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ABSTRACT: Transformer models have become a popular choice
for various machine learning tasks due to their often outstanding
performance. Recently, transformers have been used in chemistry
for classifying reactions, reaction prediction, physiochemical
property prediction, and more. These models require huge
amounts of data and localized compute to train effectively. In
this work, we demonstrate that these models can successfully be
trained for chemical problems in a distributed manner across many
computers�a more common scenario for chemistry institutions.
We introduce MFBERT: Molecular Fingerprints through Bidirec-
tional Encoder Representations from Transformers. We use
distributed computing to pre-train a transformer model on one of the largest aggregate datasets in chemical literature and achieve
state-of-the-art scores on a virtual screening benchmark for molecular fingerprints. We then fine-tune our model on smaller, more
specific datasets to generate more targeted fingerprints and assess their quality. We utilize a SentencePiece tokenization model,
where the whole procedure from raw molecular representation to molecular fingerprints becomes data-driven, with no explicit
tokenization rules.

■ INTRODUCTION
Data-driven chemical prediction techniques have seen a recent
surge in performance, usability, and adaptability.1−6 The
increased size and availability of chemical data and its
accessibility means that large machine learning (ML) models
can now be trained on these data to achieve better
performance on chemical prediction tasks.6−11 These models
can also learn from unlabeled data through self-supervised
training procedures.12−14 When combined, these factors
contribute to the recent successes of ML techniques for
chemical prediction.
Until recently, graph neural networks (GNNs) have been

the core model choice for chemical prediction tasks, and deep
neural networks have also been used in conjunction with
classical molecular fingerprinting algorithms to aid data
featurization.3,5,15,16 Molecular fingerprinting algorithms such
as the extended connectivity fingerprint (ECFC4) use explicit
rules to generate a fixed-length vector consisting of extracted
molecular features.17 These features can then be used as inputs
for more complex predictive or generative models. The end-
user must determine the fingerprinting algorithm that extracts
the features most suited for the downstream task. The quality
of each fingerprint can be assessed by observing how they can
separate varying classes of molecules in some latent space (for
example, in a virtual screening setting) or by comparing the
metrics for some downstream prediction task. Classical
molecular fingerprints are inflexible since they follow explicitly

coded rules and only extract pre-defined molecular features. As
such, data-driven fingerprinting approaches have been
developed, which can adapt the features extracted based on
the training data.15 The improvement of predictive and
generative models in chemistry is imperative as it allows
accelerated progress in drug discovery, catalysis, chemical
biology, and other fields at a significantly reduced cost
compared to ex silico experiments.
Transformer models18,19 and other natural language

processing (NLP) techniques are beginning to emerge with
the increased availability of chemical data in the text-based
simplified molecular input line entry system (SMILES)
representation and the development of new training
techniques.20 Various strategies for training language models
on chemical data with various model architectures including
transformers, recurrent networks, and autoencoders have been
explored. These strategies include devising tasks such as
translating a sequence of reactant SMILES to a sequence of
product SMILES, using SMILES to predict chemical proper-
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ties, combining classically computed chemical properties with
some other latent representation for property prediction, and
using latent representations for reaction classifications.1,4,21

Transformer models utilize an attention mechanism to
determine the relative importance of each symbol in the
tokenized SMILES to every other symbol and itself. Perform-
ing this attention computation can generate valuable molecular
fingerprints from the output embeddings of the transformer.
While SMILES can represent most molecules accurately with
some stereochemical information, the limitation of spatial 2D
graphs remains. This spatial limitation is more pronounced in
the 1D text representation. As such, redundancies in the
representation are introduced, whereby one molecule can have
multiple valid SMILES representations depending on the
molecular graph traversal algorithm. This limitation can be
exploited when training large data-driven models on big data
such that the SMILES can be augmented to aid the learning of
valid structures. However, recent studies have shown that for
datasets that are already large, augmenting the data this way
provides little added value.14

In this work, we evaluate the scaling of a RoBERTa22 based
architecture, a widely used transformer encoder in NLP, in a
distributed manner on chemical data, resulting in the largest
transformer model training on chemical data in literature,
MFBERT. We quantitively asses our model’s pre-training by
measuring the performance of the model on RDKit’s
benchmarking platform23,24 for virtual screening while offering
multiple inference methods for flexibility with fine-tuning on
smaller, more targeted datasets with minimal computation.

