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Volumetric breast density 
estimation on MRI using 
explainable deep learning 
regression
Bas H. M. van der Velden1*, Markus H. A. Janse1, Max A. A. Ragusi1, Claudette E. Loo2 & 
Kenneth G. A. Gilhuijs1

To purpose of this paper was to assess the feasibility of volumetric breast density estimations on 
MRI without segmentations accompanied with an explainability step. A total of 615 patients with 
breast cancer were included for volumetric breast density estimation. A 3-dimensional regression 
convolutional neural network (CNN) was used to estimate the volumetric breast density. Patients 
were split in training (N = 400), validation (N = 50), and hold-out test set (N = 165). Hyperparameters 
were optimized using Neural Network Intelligence and augmentations consisted of translations 
and rotations. The estimated densities were evaluated to the ground truth using Spearman’s 
correlation and Bland–Altman plots. The output of the CNN was visually analyzed using SHapley 
Additive exPlanations (SHAP). Spearman’s correlation between estimated and ground truth density 
was ρ = 0.81 (N = 165, P < 0.001) in the hold-out test set. The estimated density had a median bias of 
0.70% (95% limits of agreement = − 6.8% to 5.0%) to the ground truth. SHAP showed that in correct 
density estimations, the algorithm based its decision on fibroglandular and fatty tissue. In incorrect 
estimations, other structures such as the pectoral muscle or the heart were included. To conclude, it is 
feasible to automatically estimate volumetric breast density on MRI without segmentations, and to 
provide accompanying explanations.

Breast density refers to the amount of fibroglandular tissue with respect to the fatty tissue. It is a well-known risk 
factor for the development of breast cancer1, and is incorporated in several breast cancer risk models2,3. Most 
states in the United States of America require reporting of breast density4.

Breast density can be assessed on imaging such as mammography and magnetic resonance imaging (MRI). 
In clinical practice, radiologists score breast density in one of four incremental categories: almost entirely fatty, 
scattered fibroglandular tissue, heterogeneously dense, or extremely dense5.

Breast density can also be quantified using computer algorithms. Such algorithms have been investigated 
both for mammography and MRI, and show strong correlation between the two modalities6,7. On MRI, these 
methods typically consist of 3-dimensional segmentation of the breast region and the fibroglandular tissue8–14. 
The volumetric density is then defined as the volume of the fibroglandular tissue divided by the volume of the 
breast region. In these studies, the average Dice similarity coefficient for the segmented fibroglandular tissue is 
roughly 0.8, and can be as low as 0.6.

In case of incorrect segmentation, manual correction by a radiologist is possible. This may take several min-
utes in case of minor corrections, up to about an hour in case of full segmentation9. Furthermore, automatic 
checking of these segmentations is challenging in a clinical setting, since the ground truth segmentation is 
lacking.

There is a need to skip the segmentation for breast density estimation, but still give insight in the estima-
tion that can easily be checked and corrected by a radiologist. The aim of this paper is to assess the feasibility of 
volumetric breast density estimations on MRI without segmentations accompanied with an explainability step.
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Material and methods
Patients.  Data were acquired after written informed patient consent and after approval of the Medical Eth-
ics Committee of The Netherlands Cancer Insitute-Antoni van Leeuwenhoek hospital in accordance with the 
declaration of Helsinki15. We performed a post-hoc analysis of the prospective Multimodality Analysis and 
Radiological Guidance IN breast conServing therapy study (MARGINS, 2000–2008), that was performed at 
The Netherlands Cancer Insitute-Antoni van Leeuwenhoek hospital16,17. In the MARGINS study, patients who 
were eligible for breast conserving surgery based on conventional imaging and clinical examination were con-
secutively recruited for a preoperative breast MRI. Proof of breast cancer was acquired using core biopsy or 
fine-needle aspiration and surgery.

We included all patients with unilateral breast cancer (N = 630) to estimate volumetric breast density in the 
unaffected breast. Patients who received previous surgery in the contralateral breast were excluded (N = 15/630, 
2%). Finally, 615/630 (98%) patients are included in the analysis (Fig. 1).

Magnetic resonance imaging.  The patients were imaged using a 1.5T MRI unit (Magneton, Siemens) 
with a dedicated double-breast array coil (CP Breast Array, four channels, Siemens). Dynamic contrast-enhanced 
series were acquired using fast low-angle shot 3-dimensional T1-weighted imaging, reconstructed to isotropic 
voxel size of 1.35 × 1.35 × 1.35 mm3. The imaging parameters were: repetition time 8.1 ms, echo time 4.0 ms, flip 
angle 20°, and field of view 310 mm, without fat suppression. We used the precontrast image of the contrast-
enhanced series for density estimation.

