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Abstract: Low-toxicity, air-stable cesium bismuth iodide Cs3Bi2X9 (X = I, Br, and Cl) perovskites are
gaining substantial attention owing to their excellent potential in photoelectric and photovoltaic
applications. In this work, the lattice constants, band structures, density of states, and optical
properties of the Cs3Bi2X9 under high pressure perovskites are theoretically studied using the
density functional theory. The calculated results show that the changes in the bandgap of the zero-
dimensional Cs3Bi2I9, one-dimensional Cs3Bi2Cl9, and two-dimensional Cs3Bi2Br9 perovskites are
3.05, 1.95, and 2.39 eV under a pressure change from 0 to 40 GPa, respectively. Furthermore, it
was found that the optimal bandgaps of the Shockley–Queisser theory for the Cs3Bi2I9, Cs3Bi2Br9,
and Cs3Bi2Cl9 perovskites can be reached at 2–3, 21–26, and 25–29 GPa, respectively. The Cs3Bi2I9

perovskite was found to transform from a semiconductor into a metal at a pressure of 17.3 GPa.
The lattice constants, unit-cell volume, and bandgaps of the Cs3Bi2X9 perovskites exhibit a strong
dependence on dimension. Additionally, the Cs3Bi2X9 perovskites have large absorption coefficients
in the visible region, and their absorption coefficients undergo a redshift with increasing pressure.
The theoretical calculation results obtained in this work strengthen the fundamental understanding
of the structures and bandgaps of Cs3Bi2X9 perovskites at high pressures, providing a theoretical
support for the design of materials under high pressure.

Keywords: cesium bismuth iodide perovskite; first-principles study; high pressure; bandgap nar-
rowing; metallization

1. Introduction

Organic–inorganic hybrid perovskites have attracted much attention from the re-
searcher community because of their remarkable photoelectric properties, including high
absorption coefficients in the visible light region, tunable bandgaps, high quantum yields,
high carrier mobilities, and low effective carrier quality [1–6]. In addition, their process-
ing is economical and utilizes simple solution treatments [7,8]. The power conversion
efficiency (PCE) of perovskite solar cells (PSCs) has increased dramatically from 3.8% in
2009 to 25.5% [9,10]. Lead hybrid perovskites have the outstanding photovoltaic properties
and a high PCE. However, the high toxicity of lead is a major challenge for the large-scale
fabrication and commercialization of lead-based PSCs. Recently, nontoxic, all-inorganic,
lead-free Bi-based perovskites have attracted significant attention owing to their stability,
high photoluminescence, high quantum yield, and tunable bandgaps [11–17]. They have
been widely used in applications, such as memory devices, photodetectors, solar cells, and
X-ray detectors [18–26]. However, many studies have shown that there are some challenges
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to overcome for the use of Cs3Bi2X9 (X = I, Br, and Cl) perovskites in photovoltaic devices.
The large bandgap (>2 eV) is the most important factor causing a low PCE, which limits
their absorption efficiency and carrier transport performance. According to the Shockley–
Queisser theory, a semiconductor with a bandgap in the range of 1.3–1.5 eV is an ideal
material for solar cells. Although the PCE of Bi-based PSCs has improved slightly with
the improvement of the thin-film technology, it still lags far behind that of lead-based
perovskites. The traditional chemical modification cannot overcome this inherent limit.
Therefore, tuning the bandgap with the aim of improving the photovoltaic performance of
the Cs3Bi2X9 perovskites has become a key challenge.