■ METHODS
Data. A selection of publicly available SMILES datasets

were aggregated, sanitized, and filtered for pre-training. These
datasets were: GDB-13,8 Zinc 15,25 PubChem,26 ChEMBL,27

and USPTO.9 The relative sizes of the final, filtered datasets
are shown in Table 1. For each dataset, the properties of the

data were determined and used to generate the overall model
pre-training pipeline. GDB-138 is the largest subset propor-
tionally; however, this is a synthetically generated molecular
dataset involving the enumeration of all possible molecular
graphs with constraints. As such, it served as an initial pre-
training dataset to aid model convergence and to allow the
model to learn the basic principles of the SMILES
representation. The Zinc 15 dataset25 consists of catalogs of
purchasable organic, drug-like molecules. This dataset was
used for training and oversampling to focus the model’s pre-
training onto understanding the chemical patterns in real
molecules. PubChem26 is an open structure database of over
200 M unique chemical structures as of 2020; these structures
were also used for larger pre-training with ChEMBL. The
ChEMBL dataset27 is a collection of hand-selected biologically
active molecules. A subset of ChEMBL is used by RDKit’s
benchmarking platform for virtual screening;23,24 this
ChEMBL subset was also used as the validation set for pre-
training. For each dataset, we identify, validate, and sanitize
unique molecules. We then aggregate the unique identified
molecules and perform frequency analysis on the duplicate and
non-canonical representations of the unique molecule in the
dataset. We then augment the final dataset proportionately
according to the frequency analysis. The USPTO dataset9 is a
reaction dataset consisting of 450k+ reaction SMARTS. Our
model was also trained on reaction SMARTS less than 512
tokens long (the model configuration’s limit); this offers
flexibility for the tokenizer and for fine-tuning. All molecules
were extracted from the USPTO reactions and used for
oversampling of common molecules. Each molecule in the
aggregate dataset was sanitized and canonicalized using a
custom parallel RDKit28 Python script. Frequency analysis of
the canonical SMILES duplicates from the USPTO reaction
molecules was performed. The top 20% most frequent
duplicates were used for augmentation in both canonical and
non-canonical forms, acting as permutations. In this case, the

Table 1. Unfiltered and Filtered Pre-Training Dataset Sizes and the Proportions They Represent of the Final Dataseta

dataset GDB-13 Zinc 15 PubChem ChEMBL USPTO total

unfiltered size (molecules) 977,468, 301 389,000,000 206,550,222 1,920,027 994,838 1,575,933,388
proportion of unfiltered total (%) 81 10 9 0.2 0.00825 100

aThe filtered aggregate dataset contains only unique SMILES, totaling 1,264,754,823 molecules.

Figure 1. Functional group distribution from a one million SMILES random sample from the aggregate dataset used for pre-training. There are 85
fragments/groups considered according to RDKit’s fragment module.
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SMILES permutations were not only used for augmentation,
but the frequent molecules were also duplicated proportion-
ately in the pre-training set. In other words, we use SMILES
augmentation to introduce common molecules to the model,
multiple times in different forms, and we duplicate some
SMILES in the training set in proportion to their commonality
in reactions. This process was performed on 48 cores for 24 h.
All canonical duplicates outside of the frequency threshold
(top 20%) were removed. The data was then shuffled using
terashuf,29 an external-memory shuffling algorithm in linear
time, a process that took ∼20 h on eight cores. We take a one
million sample subset and compute the functional group
distribution across the sample; this is shown in Figure 1.
Tokenization. In the original RoBERTa22 implementation,

