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Abstract

The relationship between amyloid and toxic species is a central problem since the discovery of amyloid structures in
different diseases. Despite intensive efforts in the field, the deleterious species remains unknown at the molecular level. This
may reflect the lack of any structure-toxicity study based on a genetic approach. Here we show that a structure-toxicity
study without any biochemical prerequisite can be successfully achieved in yeast. A PCR mutagenesis of the amyloid
domain of HET-s leads to the identification of a mutant that might impair cellular viability. Cellular and biochemical analyses
demonstrate that this toxic mutant forms GFP-amyloid aggregates that differ from the wild-type aggregates in their shape,
size and molecular organization. The chaperone Hsp104 that helps to disassemble protein aggregates is strictly required for
the cellular toxicity. Our structure-toxicity study suggests that the smallest aggregates are the most toxic, and opens a new
way to analyze the relationship between structure and toxicity of amyloid species.
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Introduction

The link between aggregated proteins and toxic species stems

from earlier studies on neurodegenerative diseases. This relation-

ship was initially assessed by the presence of proteinaceous deposits

in the brain of patients who suffered from such disease. The

particular aggregation found in amyloid structures results from

protein assembly into fibrils that exhibit cross-ß diffraction pattern,

ß-sheet-rich CD (Circular Dichroism) and FTIR (Fourier

Transform Infra-Red) spectra, core structure highly resistant to

proteases and metachromic properties. Our knowledge of these

particular aggregates is the outcome of different disciplines

including genetics, physiology, biochemistry, cell biology and

biophysics (for a review, see [1,2]). Initial interest for amyloid

structures comes obviously from their link with the complex

phenomena that leads to neurodegeneration and disease. Two

fields of interest, in vitro or in vivo, have evolved in parallel, but the

interconnection of the data in a unified scheme is tricky, so the

determination of the initial events and the main actors involved in

this cascade is difficult. Moreover, most if not all the in vitro

approaches are centered on the polymerization mechanism and

cannot directly help to understand the way by which cellular

toxicity is achieved. The existence of mutated amyloid proteins

that cause susceptibility to disease has permitted to link the

polymerization characteristics with the pathogenesis [3,4]. Despite

intensive research in the field, no one has ever screened a

randomly generated library of amyloid protein for its toxic

capacity, making hazardous the establishment of general rules that

would connect amyloid polymerization and cellular toxicity. One

of the difficulties comes from the capacity to screen such library.

The budding yeast offers a convenient system to monitor

amyloid toxicity [5–7] and has allowed in the past pinpointing

genes that modulate the deleterious consequences in other

eukaryotic models [8]. Since the yeast model offers a convenient

system to identify genes involved in trans in amyloid toxicity, we

decided to use it as the host for the identification of the cis

mutations that make toxic a benign amyloid. The amyloid model

used in this study is the prion domain of a fungal prion protein:

HET-s [9]. This 72 amino acids peptide forms the proteinase K-

resistant core of the prion fibrils made with the HET-s protein.

This C-terminal domain is unstructured in solution and forms

infectious amyloid fibrils in vitro [10]. This protein has been chosen

since a molecular model for amyloid assembly [11] has been

proposed on the ground of NMR data. This organization implies 4

ß-sheets in parallel constituted by two pseudo-repeat sequences,

each forming a ß-strand-turn-ß-strand motif. More recently, a

solid-state NMR study has revealed that HET-s (218–289) forms a

left-handed ß solenoid in which each previous ß-strand is split into

two shorter segments [12]. This protein has been successfully

expressed in yeast cells as a chimeric HET-s-GFP protein.

Moreover, this protein produces infectious amyloid-like aggregates

in Saccharomyces cerevisiae [13] and thus, offers a convenient

‘‘starting-point’’ for our study since this amyloid does not impair

the yeast cellular viability.

In this article, we have selected toxic species after an error-

prone PCR mutagenesis of HET-s (218–289). The most toxic
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mutant (m8) clearly exhibits a different pattern of aggregation. We

found that this mutant forms smaller aggregates that appear to

belong to a different aggregation pathway controlled by Hsp104, a

key factor in aggregative mechanisms in yeast.

Results

Screening for toxic species revealed different cellular
patterns of aggregation

HET-s, a protein of Podospora anserina is able to form in vivo a

prion [9] that switches into its infectious form after being exposed

to in vitro-formed fibers of purified PrD fragments of HET-s [14].

In this study, we used a previously engineered plasmid

(pYecHetsYGFP2U) that contains the prion domain (PrD) of

HET-s fused to the coding sequence of the GFP under the control

of a galactose-inducible promoter [13]. Several mutants of HET-

s(218–289) have been generated by a PCR mutagenesis and

introduced in this plasmid to replace the wild-type sequence of

HET-s(PrD). A first screen led us to identify 80 clones among more

than 20 000 transformants that grew more slowly than the control

containing the wild-type HET-s(218–289)-GFP. The putative

toxicity of these HET-s(PrD)-GFP mutants was confirmed by

testing their growth in a spotting assay. After two days on a

galactose medium (induction conditions), differences in the growth

of strains containing wild-type and mutated PrD were clearly

confirmed for five mutants whereas they grew similarly on the

glucose medium (repression conditions). Only one of them, m8, led

to a more severe growth defect, while the others displayed gradual

levels of toxicity (Figure 1A). The amount of fusion-GFP protein

produced in these strains can be directly appreciated by visualizing

the fluorescence intensity after exposure to a 470 nm transillumi-

nator. We thus verified that the level of toxicity was not correlated

to a higher amount of GFP species formed (Figure 1B). When cells

in stationary phase were observed under a fluorescence micro-

scope, the aggregates formed by the mutants appear to be different

from those formed by the wt protein. The aggregation patterns fall

into three groups (Figure 1C): wt forms typical rings, m8 and m4

form bright dots and m3, m9 and m11 present a diffuse

fluorescence. These differences may reflect either structural

modifications or changes of the interaction between the HET-

s(PrD)-GFP protein and cellular partners. The mutated residues

were found all along the sequence (Figure 1D) and not only

located in the domains previously proposed to form ß-sheets in the

fibrils [11,12]. By mutating one or several residues of HET-s(218–

289), we were thus able to generate some toxic forms, that exhibit

a different GFP aggregation pattern, as shown by microscopy.

