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Trends of pH decrease in the 
Mediterranean Sea through high 
frequency observational data: 
indication of ocean acidification in 
the basin
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A significant fraction of anthropogenic carbon dioxide (CO2) released to the atmosphere is absorbed 
by the oceans, leading to a range of chemical changes and causing ocean acidification (OA). 
Assessing the impact of OA on marine ecosystems requires the accurate detection of the rate of 
seawater pH change. This work reports the results of nearly 3 years of continuous pH measurements 
in the Mediterranean Sea at the Strait of Gibraltar GIFT time series station. We document a 
remarkable decreasing annual trend of −0.0044 ± 0.00006 in the Mediterranean pH, which can be 
interpreted as an indicator of acidification in the basin based on high frequency records. Modeling pH 
data of the Mediterranean outflow allowed to discriminate between the pH values of its two main 
constituent water masses, the Levantine Intermediate Water (LIW) and the Western Mediterranean 
Deep Water (WMDW). Both water masses also exhibited a decline in pH with time, particularly the 
WMDW, which can be related to their different biogeochemical nature and processes occurring during 
transit time from formation sites to the Strait of Gibraltar.

CO2 emissions from fossil fuels burning and land use change since the industrial revolution have caused 
a considerable increase in atmospheric CO2 concentrations1. Recent investigations have estimated that 
cumulative emissions of CO2 have reached in the period from 1870 to 2013 about 535 ±  55 GtC2. 
However, a significant CO2 amount has been captured from the atmosphere by natural sinks, such as 
the terrestrial biosphere and the ocean. In particular, the global oceans have absorbed about 30% of the 
anthropogenic carbon emissions over the past 200 years3.

The withdrawal of CO2 by the oceans has, however, drastic consequences for the marine environment, 
as it originates a rise in average surface ocean concentration of H+ that leads to a pH decrease in seawater 
and a range of chemical changes known collectively as “the other CO2 problem” or the ocean acidifica-
tion (OA) phenomenon4,5. The impact of OA on marine biogeochemical cycles and biota has been well 
documented by laboratory studies and already observed to occur in certain ocean areas6–9. It has been 
suggested that the Mediterranean Sea (MS) represents one of the world’s most sensitive ocean regions to 
increasing atmospheric CO2 and the subsequent OA10,11. Nevertheless, contradicting observations of pH 
changes with time have been reported in the basin. A recent study affirms that the MS is already acidified, 
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although distinct OA rates are provided depending on the degree of anthropogenic carbon accumulation 
by a particular sub-basin, with regional pH decreases oscillating between − 0.055 to − 0.156 pH units 
with respect to the preindustrial levels12. On the other hand, another work points out to pH reductions 
between 0.005 to 0.06 pH units due to the anthropogenic carbon storage in the basin during the same 
period13. Moreover, it has been proposed that the pH decline would be amplified in the MS due to its 
higher capacity for CO2 absorption in relation to open ocean regions14,15 and the relatively short venti-
lation times of its water masses14, statements that were challenged recently by a modelling approach13 
which indicates that the average anthropogenic change in surface pH does not differ significantly from 
the global-ocean average.

Considerable efforts have been made over the last decade to characterize the carbonate system in 
Mediterranean water masses16–18, to explore how much anthropogenic CO2 has been taken up by this 
semi-enclosed sea and to assess the corresponding pH diminution13,14,19,20. Most of these studies rely 
on discrete data sets that extend over a specific period of time or cover a particular Mediterranean 
sub-region. Thus, sometimes, these studies lead to discrepant conclusions when comparisons between 
data acquired in different periods, using distinct techniques and/or in distant locations are made.

The assessment of the marine ecosystems responses to the oceanic CO2 uptake requires then sustained 
observations that provide the needed high frequency data about changes in ocean chemistry. At present, 
this type of measurements is being collected in a few ocean time-series21. The continuous monitoring 
of the carbon system parameters (and other tracers for hydrography and biochemistry) in these key 
sites have supplied relevant information on the ocean CO2 sink and the derived pH changes in different 
regions, confirming a general OA trend over the past two decades.

