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Abstract: A highly efficient sulfonylation of para-quinone methides with sulfonyl hydrazines in
water has been developed on the basis of the mode involving a tetrabutyl ammonium bromide
(TBAB)-promoted sulfa-1,6-conjugated addition pathway. This reaction provides a green and
sustainable method to synthesize various unsymmetrical diarylmethyl sulfones, showing good
functional group tolerance, scalability, and regioselectivity. Further transformation of the resulting
diarylmethyl sulfones provides an efficient route to some functionalized molecules.
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1. Introduction

As a class of sulfur-containing compounds, sulfones are widely used in organic synthesis,
pharmaceuticals, agrochemicals, and materials science [1–7]. Among the sulfone family, diarylmethyl
sulfones hold an essential position in biologically important compounds that show various biological
activities, such as potassium channel inhibitory activity [8], as well as antidepressant [9] and
anticancer properties (Figure 1) [10]. Additionally, diarylmethyl sulfones can be applied as useful
intermediates for synthetic applications owing to the versatile reactivities of the sulfonyl group
activated carbanions [1,11–14].
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1. Introduction 

As a class of sulfur-containing compounds, sulfones are widely used in organic synthesis, 
pharmaceuticals, agrochemicals, and materials science [1–7]. Among the sulfone family, diarylmethyl 
sulfones hold an essential position in biologically important compounds that show various biological 
activities, such as potassium channel inhibitory activity [8], as well as antidepressant [9] and 
anticancer properties (Figure 1) [10]. Additionally, diarylmethyl sulfones can be applied as useful 
intermediates for synthetic applications owing to the versatile reactivities of the sulfonyl group 
activated carbanions [1,11–14]. 
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Figure 1. Representative biologically active diarylmethyl sulfone derivatives. Figure 1. Representative biologically active diarylmethyl sulfone derivatives.

Although a number of methodologies have been developed for the synthesis of diarylmethyl
sulfones, most of the reported methods suffer from the harsh reaction conditions, multi-step procedures,
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and requirements of expensive metal catalysts or potentially toxic organic solvents [15–18], which make
them unsustainable and environmentally unfavorable.

Concerns about the environmental issues caused by the influence of human society have currently
become prevalent and ubiquitous. Engagement on green and sustainable methods of chemical
synthesis has emerged as a pioneering realm [19–23] garnering of enormous attention of chemists
and biologists. Among them, chemical reactions “in water” [24] offered a novel way to green and
sustainable synthesis. Water, compared to the traditional organic solvents, possesses distinctive
properties such as safety, innocuousness, high heat capacity, extensive hydrogen bonding, and redox
stability [24–26]. Consequently, water has been gradually accepted [27–33] as a desirable reaction
medium since the first water-promoted Diels–Alder reaction reported by Breslow [34] in 1980.

The C-S bond formation reaction is still an intriguing field attributed to the versatile block-building
usages [35,36] and the bioactive agents [37,38] of sulfur-containing compounds. Thus, substantial
endeavors have been focused on the achievement of the efficient, expedient, and low-cost approach.
With our keen interest in the sulfa-1,6-conjugated addition reaction [15,39,40], we try to combine the
green and sustainable chemical synthetic concept and the C-S bonding formation reactions. Herein,
we disclose a highly efficient tetrabutyl ammonium bromide (TBAB)-promoted sulfonylation of
para-quinone methide (p-QM) with sulfonyl hydrazines to afford unsymmetrical gem-diarylmethyl
sulfones via a sulfa-1,6-conjugated addition pathway. All these reactions were performed smoothly in
water under mild conditions (Scheme 1).
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2. Results and Discussion

2.1. Optimization of Reaction Conditions

In our preliminary study, the investigation of the reaction conditions was carried out with
4-methylbenzenesulfonohydrazide 1a and para-quinone methides (p-QM) 2a as model substrates
(Table 1). Initially, the reaction was explored with different solvents in absence of a catalyst. When the
reaction was carried out at 80 ◦C in tetrahydrofuran (THF), the desired 1,6-sulfa-conjugated adduct
was obtained in mediate yield (50%). Other organic solvents including Et2O, toluene, dichloroethane
(DCE), dioxane, and dimethylsulfoxide (DMSO) were proved to be unsuitable for the reaction (Table 1,
entry 1–6). It was found that protic polar solvent had an obvious promotion effect on the reaction.
When H2O and EtOH were employed, the yield was increased slightly to 61% and 73%, respectively
(Table 1, entry 7–8). Although EtOH had a better effect than water, taking into consideration the
“green and sustainable chemistry” perspective, we chose H2O as a solvent. Subsequently, we focused
on catalyst screening to improve the yield of the water mediated C-S bond formation reaction.
Unfortunately, heterogeneous transition metal nano-catalysts such as Pd/C, Pd/TiO2, Au/TiO2, and
Pt/C had little promotion effect on the reaction (Table 1, entry 9–12). Inspired by the better result of
EtOH, phase transfer catalysts were selected to improve the solubility of organic substrate 1a and 2a
in water, which may have a positive influence on the reaction (Table 1, entry 13–17). To our delight,
in presence of 10% mol tetrabutylammonium bromide (TBAB), the yield was improved sharply to
82% (Table 1, entry 16). Based on the result, we continuously investigated the effect of other reaction
parameters including temperature, reaction time, and reactant ratio. We were pleased to find that the
yield was markedly increased, as the reactant ratio of 2a:1a was increased from 1 to 1.5. Thus, the
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desired gem-diarylmethyl sulfone 3aa was obtained in 96% yield by performing the TBAB-catalyzed
sulfonylation of 4-methylbenzenesulfonohydrazide 1a to p-QM 2a at 80 ◦C in 12 h (Table 1, entry 22).
Given either a lower or higher temperature, the yields decreased (Table 1, entry 18–20).

Table 1. Optimization of the reaction conditions for the 1,6-conjugate sulfonylation of
4-methylbenzenesulfonohydrazide 1a to p-QM 2aa.
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6 - DMSO 80 10 trace
7 - H2O 80 10 61
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10 Pd/TiO2 H2O 80 10 53
11 Au/TiO2 H2O 80 10 43
12 Pt/C H2O 80 10 70
13 CTAB H2O 80 10 51
14 TBAI H2O 80 10 78
15 TEBAC H2O 80 10 80
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17 SDS H2O 80 10 18
18 TBAB H2O 90 10 81
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a The reaction conditions: 1a (0.20 mmol), 2a (0.20 mmol), catalyst (0.02 mmol), solvent (1 mL), b isolated yield based
on 1a, c 2a (0.3 mmol).