High pressure (HP), which is a non-polluting tuning method, is widely used to mod-
ulate the physical and chemical properties of materials without changing their chemical
composition [27,28]. In recent years, the properties of halide perovskites have been widely
studied under HP; the properties studied include piezochromism, bandgap engineering,
structural phase transitions and optical properties, [29–32]. In addition, various novel
physical phenomena have been observed under HP conditions. For example, the organic–
inorganic hybrid perovskite nanocrystals present the comminution and recrystallization
under HP and exhibit higher photoluminescence quantum yield and a shorter carrier life-
time [29]. A reversible amorphization has been observed for the CH3NH3PbBr3 perovskite
under a pressure of approximately 2 GPa; during this transition, the resistance increased
by five orders of magnitude, and the material still retained its response to the visible light
and semiconductor characteristics up to a pressure of 25 GPa [33]. Notably, pressure-
induced structural changes and optical properties are reversible upon decompression, and
a semiconductor–metal transition can be observed at 28 GPa [34]. It is notable that there
are few studies on Cs3Bi2X9 perovskite systems of different dimensions at HP [34,35], and
no reports exist on the one-dimensional halide perovskite Cs3Bi2Cl9.

In this work, we calculated the lattice constants, band structures, density of states
(DOS), and optical properties of the one-dimensional perovskite Cs3Bi2Cl9 via the den-
sity functional theory (DFT) under HP for the first time and compared with the zero-
dimensional perovskite Cs3Bi2I9 and the two-dimensional perovskite Cs3Bi2Br9. We dis-
cussed the relationship between the bandgap of the Cs3Bi2X9 perovskites and the HP and
focused on the optimal bandgap of the Shockley–Queisser theory of the Cs3Bi2X9 per-
ovskites. The Cs3Bi2I9 perovskite completed the transition from semiconductor to metal at
17.3 GPa, this finding indicated that HP is an effective means to induce the semiconductor–
metal transition. Moreover, it was found that the lattice constants and bandgaps of the
Cs3Bi2X9 perovskites are dependent upon dimension, that is, the changes in the lattice
constants and bandgap gradually decrease as the dimension increases from zero to two
under the same pressure. Our calculated results obtained in this work strengthen the
basic understanding of different structures of the Cs3Bi2X9 (X = I, Br and Cl), providing
theoretical guidance for the structure and bandgap regulation of Bi-based perovskites
under HP.

2. Computational Model and Method

The DFT was performed in the Vienna Ab-initio Simulation Package (VASP) using the
projected augmented wave (PAW) framework [36,37]. DFT is derived from the Schrodinger
equation under the Born–Oppenheimer approximation, described by the Hohenberg–Kokn
theorem and the Kohn–Sham equation. The pseudopotential is a hypothetical potential
energy function used in place of the inner electron wave function to reduce the computa-
tion. The electron exchange–correction function was obtained via the generalized gradient
approximation (GGA) parameterized using the Perdew–Burke–Ernzerhof (PBE) formal-
ism [38]. The cut-off energy of the plane wave was set to 500 eV [34]. The convergence
criteria for the energy and force were set to 10−5 eV and 0.01 eV/Å, respectively. The Bril-
louin zone integration were sampled with 4 × 4 × 4, 4 × 4 × 4, and 4 × 4 × 2 Gamma-pack
k-point meshes during the structure optimization of Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9,
respectively. The entire optimization of the structures was completely relaxed [39]. The
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valence electronic configurations of the Cs, Bi, I, Br, and Cl atoms are 5s25p66s1, 5d106s26p3,
5s25p5, 4s24p5, and 3s23p5, respectively. The Γ Brillouin zone center has a highly sym-
metric path, with coordinates Γ (0, 0, 0) to the M (0.5, 0, 0), K (0.333, 0.333, 0), Γ (0, 0, 0),
A (0, 0, 0.5), L (0.5, 0, 0.5), and H (0.333, 0.333, 0.5). The spin–orbit coupling is not consid-
ered due to the high computational cost. Previous studies have shown that higher levels
of calculation (including the spin–orbit coupling, the GW method, or hybrid functionals)
obtain more accurate bandgaps; However, they induce little change in the band structure
of the heavy-metal halide perovskites [40].

