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Abstract Recent studies examine the behavioral capacities of rats and mice with and without

visual input, and the neuronal mechanisms underlying such capacities. These animals are assumed

to be functionally blind under red light, an assumption that might originate in the fact that they are

dichromats who possess ultraviolet and green cones, but not red cones. But the inability to see red

as a color does not necessarily rule out form vision based on red light absorption. We measured

Long-Evans rats’ capacity for visual form discrimination under red light of various wavelength

bands. Upon viewing a black and white grating, they had to distinguish between two categories of

orientation: horizontal and vertical. Psychometric curves plotting judged orientation versus angle

demonstrate the conserved visual capacity of rats under red light. Investigations aiming to explore

rodent physiological and behavioral functions in the absence of visual input should not assume red-

light blindness.

Introduction
Rats, like many rodents, are largely crepuscular and, even during daylight, are usually to be found in

poorly illuminated environments (Macdonald et al., 1994). Their retina is rod dominated, with cones

making up as little as 1% of photoreceptors (Jacobs et al., 2001; La Vail, 1976). Rods are about

100 times more sensitive (Yau, 1994) and allow vision under low-light conditions, with a peak spec-

tral absorption of rhodopsin in rods in rats and mice at 498 nm (Bridges, 1959; Govardovskii et al.,

2000; Lyubarsky et al., 2004). Although rats are not color-blind (Jacobs et al., 2001; Lemmon and

Anderson, 1979; Muenzinger and Reynolds, 1936; Munn and Collins, 1936; Walton and Borne-

meier, 1938), they perform poorly in discriminating between nearby wavelengths, compared to

humans (Walton, 1933). Rats’ color sensitivity is based on two sets of cones with peak sensitivities in

the range of ultraviolet (UV cones; peak absorption at 358–359 nm) and green (M cones; peak

absorption at 509–510 nm) (Deegan and Jacobs, 1993; Jacobs et al., 1991; Szél and Röhlich,

1992). Recently, electroretinogram (ERG) responses of the photopic spectral sensitivity curves of

photoreceptors of rats and mice were measured throughout the UV–visible spectrum (300–700 nm)

(Rocha et al., 2016). These measurements identified two sensitivity peaks in Wistar rats: 362 and

502 nm; no significant response to long wavelength light (above 620 nm) was detected. This study

reinforced the already existing notion that red light is experienced as a total absence of usable light.

In contrast, another study (Niklaus et al., 2020) showed significant scotopic and photopic ERG

responses to red light even at low intensities. In the present study, we challenge the notion of form

vision blindness under red light and find, contrary to expectation, good behavioral performance.
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Results
Rats were required to categorize the orientation of a solid disk-like object with a circular boundary

and raised parallel bars, alternately colored white and black, thus forming a square-wave grating

(Figure 1A). Orientations in the range of 0˚– 45˚ were rewarded as horizontal and orientations in the

range of 45˚– 90˚ as vertical (Figure 1B). Figure 1C illustrates the sequence of events in the behav-

ioral task. Each trial started with the rat’s head poke, which triggered the opening of an opaque

gate, followed by illumination with light sources of various wavelengths. A transparent panel in front

of the object prevented the rat from generating tactile cues. After observing the object, the rat

turned its head toward one spout (L or R) and licked. The boundary angle, 45˚, was rewarded ran-

domly on left or right. Illumination was by a white LED array or else by monochrome LEDs with peak

intensities at 626 nm, 652 nm, 729 nm, 854 nm, and 930 nm as measured by spectrometer and veri-

fied by the manufacturer’s datasheet (Figure 1D; see Materials and methods). Half widths were

12.1–49.1 nm.

To quantify rats’ performance, we used a cumulative Gaussian function to fit psychometric curves

to the data of each rat (see Materials and methods). Figure 1E reveals that all rats (N = 4, pale

curves; average curve in dark blue) performed well under white LED illumination.

