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Abstract

Understanding the role of genetic factors in non-Mendelian traits characteristic for post-

reproductive life, herein referred to as age-related traits, is lagged behind the understanding of the 

genetic architecture of Mendelian traits. This lag calls for new, more comprehensive approaches in 

the analyses of age-related traits leveraging their characteristic features. This paper discusses the 

role of the inherent heterogeneity in genetic predisposition to age-related traits and pleiotropy. It 

shows that the comprehensive analyses leveraging such heterogeneity can substantially increase 

the efficiency and accelerate the progress in uncovering genetic predisposition to such traits.
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INTRODUCTION

Clustering of diseases and longevity in families and the estimates of heritability suggests 

that health, aging, and longevity can have a genetic component. The Human Genome Project 

was created to gain insights into the genetic architecture of human disease and related traits 

[1]. Currently, there is substantial progress in the understanding of the genetic architecture of 

Mendelian traits; the role of genetic factors in complex, especially age-related traits, is 

lagged [2].

The progress in Mendelian genetics has been accelerated by large-scale genetic association 

studies. These studies follow the framework of medical genetics, assuming that there are 

genetic factors (mutations) directly affecting protein function and causing Mendelian traits 

[3]. Implicitly, such traits are often assumed to be homogeneous. The untargeted approach 

implemented in such large-scale studies seems to be promising as such studies identified a 

large number of the disease-associated mutations and suggested promising disease-

management and therapeutic strategies [2,4–6].
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In contrast to the Mendelian traits, the age-related traits are complex phenotypes, which do 

not follow a clear pattern of Mendelian inheritance [7]. Genetic predisposition to such traits 

is complicated by two major factors. The first is an inherent complexity and redundancy of 

metabolic networks in human organisms adapted to maximize fitness in different 

environments during evolutionary selection [8–10]. The second is the lack of apparent and 

direct connections between genetic factors evolutionary adapted to maximize fitness at 

reproductive age and age–related traits characteristic for post reproductive life [11]. This 

problem is complicated by recent changes in the human life span [12] and the fitness 

landscape [13–15]. Biologists view age-related traits as the results of deviation from the 

evolutionary adapted mechanisms [11]. The field of aging research suggests various 

hypotheses to explain the relationships between genetic factors and age-related traits. For 

example, one hypothesis is so-called antagonistic pleiotropy when a genetic variant 

evolutionary adapted to benefit fitness in earlier life can be adverse for another trait(s) in late 

life [16,17].

Given these complexities, genetic predisposition to age-related traits becomes inherently 

complex, even in genetically homogeneous populations, with critical roles of the interplay of 

genetic and non-genetic factors underlining, particularly, heterogeneity and pleiotropy 

[9,18–22]. Then, the conventional strategy attempting to identify simple correlations 

between genetic variants and non-Mendelian traits may not work [23,24]. Different concepts 

to adapt the conventional strategy to non-Mendelian traits are considered including, for 

example, the roles of common and rare variants with small effects, structural diversity of the 

human genome, intricate genetic architectures of complex traits, incomplete penetrance and 

variable expressivity, and gene-environment interaction [25–28]. Implementation of such 

concepts requires appropriate approaches adapted to deal with the complex roles of genes in 

age-related traits.

This grant report provides short summaries of recent papers to illustrate substantial 

advantages of utilizing comprehensive approaches in the analyses of genetic predisposition 

to age-related traits. These approaches, implemented as a synthesis of different statistical 

methods, laid ground for the AG047310 grant focused on: (Aim 1) construction of age-

related phenotypes; (Aim 2) identification of genetic predisposition to endophenotypes; 

(Aim 3) identification of genetic associations with risks of morbidity, disability, and 

mortality; (Aim 4) elucidating systemic role of the identified genetic variants in health, 

wellbeing, and survival, and (Aim 5) dissecting biological role of genes for the revealed 

single nucleotide polymorphisms (SNPs). The emphasis of the grant aims is on 

comprehensive strategies to dissect the role of the inherent heterogeneity in genetic 

predisposition to age-related traits and pleiotropy.

