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Simple Summary: Copy-number variations (CNVs) have important clinical implications for several
diseases and cancers. We reviewed 50 popular CNV calling tools and included 11 tools for bench-
marking in a reference cohort encompassing 39 whole genome sequencing (WGS) samples paired
current clinical standard—SNP-array based CNV calling. For nine samples we also performed whole
exome sequencing (WES), to address the effect of sequencing protocol on CNV calling. Furthermore,
we included Gold Standard reference sample NA12878, and tested 12 samples with CNVs confirmed
by multiplex ligation-dependent probe amplification (MLPA). Tool performance varied greatly in
the number of called CNVs and bias for CNV lengths. Some tools had near-perfect recall of CNVs
from arrays for some samples, but poor precision. We suggest combining the best tools also based on
different methodologies: GATK gCNV, Lumpy, DELLY, and cn.MOPS.

Abstract: Copy-number variations (CNVs) have important clinical implications for several diseases
and cancers. Relevant CNVs are hard to detect because common structural variations define large
parts of the human genome. CNV calling from short-read sequencing would allow single proto-
col full genomic profiling. We reviewed 50 popular CNV calling tools and included 11 tools for
benchmarking in a reference cohort encompassing 39 whole genome sequencing (WGS) samples
paired current clinical standard—SNP-array based CNV calling. Additionally, for nine samples
we also performed whole exome sequencing (WES), to address the effect of sequencing protocol
on CNV calling. Furthermore, we included Gold Standard reference sample NA12878, and tested
12 samples with CNVs confirmed by multiplex ligation-dependent probe amplification (MLPA). Tool
performance varied greatly in the number of called CNVs and bias for CNV lengths. Some tools
had near-perfect recall of CNVs from arrays for some samples, but poor precision. Several tools
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had better performance for NA12878, which could be a result of overfitting. We suggest combining
the best tools also based on different methodologies: GATK gCNV, Lumpy, DELLY, and cn.MOPS.
Reducing the total number of called variants could potentially be assisted by the use of background
panels for filtering of frequently called variants.

Keywords: copy-number variation (CNV); whole genome sequencing (WGS); whole exome
sequencing (WES); benchmark; bioinformatics; structural variant

1. Introduction

Large cohort-based genome-wide association studies provided us with the tools and
knowledge to understand numerous phenotypic traits and diseases by single nucleotide
polymorphisms (SNPs) and short (<50 bp) insertions and deletions in the genome. It is,
however, more challenging to assess the role of the larger structural variations which has
proven to be important for the regulation and function of many gene products. This is
particularly the case for copy number variations (CNVs) [1] which were first described in
healthy humans [2] but have since been associated with diseases, especially neurodevel-
opmental disorders and cancer [3,4]. CNVs are estimated to contribute to 4.8–9.5% of the
genome and one or multiple exon copy number changes can affect gene expression levels
or induce chromosomal rearrangements causing various disorders and diseases [5,6].

The current clinical standard method for CNV assessment remains array-based
CNV identification, either from array-based comparative hybridization or SNP-array
approaches [7,8]. While these arrays provide relatively accurate, cost-effective, and precise
identification of CNVs, the use of short-read sequencing (or next generation sequencing,
NGS), is not limited to the specific regions included on the arrays, has higher potential
to identify novel CNVs, and has higher resolution at predicting both the breakpoints and
shorter CNVs [9]. Long-read sequencing is still cost-preventive for routine diagnostics
and uniquely suited for structural variants (SVs). The alternative-NGS-bears the potential
of a single assay for complete genomic analysis that allows for automated identification
of both SNPs and SVs from the same data. CNV calling from NGS does, however, create
new challenges such as dealing with variable coverage across the genome, alignment bias
for deletions, read-length limit and insensitiveness towards repetitive and breakpoint re-
gions [10]. Furthermore, short-read sequencing increases mapping ambiguity consequently
increasing the complexity of CNV detection [10]. This is particularly true for whole exome
sequencing (WES) or targeted gene panels, as the sequencing coverage and read depth in
different areas are highly variable.

CNV calling algorithms can be based on one or more approaches: read-pair (RP),
read-depth (RD), split read (SR), or assembly (AS) algorithms [11] (Figure 1). Most CNV
calling tools are based on RD algorithms predicting CNVs from the changes based on read
coverage in different areas of the genome.

With the increasing attention for the identification of SVs, including CNVs, and their
clinical use, multiple SV databases have been established, such as CNV tracks in the
UCSC database [12,13] or gnomAD SV [14]. These databases help to evaluate predicted
CNVs more accurately; however, the correct CNV identification itself remains challenging.
In recent years, a number of tools for calling CNVs from NGS sequencing data, have
been developed [11]. Although a few recent studies [15,16] have benchmarked newly
available SV callers, many benchmark studies have often been performed using known
NGS datasets based on a single sample or a limited number of samples [9,11,15–17], and a
lack of comprehensive benchmark of various SV callers using multiple samples has been a
major challenge for SV (including CNV) detection.
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Figure 1. Schematic visualization of different approaches for calling CNVs from NGS data. RD detects local difference in 
read-depth, SR detects unmatched read pairs, RP detects decreased insert size or swapped read directions between read 
pairs, and AS performs de novo assembly to best explain read distribution. 
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Genomic DNA (gDNA) was extracted from whole blood samples using a liquid 
handling automated station (Tecan, Männedorf, Switzerland). WES was performed from 
200 ng of gDNA. Fragmentation was done on Covaris S2 (Agilent, Santa Clara, CA, USA) 
to approximately 300 base pair fragments and adaptor ligation was performed using 
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Figure 1. Schematic visualization of different approaches for calling CNVs from NGS data. RD detects local difference in
read-depth, SR detects unmatched read pairs, RP detects decreased insert size or swapped read directions between read
pairs, and AS performs de novo assembly to best explain read distribution.