Sessions with white light were interspersed with sessions illuminated by various narrow-band

monochrome LEDs in the range of red, far-red, and infrared (Figure 1D). It is important to perform

behavioral testing under illumination with narrow-band monochromatic light sources to eliminate the

possibility of off-peak illumination through the tail of a wide power spectral distribution. Figure 2A,

B shows that dark-adapted rats performed the visual categorization task under 626 nm and 652 nm

LEDs (perceived as red by humans) with accuracy equivalent to that under white light, refuting the

common belief of functional blindness under red light. Rats performed well even under peak 729 nm

(Figure 2C), perceived as far-red by humans, though clearly diminished with respect to white. They

performed poorly under infrared illumination, comprising 854 nm and 930 nm light (Figure 2D,E).

The performance (N=four rats) under different illumination wavelengths is summarized by the

cumulative proportion of trials categorized correctly across all orientations (Figure 2F). Average per-

formance was 87 ± 2% correct under white light (confidence interval is SEM across rats). Average

performance was 84 ± 3% under 626 nm illumination (p=0.158 compared to white light; bootstrap

tests illustrated in Figure 2—figure supplement 1), 86 ± 2% under 652 nm (p=0.419 compared to

white light), 72 ± 3% under 729 nm (p=0.00 compared to white light), 53 ± 2% under 854 nm

(p=0.257 compared to chance), and 50 ± 1% under 930 nm average performance (p=0.316 com-

pared to chance).

Visual acuity under the red LEDs (626 nm and 652 nm) cannot be explained by unintended ‘leak-

age’ toward shorter wavelengths. Figure 1D shows that the infrared LEDs (854 nm and 930 nm)

emitted ~2–50 times higher intensity at shorter wavelength than did the red LEDs, yet performance

under illumination by IR LEDs was at chance. Therefore, performance under red LEDs is better

explained by positing that enough red light was absorbed to guide the discrimination.

Discussion
Rodent behavioral experiments done under red light are believed to place the animal in dark condi-

tions while allowing the experimenter to observe the preparation directly or by video recording

(Celikel and Sakmann, 2007; Cloke et al., 2015; Diamond et al., 1999; Englund et al., 2020;

van Goethem et al., 2012; Harris and Diamond, 2000; Harris et al., 1999; Jacklin et al., 2016;

Nikbakht et al., 2012; Pacchiarini et al., 2020; Reid et al., 2014; Salaberry et al., 2017;

Sieben et al., 2015; Vasconcelos et al., 2011; Winters and Reid, 2010). The relevant literature

includes place-cell studies of rats navigating under dim red light, taken as the absence of visual input

(O’Keefe, 1976; Save et al., 2000; Zhang and Manahan-Vaughan, 2015; Zhang et al., 2014). In a

developmental study of the visual cortex, mice were dark-reared but were allowed very brief daily

exposure to red light (Kowalewski et al., 2021). Furthermore, red illumination is often used in

reverse light cycle conditions in animal husbandry settings with the assumption that it will not affect

rodent circadian rhythms (Emmer et al., 2018). In all of these cases, the animals may acquire more

visual input than previously believed.
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Figure 1. Orientation categorization task. (A) Discriminandum viewed at an oblique angle (top) and exactly from the front (bottom), the latter

approximating the perspective of the rat. (B) Schematic of the orientations of the stimuli and rule of the categorization task. 0˚–45˚ (red) rewarded as

‘horizontal’ and 45˚–90˚ (solid green) rewarded as ‘vertical.’. (C) Sequential steps in the behavioral task. Each trial started with a head poke that

interrupted a light beam and triggered the opening of an opaque gate, followed by visual access to the object. After probing the stimulus, the rat

turned its head toward one spout, in this illustration left for vertical and right for horizontal. See Figure 1—figure supplement 1 for the experimental

setup. (D) Irradiance for each LED, measured by a spectrometer at the stimulus delivery area. Equivalent photon count values are shown in Figure 1—

figure supplement 2. Integrating the power under the curves at wavelengths <580 nm reveals that the infrared LEDs emitted from 2 to 50 times higher

