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Cellular census of human fibrosis defines
functionally distinct stromal cell types and states
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Fibrotic disorders are some of the most devastating and poorly treated conditions in devel-

oped nations, yet effective therapeutics are not identified for many of them. A major barrier

for the identification of targets and successful clinical translation is a limited understanding of

the human fibrotic microenvironment. Here, we construct a stromal cell atlas of human

fibrosis at single cell resolution from patients with Dupuytren’s disease, a localized fibrotic

condition of the hand. A molecular taxonomy of the fibrotic milieu characterises functionally

distinct stromal cell types and states, including a subset of immune regulatory ICAM1+

fibroblasts. In developing fibrosis, myofibroblasts exist along an activation continuum of

phenotypically distinct populations. We also show that the tetraspanin CD82 regulates cell

cycle progression and can be used as a cell surface marker of myofibroblasts. These findings

have important implications for targeting core pathogenic drivers of human fibrosis.
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F ibrosis is defined as the accumulation of excess matrix
proteins and contributes to a significant proportion of the
mortality in developed nations1,2. Important mediators of

fibrosis are collagen-producing stromal cells, the activation of
which coordinates a pathogenic system that can compromise
organ function1,2. To develop effective therapeutics, we must first
have a detailed understanding of the states, subtypes and func-
tional properties of fibrotic stromal cells3–7. A major challenge in
studying fibrosis is the availability of well-characterised patient
samples to dissect the molecular landscape of these disorders.

Patients with localized fibrotic diseases are a rich source of
readily accessible early stage tissue8. Dupuytren’s disease (DD) is
a common and progressive fibroproliferative disorder of the
palmar and digital fascia of the hand and, in developed nations
affects 12% of those aged 55 years, increasing to 29% of those 75
years and older9. The initial clinical presentation is the appear-
ance of a firm nodule in the palm that expands into fibrous
collagenous cords extending into the digits. Dupuytren’s nodules,
which represent the early stage of the disease, are a highly cellular
fibrotic ecosystem and are an important model to examine
developing fibrosis in humans.

In this study, using clinical samples from patients with DD, we
construct a molecular taxonomy of human fibrosis. Our single
cell atlas of the fibrotic milieu elucidates functionally distinct
stromal cell types and states, including ICAM1+ fibroblasts and
CD82high myofibroblasts that contribute discrete pro-fibrotic
functions. In addition, we demonstrate that the tetraspanin CD82
is expressed on human myofibroblasts and functions to regulate
cell cycle progression in this population.

Results
Single-cell profiling of developing human fibrosis. To profile
human fibrosis, we examined Dupuytren’s nodules using mass
cytometry (CyTOF) and single-cell RNA-seq, constructing a
single-cell atlas of an active and cellular fibrotic microenviron-
ment (Fig. 1a–e, Supplementary Fig. 1a–f). We generated a
dataset yielding high quality profiles of over 300,000 cells from 18
patients (12 single cell RNA-seq and 6 CyTOF) to study cellular
heterogeneity in this pathological ecosystem (Fig. 1a–e, Supple-
mentary Fig. 1a–f). Initially, we employed graph-based cluster-
ing10 that resolved a complex disease landscape comprised of
fibroblasts, myofibroblasts, immune, pericytes, cycling and
endothelial cells (Fig. 1b–e, Supplementary Fig. 1c, d). Next, we
performed a GWAS meta-analysis of DD from UK Biobank and
the BSSH-GODD study11, and mapped the associated regions to
candidate genes and individual cellular subtypes using SNPsea12.
GWAS-associated SNPs were strongly associated with particular
stromal subtypes (Supplementary Fig. 2a, b), supporting our
classification. Marker genes for pericytes, included JAG1 and
MCAM, SFPR4 and PLA2G2A for fibroblasts and myofibroblasts
were marked by MMP14 and MAFB. The single-cell RNA-seq
and CyTOF aligned with significant markers for stromal cell
types, where CyTOF further elucidated cell surface expression of
these markers for fibroblasts, myofibroblasts and pericytes.

A dynamic and immunoregulatory ICAM1+ fibroblast in
fibrosis. We then undertook detailed characterisation of fibro-
blasts and myofibroblasts. Paired single-cell profiling using
scRNA-seq and CyTOF uncovered distinct molecular profiles of
ACTA2− fibroblasts (CD9, PLA2G2A, C1R and CXCL14) and
ACTA2+ myofibroblasts (α-SMA, ITG-β1, TGF-β1, β-catenin
and MMP14). (Supplementary Fig. 2c–g). Myofibroblasts were
the predominant cell type representing ~60% of the total stromal
cell population (Supplementary Fig. 2d). This observation is
consistent with previous histological descriptions of DD nodules

that showed these structures are composed of densely packed
myofibroblasts13. Functional annotation14 of cell marker genes
using gene ontology (GO) revealed a diversification of function,
with inflammation, proliferation and extracellular matrix (ECM)
remodelling pathways localising to distinct cell types (Fig. 2a,
Supplementary Fig. 2e). Myofibroblasts showed strongest
enrichment for pathways involved with cell contraction and ECM
remodelling (Fig. 2a, Supplementary Fig. 2e) and core enrichment
genes, including ACTA2, TPM2 and POSTN. In contrast, fibro-
blasts showed an enrichment for genes involved with ‘chemokine
activity’ and ‘immune response’ pathways (Fig. 2a, Supplemen-
tary Fig. 2e), including CXCL14, CXCL8, IL6, C1R and PLA2G2A.

Next, we performed a focused analysis of ACTA2− fibroblasts,
subsampling this population from the entire dataset and
repeating the computational workflow used to delineate major
cell types. Graph-based clustering of transcriptomic profiles
defined three major subsets, CD34+, PDPN+ and ICAM1+

fibroblasts (ICAM1+IL6high, ICAM1+IL6low) (Fig. 2b–d, Supple-
mentary Fig. 3a, b). Moreover, these populations were conserved
at the protein level in the CyTOF dataset. GO analysis of
fibroblast marker genes demonstrated ICAM1+IL6high fibroblasts
were enriched for immune responsive pathways driven by the
expression of several chemokines including IL6 and IL8 (Fig. 2d,
e). We noted ICAM1+IL6high fibroblasts were conserved across
multiple patient samples and confirmed this subset showed the
highest protein expression of IL-6 and IL-8 (Supplementary
Fig. 3b, c) using flow cytometry of freshly isolated DD nodular
cells. Subsequently, to explore potential relationships between
subsets we applied diffusion maps to the fibroblasts. This
uncovered a complex topography with discrete trajectories
linking CD34+ and ICAM1+ subsets with PDPN+ fibroblasts,
suggesting a putative underlying developmental path (Supple-
mentary Fig. 3d).

