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T cells have been known to be the driving force for immune response and cancer
immunotherapy. Recent advances on single-cell sequencing techniques have
empowered scientists to discover new biology at the single-cell level. Here, we review
the single-cell techniques used for T-cell studies, including T-cell receptor (TCR) and
transcriptome analysis. In addition, we summarize the approaches used for the
identification of T-cell neoantigens, an important aspect for T-cell mediated cancer
immunotherapy. More importantly, we discuss the applications of single-cell techniques
for T-cell studies, including T-cell development and differentiation, as well as the role of
T cells in autoimmunity, infectious disease and cancer immunotherapy. Taken together,
this powerful tool not only can validate previous observation by conventional approaches,
but also can pave the way for new discovery, such as previous unidentified T-cell
subpopulations that potentially responsible for clinical outcomes in patients with
autoimmunity or cancer.
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INTRODUCTION

T-Cell Receptor
A T-cell receptor (TCR) is a heterodimer consisting of two chains, TCRa and TCRb chains, that
allow the recognition of peptides in the contest of major histocompatibility complex (MHC)
molecules. Each of the two chains is made of a variable region and a constant region that are spliced
together during the T cell development that happens in the thymus. In TCRb chain, there are two
constant region gene segments, Cb1 and Cb2, with some shared sequences. In TCRa chain, there is
only one constant region gene segment, Ca. The variable region of the b chain consists of three gene
segments called variable (V), diversity (D) and junctional (J), but the a chain only consists of the V
and J segments. In human, 42 V segments, 2 D and 12 J are identified in b chain locus; and 43 V and
58 J for the a locus. Within each V segment, there are three hypervariable regions, or
complementarity-determining regions (CDR1, CDR2 and CDR3). While CDR1 and CDR2 are
encoded by the V segment, the CDR3 regions results from the juxtaposition of the V, (D) and J
org June 2021 | Volume 12 | Article 6890911
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regions during somatic recombination. The joining of the V(D)J
regions is imprecise, and nucleotides can be lost or added (e.g.
the P and N nucleotides) during the process, resulting in a
unique and unpredictable amino acid sequence for each CDR3
(1). It is clear that the structure of the TCR allows for great
variability, which is further increased by the heterodimeric
pairing of the a and b chains. It is estimated that the total
number of possible combination could be greater than 1018 (2).
The great variability of TCRs is essential to enable their unique
ability to recognize antigenic targets, either pathogens or tumor
cells. Lastly, the process of antigen recognition is also
complicated. It relies on multiple interactions. The TCR needs
to contact the MHC molecule on the cell surface, mostly by
specific interactions with CDR1 and CDR2. The TCR also
interacts with the peptide presented by the MHC molecule,
mostly by specific interaction with the CDR3.

In the field of cancer immunotherapy, the identification not
only of cancer antigens, but also of the antigen-specific TCRs, is a
major research topic. Despite the evidence of tumor-specific T
cells in cancer patients both among the tumor infiltrating
lymphocytes (3–5) and in the peripheral blood (6–9), the
presence of these cells is often not sufficient to induce cancer
regressions even after checkpoint immunotherapy (10, 11). The
reasons for these mixed clinical results are still not fully
elucidated and cannot be addressed with a simple explanation.
Nevertheless, it is commonly hypothesized that such antigen-
specific T cells display an exhaustion phenotype that cannot
easily be reverted (12), especially in the contest of an
immunosuppressive tumor microenvironment (13). Adoptive
cell therapy can potentially overcome these limitation by both
increasing the number of cancer-specific T cells ex vivo before
reinfusion and also by engineering these T cells with more
powerful TCRs (14). The genetic transfer of TCRs requires the
identification and isolation of powerful and specific TCRs. As
described earlier, TCRs are heterodimers and only the match
between the correct TCRa and b chain would enable a specific
antigen recognition. TCR pairing is therefore one of the major
challenges in the process of TCR identification.

Several approaches have been proposed to overcome the
challenge of TCR pairing. Once a population of reactive T cells
is identified, next-generation sequencing of bulk TCR clonotypes
can provide a list of dominant TCRa and b clones that could be
then paired accordingly to their frequency (15, 16). This
approach gives the best results when the population of interest
is fairly oligoclonal (most dominant TCRb clonotype ≥ ~20%),
but it is possible that the most dominant clonotypes need to be
paired with each other using a matrix before the correct match is
found. Another method that has been utilized to match TCRa
and TCRb chains from a bulk T-cell population is the Pairseq
from Adaptive Biotechnologies (17). This approach is also based
on next generation sequencing of both TCRa and TCRb chains
from a T cell subset, but the pairing of the chains is assigned with
a statistical algorithm. The last approach is TCR sequencing at
the single-cell level. This represents the best approach because it
allows to quickly identify the correct TCRa and b pairs from
each single cell present in a T-cell population of interest. Several
Frontiers in Immunology | www.frontiersin.org 2
different technical approaches have been utilized for single-cell
TCR sequencing. In the following sessions, we will describe these
robust and successful methods.
SINGLE-CELL TCR AND
TRANSCRIPTOME SEQUENCING