Here, we report an evaluation of 11 CNV detection tools for NGS and aim to identify
the most reliable and clinically applicable software, whether based on WES or whole
genome sequencing (WGS) originating from multiple individuals. We used the standard
CytoScan HD SNP-array as a reference method for CNV detection and assessed the poten-
tial increase in sensitivity of WGS in comparison to WES. We selected the best performing
tools and attempted to optimize the CNV calling to improve precision. Finally, we suggest
a combination of four tools (GATK gCNV, Lumpy, DELLY, and cn.MOPS) for a balanced
CNV recall and precision.

2. Materials and Methods
2.1. Sequencing and Read Alignments

Genomic DNA (gDNA) was extracted from whole blood samples using a liquid
handling automated station (Tecan, Männedorf, Switzerland). WES was performed from
200 ng of gDNA. Fragmentation was done on Covaris S2 (Agilent, Santa Clara, CA, USA)
to approximately 300 base pair fragments and adaptor ligation was performed using
KAPA HTP Library Preparation Kit. Exomes were enriched with SureSelectXT Clinical
Research Exome kit (Agilent Technologies, Santa Clara, CA, USA). Paired-end sequencing
with average read depth of at least 50× and 150 bp read length was performed using
HiSeq2500 or NextSeq500 platforms from Illumina. For WGS analysis, sequencing libraries
were prepared from 500 ng gDNA using Nextera DNA Flex library prep kit (Illumina,
San Diego, CA, USA), according to the manufacturer’s instructions. WGS libraries were
sequenced on Illumina NovaSeq6000 with sequencing depth of at least 30× and 150 bp
read length. Sequenced reads were trimmed and aligned to the human reference genome
(hg19/GRCh37) using BWA MEM v.0.7.12 software [18].
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2.2. Selection of Normals

CNVkit, CODEX2, ExomeDepth, and GATK gCNV require a group of samples to
represent healthy control genomes. Normal samples should be produced with the same
technical protocol, thus presenting a similar pattern of technical noise. Due to the nature of
our experimental set up, no healthy control samples were available to create the Panel of
Normals. Normal-like samples, concluded to have no CNVs by CytoScan HD SNP-array,
were selected instead. Seventy whole genomes were chosen as WGS normals. Ninety-four
exome samples were chosen as WES normals.

2.3. MLPA

Multiplex ligation-dependent probe amplification (MLPA) analysis was performed
according to the manufacturer’s instructions (MRC-Holland, Amsterdam, the Netherlands)
using appropriate MLPA Kits for BRCA1 (NM_00007294), BRCA2 (NM_000059), FLCN
(NM_144997), MSH2 (NM_000251), MSH6 (NM_000179), PALB2 (NM_024675), PMS2
(NM_000535), VHL (NM_000551).

2.4. CytoScan HD SNP-Array

gDNA was isolated using the liquid handling automated station (Tecan). Purified
DNA was quantified using the Qubit instrument (Life Technologies, Carlsbad, CA, USA).
CytoScan HD SNP-array (Thermofisher Scientific, Waltham, MA, USA), which contains
2.67 million genome-wide markers, was performed on extracted DNA from samples GB01-
GB38, according to the manufacturer’s instructions. Result files were analyzed using Nexus
Copy Number software 10.0 (BioDiscovery, El Segundo, CA, USA) using NCBI Build 37 as
reference. The samples were pre-processed by systematic correction (Quadratic), probes
were recentered by the median and applying the mean of Combine Replicates Between
Arrays. Subsequently, data were processed by SNP-FASST2 Segmentation with a signif-
icance threshold of 1.0 × 10−8 and max contiguous probe spacing of 1000 Kbp with a
minimum of 3 probes per segment. The following thresholds were applied for calling
CNVs: High Gain = 0.7; Gain = 0.23; Loss = −0.37; Big Loss = −1.1 and heterozygous im-
balance threshold of 0.4. All gains or losses not covered by an allelic imbalance event were
considered as false-positive and removed. Moreover, independently of the automatically
generated CNV calls, each sample was visually inspected for CNVs using Nexus Copy
Number software 10.0 (BioDiscovery, El Segundo, CA, USA).

2.5. NA12878 Gold Standard

Gold standard for NA12878 CNVs was produced by the 1000 Genomes Project. It
contains only high confidence CNVs and the list of all CNVs was obtained from Haraksingh
et al., 2017 [8]. In total, 2076 CNVs of 51–453,313 bp sizes were used for CNV calling
software evaluation. We have performed NA12878 WGS sequencing in-house while WES
data was obtained from: ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA128
78_HG001_HiSeq_Exome/ (accessed on 1 April 2019).