BIOLOGICALLY-PLAUSIBLE HETEROGENEITY IN PREDISPOSITION TO 

AGE-RELATED TRAITS IN THE ApoB GENE

The inherent heterogeneity in genetic predisposition to age-related traits suggests that 

differences in the associations across different population groups, even if they are genetically 

homogeneous, can be biologically motivated. Accordingly, unusual, even antagonistic, 
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relationships between the same allele and the same trait in different population groups are 

biologically plausible [29,30]. Identifying biologically-plausible heterogeneity in genetic 

predisposition to age-related traits requires comprehensive approaches. An illustrative 

example was in [31]. Here, I briefly outline the essence of the analyses and promising 

results.

We, particularly, examined the association of rs693 SNP from the Apolipoprotein B (ApoB) 

gene with several age-related traits in four independent studies, which included subjects of 

European ancestry from the Framingham Heart Study (FHS), the Atherosclerosis Risk in 

Communities (ARIC) Study, the Multi-Ethnic Study of Atherosclerosis (MESA), and the 

Cardiovascular Health Study (CHS). We considered total cholesterol (TC) and high-density 

lipoprotein cholesterol (HDL-C) as endophenotypes (the concept of endophenotypes was 

introduced in psychiatry [32]) and myocardial infarction (MI) as a downstream phenotype. 

Our approach represented a synthesis of several methods implemented using conventional 

models in genetic association studies. Specifically, first, we examined associations of rs693 

with TC, HDL-C, and MI, separately. Then, we evaluated additive associations of rs693 and 

endophenotypes with MI. Finally, we performed comparative analyses of the associations of 

rs693 with MI without and with adjustment by endophenotypes in each of the four datasets 

comprised of 20,748 subjects with 2357 MI events. This comparative analysis is one of the 

most straightforward methods to examine whether lipids can mediate the rs693-MI 

association.

Consistently with prior genome-wide association study (GWAS) meta-analyses [33–35], our 

analysis confirms a robust adverse association of the rs693_A allele with TC (i.e., TC-

increasing) in each study. In contrast, the association of rs693_A with MI may not be in line 

with the association with TC, despite the compelling role of lipids in cardiovascular health 

[36,37]. Specifically, the rs693_A allele was beneficial against MI in two independent 

studies, the ARIC and FHS. Controlling for lipids substantially and consistently 

strengthened the beneficial association of rs693_A with MI in these studies. Also, we found 

that consistently with the adverse relationship between the rs693_A allele and TC, this allele 

was adversely associated with MI in CHS and MESA. However, despite this consistency, 

this relationship was not mediated by lipids. These antagonistic associations with MI were 

of about the same effect size but of opposite directions in ARIC/FHS and CHS/MESA. A 

meta-analysis of the results from all studies following the GWAS strategy showed a non-

significant association of rs693_A with MI. In contrast, taking into account antagonistic 

effects, this association was strong and nearly genome-wide significant.

These results caution against simplistic strategies for gaining profound insights into genetic 

predisposition to age-related traits.

ANTAGONISTIC HETEROGENEITY IN PLEIOTROPY

Another challenge is that genetic variants can show pleiotropy, which appears to be wide-

spread in human disease and related traits [38]. Pleiotropy is particularly a complex 

phenomenon in predisposition to non-Mendelian age-related traits [39]. Given an 

interdependence of human metabolic networks and the evolutionary concerns (see above), 
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the same genetic variant(s) can predispose not only to related but also to seemingly unrelated 

traits in heterogeneous manner [9,21,40]. To examine the role of the inherent heterogeneity 

in pleiotropic predisposition to age-related phenotypes, we performed a genome-wide 

pleiotropic meta-analysis of 20 traits [41]. These traits included 12 quantitative markers 

(e.g., lipids), seven diseases (e.g., diabetes), and death. We used a sample of 33,431 

individuals of European ancestry from five longitudinal studies (ARIC, CHS, FHS, MESA, 

and the Health and Retirement Study).