Identification of mutations essential for toxicity
Despite intensive screening, we only got a few mutants (an

independent screening of additional 20 000 transformants did not

allow to isolate new toxic mutants, data not shown). Only one of

the five mutants isolated (the m8 mutant) shows a toxic phenotype

strong enough to allow a further characterization. This mutant

possesses ten mutations located all along the primary sequence

(Figure 2A). In order to identify which of these mutation(s) was

responsible for the toxic phenotype, we have engineered new

Figure 1. Identification of PCR-engineered toxic alleles of HET-s(PrD). (A) Mutants exhibit a wide range of toxicity in yeast. A ten-fold serial
dilution of the various transformants was analyzed in dextrose (repression condition) or galactose (induction condition). The growth of cells was
observed after 48 h. (B) Mutants exhibit a wide range of expression levels in yeast. The galactose plate of panel (A) was observed using a Safe
ImagerTM blue light transilluminator and Safe ImagerTM amber filter (Invitrogen) to visualize differences in GFP-fluorescence between the various PCR-
engineered HET-s(PrD) mutants. (C) Mutants exhibit different GFP aggregation patterns in yeast. Cells were examined under a fluorescence
microscope after 72 h of growth in liquid galactose medium. (D) Amino acid sequence alignment of wild-type and mutant HET-s(PrD) domains.
Arrows above the sequence outline the ß-strands.
doi:10.1371/journal.pone.0004539.g001
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alleles of HET-s(PrD)-GFP that bear only some of the mutations

found in m8. The m8N chimeric protein includes the first four

mutations spanning from residues 1 to 38, whereas the reciprocal

m8C protein contains the six mutations located at the C terminus

(Figure 2A). These two mutants are interesting since they bear the

mutations in each of the two layers of ß strand-turn-ß strand motifs

of HET-s (218–289) [11,12] (Figure 2B). In a spotting assay, m8N

allele behaves as the wt in yeast cells. The m8C is slightly toxic but

not as much the m8 (Figure 2C). These results indicate that, in m8,

more than one mutation is required to switch from benign to

highly toxic species. Moreover, these mutations have to be located

in the two elementary motifs that are interconnected by a loop.

This may explain the relative scarcity of the toxic mutants isolated

from the screen. We have then analyzed the mutations located in

the ß strands. Interestingly, four of these six mutations concern

four asparagines that are mutated in m8. The position of these

asparagines in the structural model [12] is compatible with the

formation of a polar zipper already described for glutamines and

asparagines [15,16] (Figure S1). As such polar zipper may be

crucial for the stabilization of the amyloid fibril, we have generated

a new allele (m8PZ) in which these four asparagines were

selectively replaced by the four amino acids found in m8

(Figure 2A). When expressed in yeast cells, this new mutant

behaves as the wild-type since it does not impair the cellular

viability (Figure 2C).

Interestingly, these three additional mutants do not aggregate in

yeast cells as the wt since they form fluorescent foci instead of the

characteristic annular morphology (Figure 2D). This punctuate

phenotype observed with a fluorescence microscope is therefore

not sufficient by itself to predict the toxicity, but rather represents a

first level of characterization of the aggregates.

The most toxic mutant disrupts the cell-cycle
We then focused on m8, the most toxic mutant selected. To

investigate the toxicity of the m8 protein, we estimated the number

of colony forming units (cfu) in a liquid culture at different times

after expression of the protein (Figure 3A). The number of cfu in

the culture of cells expressing the m8 protein hardly increased

during the experiment, whereas after a lag phase of 24 h, it

increased for cells expressing the wt HET-s(PrD). Since the

Figure 2. Identification of mutations required to induce toxicity. (A) Amino acid sequence alignment of wild-type, m8 and chimeric mutants
of HET-s(PrD) domains. Arrows above the sequence outline the ß-strands. (B) 3D modeling of HET-s(PrD) domain. Mutated amino acid in m8 (right
panel) and wild-type (left panel) are located on a basic 3D model according to the RMN structure prediction [12]. (C) A ten-fold serial dilution of the
various transformants was placed on solid dextrose or galactose medium and the growth of cells was observed after 48 h. (D) Mutants exhibit
different GFP aggregation patterns in yeast. Cells were examined under a fluorescence microscope after 72 h of growth in liquid galactose medium.
doi:10.1371/journal.pone.0004539.g002
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Figure 3. The m8 HET-s(PrD)-GFP mutant impairs cell viability. (A) Toxicity of m8 expression demonstrated by a viability assay. The strain
BY4742 was transformed with a plasmid expressing either wt or m8 HET-s(PrD)-GFP or a control plasmid. Liquid galactose medium was then
inoculated and grown for 18 to 65 hours before being plated onto glucose solid medium. Colonies were numbered, and this value was then

Structure-Toxicity of Amyloid
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differences occur when the cells restart their cellular division, m8

protein could affects the cell viability as well as the division

capacity. A Trypan blue staining of cells reveals that the

percentage of stained cells is similar in cells expressing the wt or

m8 protein after 28 h of expression, whereas at 54 h, there are

three times more stained cells among the cells expressing m8 that

among the cells expressing wt (data not shown). This suggests then

that after 24 h of induction, the expression of the m8 protein has

affected the division ability of the cells, but not yet their viability.