2.6. CNVnator

CNVnator [19] was run using the default parameters and recommendations from the
authors with the bin size of 100 for all WGS samples.

2.7. CLC Genomics Benchmark

CLC Genomics Benchmark uses fastq files as input to the CNV calling workflow
which are subsequently mapped to the reference genome by their internal read mapping
tool [20]. The mapped reads of the samples under investigation and the control samples
are then used for calling CNVs. The called CNVs can be exported as BED files.

ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/
ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/
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2.8. GATK gCNV

GATK gCNV [21] calling is composed of two workflows: model creation and individ-
ual sample calling.

During model creation, the Panel of Normals of WGS and WES composed by 70
and 94 samples respectively, were generated. For WGS, intervals of 1000 bp and 0 bp
padding were produced and filtered following GATK recommendations. No intervals were
generated for WES samples. Read counts were measured in the exome regions and whole
genome intervals and ploidy models were generated. Finally, a model per chromosome
was produced using GermlineVariantCall. Benchmark samples were subsequently run,
following the same procedure as the Panel of Normals, but including the available models
during ploidy determination and germline variant call. Chromosomal calls were finally
merged using PostprocessGermlineCNVCalls.

2.9. DELLY

Duplications and deletions were called by using DELLY [22]. Only one library size
was available, and it was provided at a time. Each of the samples only contained one
read-group and no further specifications were given. The variant call was performed
searching for duplication events (−t DUP) and deletions (−t DEL). The resulting bcf files
were merged using bcftools concat.

2.10. cn.MOPS

cn.MOPS [23] was used to call CNVs on all WES and WGS samples following the
vignette [24]. Due to memory constraints, WGS sample bam files were grouped together
in batches of 11 to 12 samples before analysis, and each batch was run as follows. Using
the provided getReadCountsFromBAM function, read counts were extracted from the
bam files for chromosomes 1–22 using a window length parameter WL = 500 in order to
achieve roughly 50–100 reads per window. The cn.mops function was used to call CNVs
and integer copy numbers were extracted using calcIntegerCopyNumbers.

For the WES samples, all bam files were run together as a single batch. A bed file with
the targeted regions was converted into GRanges format and used to extract read counts in
the regions with the getSegmentReadCountsFromBAM function. CNVs were then called
using the exome cn.mops function and integer copy numbers calculated as above.

2.11. CNVkit

CNVkit [25] was used to call CNVs on all WES and WGS samples, grouped together
by library type and according to the authors guidelines [26]. Briefly, we used the default
parameters, restricting the analyses to the WGS mappable regions and, in the case of WES,
to the captured regions also.

2.12. Control-FREEC

Control-FREEC 11.5 [27,28] was used to process the 39 WGS samples of the benchmark
starting from BAM files. Default parameter values (forceGCcontentNormalization = 0,
minCNAlength = 1, coefficientOfVariation = 0.05) were used, however, ploidy was set
to 2, mateOrientation to “FR” for Illumina paired-end reads, and the sex of each sample
was supplied (two males and seven females). In this case, the hg19 reference used for
alignment was used and mappability of the genome was disregarded (read length = 151).
Sambamba 0.6.7 [29], BEDTools 2.27.1 [30], Samtools 1.9 [31,32], and R 3.5.0 [33] were
used as dependencies. The script ‘assess_significance.R’ provided by the Control-FREEC
developers was used to add p-values to the detected CNVs.

2.13. Manta

Manta [34] was used to infer deletions and duplications from both WES and WGS
sequence data using default parameters.
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2.14. LUMPY

For each of our WGS sample bam files, we used the LUMPY Express wrapper [35]
to call CNVs as described in the official documentation on GitHub (https://github.com/
arq5x/lumpy-sv, accessed on 1 November 2021): discordants were extracted with sam-
tools view, filtering out reads by flag 1294; split reads were extracted using the provided
extractSplitReads_BwaMem script. Both were sorted and then provided as input to the
lumpyexpress utility together with the original bam to output a vcf giving structural
variants, from which we obtained CNVs as the called deletions and duplications.

2.15. ExomeDepth

ExomeDepth [36] was used to detect CNVs from WES sequence data following the
authors recommended best practices [37]. Since ExomeDepth takes advantage of the tight
correlation structures between large numbers of samples when building a reference sample,
we used our reference samples as a Panel of Normals. Even though these reference samples
are not ideal (since they are not from the same batch), they are a good representation of the
samples in our laboratory, as well as the experimental design most users will encounter
(related samples from the same lab, but not the same batch).

2.16. CODEX2

To run CODEX2 [38], we grouped all the WES samples together with 50 extra Panel of
Normals WES samples. This batch of samples was then analyzed for each of chromosomes
1 through 22 by following the provided documentation from GitHub (https://github.
com/yuchaojiang/CODEX2, accessed on 1 November 2021), using default or suggested
parameters and functions except where otherwise noted. We used CODEX2 without
specifying negative control samples, using the normalize_null function for normalization.
For chromosomes 1, 4, 6, and 14, the glm.fit procedure in CODEX2 did not converge,
despite increasing the parameter K = 1:10 as per the author’s suggestion.