Next, we sought to define the dynamics of fibroblast subsets in
fibrosis pathogenesis. To assess this, we used flow cytometry to
determine their proportions within two distinct Dupuytren’s
structures, the early disease state myofibroblast and immune cell-
rich nodule15,16 and later disease stage matrix-rich cord13,17

(Fig. 2f, h, Supplementary Fig. 3e). We observed a higher
proportion of ICAM1+ fibroblasts in nodules, which have been
shown to harbour the majority of inflammatory cells in DD and
are present at the early stages of the disease (Fig. 2h).
Subsequently, we tested whether ICAM1+ fibroblasts could
induce immune cell chemotaxis as predicted by their gene
expression profiles. For this, we sorted freshly isolated ICAM1+

and ICAM1− fibroblasts (CD45−CD31−CD146−ITGβ1low)
from Dupuytren’s nodules and incubated each with THP-1
mononuclear immune cells (Fig. 2g). This confirmed that
ICAM1+IL6high fibroblasts produced significantly higher
immune cell chemotaxis (Fig. 2g). Together, this identifies a
dynamic ICAM1+IL6high fibroblast in human fibrosis which act
to promote immune-cell recruitment.

Distinct myofibroblast states along an activation continuum.
Myofibroblasts are central mediators of the dysregulated wound-
healing programme that defines fibrosis3,4, therefore we studied
this population in detail. Graph based clustering of the single cell
RNA-seq data defined four major subsets (Fig. 3a) that included a
cycling population (Cycling MFB) (Fig. 3a, b). After this, we
sought to confirm that proliferating stromal cells (Ki67+) were
myofibroblasts (Fig. 3c–e, Supplementary Fig. 4a–d). Using flow
cytometry, we stained freshly disaggregated nodular cells and
gated on myofibroblasts (CD45−CD31−CD146−ITGβ1high) and
fibroblasts (CD45−CD31−CD146−ITGβ1low) and demonstrated
Ki67high cells were a subset of myofibroblasts. In the single cell

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16264-y

2 NATURE COMMUNICATIONS |         (2020) 11:2768 | https://doi.org/10.1038/s41467-020-16264-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


RNA-seq, a second subset was characterised by lower expression
of ACTA2 and intermediate expression of fibroblast marker genes
(CXCL14, PLA2G2A and C1R), we termed the ACTA2low myo-
fibroblast (Fig. 3a, b, Supplementary Fig. 5a). A third comprised a
discrete CD82highOX40L+ population (CD82, OX40L, MMP11,

MMP14 and CD82) (Fig. 3a, g, Supplementary Fig. 5b–e). Finally,
a fourth less distinct community we termed the intermediate
myofibroblast (Fig. 3a, b, Supplementary Fig. 15a). GO analysis
demonstrated that CD82highOX40L+ myofibroblast marker genes
showed the strongest enrichment for cell contraction pathways
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Fig. 1 Single-cell profiling of developing human fibrosis. a Schematic illustrating experimental protocol for single-cell profiling of Dupuytren’s nodules
with representative immunohistochemistry image showing α-SMA protein expression in nodules. b, c tSNE projections of single cell RNA-seq for 36,864
cells from the first batch (n= 6 DD patients) showing major cell types (a) and fibroblasts (CXCL14 expression) and myofibroblasts (ACTA2 expression) (b)
in Dupuytren’s nodules. Scale bar in scaled log(UMI+ 1). Cycling MFB represents cycling myofibroblasts. d Heatmap of single cell RNA-seq showing z-
score normalised mean expression of cell type marker genes in nodular cells. (n= 12 DD patients). e tSNE projections of CyTOF analysis from
representative Dupuytren’s nodule, coloured by normalised protein expression of cell type markers (n= 6 DD patients).
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(Fig. 3f). In contrast, differential gene expression and pathway
analysis revealed ACTA2low myofibroblasts resembled a general
fibroblast phenotype, without clear characteristics of any one
subtype. In addition to ACTA2, significant ACTA2low myofi-
broblasts markers were general fibroblasts markers including
PLA2G2A and CXCL14. ACTA2low myofibroblasts also shared

pathways enriched in fibroblasts such as ‘interleukin signalling’
and ‘chemotaxis’ (Fig. 3f).

As we discovered the membrane tetraspanin CD82 marked the
myofibroblast population showing high expression of ACTA2
and ITGB1 (CD82highOX40L+ myofibroblast), we confirmed its
co-expression with α-SMA and ITGβ-1 proteins (Fig. 3g, h,
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Supplementary Fig. 5f, g) using flow cytometry and multiplex
immunofluorescence. This validated a cell surface marker of
human myofibroblasts and showed tight co-expression of CD82
with established myofibroblast markers α-SMA and ITG-β1
(Supplementary Fig. 5f). Finally, using immunohistochemistry we
confirmed CD82+ myofibroblasts were enriched in Dupuytren’s
nodules as compared to cord (Supplementary Fig. 5g).

The overall topography of the myofibroblast clusters suggested
an overarching trajectory structure in which the two distinct cell
populations represent diverging ends of a continuum separated by
an intermediate cellular state (Fig. 3a). This concept reflects a
central principle of myofibroblast biology, which describes an
‘activation’ paradigm along a differentiation path towards a fully
pathogenic phenotype18,19. Supporting this concept, principal
component analysis (PCA) of the myofibroblasts demonstrated the
first principal component to be strongly associated with ACTA2
expression and inversely correlated with a gene signature of
ACTA2low myofibroblasts (Supplementary Fig. 6a, b).