3. Results and Discussion

The structures of the three halogenated perovskite crystals Cs3Bi2X9 (X = I, Br, and Cl)
are shown in Figure 1. The one-dimensional Cs3Bi2Cl9 perovskite has an orthogonal-crystal
structure; the two-dimensional Cs3Bi2Br9 perovskite and the zero-dimensional Cs3Bi2I9
perovskite have hexagonal cells [41,42]. The numbers of atoms in the Cs3Bi2I9, Cs3Bi2Br9,
and Cs3Bi2Cl9 perovskites in the primitive cell are 28, 14, and 56, respectively. The Bi atom
is located at the center of the octahedron in the Cs3Bi2X9 perovskites and is surrounded
by six halogen atoms. Unlike in lead-based perovskites, in the Cs3Bi2Br9 and Cs3Bi2Cl9
perovskites, two octahedrons share one X atom (X = Br or Cl), whereas two octahedrons
share three X atoms in the Cs3Bi2I9 perovskite. X atoms with different sizes and the Bi
atoms form a novel double-perovskite structure. Figure 2 shows the changes in the lattice
parameters and volume of the Cs3Bi2X9 perovskites under HP. In the primary cell of the
Cs3Bi2I9 and Cs3Bi2Br9 perovskites, the lattice constants a and b are equal. The lattice
constant and volume of Cs3Bi2X9 clearly decrease with an increase in pressure, and the
slope also decreases gradually. As is well established, pressure induces a reduction in
the lattice constant. From a microscopic point of view, the pressure shrinks the distance
between two atoms. The strong Coulomb force makes it increasingly difficult to further
compress the material as the pressure increases.
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Based on the semiconductor theory, analyzing the band structure and the DOS very
closely, the Fermi level is important for establishing the possible applications of a material
in the photoelectric and photovoltaic fields. We therefore calculated the band structure near
the Fermi level (from −5 eV to +5 eV) under different pressures. The calculated bandgaps
at a pressure of 0 GPa of the Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9 are 2.38, 2.60, and 3.08 eV,
respectively. The scissor value approach was used to establish the band structure of the
Cs3Bi2X9 perovskites in order to obtain the accurate value for the Cs3Bi2X9 perovskites
when they reached the optimal bandgap of the Shockley–Queisser theory and the transition
from semiconductor to metal; this methodology overcame the limitations of the GGA–
PBE calculation method and has already been applied in the study of the photoelectric
properties of the CsSnCl3 perovskite at HPs [40]. Many experimental studies have been
conducted regarding the bandgaps of the Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9 perovskites.
Among these, Daniel R. Gamelin et al. synthesized Cs3Bi2X9 perovskites nanocrystals via
the thermal injection method, and the bandgaps of the Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9
perovskites were measured as 2.07, 2.76, and 3.26 eV, respectively [43]. Therefore, the
scissors values of −0.31eV, 0.16eV, and 0.18eV were used for the Cs3Bi2I9, Cs3Bi2Br9, and
Cs3Bi2Cl9 perovskites, respectively.

