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Peripheral sterile inflammatory diseases (PSIDs) are a heterogeneous group of disorders that gathers several chronic insults
involving the cardiovascular, respiratory, gastrointestinal, or musculoskeletal system and wherein inflammation is the cornerstone
of the pathophysiology. In PSID, timely characterization and localization of inflammatory foci are crucial for an adequate care
for patients. In brain diseases, in vivo positron emission tomography (PET) exploration of inflammation has matured over the
last 20 years, through the development of radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO) as molecular
biomarkers of activated microglia. Recently, TSPO has been introduced as a possible molecular target for PSIDs PET imaging,
making this protein a potential biomarker to address disease heterogeneity, to assist in patient stratification, and to contribute to
predicting treatment response. In this review, we summarized the major research advances recently made in the field of TSPO
PET imaging in PSIDs. Promising preliminary results have been reported in bowel, cardiovascular, and rheumatic inflammatory
diseases, consolidated by preclinical studies. Limitations of TSPO PET imaging in PSIDs, regarding both its large expression in
healthy peripheral tissues, unlike in central nervous system, and the production of peripheral radiolabeled metabolites, are also
discussed, regarding their possible consequences on TSPO PET signal’s quantification.

1. The Sterile Inflammatory Response and
PET Imaging of Inflammation

Inflammation and its protagonist, inflammatory cells, act
as the initial host defense to struggle against infection and
injury. Immune system diseases can be dichotomized into
autoimmune disorders, in which several actors lead to intrin-
sic hyperactivity of sensor/pattern-recognition receptor func-
tion, causing exacerbate and dysregulated immune response
[1] and immunodeficiency diseases (i.e., inherited/primary
or acquired/secondary), characterized by an inability of
immune system to contain infectious disease and cancer
development [2]. In both cases, the inflammatory processes
are unappropriated; this explains the paradoxical relationship
between immunodeficiency diseases and autoimmunity [3].
In inflammatory conditions, following exposure to aseptic

stimulus involving physical chemical ormetabolic signal such
as burns, trauma, and dead cells, a cascade of response will
be initiated by the release of local chemokines, interleukins,
and prostaglandins, which are well-known proinflammatory
mediators [4, 5]. Monocytes, macrophages, dendritic cells,
and neutrophils are first-line immune effectors located in the
interface between innate and adaptive immunity. Apart from
autoimmunity disorders, noninfectious/sterile inflammatory
diseases include various conditions where the leading cause
of inflammation is acute and/or chronic exposure to irritant
particles [5]. These sterile stimuli are different in nature and
can be induced by drug therapy [6], alcohol consumption
[7], exogenous particulates such as silica dioxide [8], asbestos
[8], cigarette smoke [9], or endogenous particulates as well
as monosodium urate [10], amyloid- 𝛽 [11], and cholesterol
[12]. Macrophages are a key player in the pathophysiology
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of sterile etiology, autoimmunity disorders [13], and irritant
particles mediated diseases [5]. Macrophage activation starts
with a proinflammatory phase, calledM1 state. Sterile injuries
provoke inflammation similar to injury caused by pathogens
but M1b macrophage phenotype predominantly develop,
before being polarized into M2 phenotype which induce
anti-inflammatory/profibrotic response [14]. Given the fact
that macrophages play a crucial role in sterile inflammatory
processes, macrophage imaging appears to be a promising
approach to assess, better characterize, and improve the
diagnosis of disorders related to sterile inflammation.