At that time, cells expressing m8 show a GFP profile very different

from the wt in exponential phase. The wt protein is evenly

distributed throughout the cytoplasm of the yeast cells (Figure 3B),

whereas the m8 protein forms one large or numerous small dots

(Figure 3C). Furthermore, some cells expressing the m8 mutant

show an abnormal morphology (Figure 3D): a large number of

cells are distorted, and strings of connected budding cells (often

three) are observed, indicating a possible link with a defect in the

cytokinesis and/or cell polarity. A commonly observed pattern is

shown in the figure 3E: two cells are attached, one of them

presenting a large dot. Hoechst staining of the DNA showed that

only one of the two cells has a nucleus, the one that does not have

the aggregate (merged image), suggesting that aggregation of the

m8 protein has caused a defect in nuclear division in such cells. A

Western-blot was made on the same culture with an anti-GFP

antibody (Figure 3F). The wt protein is expressed at its maximum

level at 24 h and equally distributed between the supernatant and

the 100,000 g pellet. The pellet/supernatant ratio increases during

the induction up to 64 h. The m8 protein is only weakly expressed

at 24 h, and reaches its maximum level of expression after 48 h of

induction (Figure 3F). Most of the protein is located in the pellet,

as expected since the presence of foci is observed in fluorescence

microscopy. Our results thus clearly show that m8-PrD-GFP

affects cell fitness and exhibits a different cellular pattern of

aggregation.

The toxic aggregates differ from the wild-type and non
toxic punctuate aggregates

To biochemically characterize these aggregates; a filter trap

assay was first made on crude extracts. The GFP-aggregates

retained on the filter were detected using a blue light transillu-

minator (Figure 4A upper) and blotted with an anti-GFP antibody

(Figure 4A lower). As the m4 mutant (which is slightly toxic)

exhibits the same pattern of cytosolic aggregates when observed

with a fluorescence microscope, it was also of interest to compare

its behavior in the same assay. The presence of a signal is observed

for extracts from cells expressing either wt, m4 or m8 proteins,

indicating the presence of large protein aggregates (over 0.2 mm)

(Figure 4A). The stability of such aggregates can be monitored by

their sensitivity to detergents. The m8 aggregates appeared to be

more sensitive than the wt to sarkosyl (an anionic mild detergent)

since the signal decreases more strongly as the concentration of

detergent increased (Figure 4A). In the same conditions, m4

aggregates behave as m8 aggregates. They are solubilized (ie are

no more retained onto the surface of a 0.2 mm membrane) more

easily than the wt when the sarkosyl reaches 0.5%. To analyze the

size distribution of smaller aggregates, crude extracts of cells

expressing either wt, m4 or m8 proteins were then fractionated by

size-exclusion chromatography after filtration on a 0.2 mm

membrane in the presence of 0.1% sarkosyl. The different

fractions were then resolved on a native agarose gel and probed

with anti-GFP antibodies (Figure 4B). In each case, we observed a

first ‘‘wave’’ of GFP species corresponding to large aggregates

(fraction 4 and 18 correspond to 4 MDa and 1 MDa size marker

respectively). This first wave is wider for the m4 and m8 protein,

which means that these aggregates go over a larger range of size

(from 4 MDa to 1 MDa), going down to smaller aggregates. For

the wt, the smear is centered on the same value in all the fractions

(from 1 to 18) in which the GFP can be detected. This is consistent

with a Gaussian distribution of the same entities. The differences

observed between m8 and wt suggest that m8 may form smaller

aggregates than the wt protein. In vitro, m8 assemble into typical

small amyloid fibrils that do not exceed 80 nm of length [17]. This

capacity to form smaller aggregates is therefore consistent with the

presence of smaller aggregates in vivo.

Western blot analysis of several fractions in presence of SDS

(Figure 4C) indicates the presence of two bands, one correspond-

ing to HET-s(PrD)-GFP protein, and a smaller species that is likely

to be the GFP moiety, according to its size. The native gel

electrophoresis probed with anti-GFP antibodies also reveals the

presence of GFP entities in the last fractions of wt and m4 elutions

(from fraction 33 to 43). This signal is not detected for m8.

Western blot analysis in denaturing conditions of these fractions

clearly indicates the presence of only one band that corresponds to

the GFP moiety, according to its size. In wt extract, this protein

migrates very high in the native gel (Figure 4C), much higher than

the protein present in the high molecular weight fraction, whereas

in m4 extracts, this protein migrates more rapidly. In these

conditions, there is clearly no correlation between the distance of

migration and the size of the species, probably because of the

differences in the charge of the protein species between soluble and

aggregated forms. The presence of the GFP moiety may be due

either to a cleavage in the crude extract during the SEC

experiment or may reflect a proteolysis that occurs in vivo. A

rapid alkaline lysis of the cells followed by a TCA precipitation,

SDS PAGE and western-blot reveals that m8 and HET-s(PrD)-

GFP exhibit a small amount of intracellular cleavage (Figure S2).

This result indicates that the presence of the GFP without its

amyloid domain is mainly due to a proteolysis that occurs during

SEC experiment.

These results show that wt and m8 proteins form two aggregates

that differ in their size (the wt protein forming on average larger

aggregates than m8) and in their biochemical properties (resistance

to detergent). The non-toxic m4 mutant shares the same sensitivity

to sarkosyl than the m8, but the aggregates separated by the SEC

are clearly different.

