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Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada

Systemic Autoimmune Rheumatic Diseases (SARDs) are characterized by the production of
anti-nuclear antibodies (ANAs). ANAs are also seen in healthy individuals and can be detected
years before disease onset in SARD. Both the immunological changes that promote
development of clinical symptoms in SARD and those that prevent autoimmunity in
asymptomatic ANA+ individuals (ANA+ NS) remain largely unexplored. To address this
question, we used flow cytometry to examine peripheral blood immune populations in ANA+

individuals, with and without SARD, including 20 individuals who subsequently demonstrated
symptom progression. Several immune populations were expanded in ANA+ individuals with
andwithoutSARD,ascomparedwithANA-healthycontrols,particularly follicularandperipheral
T helper, and antibody-producingB cell subsets. In ANA+NS individuals, therewere significant
increases in T regulatory subsets and TGF-ß1 that normalized in SARD patients, whereas in
SARDpatients therewere increases in Th2 andTh17 helper cell levels as comparedwith ANA+

NS individuals, resulting in a shift in the balance between inflammatory and regulatory T cell
subsets. Patients with SARD also had increases in the proportion of pro-inflammatory innate
immune cell populations, such as CD14+ myeloid dendritic cells, and intermediate and non-
classical monocytes, as compared to ANA+NS individuals.When comparing ANA+ individuals
without SARDwho progressed clinically over the subsequent 2 years with those who did not,
Abbreviations: ANA, Anti-nuclear antibody; Ab, Antibody; ELISA, Enzyme-linked immunosorbent assay; HC, Healthy
control; IFN, Interferon; IFN-a, Interferon-alpha; IL, Interleukin; mDC, myeloid dendritic cell; NS; asymptomatic; pDC,
plasmacytoid dendritic cell; PBMC, Peripheral blood mononuclear cell; SARD, Systemic autoimmune rheumatic disease; SjD,
Sjogren’s Disease; SLE, Systemic lupus erythematosus; SSc, Systemic sclerosis; Tfh, T follicular helper;TGF-ß1, Transforming
growth factor beta-1; Tph; T peripheral helper; Treg, T regulatory; UCTD, Undifferentiated connective tissue disease.
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we found that progressors had significantly increased T and B cell activation, as well as
increased levels of LAG3+ T regulatory cells and TGF-ß1. Collectively, our findings suggest that
active immunoregulation prevents clinical autoimmunity in ANA+ NS and that this becomes
impaired in patients who progress to SARD, resulting in an imbalance favoring inflammation.
Keywords: b cells, monocytes, t cells, dendritic cells, anti-nuclear antibodies, systemic autoimmune rheumatic
diseases, interferon-alpha, t regulatory cells
INTRODUCTION

The anti-nuclear antibody (ANA)-associated Systemic
Autoimmune Rheumatic Diseases (SARD), which include
Systemic Lupus Erythematosus (SLE), Sjögren’s Syndrome (SS),
and Systemic Sclerosis (SSc), are chronic multi-system autoimmune
diseases with a significant morbidity and mortality. Although each
of these conditions has some distinctive autoantibodies (autoAbs)
and clinical features, there is considerable overlap in the types of
autoAbs produced and clinical symptoms, suggesting a shared
etiology. This is supported by studies showing numerous shared
genetic risk factors (1–5) and a high prevalence of elevated levels of
interferon (IFN)-induced gene expression (6–12).

Since SARD can often present with life-threatening
inflammation and/or irreversible damage, there is tremendous
interest in defining at-risk individuals and initiating therapy
early to prevent these poor outcomes. To achieve this, it is
necessary to have a highly accurate biomarker for impending
disease and knowledge of the key immune events to target. A
characteristic feature of SARD is a prolonged preclinical phase in
which ANAs can be seen in the absence of clinical symptoms
(13–16). While this observation suggests that ANAs could be
used to identify at-risk individuals, ANAs, as detected by
immunofluorescence using HEp-2 as a substrate, are seen in
~20% of healthy women (12), only a small subset of whom
(estimated at 5-8%) will transition to SARD. Thus, additional
biomarkers are required to identify ANA positive (ANA+)
individuals at high risk of impending progression. In addition,
little is known about the immunologic features that differentiate
asymptomatic ANA+ individuals from those with SARD, and
progressors from non-progressors.

To address these knowledge gaps, our laboratory has been
recruiting and longitudinally following a unique cohort of ANA+

individuals lacking a SARD diagnosis. In a previous study, we
characterized several B and T cell phenotypes in the peripheral
blood of these subjects, contrasting them with those seen in ANA-

healthy controls and early SARD patients (17). This led to the
surprising observation that ANA+ individuals lacking a SARD
diagnosis had increased proportions of activated B and T cells,
similar to that observed in early SARD. Indeed, in that original
study, except for a trend to increased activation in ANA+ individuals
with SARD as compared to those without, no distinctive
immunologic differences were seen between these two groups. In
this study,we examined abroader arrayof immunepopulations in an
effort to define the key immunologic differences that discriminate
between ANA+ individuals with and without a SARD diagnosis, and
to characterize the immunologic changes that distinguish ANA+
org 2
individuals who demonstrate subsequent clinical progression from
those who do not.
MATERIALS AND METHODS