Step One: The Isolation of Single T Cells
The first step in each single-cell sequencing technology is the
isolation of single cells (Figure 1A). The conventional technique
developed to isolate single T cells to obtain clonal T cell lines is
called limiting dilution. This approach is relatively simple.
However, due to the statistical distribution of cells per well, it
is not very efficient. Typically, only one third of the wells contain
a single cell when starting with a concentration of 0.5 cells per
aliquot (18). Micromanipulation is another technique developed
mainly to isolate embryos or stem cells, but it could be applied to
T cells, particularly since the potential of generating human
induced pluripotent stem cells to differentiate into anti-tumor T
cells has been explore (19). A microscope-guided capillary
pipette is used to pick single cells from a suspension culture
(20). Laser-capture microdissection is similarly used to isolate
individual cells or cell compartment from solid-tissue samples,
such as biopsies, paraffin-embedded or cryo-fixed tissues (21–23).
The main limitation with these approaches is that they are low-
throughput and time-consuming.

To overcome such limitation, several approaches have been
developed. One approach that has been commonly used is
fluorescence-activated cell sorting (FACS), where the T cells
are isolated based on the staining of pMHC multimers (8) or
surface markers, such as PD-1 (15) or CD137 (16). This
methodology allows to choose a specific population of interest
but has the requirement of a high number of cells as starting
materials. Microfluidic isolation of cells has the advantage of low
sample consumption. When performed in closed systems, it also
reduces the risk of contamination (24). The commercial platform
Fluidigm C1 is an example of automated system for single cell
capture coupled with cell-lysis, RNA extraction and cDNA
synthesis. A more recent commercial system, the Chromium
Controller from 10X Genomics, has recently gained popularity.
The system is based on microdroplets, where cells are captured in
aqueous droplets dispersed in oil phase. This system enables the
isolation of tens of thousands of single cells simultaneously with
high throughput and high capture efficiency (25). Notably, in the
majority of experiments, no special modifications are needed for
isolating single cells from T cells, compared to other cell types.
However, because of the relatively smaller size of T cells, the
microfluidics technique needs to be adjusted accordingly. For
example, T cells can only be captured by the smallest, 5-10 µm
integrated fluidic circuits (IFCs) using a Fluidigm C1 system.

Step Two: TCR and Gene Amplification
The next step after single T-cell capture involves in the reverse
transcription and amplification of TCR and/or genes of interest.
June 2021 | Volume 12 | Article 689091
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In the following section, we describe the most common strategies
for single-cell analysis (Figure 1B).