Hsp104 acts as trans factor on m8 toxicity
As Rnq1p and Hsp104 have been previously shown to be

critical for the toxicity and the aggregation of the poly-glutamine

converted to colony forming units (cfu/mL). (B) Cells expressing wild-type HET-s(PrD)-GFP were examined with a fluorescence microscope after 24 h
of growth in liquid galactose medium. (C) Cells expressing m8 HET-s(PrD)-GFP were observed using a fluorescence microscope after 24 h of growth
in liquid galactose medium. (D) Cells expressing m8 HET-s(PrD)-GFP were observed with a light microscope after 24 h of growth in liquid galactose
medium, using a Nomarski contrast filter. (E) Cells expressing m8 HET-s(PrD)-GFP were examined using both a light and a fluorescence microscope
after 24 h of growth in liquid galactose medium. GFP fluorescence (green) and Hoechst DNA staining (blue) of an isolated dividing cell are shown. A
GFP/DNA merged image was made using Adobe Photoshop. (F) Distribution of the GFP species between pellet (P) and supernatant (S). An aliquot of
the culture used in the previous cfu assay was pipetted out after 24 to 72 hours. Total cell extracts underwent ultracentrifugation for 30 min;
supernatant and pellet were run on a 12% SDS-PAGE gel, and were transferred onto a nitrocellulose membrane and exposed to anti-GFP antibodies.
doi:10.1371/journal.pone.0004539.g003
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amyloid protein in yeast [5], we tested if they were necessary for

the toxicity and the aggregation of the m8 fusion protein. The

expression of the m8 protein was still toxic in an rnq1D strain

(Figure 5A), and the GFP pattern in this strain was similar to the

one observed in a wild-type strain (Figure 5B) which shows that

Rnq1p is not involved in the aggregation and the toxicity of m8.

On the contrary, the expression of the m8 protein in an hsp104D
strain is not lethal anymore (Figure 5A). The GFP pattern in this

strain is quite similar that in a wild-type strain, with a tendency to

make more big dots and less small grains (Figure 5B). This shows

that Hsp104 plays a role in the toxicity of the m8 protein, maybe

by favoring the conversion of big aggregates into smaller and toxic

ones. It is also an indirect proof showing that the toxic species is

indeed related to the aggregation process. However, the role of

Hsp104 could be indirect as it is the case for polyQ aggregates that

required the prion [RNQ1+] to be toxic. To test this hypothesis,

Figure 4. Size distribution and detergent resistance of Wild-type, m4 and m8 HET-s(PrD)-GFP aggregates. Total extracts from cells
expressing wt, m4 or m8 HET-s(PrD)-GFP were prepared after 24 h of growth in liquid galactose medium. (A) Filter trap assay of wt, m4 and m8 crude
extracts through a cellulose acetate membrane after incubation in various sarkosyl concentrations (0 to 2%) as indicated. The membrane was
visualized with a Safe ImagerTM blue light transilluminator and Safe ImagerTM amber filter (Invitrogen) (upper panel), it was then blotted with anti-GFP
antibodies and analyzed using the VersaDoc Imaging System (BioRad) (lower panel). (B) Analysis of all fractions resulting from the SEC experiment on
2.5% native agarose gel visualized by western blot with anti-GFP antibodies. (C) Analysis of several fractions underlined in (B) on a 12% SDS PAGE
followed by western-blot.
doi:10.1371/journal.pone.0004539.g004
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we have introduced a multi copy plasmid containing the wild-type

HSP104 gene in an hsp104D strain already transformed by

pYem8YGFP2U (that allows m8 expression). In these conditions,

the toxicity was restored (Figure 5A). As this toxicity could be due

to a prion that would appear during the 15–16 generations

required to get the transformant, we used an additional strategy. A

plasmid bearing a chimeric gene in which the coding sequence of

HSP104 is under the control of the GAL10 promoter was used to

transform an hsp104D strain already transformed by pYe-

m8YGFP2U. When this strain was spotted into a medium

allowing the expression of m8 and Hsp104, the growth was

clearly impaired (Figure 5A). Since Hsp104 is produced in these

conditions in a couple of hours, the re-appearance of a prion

during this time is very unlikely and our results are consistent with

a role of Hsp104 as a direct modulator of the m8 toxicity.

Relationship between m8 and wt aggregates
Two hypotheses can explain the difference of toxicity between

m8 and wt proteins. In the first case, the toxic species that make

m8 harmful would exist (but in lower concentration) in yeast cells

expressing the wt amyloid (because they would be in equilibrium

with other non-toxic species) or alternatively these toxic species

would arise by a distinct pathway and are specific to m8. To

answer this question, we coexpressed both proteins in a wild-type

yeast strain. We assumed that if the toxic species are part of the

same pathway, the wt protein might titrate the toxic species

formed by the m8 protein. In this case, the coexpression would

lead to a non-toxic phenotype. However, the expression of the wt

protein does not suppress the toxicity of the m8 protein (Figure 6A)

and when observed with a fluorescence microscope, we observed

some cells containing both m8 characteristic dots and wt

characteristic rings (Figure 6B). These results thus suggest that

m8 and wt proteins have two independent aggregation pathways

leading to different ‘‘terminal’’ products (ring or dots) that may co-

exist.

We then proposed a model to summarize our results and

explain the differences in the toxicity and the aggregation of the

two proteins (Figure 6C). The wt protein, which is not toxic, has a

diffuse GFP pattern in cells observed in exponential growing

phase, but appears aggregated in a sedimentation assay and when

a crude extract from similar cells is observed in fluorescence

microscopy, the protein actually makes small fibrils that give a

‘‘cottony’’ appearance (Figure 6C). In stationary phase, it forms

typical ring structures. The m8 protein has a very different pattern:

during exponential growing phase (in vivo) cells or in a crude

extract (in vitro), it forms small grains or small dots, different from

the fibrils observed in the wt. In stationary phase cells, the protein

makes bigger dots. Its toxic effect is observed after 36 to 48 h in

cells. At this stage, one can detect the presence of smaller

aggregated species with the m8, as suggested by our biochemical

analyses. In this model (the toxic species being an intermediate in

the aggregation process), some factors such as Hsp104 could help

or prevent the toxicity by favoring one or several steps of the

aggregation process.