Subjects and Data Collection
ANA+ individuals (≥1:160 or 1:80 with a specific autoAb) were
recruited from the Toronto Western and Mount Sinai Hospital
Rheumatology Clinics, where they had been referred for evaluation
because of a positive ANA test. Following assessment by one of the
participating rheumatologists, patients were stratified into three
groups based upon the presence of SARD clinical diagnostic
criteria [1997 American College of Rheumatology (ACR) criteria
for SLE (18), 2013 ACR/European League Against Rheumatism
(EULAR) criteria for SSc (19), or the revised 2016 ACR/EULAR
criteria for SS (20)], as follows: (1) asymptomatic ANA+ (ANA+NS),
with no clinical SARD criteria; (2) undifferentiated connective tissue
disease (UCTD),with at least one clinical symptomof SARDbutwho
did not meet criteria for SARD diagnosis; or (3) early SARD. All
SARD patients included within the study met disease classification
criteria, werewithin thefirst 2 years of diagnosis, andwere not taking
corticosteroids or disease-modifying anti-rheumatic drugs, with the
exception of hydroxychloroquine. For patients seen after 2015, yearly
follow-up was offered to monitor any potential disease progression,
and all patientswith at least 2 years offollow-up carewere included in
the study, contrasting progressors and non-progressors. Clinical
progressors were defined based upon development of new clinical
SARD criteria or new organ involvement characteristic for SARD,
within 2 years of initial assessment. Sex-matched ANA- healthy
controls (ANA- HC) were recruited from hospital and laboratory
personnel. Patients provided information on a family history of
rheumatic disease using a validated questionnaire (21). The study
was approved by the Research Ethics Boards of the two hospitals and
all participants signed informed consent.

Cellular Characterization
Peripheral blood mononuclear cells (PBMCs) were isolated from
whole blood collected in sodium-heparin tubes over a Ficoll/
Hypaque (GE Healthcare) gradient, treated to remove residual red
blood cells, and immediately stained, or archived in Liquid N2 (in
CryoStor®) and subsequently stained immediately following
thawing. Prior to staining with various combinations of directly-
conjugated monoclonal Abs, the cells (5 x 105/stain) were incubated
with viability dye (Fixable Far-Green Dead Cell Stain, Invitrogen)
for 30 minutes on ice. The Abs used for staining were as follows:
mouse anti-human, TBET-PE (4B10), FOXP3-PE (206D), CD56-
June 2022 | Volume 13 | Article 886442
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PE (5.1H11), CD4-PerCP (SK3), IgD-PerCP (IA6-2), CD123-
PerCPCy5.5 (6H6), CD11c-PeCy7 (3.9), CD38-PeCy7 (HB-7),
CD21-APC (Bu32), CXCR3-APC (G025H7), HELIOS-APC
(22F6), CD16-APC (B73.1), CD27-APC/Fire750 (M-T271), CD3-
APC/Fire750 (SK7), CD19-BV421 (H1B19), PD1-BV421
(EH12.2H7), CD138-BV605 (MI15), CD20-BV605 (2H7),
CXCR5-BV605 (J252D4), CD25-BV605 (2A3), and CD86-BV605
(BU63) from Biolegend; and mouse anti-human CCR6-PE (11A9),
CD3-PeCy7 (SK7), CD19-APC-H7 (SJ25C1), CD45RA-APC/
Fire750 (HI100), CD20-APC-H7 (2H7), LAG3-BV421 (T47-530),
CD14-BV421 (MøP9), and HLADR-BV605 (646-6) from BD
Biosciences. Staining for intracellular FOXP3 and HELIOS was
performed using the Human FOXP3 Buffer Set (BD Biosciences) for
fixation and permeabilization, according to the manufacturer’s
protocol. Events were acquired using a three-laser LSRII or
FACSCanto (BD Biosciences) flow cytometer, with fluorescence-
minus-one (FMO) controls being used as negative staining controls.
The data was analyzed using FlowJo software (BD Biosciences).

Cytokine Measurements
For measurement of transforming growth factor beta-1 (TGF-
b1), freshly thawed heparinized plasma (stored at -80°C and not
previously thawed) was activated by adding 5 µL of 1.0 M HCl to
10 µL of plasma, and incubated for 10 minutes at room
temperature. The reaction was then neutralized by addition of
5 µL of 1.2 M NaCl/0.5M HEPES and the resultant mixture was
diluted to a final volume of 400 µL with diluent reagent. The
concentration of TGF-ß1 in the diluted activated plasma (100 µL
per well, in duplicate) was measured using a human TGF- ß1
DuoSet ELISA Kit and Ancillary Reagent Kit 1 (R&D Systems),
with the optical density being read at 450 nm using a FLUOStar®

Omega microplate reader (BMG Labtech). IFN5 scores were
determined by measuring the expression levels of five IFN-
induced genes (EPSTI1, IFI44L, LY6E, OAS3, and RSAD2) in
whole peripheral blood archived in Tempus tubes (Applied
Biosystems), using a custom NanoString (NanoString
Technologies) (12, 17). Log2 normalized expression levels of
the 5 genes were summed to generate a composite IFN5 score.
Serum IFN-a was measured using patient serum collected and
archived at −80°C at the time of recruitment, as previously
described (12).