Sustained time-series observations also started in the Strait of Gibraltar (SG) a decade ago through 
the establishment of the GIFT (Gibraltar Fixed Time Series) observatory, since this region represents 
a privileged site to observe the evolution of the Mediterranean waters over time. This narrow channel 
(14 km wide in its narrowest section) is the only connection of the MS with the North Atlantic, thereby 
playing a major role in the global circulation and biogeochemistry of the basin22,23.

The circulation pattern in the SG has been traditionally described as a two-layer system, with surface 
Atlantic water (AW) flowing eastwards to the MS and the Mediterranean Outflow Water (MOW) moving 
westward to the Atlantic Ocean underneath. The AW enters the MS and flows clockwise in the Alboran 
Sea (AS, Fig. S1). Subsequent surface circulation patterns at the basin level are influenced by deep and 
intermediate water formation driven by strong winds, which is in turn affected and amplified by topog-
raphy. Deep and intermediate waters are formed in four major areas: the Levantine Basin (LB, Fig. S1), 
the source of the Levantine Intermediate Water (LIW); the Gulf of Lions (GL, Fig. S1) where the Western 
Mediterranean Deep Water (WMDW) is formed; and two adjacent regions, the Adriatic and the Aegean 
Seas (AdS, AeS, respectively in Fig. S1), which together merge to form the Eastern Mediterranean Deep 
Water (EMDW). The MOW that leaves the basin through the Strait of Gibraltar is then a mixture of these 
intermediate and deep waters, fundamentally LIW, which flows across the Strait of Sicily (SS, Fig. S1) into 
the Western Mediterranean basin, and the WMDW, which occupies the bottom layer24. The contribution 
of the AW that penetrates into the MS in surface to the final outflow exiting the basin is negligible25. By 
monitoring the hydrography and biogeochemistry of the MOW in the SG, the history and evolution of 
the main intermediate and deep Mediterranean water masses can be examined.

The exchange of waters of different ages carrying diverse concentrations of biogeochemical proper-
ties in the SG also influences global inventories in the two neighbour regions26,27. Regarding the marine 
carbon cycle, a net transport of anthropogenic carbon from the Atlantic towards the Mediterranean has 
been identified19,20,26, which has been indeed responsible for 25% of the basin-wide CO2 uptake over the 
last 200 years13.

In this work, we use pH measurements taken at the GIFT at a high sampling rate to assess temporal 
trends of pH change in Mediterranean waters. Data were obtained by autonomous sensors installed in a 
mooring line deployed at the Espartel Sill (ES, Fig. S1), which has been proven to be the most suitable 
section in the SG for monitoring the MOW20,24,25,27–29. Results presented here correspond to the first 
continuous pH records at a high temporal resolution registered in the channel from August 2012 to June 
2015. Our work provides the first rates of pH decrease in the MOW and in its forming water masses 
separately, which can be considered indicators of OA in the basin, confirming previous evidence12,13,15. 
In addition, by using a simple model, we present a tool for tracking pH and its temporal variability in 
the MS.

Results and Discussion
Water masses and pH.  From August 2012 to June 2015, the data collected at the mooring site fluc-
tuated within small ranges of values. Potential temperature (ϴ) oscillated from 13.01 to 13.63 °C, salinity 
from 38.01 to 38.48 and pH in total scale at a reference temperature of 25 °C (pHT25) from 7.8618 to 
7.9370 (Fig. 1). The pHT25 mean value was 7.8934 ±  0.0076 (n =  15937), which is in good agreement with 
the average pH in the MOW obtained from sustained spectrophotometric pHT25 measurements taken 
periodically within this layer at the GIFT stations from 2005 to 2014 (n =  102) and equivalent to 
7.8875 ±  0.0124.
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Water masses fractions variability in the MOW, discriminated with an OMP (Optimum MultiParameter) 
analysis30, (see SI text for more details), clearly describes seasonal and interannual fluctuations (Fig. 2). 
During the monitoring period, the LIW appeared to dominate the outflow most of the time, with a mean 
fraction of 0.55 ±  0.1 (Fig. 2a) whereas the WMDW showed a fraction of 0.36 ±  0.1 (Fig. 2b). Because 
of the sampling depth, the presence of the AW (Fig. 2c) was almost negligible within the MOW, with an 
average fraction of 0.09 ±  0.03, confirming historic observations25.