2.2. Reaction Scope

Based on the optimized reaction conditions, the generality of this 1,6-conjugate sulfonylation
reaction of sulfonyl hydrazines to para-quinone methides was investigated. Some of the results are
summarized in Figures 2 and 3.

A number of para-quinone methide derivatives 2 bearing different substituents were explored
with 4-methylbenzenesulfonohydrazide 1a under standard reaction condition (Figure 2). Various
substituent groups, such as electron-donating groups (-Me, -OMe), electron-withdrawing groups
(-CF3, -NO2), and halogen atoms (F, Cl, Br), on the p-QM derivatives’ aryl ring at the ortho (2ab–2ag),
meta (2ah–2al), and para (2am–2as) positions were well tolerated by the reaction to provide the
corresponding sulfonylation adducts in good to excelled yields. Furthermore, non-substituted
phenyl substrate 2aa, disubstituted 2,4-dichlorophenyl substrate 2at, polycyclic aromatic substrate 2av,
heteroaromatic substrates 2au, and aliphatic substrate 2ay led to the desired product in 63–95% yields,
implying the well-tolerated property of the substrates in this reaction. Moreover, p-QMs derived
from 2,6-dimethylphenol 2aw and 2,6-diisopropylphenol 2ax were also compatible to afford the
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corresponding adducts, while the former was in lower yield (3aw, 63%) probably due to its small steric
hindrance around the phenolic hydroxyl group.
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of the products, 4af was selected as a representative compound, and the sulfone structure was 
unequivocally confirmed by single crystal X-ray diffraction analysis, as shown in Figure 4 (CCDC No. 
1531154). 

Figure 3. TBAB catalyzed 1,6-conjugate sulfonylation for synthesis of gem-diarylmethyl sulfones
4aa–4am. a The reaction conditions: sulfonyl hydrazides 1 (0.20 mmol), para-quinone methide (p-QM)
2a (0.30 mmol), TBAB (0.02 mmol) in 1 mL of H2O, 80◦C, 12h, b isolated yield base on 1.

Consequentially, we investigated the substitute effects of sulfonyl hydrazines by using
4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-dienone 2a as model substrate under optimized reaction
condition (Figure 3). In general, a wide range of sulfonyl hydrazines 1 bearing meta and para substituent
group including electron-donating groups (-Me, -OMe, -NHAc, -OCF3), electron-withdrawing groups
(-CF3, -NO2), and halogen atom (F, Cl, Br) reacted smoothly with p-QM 2a, affording the adducts
in 62–96% yields. In addition, phenyl 4aa, p-tert-butyl phenyl 4ab, 2-naphthyl 4ak, thienyl 4al and
aliphatic benzyl substituted sulfonyl hydrazines were also tolerated by the reaction to produce the
final products in 52–92% yields.

2.3. Proposed Mechanism

The chemical structure of diarylmethyl sulfones 3 and 4 were characterized by nuclear magnetic
resonance spectroscopies (Supplementary Materials). Because there is another possible sulfinic ester
adduct, the two potential products cannot be distinguished by NMR. To further identify the structure
of the products, 4af was selected as a representative compound, and the sulfone structure was
unequivocally confirmed by single crystal X-ray diffraction analysis, as shown in Figure 4 (CCDC
No. 1531154).
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On the basis of the above observations, we tentatively propose a plausible reaction mechanism
(Scheme 2). First, the sulfonyl hydrazines 1 decomposed into sulfinyl anion 5 with the N2 released and
hydronium generation under the heating condition. Intermediate 5 has a resonate equilibrium with
sulfur-centered anion 6 in water. As a more reactive species, the sulfur-centered anion 6 attacks the
electrophilic atom of the resonated structure of p-QM 2 with the help of tetrabutylammonium bromide
(TBAB). Finally, driven by the aromatization force, the target product is obtained.
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Scheme 2. Probable mechanism of the sulfa-1,6-conjugate reactions in water.

2.4. Derivatives of Products

To further demonstrate the synthetic utility of this protocol, the transformations of products
were then explored (Scheme 3). A carbon-carbon bond formation between 3aa and indole led
to the generation of unsymmetrical triarylmethane 7. Furthermore, base-promoted carbon-sulfur
bond formation between 3aa and thiophenol proceeded to the facial delivery of unsymmetrical
gem-diarylmethyl thioether 8. Moreover, the yield of products of both synthesis routines reached
around 80%, implying the potential and feasibility of further application of 3aa.
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3. Materials and Methods

3.1. General Information

1H-NMR, 13C-NMR spectra were obtained utilizing a Bruker 600 and 400 MHz instrument and
reported in CDCl3 or DMSO(d6). 1H and 13CNMR chemical shifts are reported in ppm relative to either
TMS (1H) (δ = 0 ppm) as an internal standard or the residual solvent peak as following: CDCl3 = 7.26
(1H-NMR), (CD3)2SO = 2.50 (1H-NMR), CDCl3 = 77.16 (13C-NMR), (CD3)2SO = 40.00 (13C-NMR).
HRMS were performed on a Bruker Impact II 10200 instrument. Commercially available chemicals
and solvents were purchased from Adamas-beta, Energy Chemical, Chongqing Chuandong Chemical,
and Chengdu Kelong Chemical. The corresponding compounds were synthesized according to the
methods reported in the literature. Analytical thin-layer chromatography (TLC) was performed on
silicycle silica gel plates with F-254 indicator, and compounds were visualized by irradiation with UV
light. Chromatography was carried out using silica gel 300–400 mesh.

3.2. Experiment

3.2.1. Representative Procedure for Synthesis of Gem-Diarylmethyl Sulfones

To a solution of corresponding 4-(arylmethylidene)-2,6-di-tert-butylcyclohexa-2,5-dienone
(0.3 mmol) in 1 mL water, the corresponding arylsulfonohydrazide (0.2 mmol) and TBAB (0.02 mmol)
were added. The mixture was stirred at 80◦C. The reaction was monitored by TLC. After complete
reaction, the mixture was extracted by ethyl acetate, dried over by anhydrous magnesium sulfate, and
concentrated in vacuo. The crude product was then purified by flash column chromatography on silica
gel (gradient eluent of PE/EA = 30:1–10:1) to gain the corresponding product.