Diagnosis of most peripheral sterile inflammatory dis-
eases (PSIDs) is based on history, clinical symptoms, biol-
ogy, serology, and conventional imaging technique such as
radiological analysis or magnetic resonance imaging (MRI).
Concerning its signs and clinical features, the inflammatory
process is very stereotypic and nonspecific [5] to such an
extent that the only symptoms can be asthenia, arthralgia,
and fever. Furthermore, in front of inflammatory syndrome,
clinicians have to make a decision about an infectious or
sterile etiology and, sometimes, practitioners in internal
medicine have recourse to trial corticosteroid therapy or
empiric antibiotic therapy to statute despite the risk of
complicating ulterior diagnosis [15]. Indeed, corticosteroids
or anti-infectious drug could conceal the pathogenic process
and therefore make uninformative conventional imaging
techniques due to a lack of sensitivity, so the residual disease
remains inaccessible. Similarly, inflammatory foci cannot
be detected in the early phase of development because of
the lack of substantial anatomical changes at this time. In
front of several conventional exam limitations (e.g., invasive,
lack of repeatability) and in order to investigate PSIDs
by a deeper approach and to access pathophysiology, the
use of molecular imaging and especially PET imaging has
increased significantly in recent years. PET is a molecular
and functional imaging modality, which permits repeated
and noninvasive determination and quantification of spe-
cific biological and pharmacological processes [16] whose
interest is in early diagnosis and to monitor/follow up the
residual disease is promising. 18F-FDG represents the most
widely used PET tracer and many authors have elucidated
in detail relationship between inflammatory response, local
hyperaemia, and hypervascularisation and uptake of 18F-
FDG [17, 18]. Various PSIDs have been investigated with 18F-
FDG including atherosclerosis [19], vasculitis [20], valvular
inflammation [21], myocardial inflammation [22], rheuma-
toid arthritis [23], and Crohn’s disease [24]. Nevertheless,
18F-FDG is a glucose analog which indicates an increase of
glucose consumption, which in itself can be indicative of
other on-going processes such as cancer, cell regeneration,
or muscle contraction as seen in peristalsis. Furthermore,
another limitation concerning its pharmacokinetic, the renal
pathway bywhich 18F-FDG is eliminated, obstructs the image
quantification [25].

Choline as an important precursor of membrane phos-
pholipids has been labelled to image inflammatory diseases
such as atherosclerosis [26–28] with a greater sensitivity
in detecting atherosclerotic plaques than 18F-FDG [28].

Besidesmetabolic PET tracers of inflammatory cells (i.e., 18F-
FDG and 18F-Choline), radioligands have been developed
to evaluate more accurately peripheral sterile inflammatory
processes. Among these, membrane receptor such as 18 kDa
translocator protein (TSPO) and B lymphocyte CD20 antigen
[29], cytokines like cyclooxygenase subtype 2 [30], matrix
metalloproteinase [31], interleukin-2 [32] or endothelial
adhesion proteins such integrin 𝛼v𝛽3 [33], vascular adhesion
protein-1 [34], and vascular cell adhesion molecule-1 [35]
have been targeted. In this review,we focus on themost recent
preclinical and clinical applications of TSPO PET imaging in
PSIDs and discuss the potential added value in the clinical
practice.

2. TSPO PET Tracers

TSPO is a highly hydrophobic five-transmembrane domain
protein mainly situated in the outer mitochondrial mem-
brane and is highly expressed in macrophages [36, 37]. TSPO
is widely distributed in most peripheral organs including
kidneys, nasal epithelium, adrenal glands, lungs, and heart,
whilst the highest concentrations are in the steroid producing
tissues, and is also minimally expressed in resting microglial
cells in the healthy brain [38]. Numerous TSPO PET tracers
have been developed and used mainly for the imaging of
neuroinflammation [39].