intensity as compared to red LEDs, in spite of the infrared LEDs being centered at longer wavelengths (infrared 854 nm and 930 nm LEDs emitted 1.95

and 0.48 mW/cm2, respectively, while red 626, 652, and 729 nm LEDs emitted 0.12, 0.28, and 0.04 mW/cm2, respectively). See Figure 1—figure

supplement 3 for normalized irradiance for each LED along with rat’s photopigment spectral sensitivity. (E) Pale curves give the performance of four

rats under white light. Dark data points and curves show the average over all rats. Error bars are 95% binomial confidence intervals. See Figure 1—

figure supplement 1A for the experimental setup.

Ó 2018, Nikbakht et al. Figure 1A-C has been reproduced from Figure 1 of Nikbakht et al., 2018, under the terms of the Creative Commons Attribu-

tion - NonCommercial - NoDerivs (CC BY-NC-ND 4.0) license.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Details of the experimental setup.

Figure supplement 2. Log-scaled irradiance for each LED, measured by a spectrometer at the stimulus delivery area in units of photons:�m�2:s�1:nm�1.

Figure supplement 3. Log-scaled normalized irradiance for each LED along with a template that approximates the photopigment spectral sensitivity of
rat’s rhodopsin as well as S-opsin, M-opsin (Stockman and Sharpe, 2000).
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Rodents lack red cones (Deegan and Jacobs, 1993; Jacobs et al., 1991; Szél and Röhlich,

1992), but from the inability to see red as a color, it does not necessarily follow that they cannot

absorb red light through their rod-dominated retina to support form vision. A recent study

(Niklaus et al., 2020) examined the retinal responses mediated by rods and cones of pigmented

(Brown Norway) and albino (Wistar) rats in response to monochromatic far-red light of 656 ± 10 nm

in both photopic (light-adapted) and scotopic (dark-adapted) settings. Both rat strains showed sig-

nificant scotopic and photopic ERG responses to red light even at low intensities. These results

hinted that even far-red light may provide effective illumination for rats. However, whether the pho-

toreceptor activation by red light can lead to functionally meaningful signals has not yet been estab-

lished. Excitation of retinal receptors by red light does not, by itself, indicate behavioral availability

of the signal. For instance, red light might act to entrain circadian rhythms, unconscious to the ani-

mal. The sensitivity of mice is emphasized by the finding that red illumination delivered into the brain

in an optogenetic protocol evoked a behavioral artifact in mice performing a visually guided discrim-

ination task (Danskin et al., 2015).

0 45 90

angle (deg)

0

0.2

0.4

0.6

0.8

1

p
ro

p
o

rt
io

n
 c

a
lle

d
 v

e
rt

ic
a

l 626 nm

0 45 90

angle (deg)

0

0.2

0.4

0.6

0.8

1

p
ro

p
o

rt
io

n
 c

a
lle

d
 v

e
rt

ic
a

l 652 nm

0 45 90

angle (deg)

0

0.2

0.4

0.6

0.8

1

p
ro

p
o

rt
io

n
 c

a
lle

d
 v

e
rt

ic
a

l 729 nm

0 45 90

angle (deg)

0

0.2

0.4

0.6

0.8

1

p
ro

p
o

rt
io

n
 c

a
lle

d
 v

e
rt

ic
a

l 854 nm

0 45 90

angle (deg)

0

0.2

0.4

0.6

0.8

1

p
ro

p
o

rt
io

n
 c

a
lle

d
 v

e
rt

ic
a

l 930 nm

62
6 

nm

65
2 

nm

72
9 

nm

85
4 

nm

93
0 

nm

w
hi
te

 L
E
D

0.4

0.5

0.6

0.7

0.8

0.9

1

c
u

m
u

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

rat 1
rat 2
rat 3
rat 4
average

A B C

D E F

Figure 2. Performance under far-red and infrared illumination. (A–E) Psychometric curves obtained under illumination with monochrome LEDs in the

range of far-red to infrared with peak wavelengths at 626 nm, 652 nm, 729 nm, 854 nm and 930 nm, respectively. Pale curves depict the performance of

four rats. Dark data points and lines or curves show the average over all rats. Error bars are 95% binomial confidence intervals. (F) Summary cumulative

performance (proportion correct) for all four rats (colored) and the average rat (black) in each illumination condition. Data from all angles (except 45˚,

uninformative about discriminative capacity) are pooled. See Figure 2—figure supplement 1 for tests of significance.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Details of the statistical test of significance.

