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While the etiology of many neuropsychiatric disorders remains unknown, increasing
evidence suggests that aberrant sensory processing plays a central role. For this class
of disorders, which are characterized by affective, cognitive, and behavioral symptoms,
electroencephalography remains the dominant tool for providing insight into the
physiological and molecular underpinnings of the disease state and predicting the
effectiveness of investigational new drugs. Within the spectrum of electrical activity
present in the CNS, high-frequency oscillations in the gamma band are frequently
altered in these patient populations. Measurement of gamma oscillation can be further
classified into baseline and evoked, each of which offers a specific commentary on
disease state. Baseline gamma analysis provides a surrogate of pharmacodynamics and
predicting the time course effects of clinical candidate drugs, while alterations in evoked
(time-locked) gamma power may serve as a disease biomarker and have utility in
assessing patient response to new drugs. Together, these techniques offer
complimentary methods of analysis for discrete realms of clinical and translational
medicine. In terms of drug development, comprehensive analysis containing aspects of
both baseline and evoked gamma oscillations may prove more useful in establishing
better workflow and more accurate criteria for the testing of investigational new drugs.

Keywords: electroencephalography (EEG), schizophrenia, bipolar disorder, autism spectrum disorder (ASD),
evoked gamma, baseline gamma, Auditory Steady State Response (ASSR)
INTRODUCTION

Electroencephalography (EEG) indirectly measures neuronal activity within the brain. The
technique is widely used in neurology, cognitive science, and psychophysiological research. EEG
is an attractive tool in the field of translational science, as it is a non-invasive procedure that offers
insight into the cell- and system-level changes that underlie both the normal and disordered
function of the CNS. Clinically, the technique allows study of the efficacy and impact of
investigational new drugs on both a systems and population level.

While a significant fraction of EEG-based research focuses on relatively low-frequency
oscillations (1–30 Hz), research into higher-frequency oscillations in the gamma band (30–200
Hz) have revealed alterations that are closely linked to various neuropsychiatric disorders (1–4),
including schizophrenia and bipolar disorder. Numerous studies (in both humans and animal
models) suggest that changes in gamma oscillation likely reflect the activity of parvalbumin-positive
GABAergic interneuron populations (2, 5). This cell population plays an important role in sensory
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input and processing, and is of particular interest in diseases where
these processes are altered. Specifically, it is hypothesized that
alterations in gamma oscillations are indicative of an imbalance in
excitation/inhibition (E/I) arising from the loss of function within
the previously mentioned interneuron population that ultimately
manifest as affective, cognitive, and behavioral changes. Alterations
in gamma oscillation have been reported in schizophrenia (6–9),
autism spectrum disorder (10), fragile X syndrome (11), bipolar
disorder (12), major depressive disorder (13), and epilepsy (14).
For these reasons, tracking these changes remains one of the most
commonly employed techniques in recent drug discovery research
for neuropsychiatric disorders (1, 15).

Measurement of gamma oscillation is typically performed in
one of two ways. Baseline (resting) gamma measures native
gamma oscillations in the absence of external stimuli. In
contrast, evoked (time-locked) gamma is passive gamma
oscillation elicited by auditory or visual cues. Oscillatory
activity typically evoked during sensory/cognitive processing is
characterized by band-limited modulations, which are a key
feature of an oscillatory process. Especially, evoked gamma
power is typically observed ~60–100 ms after stimulus (1).
This is not normally observed in spontaneous or baseline
activity. Baseline measures are generally more prone to
artefacts. While the source of these artefacts is not always
clear, researchers have identified significant contributions from
muscle/saccadic artefacts towards high-frequency EEG activity,
the removal of which has allowed better identification of the
“true” signal from brain (16–18). The frequency, duration, and
magnitude of the elicited activity provide a composite
measurement of the subject's response to a one-time or
ongoing series of sensory input. When considered collectively,
the two approaches offer a somewhat unique, albeit overlapping
commentary on the functional status of sensory processing
within the CNS.

In a clinical context, gamma oscillation may be used either as
proof of pharmacology or as a proof-of-concept tool. With
regard to the former, EEG-based measurements are typically
employed to track changes in brain activity, including gamma
oscillation following the addition of an investigational new drug.
Tracking these changes, usually through longitudinal monitoring
of baseline EEG activity, provides a functional biomarker of drug
targeting and activity. Alongside other more traditional
pharmacokinetic/pharmacodynamic (PK/PD) and tolerability
analyses, this approach provides guidance on trial design,
dosing, and predicts clinical efficacy. For these reasons, this
type of evaluation is generally incorporated relatively early in
the clinical process, generally in healthy subjects. In proof-of-
concept applications, changes in gamma oscillation need be
accompanied by similar changes in surrogate endpoint(s) that
comment directly on the disease (e.g., cognitive measurement,
PANSS scale changes, etc.). In addition, some regard specific
alterations in gamma band activity—usually Auditory Steady
State Response (ASSR) deficits—as a potential disease biomarker
for some neuropsychiatric disorders, as well as a means
of stratifying patients for clinical trials, though further
investigation of these claims is needed.
Frontiers in Psychiatry | www.frontiersin.org 2
GAMMA OSCILLATIONS IN
UNDERSTANDING DISEASE ETIOLOGY