2,6-Di-tert-butyl-4-(phenyl(tosyl)methyl)phenol (3aa): [15] Pale yellow solid; 96% yield. 1H-NMR (600 MHz,
CDCl3) δ 7.61 (d, J = 7.1 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.32 (dq, J = 14.2, 6.9 Hz, 3H), 7.16 (s, 2H),
7.13 (d, J = 7.9 Hz, 2H), 5.20 (s, 1H), 5.16 (s, 1H), 2.36 (s, 3H), 1.35 (s, 18H); 13C-NMR (151 MHz, CDCl3)
δ 154.08 (s), 144.00 (s), 135.94 (s), 135.77 (s), 133.66 (s), 130.00 (s), 129.10 (s), 129.05 (s), 128.62 (s), 128.36
(s), 127.10 (s), 123.57 (s), 76.90 (s), 34.31 (s), 30.16 (s), 21.48 (s).

2,6-Di-tert-butyl-4-(o-tolyl(tosyl)methyl)phenol (3ab): [15] Pale yellow solid; 76% yield. 1H-NMR (600 MHz,
CDCl3) δ 8.23 (d, J = 7.8 Hz, 1H), 7.44 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H),
7.14 (d, J = 8.0 Hz, 2H), 7.13 (s, 2H), 7.08 (d, J = 7.5 Hz, 1H), 5.43 (s, 1H), 5.21 (s, 1H), 2.37 (s, 3H), 2.17 (s,
3H), 1.34 (s, 18H). 13C-NMR (151 MHz, CDCl3) δ 153.99 (s), 143.87 (s), 138.20 (s), 135.84 (s), 130.49 (s),
129.84 (s), 129.33 (s), 129.09 (s), 128.99 (s), 127.03 (s), 123.75 (s), 76.67 (s), 34.28 (s), 30.13 (s), 21.47 (s),
21.09 (s).

2,6-Di-tert-butyl-4-((2-methoxyphenyl)(tosyl)methyl)phenol (3ac): [15] Pale yellow solid; 87% yield.
1H-NMR (600 MHz, CDCl3) δ 8.14 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 7.9 Hz, 2H), 7.22–7.25 (m,
3H), 7.13 (d, J = 7.8 Hz, 2H), 7.04 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 5.93 (s, 1H), 5.19 (s, 1H),
3.60 (s, 3H), 2.36 (s, 3H), 1.36 (s, 18H). 13C-NMR (151 MHz) δ 156.98 (s), 153.95 (s), 143.67 (s), 136.30 (s),
135.69 (s), 129.86 (s), 129.39 (s), 129.08 (s), 128.82 (s), 127.36 (s), 123.53 (s), 122.54 (s), 120.69 (s), 110.79 (s),
66.98 (s), 55.56 (s), 34.30 (s), 30.17 (s), 21.46 (s).

2,6-Di-tert-butyl-4-((2-chlorophenyl)(tosyl)methyl)phenol (3ad): [15] Pale yellow solid; 75% yield. 1H-NMR
(600 MHz, CDCl3) δ 8.35 (d, J = 7.9 Hz, 1H), 7.46 (d, J = 8.1 Hz, 2H), 7.37 (t, J = 7.6 Hz, 1H), 7.29 (d,
J = 8.0 Hz, 1H), 7.23 (t, J = 7.7 Hz, 1H), 7.16 (s, 3H), 7.15 (s, 1H), 5.88 (s, 1H), 5.23 (s, 1H), 2.37 (s, 3H),
1.35 (s, 18H). 13C-NMR (151 MHz, CDCl3) δ 153.20 (s), 143.25 (s), 134.90 (s), 134.72 (s), 133.87 (s), 131.18
(s), 129.10 (s), 128.80 (s), 128.38 (s), 128.17 (s), 128.01 (s), 126.25 (s), 126.05 (s), 121.54 (s), 70.08 (s), 33.28
(s), 29.11 (s), 20.52 (s).

4-((2-Bromophenyl)(tosyl)methyl)-2,6-di-tert-butylphenol (3ae): [15] Pale yellow solid; 82% yield. 1H-NMR
(600 MHz, CDCl3) δ 8.35 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 7.9 Hz, 3H), 7.41 (t, J = 7.6 Hz, 1H), 7.18 (s,
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2H), 7.15 (m, 3H), 5.90 (s, 1H), 5.23 (s, 1H), 2.37 (s, 3H), 1.36 (s, 18H). 13C-NMR (151 MHz, CDCl3) δ
154.19 (s), 144.25 (s), 135.92 (s), 135.77 (s), 133.88 (s), 133.17 (s), 130.19 (s), 129.64 (s), 129.18 (s), 129.01 (s),
127.69 (s), 127.24 (s), 126.02 (s), 122.56 (s), 73.83 (s), 34.29 (s), 30.13 (s), 21.51 (s).

2,6-Di-tert-butyl-4-((2-fluorophenyl)(tosyl)methyl)phenol (3af): [15] Pale yellow solid; 74% yield. 1H-NMR
(600 MHz, CDCl3) δ 8.21 (t, J = 7.2 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.29 (dd, J = 13.2, 6.3 Hz, 1H),
7.27–7.22 (m, 1H), 7.16 (s, 3H), 7.15 (s, 1H), 6.96 (t, J = 9.1 Hz, 1H), 5.63 (s, 1H), 5.24 (s, 1H), 2.37 (s, 3H),
1.35 (s, 18H). 13C-NMR (151 MHz, CDCl3) δ 160.61 (d, JC-F = 247.4 Hz), 154.22 (s), 144.23 (s), 135.96 (s),
135.57 (s), 130.15 (d, JC-F = 1.6 Hz), 129.97 (d, JC-F = 8.6 Hz), 129.14 (s), 129.05 (s), 127.19 (s), 124.30 (d,
JC-F = 3.6 Hz), 122.73 (s), 121.57 (d, JC-F =13.5 Hz), 115.50 (d, JC-F = 23.0 Hz), 67.18 (d, JC-F = 4.2 Hz),
34.29 (s), 30.10 (s), 21.50 (s).