Multiplex PCR
The very first methodology developed to sequence TCRa and
TCRb chains was based on multiplex PCR followed by Sanger
sequencing of the different amplicons (26). Although useful for
the isolation of specific TCR clones, this methodology did not
have the adequate throughput capacity to give an estimation of
the TCR diversity in an T cell population. Only after the
technical break-thought of multiple parallel sequencing (also
called “next-generation sequencing” or NGS), it became possible
to obtain a comprehensive knowledge of the TCR arrangement
Frontiers in Immunology | www.frontiersin.org 3
including V–J segments and the complete CDR3 sequence. A
simple but effective approach to amplify the TCRs consists in a
multiplex PCR where a pool of forward primers complementary
to the different V segments of the TCRs and either a pool of
reverse primers complementary to the different J segments or
two reverse primers complementary to the C regions. The J
segment primers are mainly utilized when TCR sequences are
amplified from genomic DNA due to the intronic sequences. It’s
possible to amplify TCR sequences from cDNA using the same
pool of primers (27). However, only cDNA, but not genomic
DNA, can be amplified using reverse primers complementary to
the constant regions (28). Subsequently, additional genes
associated with specific T cell functions (e.g. cytokines) can be
FIGURE 1 | An overview of single-cell isolation techniques, followed by TCR and gene amplification strategies. (A) Several techniques have been used to isolate single cells.
The most frequently used techniques are FACS sort and microdroplet techniques. For limiting dilution, micromanipulation, FACS sort and microfluidics techniques, multiplex
PCR and full-length cDNA amplification approach can be used to perform single-cell TCR and transcriptome sequencing. For the microdroplet technique, cell barcode
approach is used to perform single-cell TCR and transcriptome sequencing. (B) For the multiplex PCR approach, individual single cells are lysed in individual PCR tubes or
wells. Reverse transcription is performed using oligo dT or gene-specific primers. Two PCR reactions are performed in individual wells using TCR or gene-specific primers.
Notably, for each PCR reaction, approximately 70 variable-region forward primers are required to amplify the majority of TCRs. Two constant-region reverse primers are
required, including one primer for constant-region Ca and one primer for constant-region Cb1 and Cb2. Lastly, barcodes for individual wells are added by an additional PCR
reaction. Single-cell PCR products from individual wells are pooled and sequenced. For the full-length cDNA amplification approach, individual single cells are lysed in individual
PCR tubes or wells, and reverse transcription is performed using oligo dT. All transcripts, including TCRs and genes of interests, are amplified by PCR reactions. Full-length
cDNA products are cut into small fragments by tagmentation. Barcodes for individual wells are added by an additional PCR reaction. Single-cell PCR products from individual
wells are pooled and sequenced. Bioinformatic analysis is used to extract TCR sequences and calculate the expression levels for genes of interests. For the cell barcode
approach, single cells are lysed in individual microdroplets, and the cell barcodes for individual single cells are added either at the 3’ or at the 5’ end of the transcripts. For 3’
barcoding, barcodes are added at the reverse transcription step. After reverse transcription and template switch, all single-cell transcripts are pooled and amplified. Similar to
the multiplex PCR approach, a pool of about 70 variable-region forward primers are required to amplify TCRs and genes of interest. Lastly, PCR products are sequenced and
analyzed. For 5’ barcoding, barcodes are added at the template switch step. After barcoding, all of the single-cell transcripts are pooled and amplified. Unlike 3’ barcoding,
only two constant-region reverse primers are required for each PCR reaction. Lastly, PCR products are sequenced and analyzed. Notably, for both 5’ and 3’ barcoding,
tagmentation and PCR amplification by universal primers can be utilized, in order to analyze all transcripts and obtain whole-transcriptome data.
June 2021 | Volume 12 | Article 689091
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also amplified in the same reaction. The introduction of short
nucleotides, or barcodes, during the PCR reaction, makes it
possible to pool the different amplicons and perform high-
throughput sequencing by NGS (29). More recently, the
technological developments have resulted in mainly two
methods commonly used to perform the amplification of the
single cell transcriptome that can be divided into full-length
cDNA amplification and cell barcode approach.

Full-Length cDNA Amplification
This approach generates a sequencing library separately for each
single-cell transcriptome. While it is more expensive than
targeting specific genes, it has the benefit of broader data
collection (e.g. on isoforms, etc.). The full-length approach has
also been used to identify TCR sequences for several applications,
including TCR repertoire analysis and pairing of TCRa and b
chains. This approach is often used when the single cells are
captured in individual wells, for example, after FACS sort or
when captured by a microfluidic device. After cell lysis, the
mRNA molecules are reverse transcribed using oligo dT primers
at the 3´end. A universal sequence is added at the 5´end by a
template-switch strategy. The template switch strategy is usually
employed when there is a variation about the exact sequence of a
gene, such as TCR variable region, or when we intend to amplify
all transcripts. The strategy employed is based on the particular
behavior of the reverse transcriptase that adds a stretch of non-
template dCTPs at the 3′ end of the cDNA. This stretch of dCTPs
can bind to a specifically designed oligo that contains a
complementary stretch of poly-G followed by a universal
sequence (30).

Once the universal sequence is introduced at the 5´end of
each transcript, the full-length transcript (from the 5’ to the 3’
end) can be amplified. The amplification step is followed by a
“tagmentation” step, usually using a transposase that can insert
Tag sequences that are then used to insert barcodes. The libraries
prepared with this method are not enriched for the TCR
sequences. Therefore, to extract each TCR sequence, it is
necessary to use a bioinformatic tool. For TCRs, the traditional
reference-based assembly, where the sequences obtained are
compared to a reference genome, is combined with de novo
assembly for the CDR3 region that has to be reconstructed based
only from the actual sequences. Several tools have been
developed to perform this type of analysis. An example is
TraCeR, a computational method that allows to reconstruct the
variable sequence of TCRa and TCRb chains through use of a
“combinatorial recombinome” library of all possible TCR
sequences, this method was initially used in combination with
the FluidigmC1 System (31, 32). Another computational method
is “single-cell TCRseq” (33) that employs several consecutive
steps to first identify and count RNA reads mapping to specific
TCR V and C regions, then perform multiple alignments to
create consensus V and C gene sequences. Finally, gaps in the
sequence are filled similarly to de novo transcript assembly. A
similar multistep approach is also used by TRAPeS (TCR
Reconstruction Algorithm for Paired-End Single-cell) (34). In
this software, the V and J segments are first identified for each
chain. Subsequently, a set of putative CDR3 reads are identified
Frontiers in Immunology | www.frontiersin.org 4
as potential match to the one from the previously identified V
and J segments. Lastly, an algorithm is used to reconstruct the
CDR3 region from the putative CDR3 reads. We also utilized a
similar approach to assemble TCR sequences (35). The TCR
sequence reads were first aligned to V segments, and then TCR
reads with identical CDR3 region sequences were merged to
assemble the full-length TCR sequences. Lastly, VDJ Puzzle is a
useful tool that allows to reconstruct the TCR sequence from
single cell transcriptome data (36). This method was first
described to link the TCR sequence from antigen-specific cells
based on their gene expression profile.