Measurement of autoAbs
ANAs were quantified by indirect immunofluorescence using the
Kallestad® HEp-2 kit (BioRad), through the University Health
Network laboratory. The serum levels of 11 specific autoAbs (anti-
dsDNA, -chromatin, -Ro, -La, -Sm, -SmRNP, -RNP, -Jo-1, -Scl-70, -
centromere, and -ribosomal P), were quantified using the Bioplex®

2200 ANA Screening System (BioRad), with the company’s
suggested cut-offs being used to define a positive test. AutoAb
testing was performed on all HCs, and those meeting the entrance
criteria were re-classified into the asymptomatic ANA+ group. HCs
with a positive ANA <1:160 or found to have any specific autoAb in
the absence of a positive ANA were excluded from the study. Ro60
and Ro52 Abs were measured using an autoantigen microarray, as
previously reported (22).
Frontiers in Immunology | www.frontiersin.org 3
Data Analysis
The Kruskal-Wallis test was used for statistical comparisons of
differences between three or more groups, followed by Dunn’s
post-test for multiple comparisons. Comparisons between two
groups were performed using the Mann-Whitney test. The
strength of correlation between two variables was assessed using
Spearman’s correlation coefficient, with the lines that visually
display these associations being computed by linear regression
analysis. All statistical analyses were performed using GraphPad
Prism Software, Version 8 (San Diego, CA, USA), except for the
correlation matrices, which were produced in R using the corrplot
(v0.84) package. For statistical tests, asterisks indicate a p value of
<0.05 (*), <0.01 (**), <0.001 (***), or <0.0001 (****).
RESULTS

The T Helper Cell Phenotype Differs
Between ANA+ Individuals With and
Without a SARD Diagnosis
We have previously shown that ANA+ NS and UCTD patients
share a number of B cell activation phenotypes and increases in
the proportion of T follicular helper cells with early SARD
patients (17). However, the functional characteristics of the
expanded Tfh population and many innate immune
populations were not examined. Therefore, to further explore
the immunologic differences between symptomatic and
asymptomatic ANA+ individuals, the current study was
performed. Supplementary Table 1 outlines the demographic
characteristics of the subjects, the majority of whom did not
overlap with the previously published study.

Although our ANA+ NS subjects lacked clinical SARD
criteria, they could have other clinical symptoms not
attributable to SARD. The ANA testing for these individuals
was performed for the following reasons: non-inflammatory
arthritis/arthralgias (40%, mostly osteoarthritis and
fibromyalgia), sicca symptoms in the absence of objective signs
of dryness (15%), healthy mother with a child with congenital
heart block or neonatal lupus (14%), urticaria/non-specific rash
(11%), family history of autoimmunity (7%), recruitment to the
study as a healthy control (6%), and other (7%). All UCTD
patients had a least one clinical symptom of SARD, but lacked
sufficient disease classification criteria for a diagnosis of SARD.
These symptoms included: Raynaud’s phenomenon (38%),
inflammatory arthritis (19%), abnormal nailfold capillaries
(17%), objective ocular signs (12%), photosensitivity (10%),
objective oral signs (8%), puffy fingers (6%), pericarditis (4%),
interstitial lung disease (4%), malar rash (4%), ITP/TTP (4%),
alopecia (4%), oral ulcers (2%), chilblains (2%), calcinosis (2%),
esophageal dysmotility (2%), calcinosis (2%), and oral ulcers
(2%). SARD patients had to meet objective disease classification
criteria for diagnosis (see Materials and Methods).

The subjects were predominantly female with similar
proportions in all groups. However, ANA− HCs were
significantly younger than ANA+ NS and UCTD patients.
June 2022 | Volume 13 | Article 886442
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There were no significant differences between groups in the
ethnicity of the subjects, with the majority of subjects in each
group being Caucasian. In all of the ANA+ groups, the majority
of subjects had an ANA titer of 1:640 or greater, but SARD
patients had a larger number of nuclear antigen autoantibody
specificities (as determined by the Bioplex©) when compared to
the other ANA+ groups.

Although most studies have shown an increase in Tfh cells in
SARD, there has been inconsistency between studies as to which
sub-populations of cytokine-producing cells are increased (23–29).
To determine whether the cytokine profile of Tfh cells in ANA+ NS
and UCTD patients is similar to that seen in early SARD, PBMCs
Frontiers in Immunology | www.frontiersin.org 4
were stained to identify Tfh (CD3+CD4+CD45RA-PD1hiCXCR5+)
cells. The proportion of cells with a Th1, Th2 or Th17 phenotype
was then determined by staining with anti-CXCR3 and CCR6
monoclonal Abs, with the CXCR3+CCR6-, CXCR3-CCR6-, and
CXCR3-CCR6+ populations being enriched for Th1, Th2, and
Th17 cells (representative gating shown in Figures 1A, B), as
previously reported (30).

Compatible with previous reports of increased Tfh cells in
SLE, SS, and SSc, there was a significant expansion of Tfh cells in
early SARD patients as compared to ANA- HC, and as observed
in our previous study, this was also seen to a lesser extent in
ANA+ NS or UCTD patients (Figure 1C). The increases in Tfh
FIGURE 1 | Asymptomatic anti-nuclear antibody positive (ANA+) individuals lacking a diagnosis of systemic autoimmune rheumatic diseases (SARD) have
abnormalities in T helper subsets that are amplified in symptomatic patients with early SARD. (A) Gating strategy for identification of (CD3+CD4+CD45RA-) memory T
cells from the peripheral blood mononuclear cells of a representative ANA+ patient. (B) Gating strategy for identification of T follicular helper (Tfh, PD-1hiCXCR5+) and
T peripheral helper (Tph, PD-1hi, CXCR5-) cells and the Th1 (CXCR3+, CCR6-), Th2 (CXCR3-, CCR6-), and Th17 CXCR3-, CCR6+) subsets within these populations.
(C, D) The proportions of Tfh cells and the individual Tfh subsets within the memory T compartment stratified by subject group. (E, F) The proportions of Tph cells
and the individual Tph subsets within the memory T compartment stratified by subject group. The solid vertical line in each plot separates the groups that were
statistically compared to one another from the individual SARD on the right, which were not statistically compared to any group. Bars represent the median with
interquartile range. Each data point represents an individual subject. Statistical significance was determined using the Kruskal-Wallis test with Dunn’s post-hoc test
for multiple comparisons; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. HC, ANA- healthy control; ANA, asymptomatic ANA+; UCTD, undifferentiated
connective tissue disease; SARD, systemic autoimmune rheumatic disease; SLE, systemic lupus erythematosus; SS, Sjögren’s syndrome; SSc, systemic sclerosis.
June 2022 | Volume 13 | Article 886442
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cells in early SARD occurred in the Th2 and Th17 subsets, with
no difference in the proportion of Th1 cells, as compared to
ANA- HC. ANA+ NS and UCTD patients also showed a trend to
increased proportions of Tfh cells, which was smaller than that
seen in SARD, and which appeared to result from small increases
in the Th1 and Th17 subsets, together with a significant increase
in the Th2 cell subset (Figure 1D).