2,6-Di-tert-butyl-4-(tosyl(2-(trifluoromethyl)phenyl)methyl)phenol (3ag): [15] Pale yellow solid; 89% yield.
1H-NMR (600 MHz, CDCl3) δ 8.61 (d, J = 7.9 Hz, 1H), 7.68 (t, J = 7.7 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H),
7.44 (m, 3H), 7.15 (m, 4H), 5.59 (s, 1H), 5.23 (s, 1H), 2.36 (s, 3H), 1.34 (s, 18H). 13C-NMR (151 MHz,
CDCl3) δ 154.20 (s), 144.34 (s), 135.87 (s), 135.59 (s), 133.00 (s), 131.99 (s), 130.47 (s), 129.18 (s), 129.10 (s),
δ 129.64 – 128.96 (m), 128.25 (s), 127.10 (s), 126.45 (q, JC-F = 5.9 Hz), 124.12 (q, JC-F = 274.4 Hz).122.73 (s),
71.00 (s), 34.29 (s), 30.10 (s), 21.48 (s).

2,6-Di-tert-butyl-4-(m-tolyl(tosyl)methyl)phenol (3ah): [15] Pale yellow solid; 84% yield. 1H-NMR
(600 MHz, CDCl3) δ 7.46 (d, J = 7.5 Hz, 1H), 7.42 (d, J = 7.7 Hz, 2H), 7.39 (s, 1H), 7.28–7.19 (m, 1H),
7.13 (m, 5H), 5.20 (s, 1H), 5.12 (s, 1H), 2.35 (d, J = 9.0 Hz, 3H), 2.33 (s, 3H), 1.35 (s, 18H); 13C-NMR
(151 MHz, CDCl3) δ 154.03 (s), 143.92 (s), 138.21 (s), 135.84 (s), 135.81 (s), 133.43 (s), 130.86 (s), 129.12 (s),
128.99 (s), 128.49 (s), 127.10 (s), 126.88 (s), 123.65 (s), 76.92 (s), 34.28 (s), 30.12 (s), 21.46 (s).

2,6-Di-tert-butyl-4-((3-methoxyphenyl)(tosyl)methyl)phenol (3ai): [15] Pale yellow solid; 81% yield.
1H-NMR (600 MHz, CDCl3) δ 7.43 (d, J = 7.8 Hz, 2H), 7.27–7.23 (m, 1H), 7.19 (d, J = 5.4 Hz,
2H), 7.17–7.11 (m, 4H), 6.86 (d, J = 8.0 Hz, 1H), 5.21 (s, 1H), 5.13 (s, 1H), 3.79 (s, 3H), 2.36 (s, 3H), 1.35 (s,
18H). 13C-NMR (151 MHz, CDCl3) δ 159.65 (s), 154.08 (s), 143.99 (s), 135.87 (s), 135.74 (s), 134.93 (s),
129.53 (s), 129.11 (s), 129.03 (s), 127.07 (s), 123.45 (s), 122.39 (s), 115.33 (s), 114.42 (s), 76.78 (s), 55.22 (s),
34.29 (s), 30.13 (s), 21.47 (s).

4-((3-Bromophenyl)(tosyl)methyl)-2,6-di-tert-butylphenol (3aj): [15] Pale yellow solid; 77% yield. 1H-NMR
(600 MHz, CDCl3) δ 7.69 (s, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.1 Hz, 2H),
7.23 (t, J = 7.9 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.10 (s, 2H), 5.24 (s, 1H), 5.11 (s, 1H), 2.37 (s, 3H), 1.35 (s,
18H). 13C-NMR (151 MHz, CDCl3) δ 154.24 (s), 144.32 (s), 136.08 (s), 135.82 (s), 135.35 (s), 133.15 (s),
131.46 (s), 130.07 (s), 129.16 (s), 129.10 (s), 128.34 (s), 127.02 (s), 122.90 (s), 122.55 (s), 76.15 (s), 34.31 (s),
30.10 (s), 21.49 (s).

2,6-Di-tert-butyl-4-((3-fluorophenyl)(tosyl)methyl)phenol (3ak): [15] Pale yellow solid; 78% yield. 1H-NMR
(400 MHz, CDCl3) δ 7.43 (d, J = 8.2 Hz, 2H), 7.41–7.36 (m, 2H), 7.31 (td, J = 8.0, 6.0 Hz, 1H), 7.15 (d,
J = 8.0 Hz, 2H), 7.11 (s, 2H), 7.02 (tdd, J = 8.4, 2.5, 0.8 Hz, 1H), 5.25 (s, 1H), 5.15 (s, 1H), 2.37 (s, 3H),
1.35 (s, 18H). 13C-NMR (151 MHz, CDCl3) δ 162.67 (d, JC-F = 246.5 Hz), 154.23 (s), 144.24 (s), 136.06 (s),
135.91 (d, JC-F = 7.3 Hz), 135.46 (s), 130.02 (d, JC-F = 8.3 Hz), 129.13 (s), 129.08 (s), 127.01 (s), 125.71 (d,
JC-F = 2.8 Hz), 123.04 (s), 117.05 (d, JC-F = 23.0 Hz), 115.35 (d, JC-F = 21.1 Hz), 76.22 (s), 34.29 (s), 30.10
(s), 21.43 (s).

2,6-Di-tert-butyl-4-(tosyl(3-(trifluoromethyl)phenyl)methyl)phenol (3al): [15] Pale yellow solid; 60% yield.
1H-NMR (600 MHz, CDCl3) δ 7.91 (d, J = 7.7 Hz, 1H), 7.81 (s, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.49 (t,
J = 7.8 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.15 (s, 1H), 7.13 (s, 3H), 5.27 (s, 1H), 5.23 (s, 1H), 2.36 (s, 3H),
1.35 (s, 18H). 13C-NMR (151 MHz, CDCl3) δ 154.33 (s), 144.47 (s), 136.20 (s), 135.18 (s), 134.71 (s), 133.22
(s), 130.94 (q, JC-F = 32.5 Hz), 129.20 (s), 129.11 (d, JC-F =3.5 Hz), 127.20–126.83 (m), 125.29–125.02 (m),
123.90 (q, JC-F = 272.4 Hz).122.70 (s), 76.29 (s), 34.32 (s), 30.08 (s), 21.45 (s).
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2,6-Di-tert-butyl-4-(p-tolyl(tosyl)methyl)phenol (3am): [15] Pale yellow solid; 80% yield. 1H-NMR
(600 MHz, CDCl3) δ 7.50 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.2 Hz, 4H), 7.12 (d,
J = 8.1 Hz, 2H), 5.19 (s, 1H), 5.13 (s, 1H), 2.36 (s, 3H), 2.33 (s, 3H), 1.35 (s, 18H). 13C-NMR (151 MHz,
CDCl3) δ 153.99 (s), 143.87 (s), 138.20 (s), 135.84 (s), 130.49 (s), 129.84 (s), 129.33 (s), 129.09 (s), 128.99 (s),
127.03 (s), 123.75 (s), 76.67 (s), 34.28 (s), 30.13 (s), 21.47 (s), 21.09 (s).