Figure supplement 2. An example sequence of sessions.
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Although our study does not include direct measures of photoreceptor sensitivity, the results indi-

cate that mechanisms must exist for converting miniscule quantities of receptor activation into mean-

ingful signals, perhaps through some cross-retina population code. It is interesting to note the

possibility that photoreceptors could respond to longer wavelengths through a nonlinear optical

process including two-photon activation of photopigments (Palczewska et al., 2014; Vinberg et al.,

2019), although the emission intensities used in our work are many orders of magnitude lower than

those used in two-photon studies (Palczewska et al., 2014).

In the present work, Long-Evans rats demonstrated substantial visual form capacity under illumi-

nation by LEDs emitting long-wavelength red and far-red light – LEDs that are low cost, easy to use,

and thus common in the laboratory. Object discrimination began to degrade when illumination

wavelength increased from 652 to 729 nm and was almost nil at 854 nm. The performance curves

suggest the optimal conditions for vision-excluded behavioral studies: illumination at 850 nm did not

support visual form capacity, yet remains within the sensitivity range of inexpensive silicone detec-

tors (CMOS and CCDs). Thus, behaviors may be documented by video while the animal performs

without visual cues.

Rats and mice are the most frequently used laboratory mammals, ideal for research on spatial

navigation (Frank et al., 2000; MacDonald et al., 2011; Moser et al., 2017; O’keefe and Nadel,

1978; Pastalkova et al., 2008; Wood et al., 2000) and the processing of tactile (Diamond et al.,

2008; Fassihi et al., 2017; Zuo and Diamond, 2019) and olfactory (Chae et al., 2019;

Koldaeva et al., 2019; Uchida and Mainen, 2003; Uchida et al., 2006) information. Neuroscientists

have not traditionally attributed to rodents the wide range of visual perceptual functions characteris-

tic of primates. However, there is growing interest in the use of rodents for the study of vision, alone

or combined with other modalities (Gharaei et al., 2018; Nikbakht et al., 2018;

Nikbakht Nasrabadi, 2015; Sieben et al., 2015; Zoccolan, 2015). Rats under broad-wavelength

conditions spontaneously recognize an object even when views differ by angle, size, and position

Zoccolan, 2015; such generalization is a hallmark of authentic visual perception and was once

believed to belong only to primates. Importantly, they achieve high-level sensory-perceptual cogni-

tion through the workings of neuronal circuits that are accessible (Crochet et al., 2019;

Matteucci and Zoccolan, 2020; Matteucci et al., 2019; Steinmetz et al., 2019; Tafazoli et al.,

2017). The present study extends the range of visual perceptual functions for which rats can serve as

models, characterizing their performance in judging object orientation and indicating the longest

illumination wavelengths at which this capacity remains intact. A complete understanding of the

visual processing of these animals is important not only in the design and control of the behavioral

and physiological experiments but also to ensure optimal environmental lighting conditions for their

well-being in laboratory settings.

Materials and methods

Experimental subject details
Four male Long–Evans rats (Charles River Laboratories, Calco, Italy) were used. They were caged in

pairs and maintained on a 12/12 hr light/dark cycle; experiments were conducted during the light

phase. Upon arrival, they were 8 weeks old, weighing approximately 250 g, and typically grew to

over 600 g over the course of the study. They had free access to food in the cage. To promote moti-

vation in the behavioral task, rats were water-deprived on days of training/testing. During each ses-

sion, they received 17–22 mL of pear juice diluted in water (one unit juice: four units water) as

reward. After the session, they were given access to water ad libitum for 1 hr, though they were

rarely thirsty and then they were placed for several hours in a large, multistory-enriched environment

to interact with other rats. Animals were examined weekly by a veterinarian. Protocols conformed to

international norms and were approved by the Ethics Committee of SISSA and by the Italian Health

Ministry (license numbers 569/2015-PR and 570/2015-PR).