Recently, a novel extra-follicular T helper subset termed T
peripheral helper (Tph) cells that shares many properties with
Tfh cells but lacks expression of CXCR5 (representative Tph
gating shown in Figure 1B) was found to be increased in SLE and
SS (31–33). This cell subset was increased in early SARD, at
significantly higher levels than those seen in ANA+ NS and
UCTD patients (Figure 1E). As was observed for Tfh in early
SARD, the increase in Tph cells was attributable to increases in
the proportion of the Th2 and Th17 subsets within this
population (Figure 1F). The proportion of Tph2 cells was also
significantly increased in ANA+ NS and UCTD patients, but the
magnitude of this increase was less than that seen in SARD
(Figure 1F). In contrast, there was only a slight trend to
increased Tph17 cells in these non-SARD groups, which was
significantly less than that seen in early SARD (Figure 1F).

Both Tfh and Tph cells are reported to provide support for
differentiation of B cells to Ab-producing plasma cells and/or
plasmablasts (17, 32, 33). We previously showed that there is a
trend to increased proportions of plasma cells and plasmablasts
in ANA+ individuals lacking a SARD diagnosis (17), and similar
findings were seen in this study (Supplementary Figure 1).
When all subjects were included, there was a weak correlation
between the proportion of Tfh and Tph cells and the proportion
of plasma cells and/or plasmablasts. As might be expected based
on the literature, the correlation with plasma cells was slightly
stronger for Tfh than Tph (Tfh r=0.221, p=0.011; Tph r=0.210,
p=0.016), whereas the opposite was seen for plasmablasts (Tfh
r=0.164, p=0.059; Tph r=0.222, p=0.010).

Age-associated B cells (ABCs) are increased in SLE (34, 35)
and have features suggesting that they are precursors of
plasmablasts (34, 36). Consistent with previous studies, the
levels of these cells were increased in early SLE, and in SARD
overall. However, no substantive increases were seen in ANA+

individuals lacking a SARD diagnosis. As previously reported,
blood ABC levels were significantly correlated with the
proportion of plasmablasts, and to a lesser extent, plasma cells
(plasmablasts r=0.265, p=0.008; plasma cells r=0.255, p=0.011)
(32). However, in contrast to previous reports, ABC levels
correlated with Tfh (r=0.270, p=0.007) and not Tph levels.

Taken together, the data indicates that Tfh and Tph cell
activation differs between ANA+ individuals with and without
SARD, with increases in both the Th2 and Th17 subsets of these
populations in early SARD patients relative to those lacking a
SARD diagnosis.

T Regulatory Cell Subsets Are Increased
in ANA+ NS and UCTD, Relative to
Early SARD
Although there is some inconsistency regarding the proportion
and function of T regulatory (Treg) cell populations in SARD,
Frontiers in Immunology | www.frontiersin.org 5
possibly due to heterogeneity in defining these populations and
the markers used for their identification, available evidence
suggests that Treg cells are reduced and/or functionally
impaired in SARD patients (37–45). It has also been proposed
that Tregs act to prevent symptoms in ANA+ individuals lacking
a SARD diagnosis (46). To explore whether there are differences
in the proportions of various Treg populations between
symptomatic and asymptomatic ANA+ individuals, we
examined extra-follicular, follicular, and LAG3+ Treg
populations, gated as shown in Figures 2A–C. For all three
populations, there was a consistent trend to increase in
asymptomatic ANA+ NS and UCTD patients as compared to
ANA- HC and early SARD patients (Figures 2D–F), which
variably achieved statistical significance. In contrast, these
populations were either similar or somewhat reduced in SARD
patients as compared to ANA- HC. As a result, there was a
significant increase in the ratio of Tph2 and Tph17 cells to extra-
follicular Tregs in SARD patients when compared with ANA+

individuals lacking a SARD diagnosis (Figure 2G).
One of the mechanisms by which Tregs, particularly LAG3+

cells, exert their function is through secretion of TGF-b1 (47).
Consistent with enhanced immunoregulation in ANA+ NS, there
were significantly elevated plasma levels of this cytokine relative
to ANA- HC (Figure 2H), with a progressive trend to
normalization in UCTD and SARD patients. As expected,
there was a moderate positive correlation between the
proportion of LAG3+ Tregs, but not extra-follicular or
follicular Tregs, and TGF-b1 (Figure 2I).