Studies of gamma band alterations have historically proven
valuable in understanding the underpinnings of diseases with
ostensible E/I imbalances. In animal models of neuropsychiatric
disorder created by blunting NMDA signaling transduction in
parvalbumin-positive interneurons baseline gamma power is
increased, while evoked gamma power is decreased (5, 19).
Similar results are observed in animals treated with NMDA
antagonists (20, 21). This suggests two conclusions. First, the
disruption in sensory input in the diseased state may be caused
by a reduction in signal-to-noise ratio resulting from augmented
baseline activity within interneurons. Second, NMDA-mediated
signaling is directly implicated in maintaining E/I balance, as
gamma alterations in animal models appear to mirror those of
disease patients. While this last point is difficult to prove
conclusively in patients, circumstantial evidence seems to
support this working theory. For example, the addition of a
GABA transporter inhibitor results in the increase in the evoked
gamma power of healthy volunteers (22).

Gamma band changes have also contributed to the discovery
that sensory balancing is not constrained to GABAergic neuron
populations. Studies involving other neurotransmitters support
the notion that the effects of E/I imbalance are more widespread
than initially believed. Compounds targeting dopaminergic and
norepinephrinergic neurons typically increase evoked gamma
power (23, 24), indicating that these neurotransmitters can be
indirectly surveilled using this measurement technique.
Preclinical evidence in rodents also suggests that ASSR also
changes in response to cholinergic neurotransmitter
modulation (25). Based on these results, it stands to reason
that ASSR could also be used a predictor for the efficacy of drugs
targeting these classes of compounds.

The common role of the neural circuit mentioned above is
their conserved function in sensory perception. Accordingly,
imbalances in their regulation (either directly, or via
manipulation of interneurons) could result in E/I imbalance.
As one of the endophenotypes in neuropsychiatric disorders,
dysfunction within these systems could manifest as false or
warped sensory input in an affected individual. The monitoring
of gamma oscillation as a means of commenting on this
phenotype of neural function underscores the importance of
this technique in dynamically characterizing the development of
the disease from acute to a chronic state. Understanding the
pathogenesis of etiologically challenging disorders is of
critical importance in the development of next-generation
neuropsychiatric drugs targeted to these pathways.
GAMMA OSCILLATIONS IN DRUG
DEVELOPMENT

The development of new drugs encompasses a wide variety of
topics, including the pharmacological profile (PK/PD, ADME,
etc.) of each new drug and the ensuing response of the patient
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(ranging from cell- and molecular changes to the amelioration of
symptoms and changes in clinical endpoints). Regarding the
former, resting gamma measurement offers direct commentary
on the activity of a particular cell population, in this case,
inhibitory neurons involved in sensory processing. As these
populations are the target for numerous drug development
efforts, measuring baseline gamma response following
administration of an investigational drug provides valuable
retrospective information on dosing levels and therapeutic
windows, acts as a useful secondary biomarker of efficacy and
receptor occupancy, and can be used to corroborate PK/PD data
for new compounds. Studies using baseline gamma are
technically suited to capture these types of data, and have
proven successful in this endeavor (26, 27).

Despite their success in this regard, the use of baseline gamma
measurement in the evaluation of new CNS drugs does not
necessarily extend beyond PK/PD assessments. Although
abnormal resting gamma power was also identified as being
connected to neuropsychiatric disorders and their preclinical
animal models (21, 28), several studies have not identified this
abnormality (29, 30). While this matter is not fully settled, recent
evidence suggests that many psychiatric diseases, including
schizophrenia and bipolar disorder, are rooted in abnormalities
in sensory processing that relate to the disruption of evoked
gamma response. As such, ASSR, rather than baseline gamma, is
likely to be the superior measuring stick of clinical efficacy for
diseases in this category.

Subsequent results have substantiated this hypothesis. In
schizophrenia patients, abnormal 40-Hz ASSR has been
reported in the prodromal state and has persisted into the
chronic phase of the disease (6–9, 31–37). This relationship
extends to clinical trials, where the effect size of ASSR to
schizophrenia is reportedly over 0.5 (35). The close association
between schizophrenia and evoked gamma power suggests it
should be feasible to use this alteration as a proxy for proof of
pharmacology in patient populations. This possibility is further
buoyed by the observation that ASSR alterations in rodent
models of psychiatric disease appear primarily in the gamma
band range (21).