a byte-pair encoding (BPE) tokenizer30 was used; this,
however, assumes that the text is pre-tokenized (“words” are
separated by spaces). As this is not the case with SMILES, in
this work, a unigram SentencePiece tokenizer31 was used. This
tokenizer trains a unigram model32 on the dataset and treats
the input text as a raw input stream. The generated vocabulary
is then dependent on reducing an initial seed vocabulary based
on the log-likelihood loss of the unigram model. This custom
tokenizer then adds auxiliary tokens such as [CLS] and [SEP]
rather than <s > and </s > in the original BPE implementation
to denote the start and the end of a token sequence. Previous
works have shown that with BERT-like models, the perform-
ance on downstream tasks is minimally impacted when using
subword tokenizers or regular expressions (RegEx) to treat
SMILES as pre-tokenized strings.12 We take a one million
SMILES random sample from our aggregate dataset and
compare the total number of tokens that would be fed through
the model (excluding padding). The regular expression that
was used in this comparison was

\[[^\]] + ]| | | | | | | | | | | | | | |\ |\ |\
| = |#| |\+|\\|\ | | | |\ | > > |\*|\ |\
[ ]{ }|[ ]

r ( Br? Cl? N O S P F I b c n o s p ( ) .

/ : @ ? ? $ %

0 9 2 0 9 )

Over 1 million samples, RegEx tokenization results in
2,034,812 extra tokens being fed through the model with, on
average, an extra two tokens per SMILES with minimal
additional gain on downstream task performance.12 Attention
is of the order O(n2), where n is the number of tokens in the
sequence. During inference, SentencePiece offers a more
efficient system overall with minimal downsides.
Attention. The premise of transformers relies on there

being a sequence of tokens and a task to perform on that
sequence. For each token in a sequence, an attention score is
computed, relative to every other token and the token itself,
based on the weights previously learned during training. These
attention weights can offer some level of interpretability for the
model; however, due to the large number of attention pairs, it
can be difficult to visualize. Figure 2 shows sample attention
from layers 6, 8, and 11.
From the attention weights, the SMILES features that the

model is attending to can be seen. In this case, for the carbonyl
group, the oxygen and its surrounding branching tokens are
paying significant attention to the carbonyl carbons in layer 6,
head 9, suggesting that the model is somewhat able to
recognize and differentiate between coupled atomic groups and
their importance to the likelihood of other molecular features
around them. This separation is only somewhat representative
of the model’s learnings as not all attention heads in each layer
seem to learn useful chemical features. From the extracted
functional groups, we perform a substructure and pattern
matching search to match each functional group to their
SMILES tokens and their respective attention weight
proportions. We then perform a Mann−Whitney U test
between the functional group distribution and the distribution
of attention weight proportions given to functional tokens. The

Figure 2. Attention weight visualizations for head 9, layer 6; head 2, layer 11; and head 3, layer 8 of MFBERT on aspirin. Each layer shows the
attention mechanism attending to various molecular features within the SMILES. For example, the start and end of the phenyl ring (specifically the
“1” and “1=” tokens) are attended to highly by almost all other atoms in layer 11, head 2. In layer 6, head 9, the carbon in the “C�O” of the
carbonyl group denoted by token “CC” has a high attention weight to the carbonyl oxygen and its closing branching token “)”.
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resultant p-value was <0.01. This suggests that although
qualitatively, it may appear to be somewhat possible to
interpret attention weights, there are other non-interpretable
features across the model’s layers and attention heads that
carry significant weight in the output fingerprint.
Model. The architecture of MFBERT consists of a large

stack of transformer encoders. It is based on the RoBERTa22

architecture with 12 encoder-attention blocks and 12 attention
heads per block. Given a vocabulary size of 2417 tokens, this
gives our model a total of ∼88 M trainable parameters. Figure
3 shows the model architecture. Each token is fed through the

encoder layers, with each layer returning latent 768-dimen-
sional embeddings for each token. The final layer returns the
most accurate representation based on the model’s learning
procedure.
Pre-Training Procedure. For the pre-training task,