Behavioral method details
Apparatus
The main chamber of the apparatus, custom-built in opaque white Plexiglas, measured 25 � 25 � 37

(H � W � L, cm) (Figure 1—figure supplement 1). The rat started a trial by interrupting an infrared
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beam detected by a phototransistor (Figure 1C). Beam interruption triggered fast opening of an

opaque panel (through a rotational motion of 40˚ in 75 ms), actuated by a stepper motor, uncovering

a circular hole (diameter 5 cm) in the front wall through which the rat could extend its head to see

the object. The stimulus was 3 cm behind the opaque panel (further details below), and the reward

spouts were 2 cm lateral to the edge of the stimulus. A transparent panel prevented direct touch.

The apparatus was in a Faraday cage that, with the door closed, provided acoustic, visual, and

electromagnetic isolation. An array of 12 infrared emitters (l = 930 nm, OSRAM Opto Semiconduc-

tors GmbH, Germany) illuminated the stimulus port to permit the investigator to monitor behavior

and to execute video recording. Such illumination did not provide visual cues for the rat (see

Results). For visual testing, different light sources were used to illuminate the stimulus: a pair of

six white LED arrays or various high-power monochrome LED arrays (Roithner LaserTechnik, GmbH)

with peak intensities at 626 nm (LED620-66-60), 652 nm (LED660-66-60), 729 nm (LED735-66-60),

854 nm (LED850-66-60), and 930 nm (LED940-66-60) (see Figure 1D for Gaussian fits to the mea-

sured spectrum in ambient temperature). The power spectral distributions were measured with a cal-

ibrated spectrometer and the associated software (Model: FLAME-S-XR1-ES, OceanOptics,

Rochester, NY) via a visible-NIR fiber (core diameter 200 mm) attached to a cosine corrector. The

cosine corrector acts as an optical diffuser that couples to the optical fiber and spectrometer to col-

lect signals from 180˚ field of view. The spectrometer was calibrated using a Deuterium-Halogen cali-

bration light source unit (DH-3 plus OceanOptics, Rochester, NY). This light source provides known

absolute intensity values at several wavelengths, expressed in mW/cm2/nm. The spectral intensities

emitted by this source are calibrated according to the intensity standard of the National Institute of

Standards and Technology (NIST). The spectrometer calibration procedure accounts for the different

sensitivities of the spectrometer across different wavelengths. The spectrometer we used has a soft-

ware suite that reports the values measured from the calibrated spectrometer as spectral irradiance

(the power received by a surface per unit area of the measurement probe per wavelength [in units of

mW/cm2/nm]).

Two infrared-sensitive video systems (Point Grey Flea, Edmund Optics, Barrington, NJ) registered

the rat’s actions. The first camera, equipped with a macro lens (Fujinon TV HF25HA-1B Lens, Fujifilm,

Tokyo) mounted 25 cm above the stimulus delivery area (distance with respect to the center of stim-

ulus), monitored the rat’s interaction with the object. In some sessions, this camera was set to 250 f/

s to monitor head, snout, and whisker position and movement during behavior. The second camera

provided a wide-angle view (Fujinon HF9HA-1B Lens, Fujifilm, Tokyo) and monitored the entire

setup, illuminated with adjustable infrared LEDs, at 30 f/s.

Reward spouts included custom-made infrared diode sensors interrupted by the tongue. Only the

licking signal from the correct spout triggered the pump motor (NE-500 programmable OEM; New

Era Pump Systems, mounted on a vibration-cancellation pedestal) to extrude the reward, 0.05 mL

per trial of diluted pear juice. Licking marked the end of the trial, accompanied by the closure of the

opaque front panel. Before the next trial began, the motor on which the stimulus was mounted

rotated to generate the next orientation.