The consistent appearance of altered evoked gamma is both
widespread and in support of the interneuron-mediated E/I
imbalance theory. Abnormal evoked gamma is present in
genetic models with impaired NMDA receptor function in
parvalbumin-positive knockout animals (5, 38), as well as
NMDA receptor-antagonized models using ketamine,
phencyclidine, and MK-801 (20, 21, 39–44). In addition to
supporting the broader hypothesis, these data demonstrate the
role of evoked gamma measurement in establishing reliable
translational validity from the preclinical to clinical development.

Combining resting and evoked gamma has also been used to
increase understanding of disease features in situations where
either method alone would be insufficient. When multiple
NMDA receptor antagonists (memantine or ketamine) were
given to healthy volunteers and schizophrenia patients, ASSR
Frontiers in Psychiatry | www.frontiersin.org 3
was enhanced in both populations (45, 46). Although this
observation seems contradictory to NMDA receptor hypothesis
for schizophrenia, this effect was echoed in rats, where enhanced
ASSR was correlated with moderate NMDA receptor occupancy
(20). This might be explained by the persistent reduction of
neuronal firing of interneurons, i.e., GABAergic neurons, in the
cortex, which might directly influence the mode of action
through which gamma oscillation develops in ASSR. Thus,
moderate NMDA receptor blockade biases the excitatory/
inhibitory balance toward increased excitability, which could
yield beneficial effects on brain function, similar to the
antidepressive effect of ketamine (47). However, the effect of
NMDA receptor antagonists on gamma power may not be
explained solely by the disinhibition of GABAergic activity, as
higher exposure of ketamine (and accordingly higher receptor
occupancy) reduces ASSR signaling, which may reflect a collapse
of cortical neuronal synchrony (20, 21).

These seemingly paradoxical results were resolved with
additional examination of baseline gamma under similar
conditions, which revealed that resting gamma was increased
under the influence of the NMDA receptor antagonists. This
observation presented another possibility, namely, that the
observed ASSR disruptions in patient populations are caused
by excess augmented baseline gamma activity. As mentioned
previously, calculating ASSR involves the measurement of both
the response to stimuli and resting state activity. In this case, an
increase in baseline gamma levels—presumably a product of the
inhibition of the GABA interneurons—decreases the signal-to-
noise ratio, and reduces evoked gamma in the absence of any
change in peak response. Indeed, additional studies (20, 21, 48)
confirmed that baseline gamma power was augmented under
these conditions, regardless of receptor occupancy. However,
evoked gamma enables the detection of sensory processing
dys funct ion between hea l thy sub jec t and pat i ent
endophenotypes because baseline gamma alterations remain
difficult to detect in patients.

Understanding the synergistic analysis of baseline and evoked
gamma remains a particularly challenging area of EEG research,
as some evidence suggests that interpretation of these results may
not be as straightforward as originally assumed. Grent-'t-Jong,
T., et al., for example, demonstrated that a higher dose of S-
ketamine (10 mg, bolus injection) also enhanced task-related
gamma power in healthy subjects, while ketamine significantly
increased PANSS scores (49). This suggests a dissociation of
gamma power abnormalities observed during acute NMDA
receptor hypofunction and in schizophrenia. The dissociation
of evoked gamma power at a higher dose of NMDA receptor
antagonist in these conditions suggests the need to carefully
revisit the NMDAR hypothesis, particularly for acute (e.g.,
ketamine-induced) NMDAR hypofunction, to create a more
holistic understanding of the molecular, cellular, and system-
level interplay. Similarly, the true meaning of baseline gamma
power modulation needs to be more fully explored in
future studies.
June 2020 | Volume 11 | Article 537

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Honda et al. Gamma Oscillation Enhancing Clinical Trials
FUTURE DIRECTIONS: PATIENT
STRATIFICATION AND OTHER
BIOMARKERS

The repeated failures of investigational new drugs for
neuropsychiatric disorders strongly suggest the need for new
drug discovery approaches that target specific pathophysiological
alterations shared in pre-stratified patient populations (50).
Accumulated evidence demonstrates the excellent test-retest
reliability of EEG measures (51–53), indicating the use of this
method for identifying patient subpopulations that contain
unique sensory processing deficits. A lack of patient
stratification could affect the response rate among patients,
reducing the overall efficacy and possibly contributing to a new
drug's failure to achieve primary endpoints. Indeed, some
research indicates that dopaminergic drugs show the bimodal
response occurs based, at least in part, on the difference in the
individual response before administration of the drug (54, 55).