Cell Barcode
The cell-barcode strategy adds cell barcodes, about 10-20 bp
random nucleotide sequences, to individual single cells. This
makes it possible to pool all transcripts coming from thousands
of cells, increasing the throughput and decreasing the cost
dramatically (17, 37). This approach is usually employed after
each cell has been captured into a microdroplet and lysed. In
addition to cell barcodes, molecular barcodes are often added at
the same time. Molecular barcodes, also known as unique
molecular identifiers (UMIs), are about 10 bp random
nucleotide sequences, which allow us to identify each
individual molecules/transcripts. The advantage of UMI
technique is that the UMI counting will not be altered even
after imbalanced PCR amplification.

For the cell barcodes at the 3’ end, all mRNA transcripts
present in the cells are reverse transcribed using oligo dT primers
containing both the cell barcodes and molecular barcodes. Next,
the template switch strategy is used to add a universal sequence
at the 5’ end. This enables the PCR amplification of all
transcripts. Lastly, a set of variable-region forward primers and
gene-specific forward primers are utilized to enrich TCRs and
other genes of interest. An additional PCR reaction is required to
add necessary DNA sequences for next-generation sequencing.

For the cell barcodes at the 5’ end, all mRNA transcripts are
reverse transcribedusingoligodTprimers, but the cell barcodes and
molecular barcodes are added at the 5’ end during the template
switch step. Next, all transcripts are pooled and amplified by PCR.
TCRandother genesof interest canbeamplifiedbyconstant-region
reverse primers and gene-specific reverse primers. Lastly, an
additional PCR reaction is used to add necessary DNA sequences
for next-generation sequencing. Notably, the whole-transcriptome
analysis can be achieved by both 5’ and 3’ end barcoding. After the
PCR amplification and an additional tagmentation step for all
transcripts, transcripts at the 5’ end or 3’ end can be processed
and sequenced. Because cell barcodes and molecular barcodes are
required tobe retained in the entireprocess, only the gene sequences
near the 5’ or 3’ end, approximately 200-500 bp, can be sequenced.
As the results, the information of full-length transcripts, including
isoforms, is lost using this strategy.

The strengths and weaknesses of different strategies are
summarized in Tables 1 and 2. In recent years, the single-cell
field has been in favor of the microdroplets with cell barcode
approach, because a higher number of cells can be obtained,
compared to other approaches. Although the microdroplet
approach is less sensitive to detect low abundant genes, this
June 2021 | Volume 12 | Article 689091
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TABLE 1 | Comparison between multiplex PCR approach and full-length cDNA amplification approach.

Multiplex PCR Full-length cDNA amplification

More sensitive for individual genes or TCRs Less sensitive
Lower cost Higher cost for deeper sequencing
A set of ~70 primers for TCR variable region is required* Only a set of universal primers is required*
Impossible to obtain whole-transcriptome data Available whole-transcriptome data
Impossible to obtain full-length TCR sequences Available full-length TCR sequences

*Another set of primers is required for nested PCR amplification.

TABLE 2 | Comparison between cell barcodes at the 5’ end and 3’ end.

Barcodes at the 3’ end Barcodes at the 5’ end

More efficient to add barcodes Less efficient to add barcodes
A set of ~70 primers for TCR variable region is required* Only 2 primers for TCR constant region are required*
Suitable for all types of cells Only suitable for TCR and BCR studies
More kits and applications available due to popularity Less kits and applications available

*Another set of primers is required for nested PCR amplification.

Pasetto and Lu Single-Cell TCR and Transcriptome Analysis
concern is outweighed by the high cell numbers and robust
bioinformatic tools. In addition, microdroplets with barcodes at
5’ end can use a minimum number of primers for TCR
amplification, compared to barcodes at 3’ end. As a result, 5’
barcoding is more suitable for T-cell studies that require TCR
sequence information, such as clonality analysis.
SPATIAL TRANSCRIPTOMICS