In addition to many endogenous compounds like choles-
terol or porphyrin, TSPO binds a range of synthetic ligands.
Historically, the benzodiazepine 11C-Ro5-4864 was the first
ligand able to discriminate peripheral from central benzo-
diazepine receptors [40]. Over the past few years, several
structure activity relationship studies have established that
four main domains are necessary for a ligand to interact
with the TSPO, three major lipophilic regions, and one
hydrogen-bond donor group [41]. Thus, several classes of
TSPO radioligands have been synthesized, with, for most
of them, the availability of compounds radiolabelled with
carbon-1 (11C) or fluorine-18 (18F). The most widely used
TSPO PET radiopharmaceutical, namely, 11C-(R)-PK11195,
an isoquinoline carboxamide developed in the early 1980s,
was the first nonbenzodiazepine type compound identified
to bind to TSPO with high affinity (human dissociation
constant, Kd = 2 nM) [42]. Despite having been tagged as the
gold standard of TSPO ligands, 11C-(R)-PK11195 has several
drawbacks including the short half-life of carbon-11, a low
brain bioavailability, and a poor signal-to-noise ratio due to
high nonspecific binding [43]. To counteract these limita-
tions, there has been a great effort for the development of
second-generationTSPOPET radiotracers. Among them, the
derivatives of phenoxyarylacetamides (11C-DAA1106, 11C-
PBR28, 11C-PBR06, and 18F-FEPPA) [44–47], designed from
a chemical structure based on the opening of the diazepine
ring of Ro5-4864, the derivatives of imidazopyridines (11C-
CLINME), and the derivatives of pyrazolopyrimidines (18F-
DPA-714) [48] are included.

Furthermore, a single nucleotide polymorphism in the
TSPO gene (rs6971) leading to an amino-acid substitution
(A147T) has been identified [49]. This polymorphism affects
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Table 1

Applications Population/Animal models Radioligand Main findings Ref.

Preclinical

(i) TSPO PET on day 8 after DSS- and
TNBS-induced IBD in rats
(ii) 6 rats were followed up over 22
days

18F-DPA-714

(i) Significantly increased tracer uptake in
the rat colon in both groups, DSS and
TNBS, compared to controls
(ii) Increased tracer binding until day
8/10 then tracer uptake decreased slowly

Bernards et al. (2014) [25]

DSS, dextran sodium sulfate; IBD, inflammatory bowel disease; TNBS, trinitrobenzenesulfonic acid.

the binding affinity properties of the most of TSPO with
a huge heterogeneity in PET images and their associated
quantitative data. Three distinct binder statuses have been
identified: HAB, high- (A/A; ∼70%), MAB, mixed- (A/T; ∼
21%), and LAB, low-affinity binders (T/T; ∼9%) [50].The fact
that the second-generation radiopharmaceuticals have been
found to be sensitive to this polymorphism leads searchers
to develop rs6971-insensitive radioligands. For this purpose,
18F-GE180, a third-generation TSPO tracers, was evaluated
and seemed to be less sensitive to the TSPO-binding affinity
status than the second generation [51]. Unfortunately, the
small sample size and the exclusion of the LAB from this
preliminary study leaded do not allow concluding that 18F-
GE180 is insensitive to the polymorphism. Then, a new
analog of 11C-(R)-PK11195, called 11C-ER176, showed little
sensitivity to rs6971 when tested in vitro and had high specific
binding in monkey brain [52]. Nonetheless, the clinical
relevance of this third-generation compound remains to be
confirmed.

3. TSPO PET Imaging of PSIDs

3.1. Inflammatory Bowel Diseases (See Table 1). Although the
etiology of inflammatory bowel diseases (IBDs), including
Crohn’s disease (CD) and ulcerative colitis (UC), is still
unclear, it is widely accepted that both result from a mucosal
immune response dysregulation in genetically predisposed
individuals, for which susceptibility to IBD is mainly deter-
mined by complex interactions of environmental and genetic
factors [53–55]. IBDs are characterized by various aspects of
the inflammatory response, ranging from acute to chronic
stages, and, in many cases, describe a cyclic evolution where
attacks are interspersed with gastrointestinal stable periods.
The natural history of the IBDs usually progresses to include
strictures, fistulas, and abscesses [56]. Whereas in CD the
whole gastrointestinal tract can be affected even if there is
a predilection for ileocolonic involvement, UC is reduced to
the caecum, colon, and rectum [57]. Localizing accurately
the inflamed tissues is one criteria permitting differential
diagnosis between the different types of IBDs and other
diseases [58, 59]. Presently, the diagnostic approach relies
on various exams ranging from clinical symptoms, such as
bloody diarrhea, abdominal pain, asthenia, and weight loss,
to serology, endoscopic exploration, radiological analysis,
and nuclear medical investigations [25]. Nevertheless, 10 to
15% of all colorectal IBDs cases cannot be classified as UC
or CD [60]. In order to provide information concerning