Collectively, these findings suggest that there is a shift from
predominant T cell regulation to predominant pro-inflammatory
T cell activation that discriminates asymptomatic ANA+ NS
individuals from early SARD.
Accumulation of Innate Immune
Populations Favoring Production of
Pro-Inflammatory Factors Differentiates
Early SARD From Asymptomatic
ANA+ Individuals
Dendritic cells (DC) play an important role in supporting
immune activation in SARD, both through the production of
type I IFN by plasmacytoid DCs (pDCs) and activation of T cell
subsets by myeloid DCs (mDCs). Studies have shown that in
SARD patients with active ongoing inflammation, there is a
trend to reduced levels of these cells in the peripheral blood,
which is associated with their increased localization to the tissues
(48–50). To assess how these populations differ between
symptomatic and asymptomatic ANA+ individuals, pDCs and
mDCs were examined (gating shown in Figures 3A, B). mDCs
were further divided into CD14+ and CD14- subsets, as previous
studies have shown that CD14+ mDCs are expanded in SARD,
express a variety of pro-inflammatory cytokines, and are very
effective inducers of Th2 and Th17 differentiation (51). As shown in
Figure 3C, no differences were seen in the proportion of pDCs
between any of the ANA+ subject sub-groups and ANA- HC.
However, there was a significant increase in the proportion of
CD14- mDCs in ANA+ individuals lacking a SARD diagnosis as
June 2022 | Volume 13 | Article 886442
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compared to ANA- HC, with a trend to decrease in SARD patients
as compared to the other ANA+ groups (Figure 3D). Conversely,
the proportion of CD14+ mDCs was significantly increased in
SARD as compared to both ANA- HC and ANA+ NS
(Figure 3E). These findings suggest that there is a relative
depletion of CD14- mDCs and accumulation of the more pro-
inflammatory CD14+ mDCs in the circulation of patients with early
SARD, as compared to ANA+ individuals lacking symptoms.

Previous studies indicate that SARD patients have increased
proportions of monocytes in their peripheral blood, particularly
those of the intermediate and non-classical type (52–55). Non-
classical monocytes have been shown to have an increased
capacity to secrete pro-inflammatory molecules and present
antigens to T cells, as compared to classical monocytes (56, 57).
To determine whether similar changes were observed in ANA+

individuals lacking a SARD diagnosis, classical (CD14hiCD16-),
non-classical (CD14loCD16+) and intermediate monocytes
(CD14hiCD16+), were gated as shown in Figure 3F. All three
subsets were significantly expanded in early SARD when
compared to ANA- HC (Figure 3G). Although there was a
slight trend to an increase in these populations in ANA+ NS
and UCTD patients compared to ANA- HC, the proportion of
these cells was significantly lower in ANA+ NS individuals than in
Frontiers in Immunology | www.frontiersin.org 6
SARD patients (Figure 3G). Thus, individuals with SARD show
significant expansion of both pro-inflammatory DC and pro-
inflammatory monocyte populations that support T cell
activation as compared to asymptomatic ANA+ individuals.

Cellular Phenotypes Seen in ANA+

Individuals Lacking a SARD Diagnosis
Correlate With autoAb and IFN Levels
As shown in Supplementary Table 1, the group of ANA+

individuals lacking a SARD diagnosis had significant variation
in the type and number of autoAbs seen, as well as the ANA titer.
We have previously shown that a subset of these individuals have
elevated levels of IFN-induced gene expression in their peripheral
blood, as measured by a composite score derived from the levels of
5 IFN-induced genes, termed the IFN5 score (12). We further
demonstrated that the levels of this score correlate with the levels
of IFN-a, as measured by high sensitivity ELISA (12), as well as
anti-Ro60 and -Ro52 antibodies, and that ANA+ individuals
lacking a SARD diagnosis with high levels of anti-Ro52
antibodies or IFN-a are at an increased risk of clinical
progression over the subsequent 2 years (22, 58). To investigate
the association between these serologic changes and the peripheral
blood cellular profile in these individuals, a Spearman correlation
FIGURE 2 | T regulatory (Treg) subsets and transforming growth factor beta-1 (TGF-b1) are increased in anti-nuclear antibody positive (ANA+) individuals lacking a
systemic autoimmune rheumatic diseases (SARD) diagnosis. (A) Gating strategy for identification of (CD3+CD4+) follicular (CXCR5+) and extra-follicular (CXCR5-) T
cells for a representative ANA+ patient. Gating strategy for identification of (B) (HELIOS+FOXP3+) follicular and extra-follicular Tregs and (C) memory (CD45RA-)
LAG3+ T regulatory cells (LAG3+ Tregs, LAG3+CD25-). (D–F) The proportions of Treg subsets stratified by subject group. (G) The ratio of memory T peripheral helper
2 cells to extra-follicular Tregs; and the ratio of memory T peripheral helper 17 cells to extra-follicular Tregs stratified by subject group on a log10 scale. (H) Plasma
TGF-b1 levels stratified by subject group. (I) The correlation between the proportion of memory LAG3+ Tregs and TGF-b1 levels. The solid vertical line in each plot
separates the groups that were statistically compared to one another from the individual SARD on the right, which were not statistically compared to any group. Bars
represent the median with interquartile range. Each data point represents an individual subject. Statistical significance was determined using the Kruskal-Wallis test
with Dunn’s post-hoc test for multiple comparisons; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. The strength of association was determined using a non-parametric
Spearman correlation analysis. The solid line of best fit was computed from linear regression. HC, ANA- healthy control; ANA, asymptomatic ANA+; UCTD,
undifferentiated connective tissue disease; SARD, systemic autoimmune rheumatic disease; SLE, systemic lupus erythematosus; SS, Sjögren’s syndrome; SSc,
systemic sclerosis.
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matrix was produced (Figure 4). Although Figure 4 shows the
data for the pooled analysis of all ANA+ individuals lacking a
SARD diagnosis, very similar results were observed when ANA+

NS and UCTD patients were examined independently
(Supplemental Material; Figure 2).