Ground truth creation.  To determine the ground truth volumetric breast density, we automatically 
extracted the breast region and the fibroglandular tissue region in 3-dimensions from the precontrast images of 
the unaffected breast18. In short, the breast area was segmented adopting a custom-developed knowledge-based 
breast segmentation tool19. The fibroglandular tissue was subsequently segmented in the breast area segmenta-
tion using fuzzy c-means clustering20. We manually checked and, if necessary, corrected these segmentations. 
The posterior cutoff of the breast region was chosen at the sternum10. The volumetric density was defined as the 
number of voxels in the fibroglandular tissue segmentation divided by the number of voxels in the breast region 
segmentation times 100%18. This volumetric density was subsequently used as the ground truth, hence yielding 
a single label per MRI. The previously described segmentations were not used in any way for further analysis.

Image preprocessing.  We removed field inhomogeneities from the MR images using N4 bias field 
correction21. We normalized the MR image intensities between zero and one based on the 2.5th and 97.5th 
intensity percentiles22. Voxels outside that range were clipped.

Volumetric density estimation.  We used a 3-dimensional regression convolutional neural network 
(CNN) to directly estimate the volumetric breast density from the MR image (illustrated in Fig. 2). The input of 
the CNN consisted of 3-dimensional volumes of 128 × 128 × 128 voxels. These volumes contained the contralat-
eral breasts of the patients. The architecture of the CNN consisted of five convolutional layers, two fully con-
nected (dense) layers consisting of 128 neurons each, and a linear activation as output23 (Fig. 3). The five layers 
consisted of a kernel size of 3 × 3 × 3, a stride of 2 × 2 × 2, parametric rectified linear unit activations24, and 50% 
dropout25. The number of convolutional filters doubled in the second and third layer. We used mean absolute 
error as loss function and the Adam optimizer26. The patients were split on ranked study number into a training 
set (N = 400), a validation set (N = 50), and a hold-out test set (N = 165). 

We optimized the hyperparameters on the validation set with the Neural Network Intelligence toolkit (Micro-
soft, Redmond, WA, USA). The search space was: starting number of convolutional filters between 4 and 32, 
learning rate between 0.01 and 10–8. Augmentations consisted of random translations in the left–right and 
superior-inferior directions (maximum translation of 20 voxels) and random rotations along the sagittal and 
transversal axes (maximum rotation of 10 degrees).

We performed the deep learning experiments using an NVIDIA GeForce RTX2080 Ti GPU.

Figure 1.   Flowchart of patient inclusion.
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Statistical evaluation.  We statistically evaluated potential biases in the patient baseline characteristics 
and the volumetric density between train set, validation set, and hold-out test set. For this purpose we used the 
nonparametric Kruskall–Wallis test for continuous values and the χ2 test for categorical values.

We evaluated the deep learning algorithm by comparing the volumetric density estimations of the CNN to 
the ground truth using Spearman correlations coefficient. In addition, we estimated the bias and variance of the 
algorithm using nonparametric Bland–Altman plots27.

As a subanalysis, we investigated the Spearman correlation coefficient between the volumetric density estima-
tions of the CNN and the ground truth separately for non-dense breast and for dense breast. Since we did not 
have clinical density (i.e. the BI-RADS density scores5), we used a volumetric breast density of 15.5% as threshold 
between non-dense and dense breasts7.

Algorithm explanations.  We used Deep SHapley Additive exPlanations (SHAP) to explain the output 
of the algorithm28. In short, SHAP is a method to explain a prediction by computing the contribution of each 
feature to that prediction. It does so using Shapley values29. Shapley values ensure a ‘fair’ division of attribu-
tion: the marginal contribution of every voxel to the final volumetric density estimation is taken into account 
individually29. These contributions can be positive and negative.

Figure 2.   The difference between our approach and other commonly used approaches. Commonly used 
approaches typically first segment the volumes of interest—i.e. the breast volume and the fibroglandular tissue 
volume—and then divide the two to obtain a volumetric density measure. Our approach directly assesses 
the volumetric density by learning the relation between a 3-dimensional volume and a single label—i.e. the 
volumetric density. As illustration, the 3-dimensional volumes are depicted as a cube with an insert of a 
2-dimensional sagittal slice.

Figure 3.   The convolutional neural network (CNN) architecture. The input of the CNN consisted of 
3-dimensional volumes of 128 × 128 × 128 voxels. These volumes contained the contralateral breasts of the 
patients. The architecture of the CNN consists of five convolutional layers, two fully connected layers consisting 
of 128 nodes, and a linear activation as output.
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For each patient, Deep SHAP yields a map of SHAP-values. Each voxel in this SHAP-values map represents 
the contribution of that pixel to the final decision. Hence, higher values correspond to higher volumetric density 
estimations, and lower values correspond to lower volumetric density estimations.

To assess the background signal needed for the Deep SHAP analysis28, we randomly sampled 15 precontrast 
volumes from the training set.