2.17. Data Processing and Plotting

All tools were run using Snakemake [39], post-processing of the called CNVs was
carried out using Python 3.6 and R 3.5.0 [33]. Scripts for running the tools are available
on GitHub (https://github.com/cphgeno/CNVbench, accessed on 1 November 2021).
The rtracklayer package [40] was used for main processing of the files, and ggplot2 [41],
ComplexHeatmap [42], and RColorBrewer [43] were the key resources for plotting.

2.18. Fraction Curve Generation

The analyzed data was split into four data sets: NA12878 WES, GB01-GB08 WES,
NA12878 WGS, and GB01-GB38 WES. For each data set, and for each tool that called CNVs
for the dataset in question, we filtered the CNV calls according to a confidence metric
provided by the tool itself (see below). Specifically, we subset the tool data set on every
confidence metric percentile from 0 to 99 by taking all CNV calls with confidence scores
less/greater (as appropriate for the metric) than or equal to a given percentile. Recall and
precision were then calculated and plotted for the resulting, filtered CNV calls.

Note that some tools use only a few discrete confidence values or use a single value for
a large proportion of the calls. Therefore, a cutoff at the 99th percentile does not necessarily
contain 1% of the called CNVs if, for example, 50% of the CNVs in the call set are assigned
the best confidence score.

The confidence metrics used for each tool were as follows. CLC Genomics Workbench:
Absolute fold change; CNVkit: Mean squared standard error of log2 of the copy num-
ber; CNVnator: t-statistic p-value; cn.MOPS: Median informative/non-informative ratio
value; CODEX2: Likelihood ratio; ControlFREEC: Wilcoxon rank sum test p-value; DELLY:
Genotype quality values; ExomeDepth: Observed/expected read ratio; GATK gCNV: CNQ
scores (difference between the two best genotype Phred-scaled log posteriors); Lumpy:

https://github.com/arq5x/lumpy-sv
https://github.com/arq5x/lumpy-sv
https://github.com/yuchaojiang/CODEX2
https://github.com/yuchaojiang/CODEX2
https://github.com/cphgeno/CNVbench
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Number of pieces of evidence supporting the variant across all samples; Manta: CNV
quality score.

2.19. Performance Profiling

Snakemake’s built-in capabilities for benchmarking runtime and memory usage were
used to measure wall-clock time and peak resident set size for calling CNVs on sample
NA12878. Tools were tested on a HP Apollo 6000 System ProLiant XL230a Gen9 Server
blade (Hewlett-Packard, Palo Alto, CA, USA), on a node with 28 64-bit Intel Xeon E5-2683
v3 @2.00 GHz CPUs available, and 128 GB, DDR4 @2133 MHz RAM.

3. Results
3.1. Review of 50 Most Popular CNV Calling Tools

We reviewed 50 most popular tools for CNV calling (Figure 2, Table S1). The tools
were included in the benchmark if they were: (1) developed for calling CNVs from WES or
WGS data, (2) developed for germline CNV calling, (3) recently developed or highly cited
(>100 citations as of March, 2019, using the number of citations as the only available proxy
for popularity of use), (4) still maintained, and (5) the latest versions of the tool was more
recent than 5 years. However, several tools passing all these criteria were not suitable for
inclusion in this benchmark (detailed information in Table S1). After applying the selection
criteria, 11 tools (in bold in Figure 2) were selected for further performance evaluation.

3.2. Datasets Used for the Benchmark Study

The datasets used for the benchmark are listed in Table 1. Gold Standard sample
NA12878 from 1000 Genomes Project was used with the CNVs which were published by
Haraksingh et al., 2017 [8]. For the in-house GB01-GB08 and GB09-GB38 samples the true
reference was considered to be Nexus software-produced filtered CNV calls from CytoScan
HD SNP-array, which have previously been shown to be among the best-performing
array platforms [8,44]. To account for imperfections in the SNP-array CNV calling, we
compared all CNV calls made by different CNV calling tools. Furthermore, selected CNVs
were confirmed for the GB40-GB51 samples using multiplex ligation-dependent probe
amplification (MLPA).

Table 1. Datasets used in this benchmark study.

Name Number of
Samples

Whole Exome
Sequencing

Whole Genome
Sequencing

Reference Copy Number
Variations

NA12878 1 Yes Yes Haraksingh et al., 2017 [8]
GB01-GB08 8 Yes Yes CytoScan HD SNP-array
GB09-GB38 30 No Yes CytoScan HD SNP-array
GB40-GB45 6 No Yes MLPA
GB46-GB51 6 Yes No MLPA
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Google Scholar and available latest version for each tool as of March 2019. Tools highlighted with bold
font are included in the benchmark, the horizontal red line shows the cutoff for the citation number.