To better understand this activation signature, we used
diffusion maps to reconstruct a potential developmental path.
In accordance with the PCA, the first two diffusion map
components20,21 captured a trajectory associated with increasing
ACTA2 and CD82 expression (Supplementary Fig. 6c–f). Fitting a
principal curve22 through the first two diffusion components
enabled us to define a dynamic gene module along this
continuum (Supplementary Fig. 6c). We observed a coordinated
decrease in the ACTA2low myofibroblast markers and progressive
increase in CD82highOX40L+ myofibroblast markers along this
path (Supplementary Fig. 6f). This observation is compatible with
the CD82highOX40L+ myofibroblast representing a fully ‘acti-
vated’ phenotype, at the terminal stage of a differentiation path.
In light of this finding, we performed RNA velocity analysis on
human myofibroblasts to explore potential directionality in
trajectories using the proportion of spliced and unspliced reads.
This demonstrated a complex vector field showing a transition
from cycling myofibroblasts into the major cell populations and a
putative dynamic equilibrium moving between CD82high and
ACTA2low myofibroblasts.

After this, we looked for the spatial expression of CD82high

myofibroblast markers in DD nodules using immunohistochem-
istry. Within nodules, CD82highOX40L+ myofibroblast markers
(e.g. MMP11, CD82 and MMP14) had the highest expression in
densely packed, α-SMA+ myofibroblast-rich foci (Supplementary
Fig. 7).

Functional heterogeneity of myofibroblasts in human fibrosis.
We next investigated whether myofibroblasts along the activation
trajectory were phenotypically distinct. We sorted CD82high and
CD82low myofibroblasts and performed traction force microscopy
(TFM) to measure cell contractility at single-cell resolution
(Fig. 4a–d). As force generation is a key in vivo characteristic of

myofibroblasts it is a highly relevant functional readout. In
addition, pathway analysis of CD82high myofibroblasts associated
this population with cell contraction pathways and thus TFM
enabled validation of a functional characteristic predicted in the
single-cell RNA-seq (Fig. 4a). This demonstrated human myofi-
broblasts are functionally heterogeneous with CD82high myofi-
broblasts marking a highly contractile population (Fig. 4b–d). In
addition, CD82high myofibroblasts had distinct biophysical pro-
files with localised areas of high force magnitude that enables
these cells to bind and remodel matrix proteins (Fig. 4b).

To further understand the functional role of CD82, we
performed bulk RNA-sequencing following siRNA mediated
knockdown in freshly isolated myofibroblasts (Fig. 4e, Supple-
mentary Fig. 8a–d). This revealed that CD82 regulated a wide
array of genes and GO analysis of CD82 regulated genes
demonstrated an enrichment for diverse processes, including cell
cycle and p53 signalling (Supplementary Fig. 8e). Given this, we
sought to validate a functional role of CD82 in myofibroblasts.
Using a flow cytometry-based cell cycle assay and siRNA
mediated knockdown of CD82, we confirmed CD82 directly
regulated the myofibroblast cell cycle, promoting entrance into
the G2–M phase (Fig. 4e). Together, these results support a role of
CD82 in maintaining the proliferative potential of myofibroblasts
and may explain how these cells accumulate in this condition.

To explore the relevance of our findings in other fibrotic
diseases, next we examined CD82+ stromal cells in a murine
model of pulmonary fibrosis (Fig. 4f–h, Supplementary Fig. 9a–c).
Remarkably, we discovered that Cd82 marked a distinct Pdgfra+

fibroblast which was the most upregulated population during
fibrosis progression (Fig. 4f–h, Supplementary Fig. 9b, c). Based
on these findings, we looked for CD82 protein expression in
human pulmonary fibrosis (IPF), co-staining for pertinent
markers of Pdgfra+ fibroblasts (PDGFR-α and COL13A1) (Fig. 4i,
Supplementary Fig. 9d). This confirmed the presence of CD82+

fibroblasts in human IPF adjacent to fibrotic foci. Collectively,
these data show a Cd82+Prgfra+ fibroblast in murine and human
pulmonary fibrosis and demonstrate that CD82 marks distinct
myofibroblast and fibroblast populations across visceral and
localised human fibrosis. It is therefore possible that at different
anatomical sites undergoing fibrosis CD82 may drive diverse
cellular responses to propagate this disease process.

Discussion
The fibrotic microenvironment houses multiple cell subpopula-
tions with diverse genetic and phenotypic characteristics23–26.
How this heterogeneity emerges in developing fibrosis remains
unclear and a major barrier to this understanding is the limited
availability of high-quality human samples8,27. Here, we build a
single cell atlas of a human fibrotic microenvironment and
describe functionally distinct fibroblast and myofibroblast types
and states. A number of recent studies have utilised single cell

Fig. 2 A dynamic and immunoregulatory ICAM1+ fibroblast in fibrosis. a Heatmap of single cell RNA-seq showing z-score mean expression of genes
driving GO signatures in cell types with exemplar GO terms annotated. GO analysis performed on significant cell type markers (two-sided Wilcoxon Rank
sum Test, FDR correction, p-adjust < 0.01). b tSNE projection of fibroblasts coloured by major subsets (n= 12 DD patients) in single cell RNA-seq. c tSNE
projections of CyTOF analysis for representative DD nodule showing three major fibroblasts subsets (n= 6 DD patients). Scale bar represents normalised
protein expression. d Heatmap of single cell RNA-seq showing mean z-score expression of top 10 marker genes for each fibroblast subset (n= 12 DD
patients). e tSNE projections of single cell RNA-seq showing fibroblasts coloured by ICAM1 and IL6 expression in scaled (log(UMI+ 1) (n=DD 12
patients). f Representative density plots of flow cytometry analysis showing ICAM1+ fibroblast in freshly isolated cells from matched DD nodule and cord
(n= 8 DD patients). g Dot plot of chemotaxis assay showing migration of THP-1 cells after incubation with ICAM1−/+ sorted populations (n= 11 DD
patients). Two-sided paired t test, p value= 0.0051. h Box and whisker plots of flow cytometry analysis showing the percentage of cells (proportion) for
fibroblast subsets (CD34+, ICAM1+ and PDPN+) in Dupuytren’s nodules and cords as a proportion of total fibroblasts. Two-sided unpaired t test, mean ±
SEM (n= 8 DD patients). ICAM1 range 3–32%, median 8% and box bounds 5–17%. CD34 range 13–50%, median 25% and box bounds 22–30%. PDPN
range 42–63%, median 48% and box bounds 45–55%. Box bounds are first and third quantiles.
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RNA-seq to profile human fibrotic disease, including lung and
liver fibrosis, but these reports highlight the challenge in studying
small biopsy samples from these disorders28. Crucially, our results
from Dupuytren’s nodules enabled description of stromal cells
from a complete fibrotic ecosystem, excised in its entirely, and
thus forms a powerful resource for future studies in fibrosis.