The analyses were performed in two stages. The first stage was designed to perform 

univariate GWAS by associating each SNP with each trait in each study separately. This 

analysis was enhanced by leveraging longitudinal information on traits. The univariate 

study-specific analysis provides the estimates of the effects and their significances, so for 

each SNP, we have a 20 × 5 table, which includes 20 estimates in each of 5 studies.

The second stage was to combine these statistics and to perform comparative analysis. In 

[41], we selected 1000 promising SNPs; the results of the analyses of the larger number of 

SNPs from the Candidate gene Association Resource were presented in [42]. To perform a 

pleiotropic meta-analysis, we need to combine statistics for all estimates for each SNP. It can 

be done in two ways. One is to meta-analyze the results first across studies and then across 

traits. The other is to meta-analyze the results first across traits and then across studies. 

Because we assume that these 100 (=20 × 5) genetic associations can be biologically 

plausible, we used several tests that take and do not take into account potential correlations 

between the effect statistics or traits.

A conventional meta-analysis across studies for each trait separately identified only 18 trait-

associated SNPs. Of them, 16 SNPs replicated previously reported associations, primarily 

with lipids. This result is not surprising as the sample of 33,431 subjects is modest compared 

to the consortia-based GWAS.

In contrast, our pleiotropic meta-analyses identified a large number of 124 SNPs with 

pleiotropic associations. The vast majority of these SNPs, 93% (115 of 124), were novel. 

They attained genome-wide significance by combining associations with multiple traits, 

which did not reach that significance in the univariate meta-analysis. Our analysis showed 

that the associations for 94% (108 of 115) novel pleiotropic SNPs, were strongly affected by 

the inherent heterogeneity in predisposition to age-related traits. This strong effect was seen 

as a phenomenon of antagonistic heterogeneity (also seen in [31]) when the effect directions 

for SNP-trait associations were not aligned with the directions of correlation between traits 

[41,42]. For example, despite the direct correlation between TC and low-density lipoprotein 

cholesterol (LDL-C) (e.g., increased level of TC is correlated with an increased level of 

LDL-C), the effect directions for the associations of the same allele with TC and LDL-C 

were of opposite signs. This misalignment between the effect directions and correlation 

cannot be observed in the case of homogeneous genetic predisposition to such traits because 

homogeneity implies the same relationship between genetic factors and traits in the entire 

sample, and it’s any subsample. The association signals become stronger when this 

misalignment is taken into account.
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The results of our analyses strongly support the pivotal role of the inherent heterogeneity in 

genetic predisposition to age-related traits in pleiotropy. Dissecting such heterogeneity can 

substantially increase the efficiency of the analyses and provide novel insights into the 

genetic architecture of such traits.

CONCLUSIONS

The progress in genetic association studies of various traits is mostly attributed to persistent 

efforts of big consortia on the national and international scale. Since the inception, however, 

the strategy of large-scale genetic association studies remains mainly unchanged regardless 

of the type of the analyzed traits. The age-related traits characteristic of health decline, the 

aging process, and longevity require more comprehensive methodology to gain insights into 

an inherent complexity of mechanisms involved in their genetic and non-genetic regulation. 

The main advantage of the strategy outlined in this grant report is its ability to improve the 

scientific understanding of genetic predisposition to age-related traits by dissecting 

substantial fraction of the inherently heterogeneous architecture of such traits. This 

improvement, however, comes with the price as implementation of such a strategy requires 

data over the humans’ life course and effort consuming analytical work. Nevertheless, this 

grant report shows highly promising potential of such comprehensive strategies in studies of 

genetic architecture of age-related traits and indicates that current discoveries from the large-

scale studies are likely just “the tip of the iceberg”.
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