2,6-Di-tert-butyl-4-((4-methoxyphenyl)(tosyl)methyl)phenol (3an): [15] Pale yellow solid; 79% yield.
1H-NMR (600 MHz, CDCl3) δ 7.53 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.15 (s, 2H), 7.12 (d,
J = 8.0 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 5.20 (s, 1H), 5.13 (s, 1H), 3.79 (s, 3H), 2.35 (s, 3H), 1.35 (s, 18H).
13C-NMR (151 MHz, CDCl3) δ 155.77 (s), 150.04 (s), 139.94 (s), 131.93 (s), 131.87 (s), 127.28 (s), 125.13
(s), 125.08 (s), 123.06 (s), 121.53 (s), 119.87 (s), 110.15 (s), 72.34 (s), 51.33 (s), 30.35 (s), 27.78–23.72 (m),
17.53 (s).

2,6-Di-tert-butyl-4-((4-chlorophenyl)(tosyl)methyl)phenol (3ao): [15] Pale yellow solid; 81% yield. 1H-NMR
(600 MHz, CDCl3) δ 7.57 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.14 (d,
J = 8.1 Hz, 2H), 7.09 (s, 2H), 5.23 (s, 1H), 5.14 (s, 1H), 2.37 (s, 3H), 1.35 (s, 18H). 13C-NMR (151 MHz,
CDCl3) δ 154.18 (s), 144.23 (s), 136.05 (s), 135.45 (s), 134.54 (s), 132.16 (s), 131.25 (s), 129.15 (s), 129.07 (s),
128.82 (s), 126.96 (s), 123.10 (s), 76.05 (s), 34.30 (s), 30.10 (s), 21.50 (s).

4-((4-Bromophenyl)(tosyl)methyl)-2,6-di-tert-butylphenol (3ap): [15] Pale yellow solid; 79% yield. 1H-NMR
(400 MHz, CDCl3) δ 7.54–7.45 (m, 4H), 7.42 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 7.09 (s, 2H),
5.24 (s, 1H), 5.13 (s, 1H), 2.37 (s, 3H), 1.34 (s, 18H). 13C-NMR (101 MHz, CDCl3) δ 154.20 (s), 144.28 (s),
136.02 (s), 135.35 (s), 132.67 (s), 131.79 (s), 131.54 (s), 129.17 (s), 129.06 (s), 126.95 (s), 122.98 (s), 122.76 (s),
76.08 (s), 34.30 (s), 30.10 (s), 21.53 (s).

2,6-Di-tert-butyl-4-((4-fluorophenyl)(tosyl)methyl)phenol (3aq): [15] Pale yellow solid; 70% yield. 1H-NMR
(600 MHz, CDCl3) δ 7.60 (dd, J = 8.2, 5.4 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.12
(s, 2H), 7.04 (t, J = 8.5 Hz, 2H), 5.23 (s, 1H), 5.16 (s, 1H), 2.36 (s, 3H), 1.35 (s, 18H).13C-NMR (151 MHz,
CDCl3) δ 162.79 (d, JC-F = 248.1 Hz), 154.13 (s), 144.15 (s), 136.03 (s), 135.54 (s), 131.73 (d, JC-F = 8.2 Hz),
129.44 (d, JC-F = 3.2 Hz), 129.11 (s), 129.06 (s), 126.97 (s), 123.33 (s), 115.57 (d, JC-F = 21.5 Hz), 75.98 (s),
34.30 (s), 30.11 (s), 21.47 (s).

2,6-Di-tert-butyl-4-(tosyl(4-(trifluoromethyl)phenyl)methyl)phenol (3ar): [15] Pale yellow solid; 77% yield.
1H-NMR (600 MHz, CDCl3) δ 7.78 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H),
7.15 (d, J = 8.0 Hz, 2H), 7.09 (s, 2H), 5.25 (s, 1H), 5.22 (s, 1H), 2.37 (s, 3H), 1.35 (s, 18H). 13C-NMR
(151 MHz, CDCl3) δ 154.29 (s), 144.41 (s), 137.69 (s), 136.17 (s), 135.29 (s), 130.55 (q, JC-F = 32.6 Hz),
130.28 (s), 129.18 (s), 129.07 (s), 126.97 (s), 125.53 (q, JC-F = 3.6 Hz), 123.96 (q, JC-F = 272.1 Hz). 122.83 (s),
76.32 (s), 34.30 (s), 30.08 (s), 21.49 (s).

2,6-Di-tert-butyl-4-((4-nitrophenyl)(tosyl)methyl)phenol (3as): [15] Pale yellow solid; 72% yield. 1H-NMR
(400 MHz, CDCl3) δ 8.22 (d, J = 8.9 Hz, 2H), 7.85 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 7.17 (d,
J = 8.0 Hz, 2H), 7.07 (s, 2H), 5.29 (s, 1H), 5.27 (s, 1H), 2.38 (s, 3H), 1.34 (s, 18H). 13C-NMR (151 MHz,
CDCl3) δ 153.76 (s), 148.51 (d, J = 2.9 Hz), 147.13 (s), 143.63 (s), 137.22 (s), 136.63 (s), 129.98 (s), 129.55
(s), 128.21 (s), 127.26 (s), 124.18 (s), 123.50 (s), 61.32 (s), 34.31 (s), 30.04 (s), 21.45 (s).

2,6-Di-tert-butyl-4-((2,4-dichlorophenyl)(tosyl)methyl)phenol (3at): [15] Pale yellow solid; 68% yield.
1H-NMR (600 MHz, CDCl3) δ 8.29 (d, J = 8.5 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.5 Hz, 1H),
7.33 (s, 1H), 7.18 (d, J = 7.9 Hz, 2H), 7.10 (s, 2H), 5.79 (s, 1H), 5.25 (s, 1H), 2.39 (s, 1H), 1.35 (s, 18H).
13C-NMR (151 MHz, CDCl3) δ 154.31 (s), 144.50 (s), 136.06 (s), 135.56 (s), 135.47 (s), 134.79 (s), 130.90 (s),
130.83 (s), 129.62 (s), 129.29 (s), 128.99 (s), 127.44 (s), 127.08 (s), 122.18 (s), 70.63 (s), 34.29 (s), 30.09 (s),
21.53 (s).