Fibroblasts are increasingly recognised as central mediators
of diverse pathological systems and here we uncovered three

major subsets (ICAM1+, CD34+ and PDPN+) in human
fibrosis. Crucially, we discovered a dynamic immune regulatory
ICAM1+IL6high fibroblast expressing high levels of chemokines
and exhibiting a direct chemotactic activity. In addition, we show
this population is expanded in developing and immune-cell rich
stages of fibrosis in Dupuytren’s nodules. We have previously
shown in DD immune cell factors, including TNF, are crucial for
myofibroblast development and activation16. Thus, together these
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findings support ICAM1+IL6high fibroblasts as key drivers of
inflammation that feedbacks to sustain stromal activation during
fibrosis progression.

Tetraspanins are a family of highly conserved proteins con-
taining four transmembrane domains with diverse functions in
human health and disease. CD82 represents a canonical mem-
brane tetraspanin, most studied in the context T-cell activation
and tumour suppression29. Molecular functions of CD82 are
broad and include directing intracellular signalling30, binding to
integrins31,32 and modulating p5333. To our knowledge CD82 has
not been described in relation to myofibroblasts. Here, we show
CD82 is a specific protein and gene marker of human myofi-
broblasts whose expression tightly correlates with α-SMA and
ITG-β1. In addition, we demonstrate it acts to regulate myofi-
broblast cell cycle progression and provides a mechanism by
which these cells may accumulate in DD34.

Our stromal cell census delineates a unified molecular pro-
gramme of myofibroblasts in fibrosis and demonstrates these cells
exist along an activation trajectory housing ACTA2low, inter-
mediate and CD82highOX40L+ subsets, the latter being highly
contractile and housing a cycling population. RNA velocity
analysis suggests a complex and dynamic topography of this
activation signature containing a proliferative subset that sup-
ports a precursors pool. In addition, we show CD82 expression
follows the activation trajectory that transitions between
ACTA2low and CD82highOX40L+ myofibroblasts.

A central function of myofibroblasts is the generation of
traction force which plays a key role in remodelling the matrix
and also modulates the activities of the embedded stromal cells in
wound healing and fibrosis7–9. Using TFM, we validate functional
heterogeneity along the myofibroblast activation trajectory
marked by CD82 and show CD82high myofibroblasts have dis-
tinct biophysical profiles exerting high traction force on ECM
coated hydrogels. It is reasonable that force generation in this
population contributes to their proliferative and ECM remodel-
ling capacity. However, the biophysical profile of CD82high

myofibroblasts shows distinct force foci of corresponding size and
morphology to fibrillary matrix proteins35 and supports a pre-
dominant role of binding to and remodelling of the matrix.

Given the lack of an animal model for DD we are unable to
directly validate our findings in an in vivo model, including
potential functional and lineage tracing studies of stromal cell
populations. In addition, limitations of murine models of IPF must
be acknowledged with regards to their relevance to human disease.
Nonetheless, the differential expression of CD82 on fibroblasts in
visceral fibrosis and myofibroblasts in localised human fibrosis
suggests discrete functions during fibrosis at different anatomical
sites. We uncovered a functional role of CD82 in human myofi-
broblasts in localised fibrosis, but the exact molecular function of
CD82+ stromal cells in pulmonary fibrosis remains unknown and
represents an exciting avenue for future research.

In summary, our findings provide important insights into
mesenchymal subpopulations in human fibrosis, classify a divi-
sion of labour between fibrotic stromal cells and form a powerful
translational resource to help inform development of future
treatments.

Methods
Patient samples. After approval by the local ethical review committee (REC 07/
H0706/81, University of Oxford), tissue samples were obtained with informed
consent from patients with DD. Dupuytren’s nodular tissue were obtained from
individuals with DD undergoing dermofasciectomy. Given the lack of well-defined
controls in DD we instead focused on dissection heterogeneity within the fibrotic
microenvironment.

Cell culture. Cells from DD were isolated from α-SMA-rich nodules as described
previously13. Tissue samples were dissected into small pieces and digested in
DMEM (Lonza) with Type I collagenase (Worthington Biochemical Corporation)
+DNase I (Roche Diagnostics) for up to 2 h at 37 °C. Cells were cultured in
DMEM with 5% (vol/vol) FBS and 1% penicillin–streptomycin at 37 °C in a
humidified incubator with 5% (vol/vol) CO2. Cells before passage 2 were used for
experiments and only freshly isolated cells were used for single cell RNA-seq,
CyTOF and flow cytometry.