Results
Patients.  The baseline characteristics (Table 1) and the volumetric density were not significantly different 
between train, validation, and hold-out test set (P > 0.20, Fig. 4), confirming an unbiased split.

Volumetric density estimation.  The Spearman’s correlation between the estimated volumetric density 
and the ground truth volumetric density was ρ = 0.81 (N = 165, P < 0.001) in the hold-out test set (Fig. 5).

Nonparametric Bland–Altman analysis showed that the estimated volumetric density had a median bias of 
0.70% (95% limits of agreement = − 6.8% to 5.0%) compared to the ground truth volumetric density (Fig. 6).

The Spearman’s correlation between the estimated volumetric density and the ground truth volumetric density 
was ρ = 0.69 (N = 117, P < 0.001) in the patients with non-dense breasts, and ρ = 0.80 (N = 48, P < 0.001) in the 
patients with dense breasts.

Table 1.   Baseline characteristics of the included patients (N = 615). Values are counts (percentages) unless 
otherwise stated.

Variable Value

Age at diagnosis in years, median (range) 57 (26–86)

Largest tumor diameter on MRI in mm, median (range) 19 (5–90)

Immunohistochemical subtype

ER + HER2- 438 (71)

HER2 +  79 (13)

TN 77 (13)

Unknown 21 (3)

Histological finding

Invasive ductal carcinoma 444 (72)

Invasive lobular carcinoma 81 (13)

Other invasive carcinoma 33 (5)

Mixed invasive pattern 11 (2)

Ductal carcinoma in situ 37 (6)

Lobular carcinoma in situ 1 (0)

Unknown 8 (1)

Histological grade

Grade I 191 (31)

Grade II 259 (42)

Grade III 151 (25)

Unknown 14 (2)

Axillary load

no positive lymph nodes 396 (64)

1–3 positive lymph nodes 165 (27)

4 or more positive lymph nodes 35 (6)

Unknown 19 (3)

Figure 4.   Distributions of volumetric densities in the train set (N = 400), the validation set (N = 50) and the 
hold-out test set (N = 165).
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Algorithm explanations.  Explanations of the density estimation algorithm showed that in correct volu-
metric density estimations, the algorithm based its decision on the glandular and fatty tissue (Fig. 7). In incorrect 
density estimations, it can be seen that the algorithm also based its decision on other anatomical structures, such 
as the pectoral muscle or the heart (Fig. 8).

Discussion
We showed the feasibility of a method to automatically estimate volumetric breast density on MRI without using 
segmentations. The Spearman correlation coefficient between the estimated breast density and the ground truth 
density was 0.81 in the 165 patients from the hold-out test set. Interpretation of these estimations were provided 
using Shapley Additive exPlanations (SHAP).

Figure 5.   Correlation between estimated volumetric density and ground truth volumetric density in the hold-
out test set (N = 165, Spearman’s ρ = 0.81, P < 0.001).

Figure 6.   Bland–Altman analysis shows that the estimated volumetric density has a mean bias of 0.70% (95% 
limits of agreement =  − 6.8% to 5.0%) when compared to the ground truth volumetric density. The x-axis shows 
the average of the two measures, the y-axis the difference between the two.
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The main advantage of our method is that it does not need costly voxel-level 3-dimensional segmentations 
of the breast and fibroglandular tissue. Other methods to assess breast density on MRI typically do need these 
segmentations11–14, which can take up to an hour to obtain9. Our method only needs a single label per breast, 
which can easily be obtained with software such as the commercially available Densitas (Densitas Inc, Halifax, 
NS, Canada), Quantra (Hologic Inc, Bedford, MA, USA), or Volpara (Volpara Health Technologies, Wellington, 
New Zealand) software. Hence, our proof-of-principle method is easily scalable.

The ground truth volumetric density in this study was based on automatic breast and fibroglandular tissue seg-
mentations. We chose to limit the breast region on the posterior side at the sternum10. Choosing a more posterior 
limit would include the axilla where the signal from the breast coil is influenced by patient anatomy. Hence, this 
would complicate the cutoff of the breast region, and lead to more variations in ground truth. Other researchers 
have employed comparable strategy10, and the range of volumetric breast densities in our study is comparable 
to those reported by others7,30–33. The fibroglandular tissue segmentations were based on fuzzy c-means20. These 
segmentations have been extensively checked. Although the ground truths are manually confirmed, it is possible 
to substitute them with other volumetric density measures, such as those provided by the previously mentioned 
Densitas, Quantra, or Volpara software. The algorithm would work in exactly the same way.