Figure 3 shows the change in the band structure of the Cs3Bi2I9 perovskite under the
pressures of 0 (a), 4 (b), 10 (c), and 40 GPa (d). Without external pressure, the conduction
band minimum (CBM) and the valence band maximum (VBM) of Cs3Bi2I9 perovskite
are located at the Γ- and M-points, respectively. We found the Cs3Bi2I9 perovskite to
be an indirect bandgap material, which is consistent with the existing literature [44].
The semiconductor with the optimized band gap energy of 1.34 eV is critical to achieve the
efficiency limit of 33.7% based on the Shockley–Queisser theory [34]. In Figure 3, it can be seen
that the bandgap of the Cs3Bi2I9 perovskite decreases sharply with the increase in pressure
and reaches its optimal bandgap value given by the Shockley–Queisser theory at 2–3 GPa.
In addition, with the high pressure further increasing, the CBM continues to decrease and
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the VBM moves from the M-point to near the K-point. The Cs3Bi2I9 perovskite completed
the transition from semiconductor to metal at 17.3 GPa, and this finding indicated that HP
is an effective means to induce the semiconductor–metal transition. The band structure
of the Cs3Bi2Br9 perovskite under the pressures of 0 (a), 4 (b), 10 (c), and 40 GPa (d) is
presented in Figure 4. As can be seen from Figure 4, when the pressure is 0 GPa (a),
the calculated band structure of the Cs3Bi2Br9 perovskite is consistent with the results
reported by Brent C. Melot et al. [45] They found a low-lying 2.52 eV indirect transition
as well as a slightly larger direct gap of 2.64 eV, which are essentially in agreement with
our calculated results. This structural characteristic becomes increasingly evident with the
increase in pressure. The Cs3Bi2Br9 perovskite reaches the optimal bandgap given by the
Shockley–Queisser theory at 21–26 GPa, which means that the electron transitions from
the valence band to conduction band become easier. Figure 5a–d shows the change of
the band structure of Cs3Bi2Cl9 perovskite with HP. The Cs3Bi2Cl9 perovskite reaches the
optimal bandgap in the range of 25–29 GPa; it is an indirect bandgap material. The CBM is
at the Γ- point, and the VBM moves from the Γ-point to the Y-point, which is consistent
with the results reported previously [41]. However, it was found that the Cs3Bi2Br9 and
Cs3Bi2Cl9 perovskites did not metallize under HP despite the pressure reaching 40 GPa in
both cases, which may be related to their unique structure. The bandgap changes in the
Cs3Bi2X9 perovskites under a range of HP (0, 2, 4, 6, 8, 10, 20, 30, and 40 GPa) are shown in
Supplementary Figures S1–S3.
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Figure 6 shows the changes in the bandgaps of the Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9
perovskites under HP. It can be seen that the bandgap of the Cs3Bi2X9 perovskites decreases
with the increase in pressure (Figure 6a); the bandgap of the Cs3Bi2I9 perovskite takes
a negative value, which is a typical indicator of metallic behavior. Figure 6b shows the
change in the bandgap of the Cs3Bi2X9 perovskites after using the scissor values under
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HP. When the pressure is varied from 0 to 40 GPa, the bandgap differences of the Cs3Bi2I9,
Cs3Bi2Br9, and Cs3Bi2Cl9 perovskites are 3.05, 1.95, and 2.39 eV, respectively. It was found
that with the increase in dimension, the bandgap differences of the Cs3Bi2I9, Cs3Bi2Br9, and
Cs3Bi2Cl9 perovskites decrease in turn, which indicates that the bandgap of the Cs3Bi2X9
perovskites depends on dimension.
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To explain the dimension-dependent bandgap of the Cs3Bi2X9, we investigate the
construction of these perovskites. Based upon the primitive cell of Cs3Bi2I9, Cs3Bi2Br9 and
the Cs3Bi2Cl9 perovskites, the 2 × 2 × 1, 2 × 2 × 2, and 3 × 1 × 1 supercells are shown in
Figure 7a–c, respectively. In Figure 7d, ∆L represents the difference in the lattice constants
of the Cs3Bi2X9 perovskites between 0 and 40 GPa along the a, b, and c coordinate axes. In
general, for centrosymmetric perovskites, the ∆L values along the a- (∆La), b- (∆Lb), and c-
(∆Lc) axes are equal under HP. However, we found that ∆La, ∆Lb, and ∆Lc for the double
perovskites were not equal; in other words, ∆L is anisotropic along the a-, b-, and c-axes.
The ∆La, ∆Lb, and ∆Lc values for the Cs3Bi2I9 perovskite (zero-dimensional) are 1.57, 1.57,
and 5.2. It can be seen that ∆Lc is much larger than both ∆La and ∆Lb. The reason for this
difference is that the Bi2I9

3− frame of the double-perovskite is continuous along the a- and
b-axes but not along the c-axis. Along the c-axis, only the Cs+ atoms are above or below
the Bi2I9

3− frame, which indicates that the change in the lattice constant along the c-axis
is bigger than that observed along the a- and b-axes when the zero-dimensional Cs3Bi2I9
perovskite is placed under HP.