3.3. CNV Calling Tools Included in the Benchmark

We selected 11 tools for the benchmark. Eight tools use a read depth approach:
CNVnator [19], CLC Genomics Workbench [45], GATK gCNV [21], cn.MOPS [23], Ex-
omeDepth [36], CNVkit [25], CoDEX2 [38], and Control-FREEC [27]. Other SV callers that
include CNVs, such as DELLY [22], Manta [34], and LUMPY [35] use a combined approach
and apply more than one CNV calling algorithm for more accurate predictions (Figure 2;
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detailed tool algorithms are provided in Supplementary File S1). All tools were run using
the default parameters and following author recommendations when available. Most
CNV calling tools are developed for either WES or WGS. However, cn.MOPS, CLC Ge-
nomics Workbench, CNVkit, Manta, and GATK gCNV tools are capable of calling germline
CNVs using both WES and WGS data. For the NA12878 Gold Standard sample we also
report CNVs called by Haraksingh et al., 2017 [8] using the consensus of several methods,
including non-NGS based approaches.

3.4. CNV Length and Type Distribution for CNV Calling Tools

All tools called more deletions than duplications for NA12878 Gold Standard sample
(Figure 3A). However, the total number of called CNVs varied greatly between the tools.
GATK gCNV called more duplications and deletions in both WES and WGS samples
compared to other tools. CODEX2 called the lowest number of deletions and duplications
in WES samples and CLC Genomics Workbench called the lowest number of CNVs in
WGS data. None of the CNV calls were filtered with a cutoff on confidence metrics, except
where it was recommended by the authors of the tool (CODEX2) or the filtered files were
created automatically (CLC Genomics Workbench). CODEX2 called a similar number of
CNVs as provided in NA12878 Gold Standard true CNV set, but this did not equate that all
the CNV calls were true positives. Similar patterns were observed for GB01-GB38 samples
(Figure S1).

CNV calls differed in lengths and frequencies among the tools in WES and WGS
of NA12878 sample (Figure 3B). CLC Genomics Workbench and cn.MOPS called a high
number of CNVs longer than 10,000 bp while GATK gCNV called mainly CNVs shorter
than 500 bp in WES and 500–1000 bp in WGS. GATK gCNV called shorter CNVs than
any other tool. Furthermore, cn.MOPS, CNVnator, and Control-FREEC predicted more
>1000 bp length CNVs than other tools for WGS NA12878 sample. Half of CNVs in
NA12878 were shorter than 500 bp as per Gold Standard truth CNV set. Similar patterns
were observed for GB01-GB08 WES and GB01-GB38 WGS samples (Figure S2).

3.5. Precision and Recall of CNV Calling Tools

Given CNVs from CytoScan HD SNP-array for GB01-GB38 samples and NA12878
Gold Standard truth CNV set, true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) CNV calls were identified for each of 39 samples for WGS, and 9
samples (GB01-GB08 and NA12878) for WES (Table S2). The criteria of an overlap of 1 bp
between the Cytoscan HD SNP-array called CNV and the NGS-based tool CNV call was
used for the CNV call to be classified as a TP. Recall and precision were calculated using
the following formulas:

Recall =
TP

TP + FN
; Precision =

TP
TP + FP

. (1)

GB01-GB38 samples had a total 2–103 (median 7) CNVs called by CytoScan HD SNP-array,
whereas 2076 CNVs were called for NA12878 from the Gold Standard truth CNV set. For
WES data, only CNVs covering exons were considered (1–63 (median 4) for GB01-GB08
and 233 for NA12878).

GATK gCNV recall was best for both WES and WGS data (Figure 3C), followed by
Lumpy, DELLY, cn.MOPS, and Manta. All tools performed poorly on the WES dataset
by having lower levels of recall compared to WGS. While recall for WGS in all tools,
except CLC Genomics Benchmark, was fair, precision was lacking for all the tools, with a
maximum precision of 66.7%. Tools that called a higher total number of CNVs, also had
higher recall, but lower precision. The only two tools which use CNV call filtering (CLC
Genomics Workbench and CODEX2) had a low recall compared to the tools which did not
filter CNVs as part of their default settings. Collectively, recall approached 1 for several
tools, but came at the expense of precision, which was lower than 31% in WGS data for the
four best recalling tools (GATK gCNV, Lumpy, DELLY, and cn.MOPS).
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3.6. CNV Call Filtering Possibilities for CNV Calling Tools

To explore the possibility of filtering CNV calls to improve precision we analyzed
recall and precision at sliding confidence cutoff values. Briefly, for each tool, we calculated
recall and precision at different thresholds defined by the percentiles of the tool-defined
confidence metric (see Section 2 for details).

The recall on WES was low (ranging from 0 to 0.65, Figure 3C), regardless of filtering,
and that precision generally did not improve as a function of the threshold, and could not
be easily interpreted as being asymptotically negative (Figure 4). The exception to this
was CNVkit, which displayed high recall and precision on the WES NA12878 sample and
offered the possibility of meaningful filtering.

However, this performance of CNVkit was only seen for NA12878 sample and not for
the remaining WES samples.