Other methods to establish breast density on MRI often segment the breast region and fibroglandular tissue. 
These methods include dynamic programming with fuzzy c-means (N = 11, Dice similarity coefficient (DSC) 
not reported)8, a 2-dimensional atlas combined with fuzzy c-means (N = 60, mean DSC of fibroglandular tis-
sue = 0.60)9, and an atlas combined with Gaussian mixture modeling (N = 50, mean DSC of fibroglandular tis-
sue = 0.80)10. Since the introduction of deep learning in medical image analysis, several 2-dimensional U-net 
architectures have been proposed (ranging from N = 40 to N = 286, and mean DSCs of fibroglandular tissue 
from 0.83 to 0.92)11,13,14, as well as a 3-dimensional U-Net (N = 137, mean DSC of fibroglandular tissue = 0.81)12. 
These methods rely on manual segmentations or (semi)-automatically derived segmentations. The manual seg-
mentations are costly to acquire, whereas the (semi)-automatic segmentations would need to be checked by 
an experienced observer. The method that we discuss in this paper only uses the volumetric density measure. 
Therefore, we do not need to have segmentation-based ground truth annotations, making our proof-of-principle 
study easily scalable.

The algorithm provides a density score. When a radiologist does not trust the density score, the radiologist 
can assess the estimation using the explanations provided by the Shapley Additive exPlanations. A potential 

Figure 7.   Examples of correct volumetric density estimations from the hold-out test set. For both the top and 
bottom patient, the left image is a sagittal slice of the precontrast MRI, the middle image is the same sagittal 
slice with the SHAP-map superimposed, and the right image is the corresponding SHAP-map. For illustrative 
purposes, the boundaries of the breast and fibroglandular tissue are shown in the black contours. It can be seen 
in the SHAP-maps that the glandular tissue voxels are responsible for an increase in density estimation (red) and 
the fatty tissue voxels are responsible for a decreased density estimation (blue). Top: ground truth volumetric 
density 17.6%, predicted volumetric density 17.9%. Bottom: ground truth volumetric density 8.5%, predicted 
volumetric density 9.3%. Although the density is based on a 3-dimensional volume, a single sagittal slice is 
shown for illustrative purposes.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18095  | https://doi.org/10.1038/s41598-020-75167-6

www.nature.com/scientificreports/

future workflow could be to assess these explanations, and if the estimation is based on incorrect regions—such 
as the pectoral muscle—exclude those regions from the classifier’s decision.

We chose Shapley Additive exPlantions, because it uses Shapley values which ensure a ‘fair’ division of attribu-
tion. This means that the marginal contribution of every voxel to the final volumetric density estimation is taken 
into account individually. Therefore, these contributions of the voxels are assessed optimally, a property that is 
not necessarily present in other techniques that consider local image regions such as LIME (local interpretable 
model-agnostic explanations)34. A pitfall of Shapley-values is that they are very costly to compute, since they 
require assessment of many permutations. By using the implementation of Deep SHAP, the computation time 
is acceptable (in our case a second per 3-dimensional volume), whilst still maintaining the abovementioned 
properties of the Shapley values28.

We chose our network architecture based on a previous study using regression for 2-dimensional slice selec-
tion in chest CT imaging23 and expanded it from 2-dimensional to 3-dimensional. Other network architectures 
could be investigated in future work. Our paper has several strengths. The most notable strength is that our algo-
rithm works with a single label per patient. Although in the current study this label was acquired using previously 
generated segmentations, the label could also be acquired from other systems, such as the commercially available 
Volpara Density for mammography. Therefore, expanding the training set for the current system is relatively 
cheap, just one density label needs to be provided, not an entire breast and fibroglandular tissue segmentation. 
Another strength is that our algorithm works fully on 3-dimensional data.

The most notable limitation of our study is that the system is trained and evaluated on single-institution data 
from a single MRI vendor. In order to fully elucidate on the potential of the proposed method, multi-institution 
and multi-vendor data would be desired. The current study does, however, demonstrate the feasibility of the 
proposed method. Future work will include multi-institutional and multi-vendor validation.

To conclude, we showed that it is feasible to automatically estimate volumetric breast density on MRI without 
segmentations, and provided accompanying explanations.

Data availability
The datasets analyzed during the current study are not publicly available due to patient privacy but are available 
at the corresponding author on reasonable request.

Received: 14 February 2020; Accepted: 12 October 2020

Figure 8.   Examples of incorrect volumetric density estimations from the hold-out test set. For both the top 
and bottom patient, the left image is a sagittal slice of the precontrast MRI, the middle image is the same 
sagittal slice with the SHAP-map superimposed, and the right image is the corresponding SHAP-map. For 
illustrative purposes, the boundaries of the breast and fibroglandular tissue are shown in the black contours. 
The SHAP-maps show that the overestimation is based on the pectoral muscle (top and bottom) and part of the 
heart (bottom). Although the density is based on a 3-dimensional volume, a single sagittal slice is shown for 
illustrative purposes.
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