the inflammatory processes in IBD, 18F-FDG PET imaging
has been used in preclinical studies [25, 61, 62] and clinical
studies [61, 63–67], especially in pediatric populations [64,
65, 68], and exhibited good diagnostic performances in
patients with suspected IBD [58, 69]. Despite the well-
known TSPO overexpression in colon cancer [70] and the
knowledge that TSPO regulates the growth of colorectal
cancer cells [71] which is also an unfavorable prognostic
factor in stage III colorectal cancer [72], the involvement of
TSPO in IBDs and dysplasia has not yet been completely
investigated. After 7 days of treatment by dextran sodium
sulfate (DSS), in a way to induce IBD in a rat model, Ostuni
and colleagues [73] reported a TSPOoverexpression, assessed
by immunohistochemistry, in the rat colon of treated animals.
In DSSmodel, whereas the increase of 18F-FDG colon uptake
did not reach a significance level, 18F-DPA-714 colon binding
showed a significant increase, compared to healthy animals.
In addition, the relationship between tissue expression of
TSPO, objectified by immunohistochemistry, and 18F-DPA-
714 uptake provides the proof-of-concept that TSPO PET
radioligand can be used to evaluate dynamically peripheral
inflammation [25].These findings lead us to think that TSPO
PET imaging could serve as a more precocious biomarker
than 18F-FDG to highlight the inflammatory processes of
IBDs. Regarding the inflammatory cascade of IBDs, a recent
study established the responsibility of the interleukin-33 (IL-
33) pathway by modulating macrophages phenotype in IBDs
[74]. Indeed, the authors demonstrated that IL-33 is involved
inM2macrophage polarization in inflamedmucosal samples
from patients with IBD. Moreover, serum IL-33 levels were
significantly lower in IBD’s patients than those in healthy
volunteers. Serum soluble suppression of tumorigenicity-
2 (sST2) levels and its soluble receptor were significantly
correlated with the pMayo score in UC patients but not in
CD, supporting evidences that UC is a disorder linked to
Th2-hyperpolarization in contrast to CD, which is ratherTh1-
derived [75].

3.2. Liver Diseases (See Table 2). The expression of TSPO in
the liver of healthy humans is usually low [76, 77]. Recent
evidences suggest that TSPO might be contribute to the liver
damage and alcoholic hepatitis progression. Indeed, TSPO
gene is upregulated in alcohol hepatitis and appears to be
involved in various biological processes which are determi-
nant in the pathophysiology of alcoholic liver disease such
as regulation of reactive oxygen species, response to alcohol,
negative regulation of nitric oxide pathway, and regulation of
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necrotic cell death [78]. Tissue analysis revealedmore serious
steatotic aggregates and necroinflammatory infiltration in
the higher uptake region of 18F-FEDAC. Autoradiography
experiments [79, 80] supported in vivo PET data where TSPO
tracer binding was not homogeneously distributed in the
livers with nonalcoholic fatty liver disease (NAFLD) [79]
and in the fibrotic livers (induced by carbon tetrachloride
treatment) [80]. Analysis association between 18F-FEDAC
binding and NAFLD activity score is in consonance with in
vitro findings where TSPO overexpression was reported in
activated hepatic stellate cells [81] and in the adipocytes of
stressed rats with adipocytes aggregates and neoangiogenesis
process [82]. TSPO PET tracer uptake increased in parallel
with liver disease severity whether it is in NAFLD [79] or in
fibrosis liver models [80]. Positively correlation between hep-
atic TSPO and (transforming growth factor) TGF-𝛽1/(tumor
necrosis factor) TNF-𝛼 mRNA expression [80] suggests that
macrophage M1 and M2 phenotypes intervene during liver
fibrosis development [83]. Complementary clinical studies
with various liver diseases characterized by inflammatory
processes (e.g., viral hepatitis, cholestatic hepatitis, autoim-
mune hepatitis, andWilson’s disease) are required to evaluate
the ability of differential diagnosis of TSPO PET imaging.