Discussion

Amyloid proteins are not only associated with disease but are

also related to various cellular processes. Cells use amyloid

proteins for cellular function. E.coli, for example, is able to form

amyloid fibrils, termed curli [18] which are the major proteina-

ceous component of a complex extra-cellular matrix and are

involved in the colonization of a diverse range of surfaces, such as

plant tissues, glass, etc… [19] Another prokaryote (Streptomyces

coelicolor, a filamentous bacteria) forms amyloid structures that are

required for aerial hyphae formation [20]. In eukaryotic cells,

amyloids are not systematically associated with disease. In S.

Figure 5. Trans modulating effects on m8 HET-s(PrD)-GFP toxicity. (A) Wild-type, rnq1D and hsp104D strains were transformed with a
plasmid expressing either wt or m8 HET-s(PrD)-GFP. The hsp104D was also co-transformed with a 2 m plasmid bearing either wt HSP104 gene
(pHSP104 plasmid) or with a galactose inducible HSP104 allele (pHSP104 pGal plasmid). The toxicity was tested as in Fig. 1. (B) Cells were examined
under a fluorescence microscope after 48 h of growth in liquid galactose medium.
doi:10.1371/journal.pone.0004539.g005
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cerevisiae, at least three proteins (Ure2p, Sup35p and Rnq1p) are

able to form in vitro amyloid structures, permitting a phenotypic

switch if introduced into yeast cells [21–24]. R. Wickner coined

the word ‘‘prion’’ in 1994 [25] to describe [URE3], the loss of

function phenotype due to the aggregation of Ure2p. Yeast and

mammalian prions differ fundamentally by their effect on

organism viability. The mammalian prion protein Prp is the only

infectious amyloid protein found in metazoans (although amyloid

A is also suspected to be an infectious amyloid [26,27]). The other

proteins that form in vivo amyloid structures in mammals are

generally related to a pathological event. In yeast, prions were

initially described as a phenotypic switch that does not lead to the

death of this organism. Even if the presence of such proteins may

be deleterious in many natural [28] or over-expressing [29]

conditions some recent studies show that yeast prions may be

involved in a fast adaptation mechanism in stress conditions [30].

Human diseases associated with the formation of extracellular

amyloid deposits or intracellular inclusions with amyloid-like

characteristics have been discussed in a recent review [1].

Interestingly, several of these proteins (both mammalian and

fungal) may assemble into oligomeric species that share a common

epitope [31–33], and these species may be responsible for cellular

toxicity [34,35]. These findings are paradoxical, as both benign and

toxic amyloid may form toxic species. Why is it that some amyloids

are harmful whereas others are harmless? Thus, the question arises

of whether it is due to a difference in the rate of toxic intermediate

formation or due to the existence of alternative pathways. In other

words, does a change between benign and toxic amyloid imply a

Figure 6. Aggregation pathways of Wild-type and m8 HET-s(PrD)-GFP. (A) Expression of wt HET-s(PrD)-GFP does not rescue m8
toxicity. A ten-fold serial dilution of the strains co-transformed with m8 HET-s(PrD)-GFP and either wt HET-s(PrD)-GFP or control plasmid was
analyzed as in Fig. 1. (B) Cells were examined under a fluorescence microscope after 48 h of growth in liquid galactose medium. (C) Modeling of
the two potential aggregation pathways. The crude extracts used in the size-exclusion chromatography were visualized with the fluorescence
microscope. Wild-type HET-s(PrD)-GFP forms cottony aggregates, whereas m8 HET-s(PrD)-GFP forms dot-shaped aggregates. These GFP aggregation
patterns are scaled on a time and toxicity curve to summarize our experimental results.
doi:10.1371/journal.pone.0004539.g006
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change in the kinetics of aggregate formation or imply a change in

the kind of aggregates formed? Several mutations that are

responsible for early onset forms of Alzheimer or Parkinson

disease have been isolated in the coding sequences of correspond-

ing amyloid proteins (amyloid precursor protein APP, and alpha-

synuclein, respectively). The mutant Ab peptide, Ab 40ARCTIC,

is more prone to oligomerization than wild-type Ab 40 [4],

whereas PD-associated mutations promote a-synuclein aggrega-

tion [3]. These findings suggest that the first model accounts best

for the toxicity (the kinetics of aggregate formation would be the

key factor). However, mutations leading to highly toxic amyloid

would not be found in mammalian since it should lead to lethality

early during the developmental process.

In this study, we used a genetic approach to select such harmful

amyloid among a randomly mutated library of benign amyloid.

This approach permits the exploration of a vast combination of

amino acid substitutions without predetermining the events

leading to phenotypic changes. The starting material used was a

chimeric protein resulting from the fusion between the prion

domain of HET-s and the GFP.

None of the mutants isolated caused the death of all yeast cells.

The most toxic species (m8) blocks cell growth, but after a lag

period, the yeast cells seems to escape and divide as the control

cells. This toxicity may be solely due to GFP over expression [36],

as opposed to the qualitative effect of its aggregation. This

explanation was ruled out, as the level of GFP expression in the

m8 toxic mutant was clearly lower than the GFP level in wt yeast

cells. The western blot analysis also demonstrates that the toxicity

was not due to a particular metabolism of the GFP that would

result from a cleavage since the percent of free GFP resulting from

proteolysis was roughly the same in m8 and wt extracts. The cells

observed with a fluorescence microscope do not differ in

fluorescence intensity, but rather in aggregation patterns, as the

ring formed by the wt protein is transformed into dotted structures

in m8. This structure may reflect a change in intracellular traffic

that may be related to a cellular answer involving particular

structures such as aggregasomes [37,38].

Mutations causing growth impairment are found all along the

entire coding sequence. Side chain–side chain interaction across

neighboring b-strands is a key determinant of amyloid fibril

formation and these interactions have been previously predicted

by computer analysis software, such as PASTA [39]. Interestingly,

the peak encompassing the ß2 strand region [11,40] dramatically

decreases if the m8 mutant is analyzed by PASTA (Figure S3).