Antibodies. Antibodies used in flow cytometry: PE-ICAM1 (Biolegend HA58), PE/
Cy7-CD34 (Biolegend 581−BL), APC-PDPN (Biolegend NC-08), APC-CD31
(Biolegend WM59), APC-CD146 (Biolegend SHM-57), FITC-CD146 (Abcam
PIHI2), BV421-CD45 (Biolegend HI30), BV605-ki67 (Biolegend Ki67), APC-IL8
(eBioscience BCH), APC-IL6 (Biolegend MQ2-13A5), AF700-α-SMA (R&D Sys-
tems ICI420N), APC-CD29 (Biolegend 152/16) and PE-CD82 (Biolegend ASL-24).
Antibodies used for immunohistochemistry and Immunofluorescence: α-SMA
(Abcam A5228), PLA2G2A (Novus Bio. 620501), CXCL14 (Abcam ab36622), C1R
(Sigma-Aldrich P00736), ITG-β1 (Abcam EP1041Y), β-Catenin (Abcam ab16051),
MMP14 (Abcam EP1264Y), FAPB5 (Abcam ab84028), IL-11RA (Abcam
ab109697), MMP11 (Abcam ab53143) and CD82 (Abcam TS82b)

Single-cell Isolation. Following surgical resection DD samples were rapidly
transported to the research facility. On arrival, samples were then rinsed in PBS
and the nodule isolated using a scalpel. Each nodule was minced using a scalpel and
transferred to 5 ml of digestion medium described above. Dissociated cells were
then washed in 5% FBS DMEM (Gibco) and passed through a 100 μm cell strainer.
This single-cell solution was slowly frozen using a Mr. Frosty Container (Ther-
moFisher). Single-cell suspensions were thawed on the day of sequencing, diluted
at a concentration of 1000 cells/µL in 0.04% BSA/PBS for loading into 10×
Chromium Single Cell A Chips.

Droplet-based scRNA-seq. Single cell libraries were prepared using the Chro-
mium 3′ v2 platform (10× Genomics, Pleasanton, CA) following the manu-
facturer’s protocol. In brief, single cells were encapsulated into gel beads in
emulsions (GEMs) in the GemCode instrument followed by cell lysis and barcoded
reverse transcription of RNA, amplification, shearing and 3′ adaptor and sample
index attachment. Approximately, 10,000 single cells were loaded on each channel
and approximately 1500–6000 cells were recovered. Libraries were sequenced on
the Illumina HiSeq 4000 (Paired end reads: Read 1, 26 bp, Read 2, 98 bp).

Computational analysis. Sample de-multiplexing, alignment to the GRCh38
human transcriptome and UMI-collapsing were performed using the Cellranger
toolkit (v2, 10× Genomics). Aspects of the downstream analysis were done in
Seurat R package (Sajita Lab). We first performed quality control on each patient

Fig. 3 Distinct myofibroblast states along an activation continuum. a Force directed graph (Fruchterman–Reingold layout) of single-cell RNA-seq
showing myofibroblasts coloured by major subsets (n= 12 DD patients). MFB represents myofibroblast. b Heatmap of single cell RNA-seq showing the z-
score expression of top ten myofibroblast subset markers. Two-sided Wilcoxon Rank Sum Test with FDR correction (BH correction (n= 12 DD patients).
c tSNE projections of single cell RNA-seq showing myofibroblasts coloured by the expression of ACTA2 and MKI67 in scaled log(UMI+ 1) (n= 12 DD
patients). d Violin plots showing gene expression of MKI67 and ITGB1 in fibroblasts and myofibroblasts in scaled(log(UMI+ 1)) from single cell RNA-seq.
e Box and whisker plot of flow cytometry analysis showing Ki67 protein expression in myofibroblasts ITGβ1high myofibroblasts (range 21–46%, mean 28%
and box bounds 24–27% representing first to third quantiles) and ITGβ1low fibroblasts (range 0–0%, mean 0.0% and percentiles 0%). Two-sided unpaired
t test, p value= 0.00014, mean ± SEM. (n= 8 DD patients). f Dot plot of single cell RNA-seq showing pathways enriched in myofibroblast subsets. Gene
ratio is number of marker genes associated with pathway and p.adjust is adjusted p value (two-sided Wilicoxon Rank Sum test, BH FDR-correction). g tSNE
projections of CyTOF analysis for representative DD patient showing distinct CD82highOX40L+ myofibroblast. Scale bar is normalised protein expression.
(n= 6 DD patients). h Confocal images of immunofluorescence showing co-expression of CD82, α-SMA and ITG-β1 in DD nodules (n= 3 DD patients).
Scale bar 20 µm.
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sample separately. We excluded poor quality cells that expressed fewer than 200
genes and with over 10% of UMIs mapping to mitochondrial genes as well as cells
that expressed over 4500 genes. After this, the donors were aligned from the first
and second batches. Batch correction was performed using Combat as imple-
mented in the ‘sva‘ R package using the default parametric adjustment mode36.
Batch correction was assessed before downstream analysis and we observed
minimal batch effects following the Combat method. We employed a global-scaling
normalisation procedure as per37 calling Seurat’s LogNormalize() function. Briefly,
the cell ranger UMI count value for each gene was divided by the sum of the total
UMI counts per cell to normalise for differences in library size and then multiplied

by a scaling factor that represented the median library complexity (10,000) pro-
ducing TPM-like values. We then took the log transform of this procedure for
downstream analysis. Downstream analysis was performed using all patient
donors, and first and second patient batches were displayed separately for
visualisation only.

Feature selection was first undertaken by defining highly variable genes using
the FindVariableGenes() function (1856 genes). Values were then centred and
scaled before input to PCA, which was implemented using the R function ‘prcomp’
from the ‘stats’ R package. After PCA, significant PCs were identified using the
permutation test implemented using the ‘permutation PA’ function from the
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‘jackstraw’ R package38. This test identified 20 significant PCs and these were used
as the input to further analysis.

To partition the data into clusters of transcriptionally related cells, we used
unsupervised clustering based on the Louvain algorithm with the Jaccard
correction implemented in the FindClusters() function. Initially, we used clustering
to delineate the major cell types. Cell clusters were then annotated to known
biological cell types using canonical marker genes. In many of the patient samples
and pooled dataset, we noted a small (<2%) population of proliferative stromal
cells. Regression of the cell cycle effect did not significantly influence clustering and
therefore we opted not to undertake correction for cell cycle effects. After defining
the major cell types we subsampled each (Fibroblasts, myofibroblast, Pericytes and
endothelial cells) to identify potentially meaningful sub-clusters. We applied the
same steps as described above to delineate sub-clusters including selection of highly
variable genes, PCA and selection of significant PCs. As the average UMI count
varied between distinct cell types when analysing individual cell types, we
performed a second round of quality control to remove doubles and contaminants.
We used a set of canonical markers for each cell type and excluded those cells that
shared markers of multiple cell types and those cells with a UMI count three
standard deviations above the median cell-type UMI count. For visualisation we
used the Barnes–Hut approximate version of t-distributed stochastic neighbour
embedding (tSNE) using the ‘Rtsne’ R package.