masked language modeling (MLM)19 was used. Fifteen
percent of the tokens in the dataset were masked/corrupted,
and the model’s task was to uncover the masked tokens. Cross-
entropy loss was used as the objective function for this task.
For each training stage, a polynomial decay learning rate
schedule was used along with a linear increase for warmup.
The peak learning rate (LR) used was 0.0006. This was
determined to be in proportion to scale the suggested
hyperparameters in RoBERTa22 for our batch size in order
to maximize the likelihood of convergence. Since the learning
rate is tightly connected with batch size, gradient accumulation
and distributed training were used to maximize the batch size
and accelerate pre-training. A few experiments were performed
to determine the most optimal hyperparameters. Table 2
shows these parameters, along with the model configuration
parameters. The optimal parameters selected are in line with
the suggested hyperparameters given by Liu et al.22 Distributed
training was performed using NCCL primitives with Fairseq
0.9.1 + Pytorch 1.7.1.33 A copy of the entire dataset was stored
on each of the four GPU nodes, one of which was the master

node. The dataset was split over the entire system, with each
GPU containing a copy of the model. The optimized gradient
accumulations from each node were then gathered using all-
reduce,34 and the model’s parameters were updated.
Pre-Training and Evaluation Pipeline. First, a new

MFBERT model was initialized with random weights. The
model was then pre-trained on the entirety of the shuffled
GDB-13 dataset,8 and then training continued on the
remainder of the aggregate dataset. For each part of the
aggregate dataset, the model was trained for 1 epoch on 4 × 4
GTX1080Ti GPUs. Training on 1 epoch guarantees that all
the molecules within the aggregate dataset have been seen by
the model at least once. Further training may improve
downstream performance; however, the returns on investment
of additional pre-training time and compute diminish beyond 1
epoch. Pre-training on the entire dataset took approximately
3.5 weeks with this setup. Once the model was trained, the
weights were transformed to be compatible with the
HuggingFace’s transformer library35 for more accessible
tokenization, inference, and fine-tuning environment. The
MFBERT pre-trained checkpoint model was pre-trained for a
further 0.5 epoch for use as a fingerprinting method in RDKit’s
benchmarking platform for virtual screening.23,24 It also acted
as a starting point for the fine-tuning procedure.
GDB-13 Exploration. Given the size and diversity of the

GDB-13 dataset,8 an ablation study was performed, where the
model was independently trained against only the seven GDB-
13 subsets8 to explore the impact of data diversity on the
model’s bias and the impact each functional group may have
on the results of the virtual screening task. For each subset, the
model was trained using augmented datasets to account for the
varying dataset sizes.
Fine-Tuning Procedure. For fine-tuning, we took the

mean of our pre-trained MFBERT model embeddings for each
sample in the fine-tuning training set, added a 20% dropout on
the mean of the embeddings, and then fed it through a single-
layer feed-forward neural head with varying dimensions based
on the number of classes within a given task. A sigmoid
activation function was applied over the heads’ logits, and the
binary cross entropy or mean squared error (MSE) loss
functions were used for all classification and regression fine-
tuning tasks, respectively. For inference, the neural head was
removed such that the latent space containing the specialized
molecular fingerprints could be accessed.
Siamese-MFBERT. Recently, works in NLP include taking

advantage of multi-sentence inputs through Siamese BERT
networks.36 We take inspiration from this work and devise two
new training strategies with a Siamese-MFBERT network.
These strategies open new avenues for transformers on
augmented chemical data. These include (a) more elaborate
uses of SMILES augmentation techniques (i.e., test-time
augmentation with simultaneous inputs) and (b) new training
tasks for learning more representative latent embeddings.

Figure 3.MFBERT architecture. A stacked transformer encoder is fed
molecular token embeddings that are attended to by 12 attention
heads for 12 blocks. The hidden dimensions are 768, and the max
sequence length is truncated to 512 tokens (514 with auxillary
tokens). A 768-dimension contextual embedding is given for each
input token as output.