3.3. Inflammatory Lung Diseases (See Table 3). In contrast
to nonspecific current methods (e.g., chest radiography and
computed tomography), TSPO PET imaging could poten-
tially give quantitative information about macrophage traf-
ficking and kinetics, in order to evaluate treatment response
and contribute to our understanding of the pathophysiology
of lung noninfectious inflammatory processes [84]. More-
over, invasivemethods (e.g., lung biopsy and bronchoalveolar
lavage) are unacceptable for repeat measurement in the
context of longitudinal assessment for lung diseases [85].
Concerning single photon emission computed tomography
(SPECT) scanning, although gamma-scintigraphywith 111In-
labelled granulocytes has been used to monitor migration of
polynuclear cells into the lungs [86, 87], its metabolic acti-
vation and phenotype remain inaccessible with this nuclear
exam [88].

Amajor concern for themeaning of this TSPOPET imag-
ing approach is the multicellular expression of TSPO in the
human lungs. In addition to resident alveolar macrophages,
submucosal glands, pneumocytes, and epithelial lining of
the airways expression of TSPO have been reported [89, 90]
but not neutrophilic expression [91]. Asthma and chronic
obstructive pulmonary disease (COPD) are two obstructive
respiratory conditions where an important accumulation of
inflammatory cells in the respiratory tract takes place and
leads to chronic symptoms with periodic acute exacerbations
of both asthma and COPD. The pathophysiology of these
lung inflammatory disorders is distinct, involving rather
excessive formation of eosinophils, mast cells, and CD4+ T
cells in airways of asthmatics whereas, in COPD, typically
neutrophils, macrophages, and CD8+ T cells infiltrate the
respiratory tract [92]. TSPO seems to play a pathogenic role in
asthma and COPD. Indeed, TSPO exhibited downregulated
expression in patients with acute exacerbations of COPD [93]

and a protein-protein interaction network analysis revealed
that TSPO could be implicated in development and/or
progression of asthma in children [94]. TSPO is involved
in various complex cellular processes such as intracellular
transportation, mitophagy, and apoptosis [95–97]. Among
them, mitochondrial dysregulation and especially mitophagy
represent a key player of signaling pathways relevant to
remodeling in chronic remodeling lung pathologies like
asthma [98] and COPD [99]. Quantitative analysis of the
acquired emission TSPO PET data is in consonance with
these findings where mean tracer uptake, objectified by
plateau tissue/plasma, was higher in COPD patients and
asthmatics than in healthy volunteers. Moreover, pulmonary
TSPO PET imaging used in combination with 18F-FDG
indicated that metabolic activation of inflammatory cells was
higher in COPD patients than in chronic asthmatics [100].
Furthermore, cigarette smoke exposure, which is the leading
cause of COPD, altered directly TSPO expression, paving the
way for lung cancerization [101]. It should be noted that no
obvious differences are seen between patients and healthy
subject in the emission images for either 18FDG or 11C-
PK11195, due to the low density of the lung (Figure 1). Sig-
nificant differences are only revealed by quantitative analysis
of the acquired emission data [100].

TSPO PET imaging has been used to assess, in humans,
macrophages involvement in interstitial lung diseases [102].
Surprisingly, Branley et al. [85] demonstrated that TSPO
expression is reduced in these lung inflammatory disorders.
Given the fact that patients with interstitial lung disease
showed an accumulation of intrapulmonary macrophages
[103] and experimental models of pulmonary inflammation
revealed to be associated with TSPO overexpression [104],
authors hypothesized that macrophages phenotypically dif-
fered in these patients (i.e., macrophage with reduced TSPO
expression) [102]. In parallel to the relationship between lung
density and disease activity (i.e., between controls, patients
treated, and drug-naive patients), 11C-PK11195 bindingwould
tend to decline according to the disease burden in fibrosing
alveolitis due to systemic sclerosis (FASSc) patients [85]. As
a result of these achievements, TSPO PET imaging could
be a decision-support exam to initiate immunosuppressive
treatment in FASSc.