The critical need for new and more useful biomarkers in
neuropsychiatric disorders has also been well documented in the
literature (56). The use of evoked gamma for biomarker-based
stratification may be useful for a plethora of other neuropsychiatric
disorders that display altered evoked gamma. This list includes
schizophrenia, bipolar disorder (8, 12, 57–60), autism (61, 62),
22q11.2 deletion (63), and fragile X syndrome (11). For these
diseases, incorporation of a prospective screen would aid in the
selection of a more appropriate trial population and, in the case of
ineffective compounds, possibly reveal a candidate's lack of efficacy
at an earlier stage. It should be noted that the role(s) of gamma
power abnormalities in the pathophysiology of each
neuropsychiatric disorders needs to be carefully assessed.

Although the industry is still facing challenges regarding
identification of potential responders in interventional trials, recent
results may shed some light on new avenues of investigation into
psychometric measures that identify biologically distinct
subpopulations. For example, Swerdlow and Light propose
treatment-sensitive individuals (i.e., responder) for cognitive training
could be detected by the response of early auditory information
processing (EAIP) after a single challenge dose of a pharmacologic
agent (46, 64). Evoked gamma power and other measures of EIAP
were enhanced with acute challenge of memantine, which is
considered as retained plasticity in response to interventions. In a
similar vein, Javitt et al. showed that there are (at least) two biologically
distinct subgroups in schizophrenia that can be identified using tests
for tone-matching and mismatch negativity (65, 66). Further, Light
et al. proposed pre-dose mismatch negativity could predict response
some interventions (51, 67). One recent effort to model EAIP using
large patient datasets estimated that a microvolt change in the
amplitude of mismatch negativity and P3a would produce
substantial impact on improvement of cognition and psychosocial
functioning, while impaired EAIP predicts poor functional outcomes
resulting from impaired cognition and increased negative symptoms
(68, 69). These findings support the rationale to identify the relevant
patient subpopulations with EEG measures.

An obvious avenue to advancing patient stratification is to pair
these emerging psychometric features with EEG measures to
Frontiers in Psychiatry | www.frontiersin.org 4
identify more biologically distinct subpopulations than previously
thought possible. This work has been the focus of working groups
like the Bipolar-Schizophrenia Network on Intermediate
Phenotypes (B-SNIP), which focuses on studying the genetic,
cognitive markers of these disorders. One of the resulting
improvements in this area has been the selective pairing of
investigational methods to create more precise diagnoses and
improved detection (70). The earliest forms of this sort of paired
analysis have already been applied to psychosis patients, and this
approach, in somewhat different forms, could well be applied to
other neuropsychiatric disorders.

Clinically, the lack of biomarker-based stratification and the
failure to evaluate a compound's effect on appropriate
biomarkers could create blind spots within clinical trials for
this class of diseases. Based on the current understanding of these
diseases, it is possible to argue that the selective, synergistic
incorporation of gamma oscillation and other emerging
biomarkers will result in improved trial design and revealed
critical flaws (e.g., lack of efficacy) at an earlier stage.
CONCLUSIONS

Changes within the gamma band have been proven to be durable
biomarkers for neuropsychiatric patient populations, ones that offer
commentary on both disease state and response to trial
medications. While baseline gamma is an excellent tool for
measuring the dynamic changes within target cell populations
that occur in response to investigational drugs, the approach has
specific limitations in reflecting the disease state and providing good
predictive validity when it comes to identifying and testing patient
populations. In contrast, evoked gamma measurements offer a
potentially better patient stratification biomarker and measure of
acute responsiveness to an investigational new drug, but are more
difficult to employ in more complex time-course experiments.
Given these strengths and limitations, the obvious course of
action is the strategic pairing of these approaches to maximize
their usefulness in new drug validation and clinical trial design.

The dual use of both baseline and evoked gammameasurement
presents additional complexities, primarily related to the difficulty
of incorporating EEGmeasurements in a clinical context. Perhaps,
the largest of these challenges is the standardization of methods.
Biomarker measurements require well-developed protocols, and
these must match precisely in order to create translatable results
between different clinical groups. This is doubly important for
distributed clinical trials with multiple sites, as well as creating
study-to-study consistency. Additionally, the use of evoked
gamma measurement in clinical applications must be
undertaken strategically, particularly for longer (time course)
experiments conducted on neuropsychiatric patients that may be
prone to seizures and/or have difficulty remaining still for
extended testing. Further efforts might be needed to optimize
protocols to fit the demands of clinical trials.

In adapting these lessons for use in clinical trial design, several
conclusions become apparent. Baseline gamma would proceed
concomitantly with evoked gamma measurement in disease
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populations. This would inform decisions on trial design (dosing,
etc.), while simultaneously stratifying a population of prospective
patients for proof of concept study (Figure 1). After confirming
the evoked gamma response in this stratified patient population,
it is possible to proceed to phase two trials with increased
confidence in both the design of the trial and the prospect of a
more receptive patient population. As the use of baseline and
evoked gamma measurements mature, we anticipate they will
provide a pillar upon which to build robust translational tools and
develop ever more reliable clinical protocols.
Frontiers in Psychiatry | www.frontiersin.org 5
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