Single-cell samples are often prepared by enzymatic or mechanical
dissociation. As a result, spatial information is lost during the
Frontiers in Immunology | www.frontiersin.org 5
sample preparation. However,the interactions between T cells and
the adjacent cells in the tumor microenvironment may influence
the transcriptome of individual T cells. Stahl PL et al. have
developed a new technique to provide two-dimensional, spatial
information, which can complement single-cell transcriptome
data analysis (38). In this technique, mRNA transcripts from a
tissue section are captured on an array by oligo dT-based probes,
which contain spatial barcodes and UMIs (Figure 2). Similar to
the single-cell transcriptome analysis with barcodes at 3’ end,
transcripts containing barcodes at 3’ are amplified and sequenced.
This technique has improved significantly in recent years, and it
can now reach near the single-cell resolution, at approximately
FIGURE 2 | An overview of a spatial transcriptomics technique. A specialized slide contains several capture areas. Each capture area contains thousands of spots,
and each spot is coated by oligo dT-based probes. To obtain spatial information, mRNA transcripts from a tissue section are captured by these oligo dT-based
probes on spots. Because probes on each spot contain a unique spatial barcode and UMIs, the spatial information can be preserved in the subsequent PCR
reactions. Similar to the single-cell cell barcode approach with 3’ barcoding, transcripts containing spatial barcodes at the 3’ end are amplified by PCR reactions and
sequenced. The data obtained from spatial transcriptomics can combine with single-cell transcriptome data to obtain comprehensive information for cell-cell
interactions in the tissue microenvironment.
June 2021 | Volume 12 | Article 689091
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1-10 cell resolution per spot, depending on the tissue type. In
addition, spatial information can combine with traditional
immunofluorescence staining to detect both mRNA and protein
expression at the same time.

Since the initial publication, scientists have used this spatial
transcriptomics technique on a variety of tissue specimens. We
have identified two publications related to T-cell studies. Thrane
K et al. utilized this technique to study melanoma lymph node
biopsies, and they were able to visualize the transcriptional
landscape within the tissue (39). The lymphoid area in close
proximity to the tumor region showed a specific expression
pattern, which might reflect the unique feature in tumor
microenvironment. Notably, an IFN-g gene signature, likely
from activated T cells, was identified within the transition area
between melanoma and lymphoid areas. In another study, Ji AL
et al. combined the techniques of spatial transcriptomics, single-
cell transcriptome and multiplexed ion beam imaging to study
the architecture of cutaneous squamous cell carcinoma (40). In
addition to a tumor-specific keratinocyte population that they
identified, they also observed regulatory T cells co-localized with
CD8+ T cells in the compartmentalized tumor stroma. Taken
together, spatial transcriptomics may have significant potential
in the future study.
T-CELL NEOANTIGEN IDENTIFICATION

Cancer is caused by a series of genetic alterations that occur in
normal cells and are responsible for their transformation in
malignant cells. These alterations confer an advantage to the
affected cells, such as increased proliferation and inhibition of
apoptosis. However, these can also result in the production of
mutant proteins that are immunogenic and can be targeted by
the immune-system. When such mutated proteins become
targets for the immune-system, they can be called neoantigens.
Because neoantigens are not expressed by normal cells, they
represent attractive targets for cancer therapy. In the vast
majority of cases the identified neoantigens arise by single
amino-acid substitutions. The mutated peptides can be
processed and presented by MHC molecules, and then the
peptide/MHC complexes can be recognized by T cells. The
presence of neoantigen-reactive T cells have been identified
across different cancer histology, like lung cancer (41, 42)
bladder cancer (43), head and neck cancer (44, 45), ovarian
cancer (46–49) pancreatic cancer (50, 51) and gastrointestinal
epithelial malignancies (35, 52–54). Interestingly, the T cells
identified in these studies recognized unique somatic
mutations, with few exceptions where the T cells recognized
hot spot mutations on oncogenes, like KRAS (55, 56) and p53
(9, 47, 48, 54). Additional studies are needed in order to evaluate
systematically the immune-response against hot spot mutations
in these highly valuable targets.

Single cell sequencing is a powerful tool for T cell biology
discovery and can be employed to dissect specific functional and
phenotypical signatures. T cells have the ability to recognize
specific antigens in the contest of MHC molecules, and this
Frontiers in Immunology | www.frontiersin.org 6
ability can be harnessed to develop anticancer therapies,
therapies against autoimmune diseases and antiviral therapies.
The “holy grail” of T cell immunology would be to predict the
antigen-specificity of a T cell simply by studying its TCR
sequence and structure. Although this antigen-prediction is not
available yet, several technologies have been developed to
identify an epitope recognized by a given T cell and rapidly
isolate its TCR. In the following sections we will describe some of
the most successful approaches used to identify T cell antigens
and their specific TCRs.