TSPO PET imaging did not provide unequivocal results
[85, 100] and in front of some limitations (e.g., multicellular
expression of TSPO in human lungs [89, 90], high vari-
ability in radiotracer uptake between COPD and asthmatic
patients, and wide overlap between patients and controls
[100]), TSPO did not seem to be a timely biomarker to
diagnose and even less to improve our knowledge in lung
disease pathophysiology. In addition, the apparent TSPO
downregulation in interstitial lung diseases [85] and acute
exacerbations of BPCO [93] should not be construed as
absolute finding; indeed TSPO expression is a dynamic
process and highly context-dependent, which is probably
integrated in a time-dependent fashion (acute versus chronic
injury).
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(a) (b) (c)

(d) (e) (f)

Figure 1: Transaxial thoracic images for transmission (a and d), 18F-FDG emission (b and e) and 11C-PK11195 (c and f) in a normal subject
(a–c), and a patient with chronic obstructive pulmonary disease (d–f) from Jones et al. (2003) [100].

3.4. Inflammatory Vasculopathies (See Table 4). TSPO is
involved in pathophysiology of various cardiovascular dis-
eases, including arrhythmia, myocardial infarction, cardiac
hypertrophy, atherosclerosis, myocarditis, and large vessel
vasculitis (for review see Qi et al. 2012 [105]). Among
these, large vessel vasculitis represents a heterogeneous group
of complex disorders (e.g., giant cell arteritis, Takayasu’s
arteritis) in which chronic inflammatory lesions of the blood
vessels are characterized by granulomatous pan-arteritis with
focal leukocytic infiltration [106]. Typical clinical symptoms
include the association of blindness, stroke, claudication
according to the vascular territory affected/occluded, fever,
night sweats, and arthralgia [107–109]. TSPO molecular
imaging using 11C-PK11195 provided valuable information
such as presence, intensity, and localization of activated
macrophages in large vessel vasculitis [36, 110]. In these
studies, giant cell arteritis, Takayasu’s arteritis, and lupus ery-
thematosus patients fulfilling American College of Rheuma-
tology diagnostic criteria [111] were enrolled. Authors defined
active vasculitis as onset within the previous 3 months of any
of the symptoms mentioned above and conversely asymp-
tomatic patients’ diagnosis based on absence of symptoms of
active disease.The fact that TSPOPET signal was quantifiable
even in some asymptomatic patients (Figure 2) paves the
way of a preemptive therapeutic strategy, that is to say

prior the symptoms, whereas the inflammatory process is
active [36, 110]. Although only one giant cell arteritis patient
was enrolled for a longitudinal assessment of corticosteroids
response, TSPO PET imaging could be a promising approach
to monitor drug efficacy of immunosuppressive agents cur-
rently used and for drug development in vasculitis. Patients
with large vessel vasculitis have an increased cardiovascular
risk compared to the age-matched healthy population as a
consequence of accelerated atherosclerosis [106].