The previous analysis shows that if the double-perovskite frame expands regularly in
one direction, the ∆L in this direction will be smaller than in the other directions under
HP. This indicates that the lattice constants of the Cs3Bi2X9 perovskites are dependent on
dimension. In general, the lattice constant and the bandgap decrease as the pressure in-
creases [34]. It has also been found that the changes in the bandgap of the zero-dimensional
Cs3Bi2I9, one-dimensional Cs3Bi2Cl9, and two-dimensional Cs3Bi2Br9 perovskites between
40 and 0 GPa are 3.05, 2.39, and 1.95 eV, respectively. These results illustrate that the
bandgaps of the Cs3Bi2X9 perovskites are also dependent upon dimension; that is, the
changes in the bandgap decrease gradually as the dimension increased from zero to two
under the same pressure.
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Figure 7. Crystal structure of the zero-dimensional Cs3Bi2I9 (a), one-dimensional Cs3Bi2Cl9 (b), and
two-dimensional Cs3Bi2Br9 (c). Difference in the lattice constants of the Cs3Bi2X9 perovskites for the
pressures between 0 and 40 GPa along the a, b, and c axes (d). The black, red, and blue lines represent
Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9, respectively.

The partial density of states (PDOS) of the zero-dimensional Cs3Bi2I9 (a), one-dimensional
Cs3Bi2Cl9 (b), and two-dimensional Cs3Bi2Br9 (c) perovskites were shown in Figure 8. It can
be seen that the VBM of the Cs3Bi2X9 perovskites is dominated by p-X states, whereas the
CBM is dominated by the p-Bi and p-X states (see Figure 8a–c). The changes in the DOS
under HP are shown in Figure 8d–f. It is clear that many valence bands in the Cs3Bi2X9
perovskites move to a deep level, and the conduction bands approach to the FE with an
increase in pressure for Cs3Bi2X9 perovskites; the shift of the conduction bands under
the HP will induce the changes in the bandgap. In contrast to those of the Cs3Bi2Br9
and Cs3Bi2Cl9 perovskites, the forbidden band width of the Cs3Bi2I9 gradually decreases
and subsequently disappears, which indicates that the Cs3Bi2I9 perovskite is no longer
a semiconductor; it becomes a metal at 17.3 GPa. This conclusion is agreement with the
calculated results for the band structure.
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perovskites (X = I, Br, and Cl) is dominated by the p-X states, and the CBM is dominated by the p-Bi and p-X states.
Calculated density of states (DOS) of the Cs3Bi2I9 (d), Cs3Bi2Br9 (e), and Cs3Bi2Cl9 (f) under the pressures from 0 to 40 GPa.

A large absorption coefficient is of great significance in photoelectric and photovoltaic
applications. Such a property improves the PCE of solar cells and the luminous efficiency.
The absorption coefficient is usually described by the dielectric function according to the
following expression [46]:

α = 2ω

[(
ε2

1(ω) + ε2
2(ω)

)1/2 − ε1(ω)

2

]1/2

where the ω is the frequency of light, and ε1 and ε2 are the real and imaginary parts of the
dielectric function, respectively. The calculated ε1 and ε2 values of the Cs3Bi2X9 perovskites
are presented in Supplementary Figures S4–S6 along the a-, b-, and c-axes. The static
dielectric function of the Cs3Bi2X9 perovskites increases gradually with increasing pressure
from 0 to 40 GPa. The ε2 value is closely related to the optical absorption and usually used
to describe the absorption behavior of materials.