PASTA is based on an assumption of interchain pairing, but a

previous model of Het-s aggregation proposes an intrachain

pairing as a packing model. Despite this difference in the proposed

models, the amyloid capacity of m8 diverges greatly from that of

the wt. This difference may be the basis for the toxic capacity of

the m8. However, when we have separated the mutations and

generated new alleles that retain only some of them in a wt

backbone, we failed to isolate a group of mutations that would be

responsible for the toxicity. The two alleles that bear the first four

and the last six mutations were harmless. This finding also explains

the relative scarcity of toxic mutant since it requires at least two

mutations located in each of the two levels of ß-strand turn ß-

strand that forms elementary motif of amyloid assembly.

Thus, to understand why m8 is toxic, we analyzed the shape of

the cells when this toxicity reaches its maximum. At this stage, m8-

GFP is barely detectable on a western-blot and is found equally in

the pellet and 100,000 g supernatant. Some of the cells present an

unusual shape; the yeast cells (mother and daughter) are still

attached to each other. Half of the non-essential genes in yeasts

affect cell morphology when they are deleted [41]; and this

morphological analysis alone is therefore insufficient for presenting

a coherent hypothesis on the molecular events that lead to this

phenotype. However, the particular pattern seen in these

experiments indicates a loss of polarity, together with a defect in

cytokinesis, and identifies various pathways for future investiga-

tion.

The cellular aggregation pattern of m8-GFP clearly differs from

that of the wild-type HET-s(PrD)-GFP, if observed with a

fluorescence microscope. The dotted structures instead of ring

aggregates found in stationary phase indicate a greater propensity

to be severed or a lower capacity to polymerize. The aggregates

formed in both cases are not equivalent at the molecular level, as

they do not present similar sensitivity to the mild detergent

sarkosyl. This difference indicates either a modification in

monomer stacking that is responsible for the fibril formation, or

a different interaction with cellular partners that modulate

detergent accessibility. Interestingly, these two characteristics were

also found for the m4 mutant that is slightly toxic. Moreover non-

toxic mutants bearing some m8 mutations exhibit also the same

pattern of fluorescence. These level of characterizations are

therefore clearly not sufficient to attest the presence of toxic

species without any ambiguity.

In the presence of 0.1% sarkosyl, m8 and wt aggregates differ in

size. Wild-type aggregates are excluded from the column as a

thinner peak and the corresponding species migrate higher on a

native gel than m8-GFP aggregates. The presence of PrD-GFP

fusions as opposed to GFP alone was confirmed by western-blot in

all these fractions. Biochemical differences between m8 and wt

PrD-GFP were further confirmed by visually observing yeast total

extract after cell lysis. After 24 h of induction, the living cells

mostly present a diffuse fluorescence (at this stage, there are no

significant differences between wt and m8 cells). After lysis, wt total

extract exhibits a thin, branched network of fluorescent proteins,

whereas m8 total extract shows dotted fluorescence. Thus, in the

stationary phase, these differences may be exacerbated as either a

ring or a dot pattern.

Is there any relationship between m8 and wt aggregates? One

could imagine that wt-GFP produce toxic species in a lower

amount. The difference of toxicity would not be due to the

existence of different intermediates but rather to their concentra-

tion in each case. In this scenario m8 would be toxic because it

produces more of the same toxic species than wt, and thus leads to

a strong mortality. If m8 toxicity is due to a higher concentration

of a toxic intermediate that would be also present during the wt

polymerization, then co-expression of wt and m8 species should

change the equilibrium and should attenuate this toxicity. As wt

species are more efficiently produced than m8 when the toxicity

reaches its maximum, this ‘‘titration’’ should be clearly observed.

The introduction of a second plasmid decreases by itself the

toxicity, probably by lowering the amount of m8-GFP that is

produced (by a simple decrease in the plasmid copy number due to

the presence of two plasmids). However, it is quite clear that the

residual toxicity is not affected by the presence of the wt-GFP

protein. The toxicity of m8 is therefore due to a mechanism

apparently independent of wild-type amyloidogenesis and our

results favor a model with two aggregation pathways. Moreover

our in vitro results are consistent with the existence of an alternative

pathway since m8 and wt are both amyloids that differ

structurally. In addition we did not observe any cross-seeding

between these two species [17]. Interestingly, the toxicity was

completely abolished in the Dhsp104 strain. HSP104 encodes the

heat shock protein required for induced thermotolerance [42] and

resolubilizing aggregates of denatured proteins [43]. This protein

plays a key role in yeast prion propagation [44] and is also
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involved in the toxicity induced by polyQ aggregation [5].

However, the role of Hsp104 in this latter case is indirect as

deleting the RNQ1 gene specifically suppressed aggregation and

toxicity of polyQ. In a Dhsp104 strain, Rnq1p cannot be

transformed in an aggregated prion isoform, making the polyQ

non-toxic. In our study, Hsp104 was strictly required for m8

toxicity. Rnq1p was not involved in toxicity, as its deletion did not

change the aggregation pattern (observed with a fluorescence

microscope). Also, we failed to demonstrate any change in the

toxicity induced by the m8 mutant in this strain. The pattern of

cellular aggregation of m8 HET-s(PrD)-GFP is different in a

Dhsp104 versus the wt strain; thus, we favor a model in which

Hsp104 modifies the level of aggregation of m8 and, in turn, the

level of toxicity.

In conclusion, benign amyloid can be transformed into a toxic

species by changing only a few residues. Most toxic effects of

deleterious mutant are mediated by small soluble aggregates

intermediates in the fibril assembly process. We have shown that

the toxic mutant differs from the wild-type in that it is less able to

form large and stable aggregates. This link between the

polymerization capacity and toxicity support the emerging view

that the level of polymerization controls the amyloid toxicity by

balancing the concentration of smaller particles. Computational

analysis, microscope observation, and biochemical and genetic

analysis argue for a model in which the main differences between

m8 and wt HET-s(PrD)-GFP are due to an alternative aggregation

pathway partially controlled by Hsp104 rather than a difference in

the kinetics of polymerization.