Atherosclerosis is an inflammatory, chronic metabolic
disorder of the arterial walls, in which intraplaque inflam-
mation drives the progression and the destabilization of
atheromatous lesions [112, 113]. It seems that atherosclero-
sis starts with the penetration of low-density lipoprotein
(LDL) through a damaged endothelial wall, leading to their
oxidation. These oxidized LDL particles act as autoantigens
presented by macrophages which differentiate into foamy
macrophages, promote the inflammation, and cause inter-
leukins secretion [114–116]. According to its function as
leader of cholesterol transport and steroidogenesis [97] and
its dysregulation induced by smoke exposure [101], TSPO
has been targeted in drug development of lipid-lowering
therapy and “cardiovascular” anti-inflammatory/antioxidant
treatment [117–119]. Autoradiography and immunostaining
experiments highlighted that TSPO tracer binding concerned
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Figure 2: 11C-PK11195 PET/CT angiography of asymptomatic (a) and symptomatic (b) patient with vasculitis. Each patient is shown in
transverse view. Arrow indicates inflamed region of aortic arch. Respective time-activity curves (corrected for radioactive decay) derived
from aortic vessel wall (c and d) from Lamare et al. (2010) [110].

predominantly CD68-positive areas of mice carotid sections
[120] and human carotid endarterectomy samples [121, 122]
which contained fibrotic and calcified tissue [121]. Recent
research by Chinetti-Gbaguidi and colleagues [123] revealed
that RANKL (receptor activator of nuclear factor 𝜅B (NF-𝜅B)
ligand) and MCSF (macrophage colony-stimulating factor),
two major mediators of vascular calcification, are dysreg-
ulated by IL-4 polarization (i.e., M1 to M2 polarization),
leading macrophages surrounding atherosclerotic plaques to
be unable to resorb calcification. Therefore, the lack of asso-
ciation between plaque calcification score and 11C-PK11195
target-to-background ratio (TBR) [122] could be explained by
a different macrophage phenotype (i.e., M2 polarized) which
would be undetectable on PET images.Moreover, in the same
clinical study TSPO PET imaging of patients with carotid
stenosis revealed that 11C-PK11195 standardized uptake value
(SUV) and TBR were significantly higher in carotid athero-
matous lesions of symptomatic patients (i.e., associated with
stroke and transient ischemic attacks) compared to asymp-
tomatic individuals. Surprisingly, no difference was found
between the severity of carotid stenosis on CT angiography
between symptomatic and asymptomatic patients [122]. Most

importantly, it appears that activated macrophages, assessed
by TSPO PET, were detected at a disturbed flow site located
downstream from the region of stenosis [120]. Finally, multi-
modal imaging using 11C-PK11195 PET in combination with
CT plaque attenuation offers good diagnostic performances
to improve risk stratification in patients with asymptomatic
carotid stenosis in order to anticipate cerebrovascular events
[122]. Beyond this potential diagnostic role of TSPO PET
scanning for atherosclerosis, TSPO might be used as a
therapeutic target for atherosclerosis. Indeed, the oxidative
stress induced by high fat and high cholesterol atherogenic
diet in rats has been associated with a reduction of TSPO-
binding density [124].

3.5. Rheumatic and Musculoskeletal Disorders (See Table 5).
Rheumatoid arthritis (RA) is a chronic autoimmune disease
characterized by joint inflammation where the diagnosis is
based on joint involvement, duration of symptoms, serology
(i.e., rheumatoid factor, anticitrullinated protein antibody),
and biology (i.e., erythrocyte sedimentation rate, C-reactive
protein) [126, 127]. TSPO PET imaging in various animal
models of noninfectious arthritis supported the fact that
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Figure 3: 11C-PK11195 PET images in coronal and transaxial directions. (a) Images of severe clinical inflammation of the right knee (depicted
at the left in both images) and no clinical inflammation of the left knee in a patient with rheumatoid arthritis (RA). (b) Images of mild
inflammation of both knee joints in an RA patient. (c) Images of knees without joint disease in a control subject. The different levels of tracer
uptake correspond to the colors in the color bar at the left, from van der Laken et al. (2008) [125].