As previously described24,31, WMDW ventilation through the SG is modulated by several physical 
processes among which the WMDW formation events in the Gulf of Lions and the intensification of the 
Western Alboran Gyre (WAG, red arrow in Fig. S1) in the Alboran Sea are probably the most relevant. 
The WAG provides additional energy necessary to uplift deep waters from the Alboran Sea, facilitating 
the arrival of WMDW to the eastern entrance of the SG31. On the contrary, the absence or the relaxation 
of the WAG propitiates a major drainage of the LIW. Both processes can be traced in the monitoring 
station by gradual drops of potential temperature to values below 13.1°C24. During the monitoring 
period, such ϴ fall was clearly registered in January 2013 (Fig. 1a), which was accompanied by a con-
comitant rise in the WMDW fraction and a decrease in the LIW fraction (Fig. 2a,b). A similar pattern 
was also observed in February 2014 and February 2015 (Figs 1a and 2a,b). In a previous study that also 
used potential temperature as the parameter to trace water masses in the area24, WDMW formation 
events left a noticeable signature around March. Following the procedure described by these authors, the 
densest sample recorded in every semidiurnal tidal cycle was then extracted from our database to obtain 

Figure 1.  (a) Potential temperature (ϴ), (b) Salinity obtained with the CT and (c) SAMI-pH data from 
August 2012 to June 2015.

Figure 2.   Fractions of the water masses forming the MOW during the monitoring period, according to the 
OMP analysis (see text): (a) LIW, (b) WDMW and (c) AW.
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a new subseries with semidiurnal sampling interval (not shown). In this new subseries, the major ϴ 
diminutions were found to commence by the middle of January 2013 and beginning of February 2014, 
with a gradual drop from ~13.2°C to values below 13.05 °C taking place in around 9 days in year 2013 
and 13 days in 2014. The original temperature was recovered a month later approximately, a fact that 
may be partially attributed to the relaxation of the WAG.

Modelled data.  As shown in Fig. 3a, the pH data modelled by a MLR (MultiLinear Regression, see 
SI text) faithfully reproduced in situ values (averaged to 84 h for comparison), and discrepancies between 
observational data and modelled outputs were in the order of ± 0.005 pH units. Averaging such discrep-
ancies to a 6 h period (Fig. 3b), residuals followed the tidal cycle pattern, thereby confirming that tidal 
variability was excluded in our estimations. However, higher residuals could still be detected during some 
periods. For instance, a sharp decline was evident in June 2013 (Fig. 3b), when pH data were recalcu-
lated from AT and pCO2 measurements. This signal coincides with a rise in the pHT25 values (Fig.  1c) 
and it could be then attributed to the SAMI-CO2 instrument stabilization time. A second period of 
higher residual values was observed in October 2013 lasting until April 2014 (Fig.  3b), which may be 
attributable in this case to the change in the SAMI-pH sampling interval from hourly to bi-hourly. pCO2 
data measured uninterruptedly in the MOW from June 2013 to December 2014 by a SAMI-CO2 device 
were also modelled by the MLR (see Fig. S3), with very low residuals being obtained, which supports 
the model robustness.