For WGS, recall for most tools decreased linearly as a function of filtering, the utility
of which is therefore limited. Arguably, one exception for the GB01-GB38 WGS samples
was GATK gCNV, which had proportionally good recall when filtering out the bottom
75th percentile. However, such a cutoff did not improve the precision for the tool. For the
WGS NA12878 sample, DELLY and Manta had good performance when selecting only the
over-represented top confidence values, while Lumpy also displayed diminishing returns
at lower scores. In the case of Manta, precision decreased predictably with filtering, while
Lumpy had a somewhat unpredictable precision fraction curve, and DELLY’s precision
appeared unaffected by filtering. CLC Genomics Workbench had repeated patterns for
recall in both NA12878 and GB01-GB38 suggesting a relative ranking metric for each
run. Collectively, sorting CNVs on confidence metrics from the tools did not offer any
meaningful threshold for controlling precision, due to asymptotically positive recall curves
(more liberal inclusion resulted in more hits). We further found several unpredictable
precision curves, and overuse of the maximum confidence value, which gave a percentile of
top-scoring CNVs without any additional metrics to rank. Exceptions to these conclusions
were found only for the NA12878 sample.

3.7. Short CNVs Can Be Identified by NGS-Based CNV Calling Tools

For the 38 WGS samples, DELLY and GATK gCNV called the most CNVs: 148,519
and 132,265, respectively. Manta, Lumpy, CNVnator, cn.MOPS, and Control-FREEC called
94,832, 93,166, 85,962, 36,491, and 13,160, respectively. CLC Genomics Workbench called
632 CNVs across the 29 samples it was run for. The tool was not run on all 38 samples due
to computation time: it re-analyzes the base-level coverages of the control samples in every
run, resulting in very long running times for WGS samples.

Tools with the same calling strategies had a higher overlap in called CNVs (Figure 5A).
For example, DELLY, Lumpy, and Manta displayed a large degree of CNV overlap in WGS
samples and they all use RP and SR information for calling CNVs. CNVnator, GATK gCNV,
and DELLY called a high number of unique CNVs in WGS data which were not called by
any other tool. Furthermore, a total 51.9% of all called CNVs were shorter than 1000 bp.
CNVs which were called by two or more tools were mostly short: less than 1000 bp. Such
CNVs are known to be less often called by array-based CNV calling approaches [8,46].
Out of 407,671 CNVs called in the WGS samples, 74.4% were called only by a single tool.
The percentages of CNVs called by 2–8 tools were 11.5, 9.5, 2.6, 0.8, 0.8, 0.4, and 0.1%,
respectively (Figure 5A).
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Figure 5. Heatmap showing all called CNVs across all samples (A,B) and called CNVs overlap
with the true CNVs (C–E). (A) Whole genome sequencing (WGS; n = 407,671) and (B) Whole exome
sequencing level (WES; n = 9944). Each row represents a tool, and a blue field denotes a call of
the given CNV. All CNVs from each sample were merged across tools, such that any overlapping
calls of either duplications or deletions were combined to one. Blue color denotes that the given
CNV was called by the tool. The order of rows/columns for WES data and rows for WGS data
was determined using complete-linkage hierarchical clustering with Euclidean distance, while the
order of columns for WGS data was determined using a combination of k-means and hierarchical
clustering due to memory restrictions. Darker grey coloring (WGS only) indicates that the tool was
not run for the sample which contained the CNV. (C) 2076 WGS-based and (D) 81 WES-based true
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CNVs in NA12878 sample. The order of rows/columns was determined using complete- linkage
hierarchical clustering with Euclidean distance. (E) CNV calling heatmap for 471 true CNVs at
and WGS level in 38 samples (GB01-38). Column dendrogram shows clustering to the level of
20 clusters to reduce complexity. The Quality annotation represents the probe median score from
CytoScan HD SNP-array and the Man.annot. refers to whether the CNV was independently manually
confirmed. A positive quality score corresponds to duplications, and negative scores denote deletions.
Darker grey coloring indicates that the tool was not run for the sample which contained the CNV.
The order of rows/columns was determined using complete-linkage hierarchical clustering with
Euclidean distance.

For WES (Figure 5B), CLC Genomics Workbench called 1268 CNVs, cn.MOPS-787,
CNVkit-66, CODEX2-762, ExomeDepth-1123, GATK gCNV-7116, and Manta-174. The
observed overlap between CNVs called between tools was lower than for WGS data: 90.3%
of the total 9944 CNVs were called by a single tool, and the percentages for 2–7 tools were
6.8, 2.0, 0.6, 0.2, 0.04, and 0%, respectively. GATK gCNV called the highest number of
unique CNVs while the CNV calls by two or more tools were mostly longer than 1000 bp.
Despite the overlap between longer CNV calls, the majority (69.6%) of all CNV calls were
shorter than 1000 bp.

Lumpy, DELLY, Manta, and partly CNVnator performed best on NA12878 WGS data
while CNVkit recalled almost all CNVs present in NA12878 WES dataset (Figure 5C,D). It is
important to note that Manta and CNVnator were used for the generation of the NA12878
truth CNV set [8] and the CNV calls might have been favored to overfitting. A more
accurate picture of the tool’s performance can be obtained by evaluation of GB01-GB38
CNV calls.

Many CNVs confirmed by CytoScan HD SNP-array on WGS were called by multi-
ple tools (Figure 5E). While 25.6% of all called CNVs overlapped in two or more tools
(Figure 5A), more than 83.7% CNVs were overlapping with the CytoScan HD-confirmed
CNV list (Figure 5E). As for WES, in more than two thirds of the cases where CytoScan
identified a CNV, none of the tools called it. All tools performed similarly poorly on WES
data (Figure 6) with cn.MOPS and CNVkit missing all the CNVs identified by CytoScan
HD SNP-array.