2,6-Di-tert-butyl-4-((1,3-dihydroisobenzofuran-4-yl)(tosyl)methyl)phenol (3au): [15] Pale yellow solid; 68%
yield. 1H-NMR (600 MHz, CDCl3) δ 7.43 (d, J = 8.1 Hz, 1H), 7.20 (s, 1H), 7.13 (d, J = 9.6 Hz, 1H), 7.01
(d, J = 8.1 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 5.95 (d, J = 3.4 Hz, 1H), 5.21 (s, 1H), 5.08 (s, 1H), 2.36 (s,
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1H), 1.35 (s, 1H). 13C-NMR (151 MHz, CDCl3) δ 154.19 (s), 148.02 (s), 147.93 (s), 144.14 (s), 136.09 (s),
135.86 (s), 129.20 (s), 127.14 (s), 127.03 (s), 124.14 (s), 123.83 (s), 110.36 (s), 108.45 (s), 101.37 (s), 76.60
(s), 34.43 (s), 32.20–27.96 (m), 21.62 (s); HRMS calculated for [M + Na]+ C29H34O5SNa+, m/z 517.2019,
found 517.2020.

2,6-Di-tert-butyl-4-(naphthalen-1-yl(tosyl)methyl)phenol (3av): [15] Pale yellow solid; 78% yield. 1H-NMR
(600 MHz, CDCl3) δ 8.55 (d, J = 7.2 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.82 (t, J = 7.8 Hz, 2H), 7.59 (t,
J = 7.7 Hz, 1H), 7.46 (d, J = 7.9 Hz, 2H), 7.45–7.39 (m, 2H), 7.25 (s, 1H), 7.14 (s, 1H), 7.12 (d, J = 7.9 Hz,
2H), 6.05 (s, 1H), 5.19 (s, 1H), 2.33 (s, 3H), 1.31 (s, 18H). 13C-NMR (151 MHz, CDCl3) δ 154.12 (s), 144.09
(s), 136.00 (s), 135.77 (s), 134.12 (s), 131.79 (s), 129.79 (s), 129.16 (s), 129.13 (s), 128.92 (s), 127.32 (s), 126.85
(s), 126.50 (s), 125.49 (s), 125.32 (s), 123.36 (s), 122.37 (s), 71.18 (s), 34.24 (s), 30.08 (s), 21.46 (s).

2,6-Dimethyl-4-(phenyl(tosyl)methyl)phenol (3aw): [15] Pale yellow solid; 63% yield. 1H-NMR (600 MHz,
CDCl3) δ 7.54–7.44 (m, 4H), 7.28 (m, 3H), 7.15 (m, 4H), 5.13 (s, 1H), 4.70 (s, 1H), 2.37 (s, 3H), 2.20 (s, 6H).
13C-NMR (151 MHz, CDCl3) δ 152.62 (s), 144.22 (s), 135.65 (s), 133.77 (s), 130.25 (s), 129.86 (s), 129.15 (s),
129.08 (s), 128.56 (s), 128.35 (s), 124.34 (s), 123.28 (s), 76.09 (s), 21.53 (s), 15.90 (s).

2,6-Diisopropyl-4-(phenyl(tosyl)methyl)phenol (3ax): [15] Pale yellow solid; 79% yield. 1H-NMR (600 MHz,
CDCl3) δ 7.59 (d, J = 7.8 Hz, 1H), 7.45 (d, J = 7.4 Hz, 1H), 7.37–7.28 (m, 1H), 7.13 (d, J = 8.0 Hz, 1H),
7.09 (s, 1H), 5.20 (s, 1H), 4.81 (s, 1H), 3.19–2.90 (m, 1H), 2.35 (s, 1H), 1.22 (d, J = 6.9 Hz, 1H), 1.14 (d,
J = 6.8 Hz, 1H). 13C-NMR (151 MHz, CDCl3) δ 150.23 (s), 144.02 (s), 133.77 (s), 133.48 (s), 129.99 (s),
129.08 (s), 129.05 (s), 128.58 (s), 128.36 (s), 125.59 (s), 124.87 (s), 99.99 (s), 76.62 (s), 27.21 (s), 22.61 (s),
22.53 (s), 21.48 (s).

2,6-Di-tert-butyl-4-(1-tosylethyl)phenol (3ay): [15] Pale yellow solid; 80% yield. 1H-NMR (600 MHz,) δ
7.33 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 6.78 (s, 2H), 5.21 (s, 1H), 4.13 (q, J = 7.2 Hz, 1H), 2.38
(s, 3H), 1.77 (d, J = 7.2 Hz, 3H), 1.32 (s, 18H). 13C-NMR (151 MHz,) δ 154.13 (s), 143.98 (s), 135.75 (s),
134.32 (s), 129.31 (s), 129.04 (s), 126.21 (s), 124.39 (s), 66.53 (s), 34.23 (s), 30.13 (s), 21.50 (s), 13.45 (s).

2,6-Di-tert-butyl-4-(phenyl(phenylsulfonyl)methyl)phenol (4aa): [16] Pale yellow solid; 92% yield. 1H-NMR
(600 MHz, CDCl3) δ 7.62 (d, J = 7.2 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 7.3 Hz, 1H), 7.34 (dd,
J = 15.7, 8.5 Hz, 5H), 7.19 (s, 2H), 5.24 (s, 1H), 5.21 (s, 1H), 1.36 (s, 18H).13C-NMR (151 MHz, CDCl3) δ
154.15 (s), 138.65 (s), 135.97 (s), 133.45 (s), 133.13 (s), 130.00 (s), 129.08 (s), 128.67 (s), 128.47 (s), 128.44 (s),
127.10 (s), 123.29 (s), 34.34 (s), 30.18 (s).

2,6-Di-tert-butyl-4-(((4-(tert-butyl)phenyl)sulfonyl)(phenyl)methyl)phenol (4ab): [16] Pale yellow solid; 77%
yield. 1H-NMR (600 MHz, CDCl3) δ 7.63 (d, J = 7.1 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.38–7.30 (m, 5H),
7.12 (s, 2H), 5.21 (s, 1H), 5.18 (s, 1H), 1.34 (s, 18H), 1.29 (s, 9H). 13C-NMR (151 MHz, CDCl3) δ 157.07 (s),
154.04 (s), 135.85 (s), 135.59 (s), 133.66 (s), 129.96 (s), 129.01 (s), 128.60 (s), 128.33 (s), 127.13 (s), 125.42 (s),
123.57 (s), 76.88 (s), 35.12 (s), 34.29 (s), 31.04 (s), 30.16 (s).