On inspection of the the PCA projection of the myofibroblast dataset we noted
a strong association between ACTA2 and CD82+ marker expression to the first
principal component. This was apparent in both pooled datasets and in individual
patient samples. To investigate this further, we extracted those genes with the top
PC1 loading and again saw a strong negative correlation to ACTA2low

myofibroblast marker genes (e.g. PLA2G2A and C1R) and strong positive
correlation to ACTA2 expression and markers of the CD82+ population. Given
this, we reasoned that this may represent the transcriptional profile of a putative
differentiation or activation pathway. To visualise this, we defined a gene module of
the ACTA2low myofibroblasts and CD82+ myofibroblast taking top 100 genes
correlated (Spearman) to ACTA2 and CXCL14. Then, we plotted PC1 score of each
cell against the average expression of these gene modules minus a control gene set
and obtained the Pearson correlation coefficient. To account for differences in
library complexity between cells we calculated a control gene set from these
scores39. This was selected by binning all genes in the dataset and randomly
selected 100 genes from each bin that contained every gene of the test gene set.
Thus, the control gene set has a comparable distribution of expression levels to that
of the ACTA2 and CXCL14 gene-sets and the control gene set is 100-fold larger,
such that its average expression is analogous to averaging over 100 randomly-
selected gene-sets of the same size as the ACTA2 and CXCL14 gene-sets. This
revealed a strong positive correlation to the ACTA2 gene module (R= 0.46) and a
strong negative correlation to the fibroblast-like gene module (R=−0.71) along
the first principal component, suggesting a strong transcriptome signature of this
putative trajectory in the data.

To assign each myofibroblast along the putative activation trajectory we first
performed dimensional reduction using diffusion maps, implemented in the R
package ‘destiny’40. The distance metric was the Euclidean distance between pairs
of cells in the reduced dimension space of the significant PCs (n= 20), as defined
above. In concordance with the PCA, the first two diffusion components were
highly associated with ACTA2 expression. We then fitted a principal curve (R
package princurve, smoother = ‘lowess’, f= 1/3) through the first two diffusion co-
ordinates41. As the λ value of the curve reflects the arc-length from the beginning of
the curve for each point we utilised this to assign each cell to a ‘Pseudotime’
trajectory. Importantly, this modelled trajectory was focused on capturing
myofibroblast differentiation associated with ACTA2 expression, but did not
ascribed any distinct cell type as the myofibroblast precursor. In addition to this
approach, we also the ‘slingshot’ R package to infer trajectories and align cells along
developmental pseudo-time. Slingshot revealed a very similar trajectory structure

with a path between ACTA2low and CD82high myofibroblasts. Expression
smoothing was performed using generalised additive models implement in the
‘gam’ function in the ‘mgcv’ R package. RNA velocity analysis was performed using
Velocyto using default parameters.

GO enrichment of cluster markers and differentially expressed genes was
performed using the R package ‘clusterProfiler’42 with a Benjamini–Hochberg
multiple testing adjustment and a false-discovery rate cut-off of 0.1, using all
expressed genes expressed in >3 cells as background. Visualisation was performed
using the R packages ‘ggplot2’ and ‘igraph’.

The collection of DNA samples, genotype calling, quality control and
imputation of the BSSH-GODD cohort has previously been described11. Similarly,
information pertaining to the UKBiobank genotype and phenotype data has been
previously described43. Additional QC thresholds were implemented to the
UKBiobank genotyping data to remove potential spurious variants and samples,
namely (1) call rate <98%, (2) heterozygosity >3 standard deviation from the mean,
(3) individuals with anueiploidy or demonstrating a discrepancy between self-
reported sex and genetically inferred sex and (4) non white British, (5) SNP does
not conform the Hardy–Weinberg equilibrium (p < 0.004) and (6) MAF < 1%. The
UKBiobank imputed data is a combination of the Haplotype Reference consortium
and the UK 10 K/1 K Genomes Phase 3 panel comprising 92,693,895 variants and
487,442 individuals, which was reduced to 401,667 after QC. A total of 3736
Dupuytren disease patients were identified within the UKBiobank using a
combination of diagnostic codes; ICD-10 (M720, M7204), OPCS (T521, T522,
T525, T526, T561 and T562), non-cancer self-reported illness code 20002 (1544),
and self-reported operation code 20004 (1535), and were age, sex and genotyping
platform matched at a ratio of 1–5 to select 18,680 controls. The summary
association statistics of both datasets were calculated using BOLT-LMM44, and
variants with an info score <0.9, a standard error >5 or an estimated minor allele
count in cases <3 were removed prior meta-analysis, which was performed using
the inverse variance weighted method provided in GWAMA45.

To generate a normalised count from the single cell RNA expression data, raw
counts of each gene of the same cell type were amalgamated and subsequently
normalised using DESeq246. Associations between the normalised RNA expression
and DD associative variants were identified using SNPsea12.

Flow cytometry. After tissue disaggregation into a single cell suspension, cells were
first stained with a panel of fluorescently labelled antibodies to surface antigens,
washed with FACS wash buffer (1% bovine serum albumin (BSA), 0.01% NaN3 in
PBS) then fixed using CytoFix (eBiosciences Foxp3 staining buffer set # 00-5523-
00) for a minimum of 30 min at 4 °C. After three washes in perm wash (eBioscience
Foxp3 staining buffer), intracellular antigens were stained with another panel of
fluorescently labelled antibodies, and cells were then washed with perm wash and
analysed by flow cytometry (BD LSR Fortessa X20) and FlowJo software. BD comp
beads (anti-mouse Ig k #552843) were used to establish compensation settings.
Dead cells were deselected using live/dead stain, added to surface staining panel
prior to cell fixation (Life Technologies Live/DeadTM Near IR fixable dead cell stain
kit #L10119). Isotype controls were used during antibody optimisation.