The calculated absorption coefficients of the Cs3Bi2X9 perovskites are shown in
Figures 9 and 10 along the a-, b-, and c-axes. It was found that the Cs3Bi2I9 perovskite has
the same absorption coefficient along the a- and b-axes with the increase in pressure, as
is the case for the Cs3Bi2Br9 perovskite. The absorption coefficients of the Cs3Bi2Cl9 per-
ovskite are unequable along the a-, b-, and c-axes under HP. The ∆L value of the Cs3Bi2X9
perovskites in Figure 7d is consistent with these behaviors, which suggests that the changes
in the structure of the Cs3Bi2X9 perovskites under HP will affect the optical properties con-
siderably. The Cs3Bi2X9 perovskites exhibit a redshift with the increase in pressure, which
indicates that the Cs3Bi2X9 can absorb the low-energy photons. Moreover, the absorption
coefficients of the Cs3Bi2X9 perovskites increase gradually in the ultraviolet region as the
pressure increases from 0 to 40 GPa. It was also found that the Cs3Bi2X9 perovskites have
a large absorption coefficient in the visible region (on the order of 105 cm−1). Therefore,
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the Cs3Bi2X9 perovskites are an attractive candidate in applications of photoelectric and
photovoltaic devices.
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4. Conclusions

In summary, we investigated the lattice constants, band structure, DOS, and optical
absorption of the cesium bismuth iodide Cs3Bi2X9 (X = I, Br and Cl) perovskites under
HP by using the DFT. It was found that the optimal bandgap of the Shockley–Queisser
theory for the Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9 perovskites can be obtained at 2–3 GPa,
21–26 GPa, and 25–29 GPa, respectively. The changes in the bandgap of Cs3Bi2I9, Cs3Bi2Br9,
and Cs3Bi2Cl9 perovskites are 3.05, 1.95, and 2.39 eV under a pressure of 40 GPa, respec-
tively. The Cs3Bi2I9 perovskite was found to transform from a semiconductor into a metal
at 17.3 GPa. Furthermore, the dimension-dependent lattice constants, unit-cell volumes,
and bandgaps of the Cs3Bi2X9 perovskites were studied. Our calculations show that HP
is an effective way to tune the photovoltaic and optoelectronic properties of the Cs3Bi2X9
perovskites by modifying the crystal structure, which provides a promising method for
material design and applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11102712/s1. Table S1: Summarized bandgap values of Cs3Bi2X9 perovskites under
high pressure; Figure S1: Calculated band structures of the Cs3Bi2I9 perovskite under the different
pressures (a–i); Figure S2: Calculated band structures of the Cs3Bi2Br9 perovskite under the different
pressures (a–i); Figure S3: Calculated band structures of the Cs3Bi2Cl9 perovskite under the different
pressures (a–i); Figure S4: Real part of the dielectric function of the Cs3Bi2I9 perovskite along the
a- and b-axes (a), and the c-axis (b) as a function of pressure (from 0 to 40 GPa). Imaginary part of
the dielectric function of the Cs3Bi2I9 perovskite along the a- and b-axes (c), and along the c-axis)
(d) as a function of pressure (from 0 to 40 GPa); Figure S5: Real part of the dielectric function of the
Cs3Bi2Br9 perovskite along the a- and b-axes (a), and the c-axis (b) as a function of pressure (from 0 to
40 GPa). Imaginary part of the dielectric function of the Cs3Bi2Br9 perovskite along the a- and b-axes
(c), and along the c-axis) (d) as a function of pressure (from 0 to 40 GPa); Figure S6: Real part of the
dielectric function of the Cs3Bi2Cl9 perovskite along the a-axis (a), along the b-axis (b), and along the
c-axis (c) as a function of pressure (from 0 to 40 GPa). Imaginary part of the dielectric function of the
Cs3Bi2Cl9 perovskite along the a-axis (d), along the b-axis (e), and along the c-axis (f) as a function of
pressure (from 0 to 40 GPa).
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