pMHC Multimers
One of the most common approaches used for this purpose is
based on the capacity of T cells to bind pMHC multimers. If the
multimers are labelled with fluorescent probes, the T cells can be
identified and isolated by flow cytometry (57). This strategy can
only be applied when the target epitope is known and also
suitable to be presented on pMHC multimers. Typically class I
epitopes give more specific binding than class II. Despite these
limitations this approach has been effective to discover important
cancer antigens that could be used for immunotherapy (58, 59).
A more recent version of this strategy employs pMHCmultimers
labelled with DNA barcodes [TetTCR-Seq (60)] which has the
advantage of high-throughput and the possibility to integrate
single-cell transcriptomics, T cell phenotype and TCR sequence
isolation. To address specific binding and recognition of class II
restricted epitope, Graham DB et al. developed a high-
throughput approach for screening of DNA-encoded pMHC
class II libraries to provide functional recognition by TCRs
identified from single cell sequencing (61). Additionally, DNA-
barcodes were linked to magnetic nanoparticles, as described by
Peng et al. (62), to identify CD8+ neoantigen-specific T cells from
tumor and blood samples of melanoma patients. This last study
highlights how both the antigen-binding specificity and the
sensitivity in detecting rare T-cell populations is important to
identify reactive T cells from clinical samples.

Screening of Antigenic Libraries
In the previous section, we described examples of technologies
that enabled to isolate specific TCRs for known antigens. This
type of approach is very useful when the specific antigen and its
MHC-binding epitope is known, for example when targeting
viral antigens or shared cancer antigens (both mutated and
normal proteins). A different situation is represented by T cells
and TCRs that have been isolated based on some particular
characteristic (e.g. the expression of a specific marker or their
high frequency in a particular T cell subset), but their specificity
is unknown. There are several strategies that can be used to
identify the cognate peptide for orphan TCRs (63). Most
approaches are based on empirical testing where the T cell
activation status is evaluated after co-culture with the
candidate antigens (15, 16, 64). An interesting variation of
these approaches consists in the screening of pMHC libraries,
where the TCRs are isolated based on their affinity to the
different pMHC, but without knowing the antigenic
specificity (63).
June 2021 | Volume 12 | Article 689091
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SINGLE-CELL STUDIES ON T-CELL
BIOLOGY AND CANCER
IMMUNOTHERAPY

Single-cell transcriptome analysis has been used to study the
biology of T cells in several areas, including T-cell development,
differentiation, and responses during infection and
autoimmunity. The role of T cells in tumor microenvironment
and cancer immunotherapy is also a topic for intensive studies
(Figure 3). Single-cell TCR analysis can also provide important
information for these studies, such as TCR pairing and clonality.
Furthermore, it has been demonstrated that combining TCR and
gene expression information can provide deeper understanding
for T cell-mediated immune responses (29). Because many high-
quality manuscripts using single-cell techniques have been
published in recent years, we would like to focus our
discussion on some of outstanding publications utilizing
single-cell transcriptome data alone or together with the TCR
sequencing data. Notably, high-dimensional flow cytometry or
mass cytometry (CyTOF) can investigate over a dozen of cell-
surface markers at the single-cell level (65). For the scope of this
article, we will not discuss findings generated by this technique.
T-CELL DEVELOPMENT
AND DIFFERENTIATION

The thymus is the key organ for T cell development.
Abnormalities of T-cell development, including positive and
negative selections, can lead to autoimmune diseases (66, 67).
Park JE et al. performed a comprehensive single-cell study on
prenatal and postnatal thymus samples, including adult samples
(68). Pseudo-time analysis showed that gene markers and
trajectory for T cell development were consistent with
previously knowledge in mice (69). However, the authors also
identified a previous unknown subset, GNG4+ CD8aa+ T cells in
the thymus. This subset of T cells could fully mature into a
CD8Ahigh/CD8Blow phenotype, but T cells from the mouse
Frontiers in Immunology | www.frontiersin.org 7
counterpart could become triple negative (CD8Alow CD8Blow

CD4low) cells.
T cells can further differentiate in the peripheral tissue. Li N

et al. utilized single-cell sequencing and other techniques to
characterize CD4+ T cell compartment in the human fetal
intestine (70). Additionally, through the single-cell trajectory
analysis, the authors observed the generation of memory-like
CD4+ T cells in the human fetal intestine. In another report,
Galletti G et al. used single-cell analysis to study human CD8+

memory T cells from peripheral blood under physiological
conditions, and identified two previously unrecognized subsets
of stem-like CD8+ memory T cells (71). The PD-1- TIGIT- subset
was committed to a functional lineage, whereas the PD-1+

TIGIT+ subset was committed to a dysfunctional, exhausted-
like lineage. Lastly, using the transcriptome and TCR sequencing
analysis, Patil V et al. identified the CD4+ cytotoxic T cell
population within the TEMRA (effector memory T cells
expressing CD45RA) subset (72). In addition, they could
identify four distinct subsets within the CD4+ cytotoxic T cell
population, based on single-cell transcriptome analysis. These
studies provide insights on the potentially durable immunity
generated by T cells.