FACS sorting. Dupuytren’s myofibroblasts were stained without prior magnetic
bead enrichment into CD82high and CD82low based on the top and bottom 30%
expressing cells, respectively. Samples were filtered through a 70 μm strainer before
sorting commenced. Single-cell sorting was performed using a FACSAria (BD
Biosciences). After doublet exclusion, isolated single cells were sorted into 5 ml
FACS tubes containing 1 ml of complete medium (5% DMEM+ 1% pen/strep).
Cell purity was assessed for each sorted population and was approximately 95%.
Sorted stromal cell populations were seeded onto hydrogels for TFM.

Fig. 4 Functional heterogeneity of myofibroblasts in human fibrosis. a Line plot demonstrating CD82 expression in myofibroblasts (loess smoothed
normalised counts ± SE) along pseudotime (myofibroblast activation trajectory) in single-cell RNA-seq (n= 12 DD patients). b Above, Heatmaps of traction
force microscopy analysis showing magnitude of traction force (Pascals) in freshly isolated FACS sorted myofibroblasts (CD82high and CD82low). Below,
surface plots of traction force microscopy showing representative force foci from sorted myofibroblasts (Scaled to 800 Pa). Colour scale represents force
range per cell. c Bar plots of traction force microscopy analysis showing mean and maximum traction force per cell in CD82high and CD82low sorted
myofibroblast populations (n= 3 DD patients, >15 cells per condition). Two-sided unpaired t test, mean ± SEM. p Values= 0.0056 (max traction), and
0.0098 (mean traction). d tSNE projection of traction force microscopy analysis showing clustering of single cell force signatures in sorted populations
(CD82high and CD82low) (n= 3 DD patients, >15 cells per condition). e Box and whisker plot of flow cytometry analysis showing cell cycle phases in
siControl and siCD82 transfected DD myofibroblasts (n= 3 DD patients). Two-sided paired t test, p value= 0.023, mean ± SEM). (siRNA range
2.6–85.5%, mean 32.8% and box bounds 9.75–45.2% represent first and third quantiles. siCD82 range 1.1–87.1%, mean 32.7% and box bounds 3.1–59.8%
represent first and third quantiles.) f tSNE projections of single-cell RNA-seq showing fibroblasts and myofibroblasts in bleomycin murine model marked by
the expression of selected genes in scaled log(UMI+ 1) (n= 2 mice). g tSNE projection of single cell RNA-seq showing murine fibroblasts and
myofibroblasts in bleomycin model coloured by Louvain clusters (n= 2 mice). h Bar plot of single cell RNA-seq showing the percentage of stromal cells
before (Day 0) and after (Day 21) the installation of bleomycin in murine lung fibrosis model. i Confocal images of immunofluorescence showing co-
expression of CD82, α-SMA and PDGFR-α in human IPF (n= 3 independent IPF patients). Scale bar= 20 µm.
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Mass cytometry. Where possible antibodies were purchased from Fluidigm, (San
Francisco, CA) or were labelled using metal tags using Maxpar antibody labelling
kits (Fluidigm). All antibodies were titrated and used at a concentration between
(0.25 and 0.5 µg/ml). For each sample, 1–3 million cells were first stained with a
solution containing rhodium DNA intercalator (Fluidigm) to distinguish live/dead,
prior to Fc receptor blocking (Miltenyi Biotec). Samples were then stained with a
mixture of metal conjugated antibodies recognising cell surface antigens (see
staining panel). After washing in Maxpar cell staining buffer (Fluidigm), samples
were fixed and permeablised using the FoxP3 transcription factor staining buffer
kit (Thermofisher) prior to washing and incubation with metal conjugated anti-
bodies recognising intracellular antigens. Samples were washed twice in cell
staining buffer, fixed by incubation with 1.6% PFA (Pierce) for 10 min and finally
incubated overnight with iridium DNA intercalator in Maxpar fix and perm buffer
(Fluidigm). Prior to acquisition samples were washed twice in Maxpar cell staining
buffer and twice in Maxpar water and filtered through a 40 µm cell strainer before
being acquired on a Helios mass cytometer (Fluidigm).

After acquisition, all.fcs files in the experiment were normalised using tools
within the Helios software and then uploaded to Cytobank (www.cytobank.org) for
all gating and further analysis including using the clustering and dimensionality
reduction algorithm viSNE.

CyTOF antibodies. CD252 169-Tm (3166007B, ML5, Fluidigm), CD34 166-Er
(Catalog:3166012B, Clone:581, Fluidigm), CD45 141-Pr (Catalog: 3141009B,
Clone: HI30, Fluidigm), HLAD A, B C 142-Nd (Catalog: 3142007B, Clone: HCD57,
Fluidigm), CD19 143-Nd (Catalog: 3144007A, Clone:NP6G4, Fluidigm), HLA-DR
89-Y (Catalog: 3173005B, L243, Fluidigm), CD3 189-Y (Catalog: 3158021A, Clone:
24E10, Fluidigm), B-catenin 176-Lu (Catalog: 3147005A, Clone:D10A8, Fluidigm),
CD55 174-Yb (Catalogue; 3148015B, Clone: JS11, Fluidigm), CD146 155-Nd
(3155006B, P1H12, Fluidigm), CD29 156-Gd (3156007B, TS2/16, Fluidigm), CD82
158Gd (3158025B, ASL-24, Fluidigm), CD90 172-Yb (3173011B, 5E10, Fluidigm),
TGFb 150-Nd (3163010B, CloneTW46H10, Fluidigm) CD163 145-Nd (3145010B,
GHI/61, Fluidigm), Ki-67 168-Er (3168007B, B56, Fluidigm), CD54 170-Er
(3170014B, HA58, Fluidigm), CD68 171-Yb (3171011B, Y1/82A, Fluidigm), CD9
172-Yb (Cat. No. 312102, Biolegend), CD252 150-Nd (326302, Biolegend), PGLA2
172-Yb (MAB5374, R&D Systems), a-SMA 156-Gr (MAB1420, 1A4, R&D Sys-
tems), gp38 155-Gd (AF3670-SP, R&D Systems), PDGFRB 154-Sm (SAB4700458,
18A2, Sigma Aldrich), MMP14 149-Sm (MAB9181-SP, 128527 R&D Systems),
Cad-11 148-Nd (AF1790-SP, R&D Systems) and FAP 147-Sm (MAB3715-SP,
427819 RD Systems).