As noted in our previous study, there was a moderate positive
correlation between two markers of IFN levels, the IFN5 score
and/or serum levels of IFN-a, and all of the serologic markers of
autoAb production (17). IFN levels also correlated, moderately to
strongly, with multiple markers of B cell activation, including
activated memory B cell subsets and plasmablasts/plasma cells.
This finding is compatible with previous work indicating that
IFN acts to enhance B cell activation and differentiation to Ab-
producing cells (59–62), and suggests that it may play an
important role in driving autoAb production in ANA+

individuals lacking a SARD diagnosis. The observation that the
levels of plasmablasts/plasma cells correlate with serologic
markers of autoAb production supports this concept. AutoAb
production also demonstrated a weak correlation with Tfh and
Tph cells, together with several of the subsets within these
populations, consistent with the role of these cells in
supporting Ab production. In general, the proportions of these
T cells and their subpopulations did not correlate with IFN levels.
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Unlike the pro-inflammatory T cell subsets, the proportion of
LAG3+ Tregs positively correlated with both autoAb and IFN
levels, suggesting that the same immune processes that lead to
activation of other immune populations may act to expand
LAG3+ Tregs, which may act in turn to suppress development
of symptomatic autoimmunity. In contrast, the proportions of
extra-follicular and follicular Tregs did not correlate with autoAb
production, and in the case of extra-follicular Tregs
demonstrated negative correlations with some of the activated
immune populations.

Although the majority of innate immune subsets did
not correlate with autoAb production, a number of populations
correlated with IFN levels. Notably, the proportion of pDCs
correlated inversely with markers of elevated IFN levels,
suggesting that, similar to what is observed in SARD (48–50),
pDCs are depleted from the circulation when high levels of IFN-a
are produced, possibly as a result of recruitment to the tissues. In
contrast, the levels of CD14+ mDCs, intermediate monocytes, and
non-classical monocytes all showed a moderate positive
correlation with IFN levels. These findings suggest that one of
the mechanisms by which high levels of IFN may promote
progression is through facilitating development of these pro-
inflammatory innate immune populations.
FIGURE 3 | Differences in the frequencies of innate immune populations distinguish anti-nuclear antibody positive (ANA+) individuals lacking a systemic autoimmune
rheumatic diseases (SARD) diagnosis from early SARD patients. (A) Gating strategy for identification of CD14-HLA-DR+CD56- plasmacytoid dendritic cells (pDCs,
CD123+CD11c-) and myeloid dendritic cells (mDCs, CD123-CD11c+) from the lineage negative compartment (CD3-CD19-CD20-) in a representative ANA+ patient.
(B) Gating strategy for identification of CD14+ mDCs (CD14loCD123-CD11c+). (C–E) The proportion of pDCs, mDCs, and CD14+ mDCs stratified by subject group.
(F) Gating strategy for identification of classical monocytes (CD16-CD14hi); non-classical monocytes (CD16+CD14lo); and intermediate monocytes (CD16+CD14-).
(G) The proportion of the monocyte subsets stratified by subject group. The solid vertical line in each plot separates the groups that were statistically compared to
one another from the individual SARD on the right, which were not statistically compared to any group. Bars represent the median with interquartile range. Each data
point represents an individual subject. Statistical significance was determined using the Kruskal-Wallis test with Dunn’s post-hoc test for multiple comparisons. *p ≤

0.05, **p ≤ 0.01, ***p ≤ 0.001. HC, ANA- healthy control; ANA, asymptomatic ANA+; UCTD, undifferentiated connective tissue disease; SARD, systemic autoimmune
rheumatic disease; SLE, systemic lupus erythematosus; SS, Sjögren’s syndrome; SSc, systemic sclerosis.
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Progressors Have More B and T Cell
Activation Than Non-Progressors
As some of the immune cell populations correlated with elevated
autoAb/IFN levels, which had been reported to be associated
with an increased risk of clinical progression (22, 58, 63), it was
of interest to us to determine the cellular immunologic features
that distinguish ANA+ individuals without SARD who will
progress clinically from those who will not. To address this
question, yearly longitudinal follow-up was offered to all of these
individuals, with the option of attending clinic earlier if new
symptoms developed. At present, there are 20 ANA+ individuals
who demonstrated symptomatic progression within 2 years of
recruitment, defined as the development of new SARD
diagnostic criteria or new organ involvement characteristic for
SARD. Non-progressors were defined as participants who were
followed for at least two years and remained stable without
development of new symptoms during that period. The clinical
characteristics of the progressors and non-progressors are
outlined in Supplementary Table 2 and an outline of disease
progression in patients who progressed is given in
Supplementary Table 3.

As shown in Figure 5A, within the B cell lineage, progressors
had a significant increase in the proportion of plasmablasts as
compared to non-progressors. Trends to increased proportions
Frontiers in Immunology | www.frontiersin.org 8
of activated class-switched memory and CD27-IgD- double
negative memory B cells, as well as ABCs and plasma cells,
were also seen in progressors. These findings suggest that higher
levels of B cell activation may be associated with an increased
likelihood of progression.