2,6-Di-tert-butyl-4-(((4-methoxyphenyl)sulfonyl)(phenyl)methyl)phenol (4ac): [16] Pale yellow solid; 96%
yield. 1H-NMR (400 MHz, CDCl3) δ 7.61 (d, J = 7.3 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.39–7.28 (m,
3H), 7.18 (s, 2H), 6.80 (d, J = 8.4 Hz, 2H), 5.23 (s, 1H), 5.16 (s, 1H), 3.81 (s, 3H), 1.36 (s, 18H). 13C-NMR
(101 MHz, CDCl3) δ 154.29 (s), 137.65 (s), 136.11 (s), 133.01 (s), 131.68 (s), 130.54 (s), 129.95 (s), 128.78 (s),
128.65 (s), 128.53 (s), 127.08 (s), 122.89 (s), 76.97 (s), 34.32 (s), 30.13 (s).

N-(4-(((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)sulfonyl)phenyl) acetamide (4ad): Pale yellow
solid; 79% yield. 1H-NMR (600 MHz, DMSO(d6)) δ 10.28 (s, 1H), 7.61 (dd, J = 11.6, 8.3 Hz, 4H), 7.46 (d,
J = 8.7 Hz, 2H), 7.35 (t, J = 7.4 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.23 (s, 2H), 7.03 (s, 1H), 5.77 (s, 1H),
2.06 (s, 3H), 1.31 (s, 18H).13C-NMR (151 MHz, DMSO(d6)) δ 169.47 (s), 154.32 (s), 144.13 (s), 139.25 (s),
134.72 (s), 130.26 (s), 130.14 (s), 128.86 (s), 128.55 (s), 126.96 (s), 124.72 (s), 118.24 (s), 74.46 (s), 34.96 (s),
30.68 (s), 24.62 (s); HRMS (ESI): m/z calcd for C29H35NO4SNa [M + Na]+, 516.2178; found, 516.2179.
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2,6-Di-tert-butyl-4-(((4-chlorophenyl)sulfonyl)(phenyl)methyl)phenol (4ae): [16] Pale yellow solid; 75% yield.
1H-NMR (600 MHz, DMSO(d6)) δ 7.64 (d, J = 7.3 Hz, 2H), 7.55 (dd, J = 22.6, 8.7 Hz, 4H), 7.39 (t,
J = 7.4 Hz, 2H), 7.34 (t, J = 6.8 Hz, 1H), 7.21 (s, 2H), 7.08 (s, 1H), 5.95 (s, 1H), 1.31 (s, 18H).13C-NMR
(151 MHz, DMSO(d6)) δ 154.47 (s), 139.40 (s), 138.99 (s), 137.71 (s), 134.04 (s), 130.83 (s), 130.31 (s),
129.18 (s), 129.00 (s), 128.78 (s), 127.05 (s), 124.18 (s), 74.08 (s), 34.95 (s), 30.63 (s).

4-(((4-Bromophenyl)sulfonyl)(phenyl)methyl)-2,6-di-tert-butylphenol (4af): [16] Pale yellow solid; 81% yield.
1H-NMR (400 MHz, CDCl3) δ 7.61 (dd, J = 7.7, 1.8 Hz, 2H), 7.50–7.45 (m, 2H), 7.42–7.40 (m, 1H),
7.40–7.32 (m, 4H), 7.17 (s, 2H), 5.26 (s, 1H), 5.17 (s, 1H), 1.37 (s, 18H). 13C-NMR (101 MHz, CDCl3) δ
154.29 (s), 137.65 (s), 136.11 (s), 133.01 (s), 131.68 (s), 130.54 (s), 129.95 (s), 128.78 (s), 128.65 (s), 128.53 (s),
127.08 (s), 122.89 (s), 76.97 (s), 34.32 (s), 30.13 (s).

2,6-Di-tert-butyl-4-(((4-fluorophenyl)sulfonyl)(phenyl)methyl)phenol (4ag): [16] Pale yellow solid; 62% yield.
1H-NMR (600 MHz, CDCl3) δ 7.60 (dd, J = 7.9, 1.2 Hz, 2H), 7.58–7.53 (m, 2H), 7.38–7.28 (m, 3H), 7.21 (s,
2H), 7.04–6.95 (m, 2H), 5.26 (s, 1H), 5.18 (s, 1H), 1.37 (s, 18H). 13C-NMR (101 MHz, CDCl3) δ 164.46 (d,
J = 255.9 Hz), 153.21 (s), 135.05 (s), 133.62 (s), 132.21 (s), 130.79 (d, J = 9.5 Hz), 128.91 (s), 127.70 (s),
127.55 (s), 126.00 (s), 122.05 (s), 114.63 (d, J = 22.5 Hz), 75.99 (s), 33.30 (s), 29.12 (s).

2,6-Di-tert-butyl-4-(phenyl((4-(trifluoromethyl)phenyl)sulfonyl)methyl)phenol (4ah): [16] Pale yellow solid;
82% yield. 1H-NMR (600 MHz, CDCl3) δ 7.69 (d, J = 8.1 Hz, 2H), 7.65–7.57 (m, 4H), 7.40–7.33 (m,
3H), 7.17 (s, 2H), 5.27 (s, 1H), 5.21 (s, 1H), 1.35 (s, 18H). 13C-NMR (151 MHz, DMSO(d6)) δ 154.68 (s),
142.95 (s), 139.58 (s), 134.06–133.29 (m), 133.82 (s), 130.51 (s), 130.13 (s), 129.22 (s), 129.06 (s), 127.28 (s),
126.44–126.15 (m), 123.96 (q, J = 273.0 Hz), 123.98 (s), 74.06 (s), 35.07 (s), 30.72 (s).

2,6-Di-tert-butyl-4-(phenyl((4-(trifluoromethoxy)phenyl)sulfonyl)methyl)phenol (4ai): Pale yellow solid; 84%
yield. 1H-NMR (600 MHz, CDCl3) δ 7.61 (d, J = 6.8 Hz, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.37–7.32 (m,
1H), 7.31 (d, J = 8.5 Hz, 1H), 7.18 (s, 1H), 5.25 (s, 1H), 5.17 (s, 1H), 1.37 (s, 1H). 13C-NMR (151 MHz,
DMSO(d6)) δ 154.48 (s), 152.04 (d, J = 2.0 Hz), 139.39 (s), 137.73 (s), 134.00 (s), 131.65 (s), 130.32 (s),
129.00 (s), 128.80 (s), 127.04 (s), 124.13 (s), 121.18 (s), 120.26 (q, J = 258.2 Hz).74.07 (s), 34.93 (s), 30.59 (s);
HRMS (ESI): m/z calcd for C28H31F3O4SNa [M + Na]+, 543.1785; found, 543.1787.