Table 2. Model Configuration and Hyperparameters

hyperparameter value

batch size per GPU (11 GB) 8
gradient accumulation steps 32
effective batch size 4096
peak learning rate 0.0006
hidden size 768
intermediate size 3072
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Figure 4 shows an illustration of the two training procedures
we devised for Siamese-MFBERT.

In both cases, we clone the already pre-trained MFBERT
model as the starting point for the Siamese base. We fine-tune
the classification network on three classification datasets from
MoleculeNet11 and compare with the single MFBERT model
on the same datasets. For each sample, during both training
and inference, the SMILES is randomly augmented using
RDKit’s traversal algorithm, and the augmented SMILES is fed
with the original smiles to the model.
Siamese Classification. We concatenate the molecular

fingerprints of both the original SMILES (fp1) and the
augmented SMILES (fp2) and the element-wise difference
between the two fingerprints, |fp2 − fp1|. This is then fed
forward through a neural head of weights ×W n l

t
3 , where n

is the dimensionality of MFBERT fingerprints (768) and l is
the number of labels for the classification task. For binary
classification with one label, we used a Sigmoid activation
function, σ, with binary cross-entropy loss.

= | |Woutput ( (fp1, fp2, fp2 fp1 ))t

Augmented Latent Representations. For this task, we try
to teach the model the similarities between a molecule’s
SMILES and its augmented counterpart. Like the classification
model, we compute both fingerprints. We then compute the
cosine similarity between the two fingerprints and use MSE
loss with a target cosine-similarity of 1 during training. This
task ensures that in the latent space, every molecule and its
various SMILES permutations are “similar” in cosine space.

■ RESULTS
RDKit’s benchmarking platform’s filtered subset (version
1.2)24 was used to evaluate the effectiveness of the generated
molecular embeddings as a fingerprint for a virtual screening
task. The dataset consists of 69 protein targets and pools of a
small number of active molecules and many decoy molecules.
The benchmark thus measures the performance of molecular
representation (fingerprints) in separating active target
molecules from decoys given a fixed number of query
molecules (n = 5). The objective function used for compound
retrieval is the cosine distance in the model embedding’s latent
space. Standard retrieval metrics were used to enable
comparison with other models on this task. The virtual

screening metrics used were the (1) area under curve receiver
operating characteristic (AUCROC) and (2) Boltzmann-
enhanced discrimination of ROC (BEDROC) with ∝ = 20.
The BEDROC20 metric is more discriminatory as it weights
the top ∝% ranked retrievals higher in accordance with the
Boltzmann distribution. This aims to aid with the problem of
early recognition in which many of the virtually screened
molecules do not make it into experimental testing because
virtual screening databases are often too large.
Inference Optimization. There are two paths in which

inference for a molecular fingerprint could be performed: (1)
using the [CLS] embedding as a token aggregator for all
tokens in the molecule and (2) taking the mean of all token
embeddings of the molecule. Figure 5 shows a comparison of
the benchmark results between the two methods for the same
model.

On both the AUCROC and BEDROC20 metrics applied to
the virtual screening benchmark, taking the mean of the
embedding as opposed to the aggregate [CLS] token
drastically improves performance and reduces the uncertainty
of the retrieval on this benchmark. One rationale for this
improvement is that it is entirely dependent on the pre-training
task (MLM). Since during training, each of the tokens was
equally likely to get corrupted, the weighted importance for
each token in each sample becomes approximately equal; this
is useful for the SMILES representation since it is non-token-
redundant. In contrast, this equal weighting becomes an issue
in NLP as stop words are frequently present yet do not add any
semantic value; as such, a token aggregator token is used. The
[CLS] token is still included in our model as it provides greater

Figure 4. Siamese-MFBERT network architecture for both training
strategies: classification (left) and augmented latent representations
(right). The two MFBERT network weights are shared in both cases,
providing the Siamese architecture.