T-Cell Biology in Autoimmunity
T cells play an important role in autoimmunity. Corridoni D
et al. utilized single-cell transcriptome analysis to study colonic
CD8+ T cells in health and ulcerative colitis, an inflammatory
bowel disease (73). They found that IL-26 was expressed in
terminally differentiated, dysfunctional CD8+ T cells from
ulcerative colitis. Human IL-26 could attenuate immune
responses in a mouse model of acute colitis. Next, Strobl J
et al. used single-cell technique to study tissue-resident
memory T cells in skin, and they identified RUNX3 and
LGALS3 as new markers for this type of T cells (74). They also
identified a large number of host-derived tissue-resident memory
T cells in skin lesions from patients developing graft-versus-host
disease, suggesting the potential contribution of these cells to this
disease. Lastly, Seumois G et al. studied the roles of CD4+ T
helper cells and regulatory T cells in patients with asthma, and
FIGURE 3 | Several aspects of T-cell biology that can be studied by single-cell techniques. In this review article, we summarize studies that utilized single-cell TCR
and transcriptome analysis. Those studies include fields in T-cell development and differentiation, autoimmunity, infectious disease, tumor microenvironment and
cancer immunotherapy.
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they identified CD4+ T cell subsets that might contribute to the
pathogenesis of allergy and asthma (75).

The Role of T Cells in Infectious Diseases
Single-cell analysis has become a powerful tool to analyze T-cell
responses during the infection. For example, Kazer SW et al.
studied peripheral blood mononuclear cells from four
individuals with acute HIV infection, and they discovered gene
response modules that were different between cell subsets and
were changed during the course of the infection (76). More
importantly, during COVID-19 pandemic, several studies
utilized single-cell analysis to study T cells from COVID-19
patients (77–82). In one of the studies, abundant exhausted T
cells with skewed TCR repertoire were found in the immune
landscape of severe COVID-19 patients (79). In another study,
single-cell sequencing was performed on immune cells isolated
from cerebrospinal fluid (CSF) in COVID-19 patients with
neurological sequelae (82). Those CSF T cells showed a
reduced interferon response compared to viral encephalitis.

T-Cell Biology in Tumor Microenvironment
Single-cell technique has been used insensitively to study T-cell
biology in tumor microenvironment. T-cell transcriptome
profiles in the majority of cancer types have been published
(32, 83–91). Li H et al. studied intra-tumoral T cells isolated from
25 melanoma patients (92). They discovered a significant portion
of the CD8+ T cells were in a gradient of “transitional” states,
between a healthy/cytotoxic T-cell state and a dysfunctional
T-cell state. In addition, T cells in the dysfunctional state still
had proliferative capacity and formed large T-cell clones. In
another study, Ghorani E et al. utilized single-cell analysis and
high-dimensional flow cytometry analysis to analyze non-small
cell lung cancer specimens (93). They found the correlation
between T-cell differentiation status and tumor mutational
burden. The authors proposed that the characterization of
intratumoral T cells might help to predict the outcome of
immunotherapy. Lastly, Oh DY et al. studied T cells isolated
from bladder cancer and identified several subsets of CD4+

T cells containing gene signatures for cytotoxic T cells.

T Cells and Cancer Immunotherapy
Investigators have utilized single-cell techniques to study
in t ra tumora l T ce l l s p r io r and a f t e r checkpo in t
immunotherapy for melanoma (94, 95). One of the important
findings was the identification of a CD8+ T cell subset that
expressed TCF7, a key transcription factor for “memory-like”,
proliferation-competent, exhausted T cells (96–98). In addition,
the presence of TCF7+CD8+ T cells could predict clinical
response to checkpoint immunotherapy. Next, Luoma AM
et al. utilized single-cell analysis to study T cell populations in
colitis, a common and severe side effect of checkpoint
immunotherapy (99). They observed a substantial fraction of
colitis-associated CD8+ T cells that were likely originated from
tissue-resident populations, identified by single-cell TCR
clonality analysis. Similarly, studies were carried out to
perform single-cell TCR/transcriptome analysis on peripheral
Frontiers in Immunology | www.frontiersin.org 8
blood T cells after checkpoint immunotherapy (91, 100). This
approach was able to identify genes associated with clinical
responses as a result (100).