Custom-made software was developed using LabVIEW (National Instruments, Austin, TX). An

AVR32 board (National Instruments) and multiple Arduino Shields (National Instruments) acquired all

sensor signals and controlled the motors, LEDs, and the reward syringe pumps. All the sensors,

actuators (including motors and pumps), and lights were interfaced with the computer program

allowing full control over a wide range of parameters governing the flow of the training and testing.

Although fully automatic, the software allowed the experimenter to modify all the parameters of the

task and control the lights, sensors, and motors online as needed.

Visual stimulus presentation
The stimulus was a black and white square-wave grating within a circular 9.8 cm diameter circumfer-

ence, built in-house by a 3D printer (3D Touch, BFB Technologies, Figure 1A). It was mounted on a

stepper motor and rotated to generate the trial’s intended orientation (Figure 1B). The stimulus

stepper motor was controlled through a feedback system with a digital step counter to maintain the

exact desired orientation. In the study that originally explored orientation judgment

(Nikbakht et al., 2018), tactile exploration of the object was allowed in some trials, but the tactile

condition is not considered in the present work; only visual, touch-free data are included. Within
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behavioral testing sessions, each stimulus orientation was sampled from a uniform distribution in 5˚

steps between �45˚ and 135˚ and presented in a semi-random fashion (sampling without replace-

ment). For analysis, we binned the angles every 10˚. Visual acuity is measured in cycles per degree

(cpd), an assessment of the number of lines that can be seen as distinct within a degree of the visual

field:

Acuity¼ 1

2� tan�1 h
d

� �cpd

where h is the width of each line in the stimulus and d is the distance from the eye. Considering the

3 cm distance behind the opaque panel (Figure 1—figure supplement 1), at the moment of panel

opening, each cycle of the 14 cycles would occupy 2tan� 1 3:5=30ð Þ ¼ 13:31� of visual angle, for a total

stimulus coverage of about 117˚. The spatial frequency of the gratings would be

1= 2tan� 1 3:5=30ð Þð Þ ¼ 0:075 cycles per degree of visual angle. As the normal visual acuity of Long–

Evans rats has been estimated as ~1 cpd (Prusky et al., 2002), the bars would be expected to be

resolvable. Rats also have a large depth of focus, from 7 cm to infinity (Powers and Green, 1978).

The width of the binocular field directly in front of the rat’s nose, generally considered the animal’s

binocular viewing area (Mei et al., 2012), ranges from approximately 40˚–110˚, depending on head

pitch (Wallace et al., 2013). The 117˚ stimulus should thus completely cover the rat’s binocular visual

field.

When all illumination sources were turned off, the ambient light magnitude was 0 cd/mm2 (Konica

Minolta LS-100 luminance meter, Tokyo).

Quantification of LED emission characteristics
Following the procedure of Franke et al., 2019, for each LED, we computed the following measure-

ments, which we have included in Supplementary table 2.

Using the spectrophotometer measurements (P lð Þ �W :cm�2:nm�1½ �), we can calculate the spectral

power density for each LED:

ILED lð Þ ¼ 10
�2 �

Z lmax

lmin

P lð Þd lð Þ W :m�2:nm�1
� �

The energy of a single photon at wavelength l is Qp lð Þ ¼ h � c=l m2:kg:s�1½ �, where

c¼ 299;792;458m:s�1 is the speed of light, and h¼ 6:62607004� 10
�34 J:s½ � is Planck’s constant.