Figure 5. Comparison of the model’s performance on the virtual
screening benchmark when using an aggregate token embedding and
the mean of all token embeddings for the molecular fingerprint. (A)
shows the BEDROC20 score, and (B) shows the AUCROC score for
each inference method.
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flexibility for use in downstream tasks. When fine-tuning on a
dataset for a specific task, our model’s [CLS] token can be
used to generate a more suited fingerprint for each specific
task; however, the model’s weights can also be frozen such that
computational time and resources can be minimized for fine-
tuning if needed, and the mean embedding molecular
fingerprint can be used.
Virtual Screening. We train MFBERT for a further 0.5

epoch on the aggregate dataset and compare it with five other
molecular fingerprinting methods on the same benchmark,
including the current state of the art. Figure 6 shows the
results.

The fingerprinting methods we compare can be separated
into two categories: data-driven methods and classical
methods. We compare with (1) extended connectivity
fingerprints (d = 4) (ECFC4), one of the most common
molecular fingerprinting algorithms with common parameters;
(2) RDKit descriptors,28 which fingerprints a molecule based
on its physiochemical properties; (3) continuous and data-
driven descriptors (CDDD),1 a deep learning-based encoder−
decoder model for molecular descriptors; (4) ChemBERTa-12

a RoBERTa-based22 model designed for the prediction of
molecular properties through transfer learning; (5) the self-
supervised learning platform for molecular fingerprints (SSL-
FP),14 a transformer encoder-based model trained on
hundreds of millions of molecules; and 6) MolBERT,13 a
BERT-based model for molecular representation and the
current state-of-the-art for this benchmark.
MFBERT outperforms the current state-of-the-art method

for this benchmark, with an average improvement of 15% in
the retrieval score (AUCROC) and an improvement of 70%
for the early recognition score (BEDROC20) over the next
best model. For this benchmark, all data-driven methods for
molecular fingerprinting outperform the classical methods that
were tested. Our model maximizes this difference through
training on the largest chemical dataset aggregate and utilizing
an inference optimization technique more suited for general
molecular fingerprints. We also fine-tune our Siamese-
MFBERT model using the augmented latent representation
strategy on a 1 million SMILES sample from our aggregate
dataset and assess its performance on the benchmark. This
strategy seems to generate inferior fingerprints for virtual
screening with an AUCROC score of 0.554 ± 0.016 and a
BEDROC20 score of 0.165 ± 0.015. This suggests that the

model was limited to learning SMILES permutations rather
than more accurate molecular representations.
GDB-13 Exploration. There seems to be little correlation

between data size and model performance for this benchmark.
For example, the ChemBERTa model was trained on a much
larger dataset than MolBERT, which suggests that there are
other contributing factors/parameters within the training
dataset that affects the model’s performance. Further evidence
of this is given by Chen et al.’s work on SSLP-FPs.14 To
explore the features that affect downstream performance, we
train seven different models on the suggested cumulative GDB-
13 subsets, each omitting some molecular features. We
permute the SMILES before training such that all subsets are
of the same size, and we adjust the learning parameters
accordingly. Table 3 shows the GDB-13 subsets and the
functional groups omitted from each set.

For each subset, the model was trained with the same
learning hyperparameters and evaluated on the same bench-
mark. Figure 7 shows the evaluation results for each set.

From these results, the cumulative ABCDEFGH subset
achieved the highest score, closely followed by the ABC and
ABCDE subsets. All other subsets performed slightly worse
than these two subsets. This highlights how the convergence
fragility of such large, stochastically optimized models can
result in marginal gains or losses on a downstream task. This
result also gives some insight for future training data pre-
selection as to what causes the fluctuation. From previous
works, we know that SMILES permutations do not tend to
improve model performance for this task;13 thus, in this case,
we can assume that our data augmentation to standardize the
size of each of the subsets did not affect the results. The subset
with the smallest initial size and the most general variations,
scaffold (ABCDEFGH), performed the best on this virtual

Figure 6. Comparison of MFBERT’s scores on the RDKit
benchmarking platform with other cutting-edge fingerprinting
methods from the literature.