Immunohistochemistry. Dupuytren’s tissue samples were fixed with 4% paraf-
ormaldehyde in PBS for 20 min, longitudinally bisected, and embedded in paraffin
wax, and 7-μm sections from the cut surface were processed for immunohis-
tochemistry13. Sequential sections were stained with mouse monoclonal antibodies.
Antibodies were detected using a two-staged polymer enhancer system (Sigma).
Murine or Rabbit IgG isotypes at the same protein concentration as the mono-
clonal antibody solution were used as a control. Images were acquired with an
Olympus BX51 Microscope (Olympus).

Immunofluorescence and confocal microscopy. Dupuytren’s tissue samples were
fixed with 4% paraformaldehyde in PBS for 20 min, longitudinally bisected and
embedded in paraffin wax, and 7-μm sections from the cut surface were processed
for immunofluorescence13. Then, the tissue sections were stained with antibodies
listed above followed by incubation with fluorescent-dye-conjugated secondary
antibodies (Life Technologies). Nuclei were counterstained with DAPI (4, 6-dia-
midino-2-phenylindole; Sigma-Aldrich) and mounted using Prolong™ Gold anti-
fade (Life Technologies). Fluorescent images were obtained with a confocal system
(Zeiss LSM 710).

Traction force microscopy. Polyacrylamide (PAA) hydrogels for TFM were
prepared as previously described47. Briefly, acid washed glass coverslips (18 mm)
were incubated with poly-L-lysine (10 μg/ml in H20) for 30 mins at 4 °C, then
coated with 0.04 μm carboxylate-modified red FluoSpheres (1:5000 in ddH20).
PAA gel formation was initiated with APS (10% solution in ddH20, Sigma) and
TEMED (Sigma). Polymerised PAA gels were functionalized with sulfo-SANPAH
(Invitrogen) and coated with Type 1 Collagen (200 μg/ml Rat Tail, Thermo Fisher).
The Young’s modulus of the PAA gels were 2.55 ± 0.5 kPa. Cells were allowed to
adhere to the gel for 4–6 h before image acquisition. Images were captured using a
×40 Plan Apo objective on a Zeiss LSM 710 Confocal microscope and the
experiments were performed at 37 °C and 5% CO2 in Phenol red free DMEM
(Thermo Fisher) in a microscope stage incubation chamber. Bead positions were
acquired before and after the addition of trypsin which removed cells from the gel
surface. Bead displacement was tracked with an ImageJ PIV plugin48 and cellular
forces reconstructed using a FTTC algorithm also implemented in ImageJ48,49.

Downstream analysis and visualisation was performed using MATLAB
(Mathworks) and R (R Version 3.5). Single cell force maps of CD82high and
CD82low sorted cells were first normalised per cell area and scaled before PCA
implemented in the “prcomp” function. Significant components were determined
as described above for the single-cell expression data using visualisation of a scree

plot and/or the Jackstraw procedure. Significant PCs were used as input for tSNE
clustering using the Barnes–Hut implementation in Rtsne() function.

Transfections. For transfection experiments, cells were seeded at 2 × 105/6-well
plate and the following day transfected with siRNA against CD82 (AM16708) or
non-targeting control oligo at 1–20 nM (Life Technologies). All transfections were
performed with Dharmafect 1 (GE Healthcare) and Optimem™ (Life Technologies)
according to the manufacturer’s instructions. Media was replaced 2 h later with 5%
FBS phenol red free DMEM (Gibco). Experiments were performed 6 days post
transfection.

Chemotaxis assay. Totally, 5 × 105 THP-1 cells (ATCC) were allowed to adhere
for 2 h to a Corning Transwell® plate with 8 µM pore in 1% FBS DMEM, the
reservoir plate was then replaced with conditioned media generated from freshly
sorted DD fibroblasts. For the last 3 days of the assay, the media was replaced with
1% FBS, DMEM. Supernatants harvested, filtered and used neat, alongside CCL2
(2 ng/ml) (Peprotech, London, UK) as a positive control. Cells were allowed to
migrate for 6 h, the number of migrated cells were counted in the reservoir plate
following the addition of Hoechst 3342 Fluorescent Stain (Life Technologies) at 0.1
μg/ml for 1 h using the Celigo Imaging Cytometer, Nexcelom Bioscience
(Lawrence, MA).

Bulk RNA-seq library preparation. Passage 2 DD myofibroblasts from 7 donors
were transfected with siRNA against CD82 (AM16708) or non-targeting control
oligo at 1–20 nM (Life Technologies). RNA was extracted using Direct-Zol™ RNA
kit. The library preparation was started with the NEBNext® Poly(A) mRNA
Magnetic Isolation Module followed by the NEBNext® Ultra™ Directional RNA
Library Prep Kit for Illumina with the NEBNext® Multiplex Oligos for Illumina®

(Index Primers Set 1) and (Index Primers Set 2). The concentration of each library
was determined using the NEBNext® Library Quant Kit for Illumina® and High
Sensitivity D1000 Screentape Bioanalyzer (Agilent).

Bulk RNA-seq data analysis. FASTQ files were assessed using FASTQC followed
by the generation of TPM values with kallisto v0.42.450. TPM values were summed
to obtain gene-level expression values using tximport and differential expression
analysis was undertaken with DeSEQ246. GO enrichment of differentially expressed
genes was performed using the R package ‘clusterProfiler’42 with a
Benjamini–Hochberg multiple testing adjustment and a false-discovery rate cut-off
of 0.1. Visualisation was performed using the R packages ‘ggplot2’ and ‘igraph’.

Data availability
RNA-Seq data are deposited in Sequence Read Archive (SRA) under primary accession
codes PRJNA607098 and PRJNA623191. The data supporting the findings of this study
are available within the paper and its Supplementary Information files or on reasonable
request from the corresponding author. The source data underlying all figures are
provided as a Source Data file.
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