Then we computed the spectral photon count for each LED (SPC lð Þ photons:�m�2:s�1:nm�1½ �):

SPC lð Þ ¼ ILED lð Þ
Qp lð Þ ¼ 10

�12= h� cð Þ� ILED lð Þ�l photons:�m�2:s�1:nm�1
� �

Given the d¼ 50cm distance between the LEDs and the stimulus delivery area, the rat’s dilated

pupil area of Apupil ¼ 0:0314cm2, the rat’s retinal surface area of Aretina ¼ 0:8cm2, and the rat’s rod outer

segment area of Arod ¼ 4� 10
�8cm2 (Mayhew and Astle, 1997), we approximated the photon flux

density (C) of an isotropic LED radiation pattern at each photoreceptor as:

C¼ 2:Apupil:Arod

4pd2:Aretina

Z lmax

lmin

SPC lð Þd lð Þ photons:�m�2:s�1
� �

Then, the photon flux per photoreceptor is:

Cflux ¼ 10
8:C:Arod photons:s�1

� �

Behavioral task and training
Duration of training to reach stable performance was typically 4–6 weeks, with one session per day,

and varied according to individual differences in rate of learning. The sequence of sessions for each

rat was randomized, with each day’s session illuminated by either red, infrared, or white LEDs, with

equal likelihood. The standard training was done with stimulus illumination by white LEDs. The train-

ing protocol proceeded across a sequence of stages given in Nikbakht et al., 2018. Exclusion of

unintended stimulus cues (olfaction, rotating motor noise) was controlled as given in
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Nikbakht et al., 2018. Rats were dark-adapted in a light-free environment for 20–30 min prior to

each session.

Quantification and statistical analysis
Analysis of behavioral data
We analyzed the behavioral data in MATLAB (MathWorks, Natick, MA) and LabVIEW. To quantify a

single rat’s performance, we fit psychometric curves to its choice data. For a given orientation, we

calculated the proportion of trials categorized as vertical. Ideally, rats would categorize all trials with

angle greater than 45˚ as vertical and all trials with angle less than 45˚ as horizontal. For 45˚ trials,

choices should be evenly distributed between vertical and horizontal. However, task difficulty grows

in the vicinity of 45˚, such that real performance is better described by a sigmoid function with an

inflection point at the point of subjective equality (PSE), the orientation at which subjects report the

stimulus with equal likelihood as horizontal or vertical. In unbiased rats, the PSE should be at 45˚. We

generated psychometric functions using a cumulative Gaussian function with the general form given

in the equation below based on (Wichmann and Hill, 2001). The parameter estimation was then per-

formed in MATLAB using maximum-likelihood estimation:

 x;�;s;g;lð Þ ¼ gþ 1�g�lð ÞF x;�;sð Þ:

The two-parameter function, F x;�;sð Þ, is defined by a cumulative Gaussian distribution, as

follows:

F x;�;sð Þ ¼ 1

2
1þ erf

x��
s

ffiffiffi

2
p

� �� �

where x is the stimulus orientation, g is the lower bound of the function  , and l is the lapse rate.

Often, g and l are considered to arise from stimulus-independent mechanisms of guessing and laps-

ing. � is the mean of the probability distribution that determines the displacement along the

abscissa of the psychometric function – a reflection of the subject’s bias – and s is the standard devi-

ation of the cumulative Gaussian distribution. s determines the slope of the psychometric function, a

common measure of acuity.

Where fitting with a sigmoid was not appropriate (Figure 2D,E), data were fit with the

line y ¼ axþ y0, where x is the stimulus orientation, a is the slope, and y0 is the y-intercept.

Test of significance for the fitted psychometric curves
Errors around the performance value for each orientation and modality condition were expressed as

a 95% binomial proportion confidence interval computed by approximating the distribution of errors

about a binomially distributed observation, p, with a normal distribution:

p̂� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
p̂ 1� p̂ð Þ

r

where p is the proportion of correct trials (Bernoulli) and n is the number of trials.

For statistical tests of significance, we performed a non-parametric test based on bootstrapping,

as follows. We computed a distribution of the performance values from the fitted psychometric func-

tions based on 1000 resamples of the behavioral data. We then performed pairwise comparisons

between all the performance values generated via bootstrapping from fitted psychometric functions

of each experimental condition, calculated the overlap between the distributions and computed the

p-values.
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