Table 3. GDB-13 Cumulative Subset Sizes and Molecule
Removal Criteria

cumulated
subset

subset size
(molecules) cumulative criteria

AB 635,647,478 no cyclic or acyclic HetHet bonds
ABC 441,084,370 stable FG
ABCD 277,628,675 no cyclic C�C or C�C bonds
ABCDE 140,606,518 no acyclic C�C or C�C bonds
ABCDEF 43,729,989 no small rings
ABCDEFG 12,899,741 fragment-like
ABCDEFGH 1,470,284 scaffold-like

Figure 7. AUCROC scores with pre-training on a single GDB-13
subset.
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screening task. Since each of the models were trained for 1
epoch, the reduced initial number of molecules (and hence, the
increased repetition through augmentation) allows the model
to abstract the dataset more effectively, and the improved
performance can therefore be explained. Increased data
enrichment beyond scaffold-like molecules does not seem to
improve performance given the constraints of the number of
training epochs. Longer training may enable the model to
abstract the additional features; however, in this particular
benchmark, scaffold feature variations seem to be of utmost
importance. This introduces the problem of generalization and
highlights the importance of the quality of the data used for
training as opposed to the quantity. We refer the reader to the
GDB-13 paper8 for further details regarding the splits.
Comparisons of Pre-Trained Fingerprints and Fine-

Tuned Fingerprints. We compare our model’s initial pre-
trained fingerprints with the fingerprints generated after fine-
tuning our model on three standard molecular classification

datasets. These were the blood−brain barrier penetration
(BBBP) dataset,37 ClinTox dataset,38 and the HIV dataset,11

all downloaded from MoleculeNet.11 During fine-tuning, the
mean of the embeddings was used for training. For each
dataset, the model was trained for 10 epochs with 80% of the
data, with the other 20% used as test/validation sets; the split
was done randomly for the t-SNE visualizations and K-means
analysis. Figure 8 shows the t-SNE plots before and after fine-
tuning on each of the three datasets. From the t-SNE plots, it is
shown that the model’s pre-training allows for better
performance on downstream tasks where only limited data is
available. Even without fine-tuning, our model has learned a
diverse representation of molecules. For example, without prior
knowledge on either toxicity or blood−brain barrier pene-
tration of molecules, our pre-trained model is able to
somewhat separate molecules in the latent space that can
penetrate the blood−brain barrier from those that cannot. This
latent separation can also be observed across other tasks to

Figure 8. t-SNE visualizations for the molecular fingerprints generated by MFBERT before and after fine-tuning on the test sets of smaller targeted
classification datasets.
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varying degrees. Of course, the model’s performance is
improved, and the fingerprints become more targeted after
fine-tuning. We quantitively assess this difference for each task
by performing principal component analysis (PCA) to reduce
the dimensionality of the test-set fingerprints to 2D and then
using K-means clustering to classify the data. Table 4 shows
the AUCROC scores and the silhouette coefficients of the K-
means clustering on the pre-trained and fine-tuned fingerprints.

Comparisons of Performance on Downstream Tasks.
Using our fine-tuning strategy and varying the model heads, we
compare each possible combination of MFBERT fingerprint +
head for both classification and regression tasks. For the
regression datasets, we use (a) ESOL, a water solubility
dataset; (b) FreeSolv, experimental hydration free energies in
water; and (c) Lipophilicity, a dataset of experimental octanol/
water distribution coefficients, all from MoleculeNet.11 For
each dataset, we split the data into train/valid/test sets in 80%/
10%/10% proportions, respectively; we follow the recom-
mended splitting strategy for each dataset as described in
MoleculeNet.11 For each regression task, we use a random
splitting strategy. For the classification datasets (with the
exception of ClinTox, where we also do random splitting as
recommended), scaffold splitting from DeepChem39 was used.
For the regression tasks, we take both fine-tuned and pre-
trained MFBERT fingerprints with a (1) support vector
machine (SVM) regressor, (2) random forest (RF) regressor,
and (3) feed-forward neural network (FFNN). These heads
were implemented with Sci-Kit Learn.40 We take the
classification counterparts of these heads and apply them to
the classification datasets. We also use our Siamese-MFBERT
classification model on the three classification datasets. Table 5
shows the results of the various heads on each of the tasks. We
then compare our results with other models in the literature
applied to the MoleculeNet benchmark, including SSLP-FPs,14