Chimeric antigen receptor (CAR) T cell therapy has shown
dramatical clinical responses against B-cell malignancies. The
majority of the CAR designs utilized two different co-stimulatory
domains derived from CD28 and 4-1BBmolecules. Boroughs AC
et al. attempted to use single-cell transcriptome analysis to
identify gene signatures associated with different CAR designs
(101). The authors identify a transcriptional signature shared
between CAR designs, as well as a unique, distinct signature
associated with 4-1BB co-stimulatory domain, compared to
CD28 co-stimulatory domain. In another study, Sheih A et al.
took advantage of highly-diverse, endogenous TCR sequences
and utilized these sequences as natural barcodes (102). They
were able to track CAR T cells after therapy and perform single-
cell analysis by following these barcodes. Taken together, the
results obtained by single-cell analysis provides more insights on
how to improve the cell products for CAR T-cell therapy.
CAVEATS ON EXPERIMENTAL DESIGN
AND DATA INTERPRETATION

Single-cell TCR and transcriptome analysis is a very powerful
tool, but it can be very costly as well. We hope those outstanding
publications described above can help readers to design single-
cell experiments and acquire data that cannot be obtained by
other approaches. One of the common errors is to utilized a
single-cell sequencing approach even when the proposed
research goals can be simply accomplished by “bulk” RNA-seq
analysis, which not only costs less, but also can acquire higher
quality of data, especially for low abundance transcripts.

Although the data quality of single-cell transcriptome has
improved significantly in recent years, the single-cell data still
suffer from the sensitivity issue for low abundance transcripts,
also known as technical dropouts. Several computational
algorithms have been developed to specifically address this
issue for single-cell transcriptome analysis (103–105).
However, the performance of these algorithms is still far from
perfect, and the results may differ between algorithms (106).
Therefore, researchers are still needed to beware of potential
artifact and bias involved in the data analysis and interpretation.
We still highly recommend researchers to validate the
observations by another independent approach, such as flow
cytometry or targeted sequencing.

Another important caveat is that the observations tend to be
simplified, leading to binary thinking. The commonly used
clustering technique in single cells analysis is based on the
assumption that cells are defined into discrete populations,
which might not reflect the true biology. Van der Leun et al.
have proposed that T cells in the tumor microenvironment are in
a gradient of cell states rather than discrete populations (107).
Therefore, we should be cautious about data interpretation using
the clustering technique.
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FUTURE PERSPECTIVE: HIGHLY
PERSONALIZED, T CELL-BASED
CANCER IMMUNOTHERAPY

Studies utilizing adoptive cell transfer of tumor-infiltrating
lymphocytes (TIL) have shown that this approach can result in
durable and complete regressions of advanced cancer diseases, in
particular metastatic melanoma. Very frequently, reactivities
against neoantigens were present among the infused TIL (108–
110). Despite the evidence of clinical responses, the adoptive
transfer of neoantigen-reactive TIL has several limitations. The
transferred cells are highly differentiated and can have a limited
proliferative ability, leading to lack of persistence in vivo after
adoptive cell transfer (111, 112). Additionally, because it is
impossible to control the skewing of the T cell repertoire
during expansion, the neoantigen-specific TIL could lead to
low abundance in the infusion product. For the same reason, it
is also very difficult to control the number and the quality of the
neoantigen that are targeted. To overcome some of these
limitations, the genetic transfer of neoantigen-specific TCRs
has been proposed (113–115). With this approach, it will be
possible to introduce highly specific TCRs into less differentiated
cells, and to combine TCRs with several specificities, affinities
and HLA restrictions in one infusion product, potentially
increasing the possibility of clinical response (14). This
approach has nevertheless its own challenges, which are mainly
related to finding a reliable source of neoantigen-reactive T cells
from where to isolate the TCRs, as well as rapidly and efficiently
transferring the TCRs to new recipient cells for treatment.

In targeting unique somatic mutations by adoptive T-cell
therapy, it is equally important to consider other aspects that
may reduce the efficacy of the therapy. Tumor heterogeneity is a
major obstacle not only because the targeted neoantigen may not
be expressed on every cell, but also because the MHC elements
may not be expressed uniformly or even lost (116, 117). Another
Frontiers in Immunology | www.frontiersin.org 9
factor to consider is that the T cell functionality may not be
always optimal even in the presence of the neoantigen-specific
TCR. Several reports have highlighted the dysfunctionality of
exhausted T cells in cancer patients (118, 119). Therefore, a
desirable therapeutic approach would target several neoantigens,
possibly restricted to different HLA elements and would be
carried out by the most effective T cells. Different strategies
have been proposed to overcome some of the most important
issues, such as the selection of T cell subsets with a stem-like
phenotype to improve persistence and antitumor activity (120)
or the genetic modification of T cells to secrete IL-12 in order to
promote HLA expression and cross-presentation by surrounding
cells in the tumor microenvironment (121).

In summary, the single-cell TCR and transcriptome analysis
has enabled T-cell biologists to ask critical questions and obtain
interesting findings. This newly available research tool may help
us to improve the current immunotherapy and develop new
treatments for cancer and other diseases. We look forward to
more exciting discoveries in the coming years.
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