Our study opens a new avenue in the field and paves the way of

the future by permitting a structure-toxicity approach without any

structural pre-requisites. Investigating the differences between m8

and wt PrD aggregates at the molecular level is now necessary to

better understand the molecular composition of the toxic species.

Materials and Methods

Yeast strains, media and plasmids
Yeast strains used are isogenic to BY4742 (MATa, his3D1,

leu2D0, ura3D0). Deletion strains are from the Euroscarf yeast

deletion strain set [45]: hsp104D is Y11514 (MATa, his3D1, leu2D0,

ura3D0, YLL026w::kanMX4), rnq1D is Y13435 (MATa, his3D1,

leu2D0, ura3D0, YCL028w::kanMX4) and trp1D is Y17202 (MATa,

his3D1, leu2D0, ura3D0, YDR007w::kanMX4).

As specified, yeasts were grown in SD medium (0.67% yeast

nitrogen base, 2% dextrose) or SG medium (0.67% yeast nitrogen

base, 2% galactose) which were supplemented with 20 mg/L

histidine (H), 20 mg/L lysine (K), and 60 mg/L leucine (L).

The wt plasmid used in this study was pYecHetsYGFP2U (wt-

GFP). This is a multicopy (2 m) yeast expression plasmid with the

URA3 selectable marker. The fusion of the HET-s(PrD) and yeast

optimized GFP [13] is expressed under control of a GAL10

promoter in a pYeHFN2U [46] backbone. This pYeHFN2U

empty plasmid was used as control in cell viability studies. The

pYecHetsYGFP2T plasmid, expressing wild-type HET-s(PrD)-

GFP, was also used in trp1D strain, this plasmid is similar to the

pYecHetsYGFP2U except for the selectable marker which is

TRP1. HSP104 bearing plasmids used were derived from pA1/4

(pFL44L+HSP104, URA3, 2 m) [47] except for the selectable

marker which is LEU2. The HSP104 ORF was also isolated and

integrated under control of a GAL10 promoter in a pYeHFN2L

[46] backbone.

The m8N and m8C constructions were generated by exchang-

ing N-ter and C-ter part of respectively wt-GFP and m8-GFP

plasmids. This was achieved using cloning sites BamHI/PstI. The

m8PZ synthetic gene was from Genscript Corp., USA. The gene

was cloned in yeast vector by a gap repair strategy. After a PCR

using oligonucleotides pGalWT(+) 59-CACAAATACACACAC-

TAAATTACCGGATCTATGAAGATCGACGCG-39 and wt-

GFP(2) 59-CCAGTGAATAATTCTTCACCTTTAGACATAT-

TATCCCGGAACCC-39, the amplified gene was co-transformed

with BamHI linearized and Mung-Bean treated (Promega) wt-GFP

yeast plasmid.

All yeast transformations were carried out as described

previously [48].

PCR mutagenesis
The HET-s(PrD) sequence of pYecHetsYGFP2U was amplified

by PCR using 59- AAATACACACACTAAATTACCGGATC-

TATG -39 and 59- ACCAGTGAATAATTCTTCACCTTTA-

GACAT -39 primers. A Taq DNA polymerase with no

proofreading activity (New England BioLabs M0237 Taq DNA

polymerase) was used in error-prone reaction conditions (0.1% (v/

v) Triton X-100; 50 mM KCL ; 10 mM Tris-HCl [pH 8.3];

4.76 mM MgSO4 ; 0.5 mM MnCl2) with the following nucleotide

concentrations (0.09 mM dCTP ; 0.06 mM dATP; 0.14 mM

dTTP; 0.02 mM dGTP). The corresponding PCR product was

cloned by ‘‘gap-repair’’ in a BamHI (New England BioLabs)

linearized and Mung-Bean nuclease (New England BioLabs)

treated pYecHetsYGFP2U plasmid.

Isolation of toxic mutants
The library obtained after the gap-repair was platted onto SD

HKL medium. After replica plating onto SG HKL medium,

colonies presenting a growth defect were isolated and spotted

individually. In this study 20 000 independent clones were thus

analyzed and 80 were further selected. Only 5 clones were

confirmed for a toxic phenotype. Plasmids were then extracted

and re-transformed into S. cerevisiae after an amplification step in E.

coli. The interesting clones were finally sequenced.

Spotting assay
All spotting assays were performed in the same conditions.

Tenfold serial dilutions starting with equal number of cells (107

cells) were made in sterile water. Spotting assays derived from a

pool of three independent fresh colonies. Five microliters drops

were then plated on SD or SG medium complemented with

appropriated amino acids.

Colony Forming Unit assay
Yeasts were grown overnight in SD HKL liquid medium. They

were washed in water and then inoculated in 50 mL of liquid SG

HKL medium at 0.05 OD (l= 600 nm) and grown for 65 hours

at 30uC with shaking. Aliquots were collected at various times (18

to 65 hours) and diluted before plating onto SD HKL medium to

have a proper number of colonies. Colonies were numbered after

2 days of growth at 30uC and this value was converted to colony

forming unit (cfu/mL) by applying dilution factor.

Microscopy
Cells were washed in water and resuspended into a mounting

solution (218 mM 1,4-diazabicyclo[2.2.2]octane (DABCO, Sig-

ma); 25% (v/v) PBS 16; 75% glycerol). DNA was stained by

adding 2 ng/mL Hoechst 33342 to the mounting solution. Cells

were observed using either a DMLB (Leica) fluorescence

microscope coupled with a ColorView II (Olympus) color camera

or an Axioskop 2 plus (Zeiss) fluorescence microscope coupled

with an AxioCam (Zeiss) black and white camera. The following
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filters were used: L5 (GFP) and A4 (Hoechst) for the Leica and

GFP LP (GFP) for the Zeiss.