ChemBERTa,12 MolBERT,13 and the best-performing model
from the MoleculeNet results database.11Table 6 shows these
results.
All models were fine-tuned and tested on the same splits for

consistency in this experiment. For the ChemBERTa model,
MFBERT’s mean strategy was applied to the contextual
embeddings followed by an SVM classifier for an improved
score and better comparability. For the MoleculeNet (best)
scores, different models were used for each task. For the BBBP
and HIV tasks, the scores were achieved using RDKit’s ECFP4
+ KernelSVM; the ClinTox score was achieved using a weave
molecular model, the ESOL and FreeSolv scores were achieved
with a message-passing neural network, and finally, the
Lipophilicity score was achieved using a graph convolution
model. These models’ scores were taken from the MoleculeNet
benchmark results.11 MFBERT’s approach uses a single pre-

Table 4. AUCROC and Silhouette Scores of our
Fingerprints + PCA + K-Means for Three Classification
Datasetsa

pre-trained fingerprint score fine-tuned fingerprint score

dataset * a * a

BBBP 0.589 0.416 0.741 0.671
ClinTox 0.533 0.471 0.814 0.722
HIV 0.529 0.364 0.744 0.679

a*AUCROC score; †silhouette score.
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trained architecture, which can be fine-tuned to perform many
different tasks using a single pipeline. While the following
transformer-based models (MFBERT, SSLP,14 ChemBERTa,12

and MolBERT13) are similar architecturally, the differences in
scale, training data, pre-training procedure, and inference
optimizations have shown to significantly affect downstream
performance. For the classification tasks, there seems to be no
correlation with the model’s pre-training data size and
downstream performance; for the regression tasks, models
with larger pre-training data sizes consistently outperformed
those with smaller pre-training datasets.
The AUCROC scores match the t-SNE plots in terms of

class separation. For the BBBP dataset, our model achieves an
AUCROC score of over 0.58 with no knowledge or training of
the task. For the BBBP task, since there is a correlation
between molecular size and BBBP, it seems that during pre-
training, the model has learned some features regarding
molecular size. This suggests that the patterns recognized by
the model remain constant for a variety of molecules and that
the feature representation is valid. The silhouette score further
confirms that while the pre-trained fingerprints offer some
separation between clusters across the downstream tasks, this
separation is massively enhanced with fine-tuning.

■ CONCLUSIONS
In this work, we have trained one of the largest deep learning
models in the chemical literature for generating molecular
fingerprints on a custom-prepared aggregate dataset of over 1.2
billion molecules. We used the power of distributed computing
to perform such large-scale training in a reasonable timeframe
of 1.5 months. We evaluate our model on RDKit’s
benchmarking platform and compare its performance with
other models on the same virtual screening task. We found that
taking the mean of the output embeddings significantly
outperforms using an aggregate [CLS] token for generating
molecular fingerprints for virtual screening. Utilizing this as an
inference strategy, our model achieves state-of-the-art perform-
ance on the virtual screening benchmark with over 70%
improvement in the BEDROC20 score over the next best
model. We also explore the impact of discriminating the
molecular variety from the GDB-13 dataset8 on the model’s
performance. This highlighted the importance of the quality of
pre-training data on the generated molecular fingerprints while
also emphasizing the fragility of training such large models and
that a larger data-set size does not necessarily mean better
downstream performance. We introduce the process of fine-
tuning MFBERT and its Siamese variants for augmented
SMILES inputs to generate more targeted molecular finger-
prints. We also train a selection of classical ML heads on top of
MFBERT fine-tuned fingerprints and compare the perform-
ance with other models in literature. We explore the separation
of the classes in latent space with techniques such as PCA and

K-means to perform classification using the pre-trained and
fine-tuned fingerprints. We leave to future work further
exploration of fine-tuning with ablation studies on the
inference method, model weight freezing, and performance
of predicting more niche properties from the fingerprints.
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