Similar findings were observed for T cells, with higher
percentages of Tfh and Tph cells in progressors as compared
to non-progressors (Figures 5B, C). This increase was not
associated with an expansion of any particular cytokine-
producing subset. Although there were trends to an increase in
the Tfh2, Tfh17, Tph1 and Tph2 subsets in progressors as
compared to non-progressors, none of these achieved statistical
significance. Thus, despite evidence for higher levels of Th2- and
Th17-type cells in early SARD, increased levels of these
populations do not appear to occur prior to or predict
symptomatic progression.

Although the levels of the various Treg subsets were generally
reduced in SARD as compared to ANA+ individuals lacking a
SARD diagnosis, no differences were seen in the proportions of
extra-follicular or follicular Tregs between progressors and non-
progressors (Figure 5D). However, there were significantly
higher levels of LAG3+ Tregs and TGF-ß1 in progressors when
compared with non-progressors (Figures 5D, E). These findings
suggest that the induced T regulatory pathway appears to be
activated and expanded in progressors, but ultimately fails to
prevent development of symptomatic autoimmunity.

In contrast to the findings observed for adaptive immune
populations, the majority of innate immune populations showed
no differences between progressors and non-progressors. A
significant difference was only observed for the CD14- mDC
population, which was reduced in progressors relative to non-
progressors, mirroring the difference observed between SARD
and ANA+ individuals lacking a SARD diagnosis (Figure 5F).
Very minor trends to decreased pDCs and to increased CD14+

mDCs and intermediate monocytes were also seen in progressors
(Figures 5F, G). Thus, significant accumulation of pro-
inflammatory monocytes/DC populations does not appear to
precede clinical progression.
DISCUSSION

While a considerable number of studies have examined the
cellular immunologic changes in patients with well-established
SARD, often on treatment, studies examining these immunologic
changes in ANA+ individuals lacking a SARD diagnosis are
scarce. In a previous study examining predominantly T and B
cell subsets, we found that many of the changes ascribed to
SARD are also seen in asymptomatic ANA+ individuals (ie.
lacking SARD symptoms), suggesting that they are associated
with the development of benign autoimmunity rather than the
transition to symptomatic disease (17). These findings were
validated in the current study, in a largely independent cohort,
indicating the robustness of this phenotype. However, it
remained to be determined what the key differences were
between symptomatic and asymptomatic ANA+ individuals.
Here we show, by performing a more in-depth analysis of T
FIGURE 4 | Spearman correlation matrix between cellular and selected
serologic/cytokine phenotypes in anti-nuclear antibody positive (ANA+)
individuals lacking a systemic autoimmune rheumatic diseases (SARD)
diagnosis. The color and size of the dots represents the r value, with the
scales shown at the bottom of each matrix. Non-significant (p ≥ 0.05)
correlations are not displayed. Associations with autoAb levels are highlighted
in yellow and those with IFN levels are highlighted in pink. ANA, anti-nuclear
autoantibody; CSM, class-switched memory; DN, double-negative; IFN,
interferon; TGF, transforming growth factor; mDCs, myeloid dendritic cells;
pDCs, plasmacytoid dendritic cells; Tfh, T follicular helper; Tph, T peripheral
helper; Tregs, T regulatory cells.
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helper and regulatory cells together with innate immune
populations, that these key differences lie in the balance
between pro-inflammatory and regulatory immune cell subsets.

We have previously shown that Tfh cells are increased in
ANA+ NS individuals (17). We report here that this increase is
predominantly due to an increase in Th2 cells and that there is a
similar increase in Tph2 cells. These findings indicate that both
germinal center and extra-follicular T cell responses are
enhanced in ANA+ NS, and given their correlation with
autoAb levels, support autoAb production. Currently, the
tissues where the extra-follicular T cell response arise are
unknown. The observation that Th2 cells are increased in
asymptomatic ANA+ individuals, most of whom will never
develop SARD, is consistent with previous work showing small
but significantly elevated levels of Th1- and Th2-associated
cytokines in these individuals (46) and studies showing that
these cytokines can be seen years in advance of the transition to
Frontiers in Immunology | www.frontiersin.org 9
disease in SLE patients (64–66). However, in contrast to these
serum cytokine studies, increases in circulating Th1 cells were
not seen in the current study, nor in our previous study where we
examined IFN-g-producing cells in the CD4+ T cell
compartment (17). The reason for this disparity is unclear;
however, it is possible that cytokine-producing Th1 cells are
activated in ANA+ NS individuals but remain localized within
the tissues, and thus may only be detectable in the circulation
through their cytokine secretion.

SARD patients had increased levels of Tph cells and a trend to
increased Tfh cells, with increases in both the Th2- and Th17-
subsets of these populations, relative to ANA+ NS and UCTD
patients. These findings suggest that the transition to SARD is
associated with increases in the T cell populations that support B
cell differentiation to Ab-producing cells. This observation is
compatible with previous studies by ourselves and others
showing that the number of anti-nuclear autoAbs and/or titers
FIGURE 5 | Antinuclear antibody positive (ANA+) individuals lacking a systemic autoimmune rheumatic diseases (SARD) diagnosis who demonstrated symptomatic
progression demonstrate differences in adaptive and innate immune populations, relative to non-progressors. All graphs compare progressors and non-progressors
at baseline (initial assessment). Patients diagnosed as ANA+ NS or UCTD at initial assessment are represented by the closed circles and the open triangles,
respectively. (A) B cell subsets. (B, C) T helper cell subsets. (D) T regulatory cell subsets. (E) Plasma transforming growth factor beta-1 (TGF-b1) levels. (F) Dendritic
cell subsets. (G) Monocyte subsets. Bars represent the median with interquartile range. Each data point represents an individual subject. For each set of
comparisons, statistical significance was determined using the Mann-Whitney test. *p ≤ 0.05, **p ≤ 0.01. P, Progressors; NP, Non-Progressors.
June 2022 | Volume 13 | Article 886442

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gupta et al. Cellular Phenotypes in ANA+ Individuals
of autoAbs are higher in early SARD than in ANA+ individuals
lacking a SARD diagnosis (22, 67, 68). In SLE, it has previously
been shown that the transition to disease is associated with
progressive increases in T cell-derived cytokines, with IL-17 in
particular increasing concurrent with disease onset (64). Our
findings provide additional support for the concept that
s ignificant increases in the Th17-type cel l s occur
concomitantly with early disease, and indicates that this feature
extends to the other SARD conditions.