As each water mass is characterized by a distinctive salinity and potential temperature, pH can also 
act as a tracer to define water masses. The OMP and MLR analysis allowed determining that LIW and 
WDMW in the SG were characterized by average pHT25 and standard error values of 7.8897 ±  0.0003 and 
7.9077 ±  0.0004, respectively (see Fig. 4). Those values faithfully correspond to recently reported meas-
ures18 equal to ~7.89 for the LIW in the SG and 7.9–7.91 for the WMDW in the Western Mediterranean 
basin. Differences in pH values betwen both water masses can be explained on the basis of the transit 
times from their respective formation sites to the SG; the LIW takes around 8 years to complete the 
distance from the Levantine basin (LB, Fig. S1) to the Strait of Sicile (SS, Fig. S1)32. An active remineral-
ization of organic matter can take place during such period, which implies the rise of dissolved inorganic 
carbon concentration, the decrease of dissolved oxygen and the consequent pH decrease16,18. In contrast, 
the WMDW takes roughly 1.8 years to travel from the Gulf of Lions to the Alboran Sea (GL and AS 
respectively in Fig. S1), a much shorter transit time33. Although the ventilation time of LIW and WMDW 
is an issue that has not been solved yet and there are still large discrepancies regarding the age of each 
water mass34–37, estimated ages are around 80–120 ±  20 yr and 20–40 ±  40 yr for the bottom waters of the 
eastern and western basins, respectively, when they arrive at the SG35. Therefore, considering the circula-
tion pattern in the MS38 and regardless of a particular transit time or age for each water mass, when they 
both arrive at the SG the WMDW is much younger than the LIW formed in the distant Levantine Basin 
(LB, Fig. S1). Accordingly, the LIW is more stable than the WMDW from a biogechemical point of view, 
as the former lost contact with the atmosphere a longer ago. Therefore, in the SG, the WMDW,which has 
been exposed to the atmosphere more recently, exhibits higher pH values than the eastern-originated 
LIW (Fig. 4). This is confirmed when the monthly variability of pH in both water masses is analysed (see 
Fig. S2). Although a little seasonality can be detected, over the summer months, the two water masses 
showed stable pH values whereas winter conditions resulted in the highest pH variability, which was 
especially remarkable in February. During this month, pH in the WMDW presented noticeable oscilla-
tions, ranging from 7.7789 to 8.0003 whereas the pH of the LIW varied slightly, with values changing 
from 7.8195 to 7.9634. This seasonal variability could be again attributed to the ventilation pattern of 
the WMDW. A previous work25 demostrated that a lag of few weeks can be found between the events of 
WMDW fomation in winter in the Gulf of Lions and the detection of cold pulses of old WMDW at the 

Figure 3.  (a) pHT25 obtained with the SAMI device averaged to 84 h (red line) and modelled pHT25 (black 
line), (b) Residuals between observed values and modelled outputs.
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monitoring site in Espartel Sill. Renovation of the old resident WMDW in the SG depends on the volume 
of water formed during winter by deep convection in the Gulf of Lions and the intensification of the 
WAG that subsequently uplifts the ancient WMDW at the SG. During our study period, the appearance 
of colder (and older) WDMW pulses in February 2013, 2014 and 2015 (Figs 1a and 2b) possibly resulted 
in the lowest pH values detected in the WMDW during the months of February (see Fig. S2b), as the 
older WMDW residing in the eastern side of the Strait will be characterized by lower pH values, due to 
the active remineralization processes occurring in the Alboran basin39.

Trends of pH decrease in Mediterranean waters.  The pH data series clearly depicted a negative 
trend (Fig. 1) although the data gap after the first period (April-June 2013) seems to visually break the 
tendency. From June 2013 onwards, the decreasing trend was even clearer. Taking into account the 

Figure 4.  Linear fitting of pH with time (see SI text) of the MOW and its forming water masses during the 
monitoring period: (a) MOW, (b) LIW and (c) WMDW. Blue and red lines represent the 95% confidence 
and prediction bands, respectively. Equations are shown in the SI text. Note the different scales for “y” axes 
in figures (a–c).
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whole period, a pH-time linear regression was calculated (see SI text for calculation details) and plotted 
in Fig. 4. The regression statistics were significant and resulted in a Δ pH of − 0.0044 units per year in 
the MOW. This rate of pH decline is of the same order of magnitude than acidification rates reported 
by sustained observations of different carbon system parameters collected in several oceanic seasurface 
time series21, although it is two or three fold higher than those (depending on the site). Nevertheless, 
it still falls within the range of pH change in Mediterranean deep waters estimated recently through a 
modelling approach (− 0.005 to − 0.06 pH units13).

