive in
developing individualized targeted medication and identifying
potential personal therapeutic targets. In this case, mutations
may be classified into susceptible SNVs and resistant SNVs for
each of P1’s treatment courses. Disappearance of susceptible
somatic mutations and emergence of resistant somatic
mutations may provide guidance for personalized-therapy.
Accordingly, agents effective against these recurring mutations
during the earlier stages may be re-administrated. The alternate
use of agents not only conforms to the theory of adaptive therapy,
but also provides a therapeutic solution for multi-line recurrence
MM patients.

In regard to MATH and TME, dynamic imbalance was found
to not be conducive to stabilizing malignant MM cells. In 2009,
Gatenby et al. (2009) first put forward the adaptive therapy theory
and presented powerful mathematical models to represent their
findings. They pointed out that resistant populations that are
present before therapy would rapidly grow with treatments
designed to kill the majority of malignant cells, which is a
result of removal of the inhibitory effect that the sensitive
population has on the resistant population, in conjunction
with the disturbed balance between both populations.
Adaptive therapy takes advantage of the inhibitory effect of
the sensitive population on the resistant population, leading to
the slow growth of entire cancer cells. A study on the spatial and
temporal clonal evolution of intrahepatic cholangiocarcinoma
also provided a theoretical basis for adaptive therapy (Dong et al.,
2018). Recently, An et al. (2020) reported that persistent
cytogenetic abnormalities were detected in residual PCs in the
majority of MM patients, which were even present in the minimal
residual disease (MRD) negative cohort. These findings may
further provide evidence for the potential effectiveness of
adaptive therapy in MM treatment.

Moreover, understanding the trajectories of the temporal
consecutive changes of PCs may serve as a powerful tool in
estimating risk of progression and could bring about profound
implications in clinical management. According to Charlotte
Pawlyn and Gareth J Morgan (Pawlyn and Morgan, 2017),

FIGURE 2 | C5AR1 but noMNDA (C5AR1+ MNDA-, the purple non-trunk sub-group inWES results); and 3) PCs expressed higher level of FOS or RRBP1 but noMNDA
and C5AR1 (MNDA-C5AR1-RRBP1/FOS+, the dark-blue trunk sub-group in WES results). (F) Minimum spanning tree (MST) of malignant PCs performed by pseudo-
time analysis also revealed that the MNDA + non-trunk sub-group evolved from MNDA-C5AR1-RRBP1/FOS + trunk sub-group (from right to left). (G) The pseudo-time
of malignant PCs. (H) The different expression gene profiles of the three sub-clusters. (I) Cell proliferation and migration modulescores among the three sub-group.
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subsequent driver lesions often occur in a sub-clonal PCs in order
to facilitate MM progression. In the patient presented in this
study, driver genes were observed to be scattered along the
phylogenetic tree, suggesting that the force to drive branching-

pattern evolution of malignant PCs was sustained. In addition, a
total of four identical passenger mutations were present in all
samples: FOS, RASAL1, CYB5R1, and DNAH11. Accordingly, we
hypothesized that the four mutations may be closely associated

FIGURE 3 | (A) The regulon activity score (RAS) for MNDA + sub-cluster, C5AR1+ MNDA- sub-cluster and MNDA-C5AR1-RRBP1/FOS + sub-cluster,
respectively. (B) Five regulon modules were identified for the three sub-groups by the Connection Specificity Index. (C) Inter-gene expression correlations and specific
involved genes in each module. (D) Enrichment analysis using KEGG of 9 TFs. (E) Enrichment analysis using GO of 9 TFs. (F) Progressive increase of RUNX3 mRNA
expression level with times of PD (Baseline vs. PD 2–4: p � 0.0275, Baseline vs. PD 5-6: p � 0.0036) using the MMRF-CoMMpass datasets. (G) RUNX3 mRNA
expression level was found to be the only poor prognostic factor among the 9 TFs (OS, low vs. high: p � 0.024, median vs. high: p � 0.025) in 766 newly diagnosed MM.
(H) The survival effect of RUNX3 gene was validated in GSE24080 dataset (median vs. high: p � 0.013).
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with the proliferation of MM cells. FOS, Fos proto-oncogene or
AP-1 transcription factor subunit, belongs to the Fos gene family
and encodes leucine zipper proteins that dimerize with proteins
of the JUN family (Cannarile et al., 2019). FOS proteins have
established roles as regulators of cell proliferation, differentiation,
and apoptosis. According to Youg Raj Thaker et al., Rasal1, a type
of GTPase-activating protein, associates with ZAP-70 of the TCR
and negatively regulates T-cell activation and tumor immunity
(Thaker et al., 2019). GO annotations associated with CYB5R1
include oxidoreductase activity and cytochrome-b5 reductase
activity, which act on NAD(P)H. Moreover, NADH-
cytochrome b5 reductases are involved in the desaturation and
elongation of fatty acids, cholesterol biosynthesis, and drug
metabolism. GO annotations associated with DNAH11 include
ATPase activity and microtubule motor activity.