Protein extraction, sedimentation analysis and Western
blotting

Total yeast protein extracts were prepared by lysing the

equivalent of 20OD (l= 600 nm) units of yeast cells in exponential

growth with glass beads in 200 mL of TNT extraction buffer

(25 mM Tris-HCl [pH 7.4], 100 mM NaCl, 0.2% Triton),

containing 2 mM phenylmethylsulfonyl fluoride (Genaxis) and

some protease inhibitors (Roche CompleteTM mini), using a MP

Biomedicals FASTPREPH-24 device for 30 seconds. This extract

was then centrifuged for 10 min at 1000 g at 4uC and supernatant

was recovered.

An alternative alkaline lysis extraction method was also used.

Briefly, 5OD (l= 600 nm) units of yeast cells in exponential

growth were permeabilized with 500 mL of 0.185 M NaOH, 0.2%

2-mercaptoethanol. After a 10 min incubation on ice Trichlor-

oacetic acid (TCA) was added to a final concentration of 5%, and

the samples were incubated for an additional 10 min on ice.

Precipitates were then collected by centrifugation at 14000 g for

5 min. Pellets were dissolved in 30 mL of dissociation buffer (4%

sodium dodecyl sulfate, 0.1 M Tris-HCl [pH 6.8], 4 mM EDTA,

20% glycerol, 2% 2-mercaptoethanol, 0.02% bromophenol blue)

and 15 ml of 1 M Tris-base. Yeast proteins were incubated for

5 min at 100uC and separated on a 12% SDS-PAGE.

For the western-blot, the crude extract was incubated for 5 min

at 100uC in 16 loading buffer and separated on a 12% SDS-

PAGE. Proteins were electrically transferred onto nitrocellulose

membranes (Optitran BA-S83, Schleicher & Schuell) in the

presence of transfer buffer (39 mM Glycine, 48 mM Tris-base,

2% EtOH and 0.037% SDS) and were probed with monoclonal

anti-GFP antibodies (Sigma). Peroxidase-conjugated anti-mouse

antibodies (Sigma) were used as secondary antibodies. Binding was

detected with the SuperSignal reagent (Pierce) and the VersaDoc

Imaging system (BioRad). Signals were quantified with Quantity

One software (Bio-Rad).

For the sedimentation analysis, the total yeast extract was

centrifuged for 30 min at 100,000 g at 4uC.

Filter trap assay
A cellulose acetate membrane (OE66, Schleicher & Schuell) was

equilibrated in TNT extraction buffer for 5 min, followed by the

recommended assembly of the 96-well dot-blot system (Minifold I

Dot-Blot System, Schleicher & Schuell). Crude extracts were

incubated in TNT extraction buffer +0 to 2% sarkosyl (N-

Lauroylsarcosine sodium salt, Sigma) for 10 min at room

temperature and subsequently filtered through the membrane.

GFP fluorescence was detected using a Safe ImagerTM blue light

(l= 470 nm) transilluminator and Safe ImagerTM amber filter

(Invitrogen). The acetate membrane was then probed with anti-

GFP antibodies as previously described for a nitrocellulose

membrane.

Size-exclusion chromatography
0.1% sarkosyl was added to crude extracts before a filtration

step through a 0.2 mm cellulose acetate filter (MinisartH,

Sartorius). The extracts were then processed through the size-

exclusion column. The molecular size of the proteins was analysed

by chromatography on a FPLC Superose 6 column (Amersham

Biosciences) equilibrated with 100 mM Tris-HCl [pH 8];

150 mM NaCl and 0.1% sarkosyl.

Native agarose gel
Ten microliters of each size-exclusion resulting fraction (in

0.1% sarkosyl TNT extraction buffer) were incubated in 16
loading buffer (containing only orange G (Sigma); 20% glycerol;

TNT extraction buffer) and separated on a 2.5% agarose gel in a

Tris-Glycine (1.45 g/L Tris-base (BioRad) ; 7.2 g/L Glycine

(BioRad)) running buffer. Proteins were blotted by capillarity

onto nitrocellulose membranes (Optitran BA-S83, Schleicher &

Schuell) for one night in the presence of transfer buffer (39 mM

Glycine, 48 mM Tris-base, 2% EtOH and 0.037% SDS) and

then probed with anti-GFP antibodies as previously described for

Western blot.

Supporting Information

Figure S1 Structure of wt HET-s(PrD)-GFP may be conditioned

by an asparagine polar zipper. On the RMN predicted structure of

HET-s(PrD)-GFP the different beta strands are colorized to show

their interactions: beta1, beta3 in red and beta2, beta4 in yellow.

Asparagines are visualized by their carbon backbone highlighted

in the opposite color.

Found at: doi:10.1371/journal.pone.0004539.s001 (0.81 MB TIF)

Figure S2 Intracellular cleavage of GFP is independent of HET-

s(PrD)-GFP mutations. Crude extracts were obtained from cells

expressing either wt, m4 or m8 proteins either by a glass beads

(left) or an alkaline lysis (right) extraction method

Found at: doi:10.1371/journal.pone.0004539.s002 (2.85 MB TIF)

Figure S3 Amyloid Propensity Plots for wt and m8 protein as

predicted by PASTA algorithm [33]. (A) Plot of amyloid

propensity h(k) for the wt protein. Light blue arrows over the k-

axis represent the sequence regions involved in b-strands

according to ss-NMR experiments. (B) Plot of amyloid propensity

h(k) for the m8 protein. Light blue arrows over the k-axis represent

the sequence regions involved in b-strands according to ss-NMR

experiments on the wild-type protein.

Found at: doi:10.1371/journal.pone.0004539.s003 (0.55 MB TIF)
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