3.8. MLPA-Confirmed CNV Recall for CNV Calling Tools

To assess if tools accurately identify CNV breakends we used twelve MLPA-confirmed
CNVs of varying sizes (1 exon to whole gene; deletions (n = 11) or duplications (n = 1),
Table S3) from six WES samples and six WGS samples (Figure 6B). Six out of 11 tools (CLC
Genomics Workbench, CODEX2, DELLY, ExomeDepth, Lumpy, and Manta) did not identify
any of the MLPA-confirmed CNVs. Conversely, GATK gCNV, CNVkit and cn.MOPS
identified all MLPA-confirmed CNVs in WES. GATK gCNV, cn.MOPS, CNVnator, and
Control-FREEC identified all the CNVs confirmed by MLPA in WGS samples. CNVnator
(WGS), cn.MOPS (WES), and CNVkit (WES) predicted shorter CNVs than the MLPA-
defined truth, while GATK gCNV identified the full-length of both deleted and duplicated
regions. Control-FREEC called all 6 CNVs in WGS samples but predicted shorter CNVs
spanning 22.0–98.6% of true CNV length.
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Figure 6. (A) CNV calling heatmap for 7 tools and 107 true CNVs at whole exome sequencing level in 8 samples (GB01-08).
The Quality annotation represents the probe median score from CytoScan HD SNP-array and the Man.annot. refers to
whether the CNV was independently manually confirmed. A positive quality score corresponds to duplications, and
negative scores denote deletions. The order of rows/columns was determined using complete-linkage hierarchical clustering
with Euclidean distance. (B) MLPA-confirmed CNV calling results for 11 CNV calling tools. GATK gCNV is labeled as
GermlineCNVCaller.

3.9. Memory and CPU Requirements for CNV Calling Tools

CPU and memory requirements were measured on a 28-core server grade cluster
node, for the tools where it was possible to obtain an estimation on the NA12878 sample.
Control-FREEC showed the best compromise between memory and CPU, both being low
in WGS and even lower than requirements for other tools in WES (Figure 7). Memory-wise,
DELLY and Manta were the other two tools with the lowest needs; the latter also having
short computational times, while the former had one of the highest, possibly due to the fact
that insertions and deletions were called subsequently and not in parallel. Surprisingly,
cn.MOPS also showed low memory requirements on exomes, but the highest in genomes.
However, it also offered one of the lowest computational times both in WES and WGS.
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GATK gCNV and cn.MOPS used a lot of RAM at peak memory, and it is possible that
more RAM per node than the available 128 GB per machine would have shortened the
runtime by enabling better distribution of tasks. Computational requirements for creation
of GATK model were not measured in this benchmark. Due to the batch caller nature of
cn.MOPS, CNVkit, and CODEX2, many alignments have to be kept in memory at the same
time, explaining the observed higher memory requirements.
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4. Discussion

The results from this study contribute to the growing body of knowledge focused on
the evaluation of structural variant characterization tools. Specifically, from the reviewed
50 CNV calling tools, we observed that many of the tools were either not maintained
with the last updates applied more than 5 years ago, or not widely used. We included
11 widely used or newly developed CNV calling tools, which fulfilled our selection criteria,
to benchmark their performance on CNV calling. Unlike previous studies focused on either
a single sample or limited number of samples [9,11,15–17], this study has benchmarked the
performance of various SV callers on both WES and WGS data originating from multiple
samples and evaluated their overall performance.

In order to establish a reference set of CNVs we used the best performing array-
platform, in addition to NGS. CytoScan HD SNP-array technology was chosen as a sensitive
and clinically adopted method to detect CNVs. It is important to note that because of
the probe-dependent and genome-distributed nature of the array technology, not all short
CNVs could be captured.

Therefore, the CNV calls classified as false positive (FP) in this benchmark should
be interpreted carefully. Additionally, as CNV detection is a technically challenging task,
none of the array-based standards in this study can ultimately be regarded as an absolute
truth [8]. Besides the in-house GB01-GB38 samples, which were analyzed by Cytoscan
HD SNP-array, we included the well-studied NA12878 sample, for which extensive efforts
have been made to confirm all CNVs, based on several platforms, and NGS-based CNV
callers. The latter might introduce a bias for these samples in this benchmark, as two
of the included tools were used in this evaluation (Manta and CNVnator). Furthermore,
the NA12878 sample and its truth CNV set are also popular for testing and optimizing
CNV tools, which could potentially explain the possible overfitting we observed e.g., for
Manta and CNVkit, which had the highest discrepancy between NA12878 calls and calls
on our cohort.

Tools with identical CNV calling strategy had a tendency to call the same CNVs, and,
in general, read-depth based tools, or combinations including this strategy, performed best,
when assessed on recall of CNVs from Cytoscan HP SNP-array, or NA12878 Gold Standard
sample. The number of CNVs called varied more than a 100-fold; consequently, the recall
rates for tools calling many CNVs were higher, and no systematic trade-off could be found
to improve precision for these tools. In short, tools calling many CNVs hit the target more
often, but high confidence CNVs were not generally showing a higher fraction of recall.
For tools like DELLY and Lumpy, a combination of CNV metrics could be used to filter on
the CNV calls as it is applied in SVTyper [47].