This study also demonstrated that CIN and HRD notably
increased in the PD samples, especially in the period of
extramedullary plasmacytoma. Cells with genomic instability, a
hallmark of cancer, have an increased tendency of underdoing
genomic alterations during cell division (Negrini et al., 2010). As
a result, increased genomic alterations in MM may lead to more
neoantigens being expressed on the surface of PCs.
Unfortunately, the immune system is naive to these novel
peptides, escaping detection (Neuse et al., 2020).

Furthermore, increasing evidence in other cancers have suggested
that clones with polyploid and aneuploid may be enriched at
recurrence periods and mediate therapeutic resistance (Mirzayans
et al., 2018; Pienta et al., 2021). These polyploid clones always exhibit
a protected cellular phenotype that is largely resilience to
environmental disruption. On an evolutionary timescale,
polyploid programs could provide increased fitness. Upon
removal of chemotherapy stress, these polyploid clones may
undergo depolyploidization and generate resistant progeny. These
theories may provide explanations for the results that CIN
significantly increased in the PD samples in this study.

Despite the clinical success of the proteasome inhibitor
bortezomib and immunomodulatory imide drugs (IMiDs),
treating RRMM remains a challenge. According to the results
of the WES evolutionary tree in this study, from the level of
single-cell transcriptomes, malignant PCs of P1 in the final state
(PD9) were further divided into three subgroups, ultimately
suggesting the potential importance of the RUNX3 gene.
According to literature, RUNX3 belongs to the family of
RUNXs (RUNX1, RUNX2, RUNX3). In 2019, Zhou et al.
(2019) demonstrated that in myeloma cells, RUNX3 and
RUNX1 could interact with Ikaros family zinc finger protein 1
and 3 (IKZF1 and IKZF3). Aa a result, myeloma cell lines and

primary tumors may become refractory to CRBN-dependent
ubiquitylation and degradation induced by IMiDs. Moreover,
inhibition of RUNX proteins resulted in enhanced sensitivity of
MM cells to IMiDs. These results may improve the understanding
of the complex pathophysiology of MM and provide an
alternative approach for applications in personalized medicine.

This study has certain limitations. First, since the total quantity of
each BM sample was stored at −80°C for a relatively long time, it was
insufficient for integrated omics data, such as epigenomics and
proteomics, resulting in a lack of combing data. Second, all
temporal consecutive samples were obtained from only one
RRMM patient, which may introduce potential bias in the
interpretation of the results. Further studies with increased
sample sizes could provide more definitive evidence. Third,
adaptive therapy and recycle therapy require further validation in
large-scale preclinical and clinical studies. In summary, this study
demonstrated that temporal consecutive samples from one RRMM
patient can assess the diversity of sub-clones as well as the clonal
evolution trajectory driven by multi-line therapies. Moreover,
distribution of driver mutations and passenger mutations were
observed to be scattered in the trunk and non-trunk of the
branching-pattern phylogenetic tree. Personal high-throughput
sequencing that reveals specific genetic compositions and
molecular phenotypes may contribute to more robust personal
biomarkers and serve as guidance for personalized therapy.
Furthermore, adaptive and recycle therapy that are grounded in
evolutionary law may prevent a rise in the resistant PCs population
and ser as a potential strategy for RRMM treatment.
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