The consistency of our pH decreasing pattern is supported by the complementary pCO2 measure-
ments taken in the SG at the same sampling frequency. When the Δ pCO2 in the MOW obtained during 
the monitoring period is calculated, an increase in pCO2 of 5.1 μ atm y−1 is obtained (see SI text and Fig. 
S4 for calculation details). This CO2 rise is coherent with (and matches) the rate of pH decline observed 
in the MOW.

Performing a separate analysis for each of the two main water masses forming the MOW, annual 
decline rates of − 0.0006 and − 0.0165 pH units per year are calculated for the LIW and WMDW, respec-
tively (Fig. 4b,c). The regression descriptors were statistically significant (see SI text). These pH changes 
correspond to pCO2 variations of − 0.6 and 18.5 μ atm in each water mass respectively (see Fig. S4), 
according to the CO2 data in the SG.

The low Δ pHLIW may be well attributable to its age (in the order of 100 years upon arrival at the SG) 
and stability, as this intermediate water mass has not been affected by the present atmopheric CO2 con-
centrations. On the other hand, the more recently produced WMDW showed a considerable pH decreas-
ing trend and a noticeable pCO2 rise. As previously noted, this may be a consequence of several processes. 
First, the impact of higher atmospheric CO2 concentration this water mass was exposed to when formed, 
secondly, the faster penetration of CO2 in the water column brought about by the high alkalinity of this 
water mass40 and finally the sinking of labile and easily oxidizable organic matter facilitated by the forma-
tion events. Also, both LIW and WMDW reflect the gradient of trophic conditions from the Western to 
the Eastern Mediterranean basin. With a eastward decreasing gradient pattern of primary productivity41, 
the Alboran Sea represents one of the most productive Mediterranean areas41 involving a greater deep 
degradation potential of organic inputs coming from the photic zone42. Therefore, the WMDW, support 
high rates of organic carbon degradation42,43 and subsequently an increase on the CO2 content while 
residing in the deep Alboran Sea.

Observations gathered in other time series have shown that ocean regions characterized by high rates 
of increase in pCO2 (Irminger Sea and CARIACO, for instance) depict the highest rates of decrease in 
surface seawater pH (around − 0.0025 pH units y−1)21.

Even though the time period of observations used in our work (roughly 3 years) can be considered 
relatively short to asses long term changes in the pH of the Mediterranean Sea, it still provides a rea-
sonable wealth of data with sufficient sensitivity and accuracy to establish seasonal and interannual pH 
variations in the water masses of the Mediterranean Sea that reflect changes in both the natural carbon 
cycle and anthropogenic perturbation. It is worthy to point out that, in addition to the uptake of anthro-
pogenic CO2 from the atmosphere, the Mediterranean basin receives continuously a considerable amount 
of anthropogenic carbon from the North Atlantic Ocean through the SG20. Monitoring the magnitude of 
the resulting pH decline in the basin requires sustained high-accuracy observations. The data presented 
here may well serve as a base line to assess sensitiviy and evolution of the Mediterranean waters to the 
impact of increasing CO2 emmissions.

Methods
pH measurements shown in this study were collected from August 2012 to June 2015 at the GIFT time 
series in the Strait of Gibraltar (see SI text for mooring line details, Fig. S1). Water masses fractions 
within the MOW were obtained by an Optimum MultiParameter (OMP) analysis and modelled pH was 
constructed by performing a Multiple Linear Regression (MLR) least square fitting. In order to smooth 
out the short-scale variability and turbulence originated in the supercritical-to-subcritical flow transi-
tions44 as well as the fluctuations associated with the tidally-generated short internal waves in the SG, 
which result mostly in the rapid mixing between water masses, data were averaged in periods of 84 hours 
(half week), as our work was meant to focus on long-term variability related to basin scale processes, 
which is relevant for OA signals. Details regarding the CO2 system calculations, data sets used and the 
statistical treatment may be found in SI (see SI text).
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