CNVs selected for experimental validation with MLPA were selected based on targeted
gene panel sequencing, and were, therefore, not biased by CNV calls from tools tested in
this analysis. It was, however, striking that tools could be split into two groups: those that
were able to recall all six independent CNVs and those that called none.

GATK gCNV caller performed best at CNV recall and is clearly the most sensitive tool
for CNV identification for both WES and WGS data, but comes with poor precision, like all
tools tested (highest precision mean <13% for WES and <6% for WGS). GATK gCNV is
also the best performing tool when recalling MLPA-confirmed CNVs and estimating their
breakends correctly, even if four other tools also recalled the CNVs. The good performance
of GATK gCNV and cn.MOPS caller comes at a high computational cost and the former
was almost twice as computationally expensive as the third-highest consuming WGS tool
considering CPU/h and peak RAM usage.

The GnomAD database [14] shows how CNV calls can be used clinically, but more
research and larger cohort studies are needed for better annotation and inference of cau-
sation of CNVs. Our study shows that more work has to be done on collecting large and
well-annotated datasets with CNV detection on several platforms, in order to drive the
development of tools with improved precision on CNV calling from NGS data. The current
state of tools for finding CNVs is suited for identifying complex traits in large cohorts, for
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which we suggest to use the overlap between several tools. Using rare CNVs called from
NGS as a basis for genome-wide association studies is not currently advisable.

The future for NGS-based CNV calling tools is likely to rely on the utilization of a
combination of long- and short-read sequencing [48]. This is particularly true considering
the need for CNV annotation that explains causative traits and which will require sequenc-
ing of large cohorts with two simultaneous protocols. Alternatively, future improvements
on both price and error rate for long-read sequencing are needed. In terms of filtering
CNV calling results, better annotation of CNVs is a clear optimization candidate. The
ability to leverage additional genetic data, such as RNA-seq, or even static knowledge of
genetic sites from associations to epigenetic mechanisms or regulation, may also guide the
selection and prioritization process in the near future. In a clinical setting, production of
background panels or databases to filter true common CNVs or common FPs called by each
tool can greatly reduce the number of relevant CNVs presented for interpretation (data
not shown), just like databases like gnomAD SV [49] can be used to reduce the numbers
of common CNVs. Although beyond the scope of this work, another interesting area that
requires further investigation is how different CNV calling tools perform based on various
SV sizes and read coverage, both of which are known to affect detection and accuracy of SV
calling [15,16,50]. In a similar manner, the distributions of SVs in biological regions (e.g.,
sex chromosomes) may require special attention, as specific SVs have been known to occur
in a particular gender (e.g., [51,52]). Lastly, transcriptional regulation of the altered regions
requires more investigations, so that the causative effect of CNVs can be elucidated, and
potentially be predicted in each case. Our work has several limitations. First, we bench-
marked only a limited set of tools; however, findings are in line with larger studies [15],
relying on single truth sets. Furthermore, the observed potential for overfitting to NA12878
Gold Standard sample by some tools complicated the accurate evaluation of recall and
precision with a well-annotated dataset. Some tools (CNVkit, CODEX2, ExomeDepth
and GATK gCNV) require training on a known dataset before application and we did not
attempt to optimize this step or evaluate what influence it has on the tool’s performance
since it is outside of the scope of this work. Moreover, we used whole genomes and whole
exomes for WGS and WES sequencing respectively without any additional filtering on
GC content or read mappability. Finally, the main limitation of our work is the lack of
well-defined true CNV sets, therefore our analysis using CytoScan HD SNP-array calls
vastly underestimates CNV call precision on the in-house data sets, but this caveat should
not favor specific tools.

5. Conclusions

In summary, by reviewing 50 tools for CNV calling, of which 11 were included for
a benchmark (CLC Genomics Workbench (WGS and WES), cn.MOPS (WGS and WES),
CNVkit (WES), CNVnator (WGS), CODEX2 (WGS), Control-FREEC (WGS), DELLY (WGS),
ExomeDepth (WES), GATK gCNV (WES and WGS), Lumpy (WGS), and Manta (WES and
WGS)), we conclude that CNV identification from NGS data remains challenging. For the
best reliability of CNV calling from NGS data, we observed that even if the tools were
developed for WES data or allowed it as input, they did not perform well. We suggest WGS
as the only NGS-based option for broad calling of CNVs. Furthermore, low precision in all
tools leads us to recommend a hypothesis-based approach for finding causative CNVs by
NGS in the clinic, and further validation of these candidates by manual inspection, MLPA
or array-based approaches. If multiple samples are available from the same protocol, we
suggest using these to filter by commonly called CNVs. If only the WGS data is available
for the sample, for a higher precision of CNV calls, multiple CNV calling tools should be
used. We suggest combining tools which have the best recall (GATK gCNV, Lumpy, DELLY,
and cn.MOPS) using consensus callers (e.g., [53]) and prioritize the CNV calls made by
such tools.
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of the 50 most popular tools for CNV calling, Table S2: Precision and recall of CNV calling tools,
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CNVs of varying sizes, File S1: Detailed algorithms of SV calling tools.
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