T regulatory cell populations were highest in ANA+ NS and
appeared to drop to more normal levels in SARD, suggesting that
these cells may be actively regulating inflammation to prevent
symptomatic disease in ANA+ NS. Previous studies examining
the cytokine profile of asymptomatic ANA+ individuals or SLE
patients prior to their transition to symptomatic disease reached
a similar conclusion (46, 64). As was seen in those studies, we
found that the levels of TGF-ß1 were increased in ANA+ NS
patients as compared to ANA- healthy controls, and normalized
in SARD patients. However, the Treg populations that
accompanied these increases were not examined in the earlier
studies. Here, we show that ANA+ NS and UCTD patients have
increases in multiple Treg populations, but only the LAG3+

population correlates with TGF-ß1. This observation is
compatible with the function of LAG3+ Tregs, which have
been shown to regulate autoimmunity through secretion of IL-
10 and TGF-ß1, as well as through direct cellular contact (47).
Notably, LAG3+ Tregs are induced in response to multiple
environmental stimuli at barrier sites such as the gut,
respiratory tract and skin, and have been shown to migrate to
remote sites of autoimmune inflammation (69). Whether the
expansion of this population indicates a role for environmental
triggers in the development of autoimmunity in ANA+ NS is
currently unknown.

The shift in the balance of Treg to Tfh/Tph cells in early
SARD, as compared to ANA+ individuals lacking a SARD
diagnosis , indicates that the onset of symptomatic
autoimmunity is accompanied by a shift from predominant
immunoregulation to a more pro-inflammatory pattern. A
similar type of shift has been reported for UCTD patients as
they transition to SARD, with an increase in the ratio of Th17 to
Treg cells (70). The immune mechanisms leading to this shift
remain to be definitively determined; however, one possibility is
that the expansion of CD14+ mDCs seen in SARD facilitates
this shift. In SLE, this population has been shown to have
an enhanced ability to support Th17 differentiation
and, through OX40L expression, to augment Tfh cell
differentiation and impair Treg function (51, 71). The non-
classical and intermediate monocytes that are expanded in
SARD have also been reported to support T cell activation/
differentiation (56, 57). Alternatively, the balance of Treg to
Tfh/Tph cells could be affected by changes in immune function
at barrier sites, such as the gastrointestinal tract. Previous
studies have shown that there are alterations in the gut
microbiome in SARD that can be associated with enhanced
gut permeability (72), which have been shown to facilitate a
shift in the Treg to Th17 balance (73, 74).
Frontiers in Immunology | www.frontiersin.org 10
In ANA+ individuals lacking a SARD diagnosis, there was an
inverse correlation between the levels of pDCs and serum levels
of IFN-a and IFN-induced gene expression. These findings
contrast with the results of a previous study of ANA+ ‘at-risk’
individuals where decreased levels of pDCs were seen when
compared with healthy controls (75). In that study, there was no
correlation between the levels of pDCs and peripheral blood
IFN-induced gene expression. Based upon this lack of
correlation, together with RNAseq and functional data
suggesting that the pDCs are functionally impaired in ‘at risk’
individuals, it was argued that pDCs are not a source of the IFN
that induces the altered gene expression in the peripheral blood.
Our findings argue for an alternate explanation for this lack of
responsiveness, specifically that it reflects prior activation of this
population. Along these lines, we and others have previously
shown that pDCs transiently produce IFN-a and then become
refractory to further activation with Toll-like receptor (TLR)
stimulation (76, 77), a phenomenon termed TLR tolerance. TLR
signaling in pDCs also induces their migration to the tissues,
which may account for their depletion from the blood.

Comparison of progressors and non-progressors prior to
progression indicated that progressors had elevated levels of B
and T cell activation, with changes reflecting increased follicular
and extra-follicular (tissue) responses, as compared to non-
progressors. Progressors also had increases in the proportion of
LAG3+ Treg cells and TGF-ß1, suggesting that these cells are
expanded during the immune response that leads to progression,
but fail to prevent development of symptoms. Whether this failure
results from impaired function of this or other Treg populations,
as has been reported for SARD (40, 43–45, 71, 78), remains to be
determined. Surprisingly, progressors had reduced levels of mDCs
as compared to non-progressors. mDCs shuttle from the blood
stream through the tissues and are retained in the tissue and/or
draining lymph nodes when there is localized inflammation. Thus,
the depletion of these cells may indicate the presence of sub-
clinical inflammation prior to the onset of overt clinical symptoms
in progressors.

In summary, we have identified a number of immunologic
features that discriminate asymptomatic ANA+ individuals from
early SARD patients, and ANA+ symptom progressors from
non-progressors. Our findings provide insight into the
immune mechanisms that lead to clinical symptoms in SARD,
and raise the possibility of targeting these mechanisms to block
development of SARD.
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