nuclear-based approach provides quickly information on
biological functions even before anatomical alterations of
bone and cartilage [128–130]. TSPO PET imaging appears to
be a promising approach to follow early events in the patho-
physiology of RA, suggesting that a precocity medical care
should be feasible even before the structural alterations, espe-
cially as the uninflamed knee joints of RA patients showed
a significant greater TSPO tracer uptake than in healthy
controls [125]. Moreover, association analysis showed a good
correlation between tracer binding in joints and clinical
synovial swelling ormacrophage infiltration in synovial tissue
in preclinical [130] and clinical study [125]. Figure 3 illustrates
these findings. For imaging of RA, the key limitation of
TSPO PET scanning is the tracer uptake in the inflamed
synovium linked to binding in surrounding bone and bone
marrow (e.g., periarticular bone of joints binding), keeping
from quantifying accurately uptake in the synovium [129].
Nevertheless, this problem appears to be minimized when
18F-DPA tracers have been used in rat model of rheumatoid

arthritis (i.e., better knee-to-bone ratios), compared to 11C-
PK11195 [129].

4. TSPO PET Imaging: Towards a Clinical
Application for Pathologies
with Both Central and Peripheral
Inflammatory Component?

TSPO PET imaging has to date been used mainly to assess
microglial activation in various neurologic diseases rang-
ing from neurodegenerative disorders such as Huntington’s
disease [131] and Alzheimer’s disease [132] to stroke [133]
and psychiatric conditions like schizophrenia [134]. The
promising results of TSPO PET imaging to diagnose and
characterize some PSIDs and especially atherosclerosis [122]
lead us to think that, as in some central nervous system
disorders such as multiple sclerosis and amyotrophic lateral
sclerosis [39], a clinical application of TSPO as a biomarker
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of inflammation is possible. Nevertheless, as with neurologic
disorders some limitations must be taken like spillover and
partial volume effect (because of proximity of the blood
pool and limited thickness of the arterial wall), a multi-
cellular expression making mathematic model to quantify
free and specific ligand binding more complex. Furthermore,
in contrast to central conditions where tracer’s radiolabeled
metabolites are not sufficiently lipophilic to produce back-
ground noises, in PSIDs the pharmacokinetic of radiolabeled
metabolites leads to hinder TSPO signal quantification. This
is especially a limitation for IBDs where tracer elimination
by the upper digestive tract (e.g., 18F-DPA-714) compromised
TSPO quantification [25].

The strength of TSPO PET imaging could rely on the
ability to detect inflammatory changes in pathologies which
have central and peripheral expression, for instance, to eval-
uate the relationship between neuroinflammation induced
by stroke and TSPO expression of atherosclerotic plaques in
patients with carotid stenosis. Indeed, it allows characterizing
inflammation and establishing if interplay occurred between
microglial activation and peripheral macrophages. In this
sense, surprising findings have been found in liver fibrosis
where TSPO are not overexpressed in patients with hepatic
encephalopathy [135]. Likewise, in a preclinical study, inflam-
mation in both the gut and the brain of rats with chemically
induced colitis was observed by ex vivo biodistribution
but these effects could not be detected by 11C-PBR28 PET
imaging which was likely due to insufficient resolution of the
micro-PET camera [136]. Besides PSIDs, infectious diseases
where TSPO PET imaging has already been investigated such
as HIV infection [137] or sepsis [138] could benefit from
this approach in order to know if central and peripheral
inflammation is a continuum or acts independently.

5. Conclusion

The pathophysiologic involvement of TSPO in PSIDs is well-
documented especially in cardiovascular conditions [105] at
the opposite of microglial activation in neurologic disor-
ders which remains controversial. Limitations of TSPO PET
imaging in PSIDs concern the large expression of TSPO
in peripheral tissues whereas, in central nervous system,
TSPO expression is low in healthy brain [39]. A body of
evidence gives aM1-phenotype biomarker status ofmicroglial
TSPO expression [139]. In line with these findings, the
fact that TSPO PET imaging did not highlight significant
signal in some PSIDs (e.g., atherosclerosis [122], interstitial
lung disease [85]), where macrophage activation is now
well-documented, seems to confirm that, also in peripheral
disorders, TSPO may rather to be associated with harmful
inflammatory state than regenerative environment. Never-
theless these in vitro findings need to be in vivo translated
[139].
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