2,6-Di-tert-butyl-4-(((3-nitrophenyl)sulfonyl)(phenyl)methyl)phenol (4aj): Pale yellow solid; 86% yield.
1H-NMR (600 MHz, CDCl3) δ 8.38–8.32 (m, 1H), 8.30 (t, J = 1.7 Hz, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.63 (d,
J = 6.6 Hz, 2H), 7.58 (t, J = 8.0 Hz, 1H), 7.42–7.33 (m, 3H), 7.23 (s, 2H), 5.30 (s, 1H), 5.24 (s, 1H), 1.36 (s,
18H). 13C-NMR (151 MHz, CDCl3) δ 154.56 (s), 147.81 (s), 140.94 (s), 136.49 (s), 134.26 (s), 132.33 (s),
129.99 (s), 129.66 (s), 128.97 (s), 128.93 (s), 127.49 (s), 127.07 (s), 124.48 (s), 122.32 (s), 77.12 (s), 34.35 (s),
30.14 (s); HRMS (ESI): m/z calcd for C27H31NO5SNa [M + Na]+, 504.1817; found, 504.1815.

2,6-Di-tert-butyl-4-((naphthalen-1-ylsulfonyl)(phenyl)methyl)phenol (4ak): [16] Pale yellow solid; 52% yield.
1H-NMR (400 MHz, CDCl3) δ 8.07 (d, J = 1.2 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.79 (dd, J = 8.1, 5.2 Hz,
2H), 7.67 (dd, J = 7.8, 1.6 Hz, 2H), 7.64–7.51 (m, 3H), 7.39–7.30 (m, 3H), 7.16 (s, 2H), 5.28 (s, 1H), 5.18 (s,
1H), 1.26 (s, 18H). 13C-NMR (101 MHz, CDCl3) δ 153.06 (s), 134.88 (s), 134.37 (s), 133.97 (s), 132.31 (s),
130.81 (s), 130.02 (s), 129.01 (s), 128.23 (s), 128.02 (s), 127.67 (s), 127.47 (s), 127.42 (s), 126.74 (s), 126.34 (s),
126.04 (s), 122.65 (s), 122.38 (s), 75.89 (s), 33.18 (s), 29.01 (s).

2,6-Di-tert-butyl-4-(phenyl(thiophen-2-ylsulfonyl)methyl)phenol (4al): [16] Pale yellow solid; 76% yield.
1H-NMR (600 MHz, CDCl3) δ 7.63 (d, J = 7.0 Hz, 2H), 7.54 (d, J = 3.7 Hz, 1H), 7.40–7.30 (m, 3H), 7.28
(s, 3H), 7.01–6.89 (m, 1H), 5.30 (s, 1H), 5.26 (s, 1H), 1.38 (s, 18H). 13C-NMR (151 MHz, DMSO(d6)) δ
154.54 (s), 139.54 (s), 139.40 (s), 136.07 (s), 135.32 (s), 134.54 (s), 130.23 (s), 128.97 (s), 128.78 (s), 128.05 (s),
126.89 (s), 124.58 (s), 75.79 (s), 35.02 (s), 30.71 (s).

4-((Benzylsulfonyl)(phenyl)methyl)-2,6-di-tert-butylphenol (4am): [16] Pale yellow solid; 84% yield.
1H-NMR (600 MHz, CDCl3) δ 7.57 (dd, J = 5.2, 3.3 Hz, 2H), 7.42–7.29 (m, 8H), 7.17 (dd, J = 7.9,
1.3 Hz, 2H), 5.31 (s, 1H), 5.03 (s, 1H), 4.33–3.57 (m, 2H), 1.44 (s, 18H). 13C-NMR (101 MHz, CDCl3) δ
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154.38 (s), 136.32 (s), 132.83 (s), 130.97 (s), 130.11 (s), 128.82 (s), 128.78 (s), 128.68 (d, J = 2.0 Hz), 128.07
(s), 126.88 (s), 122.93 (s), 71.81 (s), 58.13 (s), 34.48 (s), 30.30 (s).

3.2.2. Representative Procedure for General Reaction Procedure for Synthesis of Unsymmetrical
Triarylmethane 7

To a solution of 2,6-di-tert-butyl-4-(phenyl(tosyl)methyl) phenol (45 mg, 0.10 mmol) in 1 mL DCE,
KOH (5.6 mg, 0.10 mmol) and indole (14.06 mg, 0.12 mmol) were added. The mixture was stirred at
65 ◦C. The reaction was monitored by TLC. After complete reaction, the mixture was washed with
water, dried over by anhydrous magnesium sulfate, and concentrated in vacuo. The crude product
was then purified by flash column chromatography on silica gel to afford the pure product 7.

2,6-Di-tert-butyl-4-((3a,7a-dihydro-1H-indol-3-yl)(phenyl)methyl)phenol (7): [41] Brown solid; 85% yield.
1H-NMR (600 MHz, CDCl3) δ 7.90 (s, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.25 (d, J = 5.3 Hz, 4H), 7.22 (d,
J = 8.1 Hz, 1H), 7.18 (qd, J = 5.3, 2.8 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.04 (s, 2H), 6.97 (t, J = 7.5 Hz, 1H),
6.58 (d, J = 23.9 Hz, 1H), 5.56 (s, 1H), 5.04 (s, 1H), 1.36 (s, 18H).13C-NMR (151 MHz, CDCl3) δ 152.91
(d, J = 2.9 Hz), 141.67 (s), 136.43 (d, J = 2.7 Hz), 135.80 (d, J = 2.2 Hz), 131.54 (s), 131.31 (s), 128.61 (d,
J = 2.9 Hz), 128.43 (s), 127.04 (d, J = 2.6 Hz), 126.61 (d, J = 3.0 Hz), 125.21 (d, J = 2.8 Hz), 58.10 (s), 34.43
(s), 30.33 (s).

3.2.3. Representative Procedure for General Reaction Procedure for Synthesis of Unsymmetrical
Gem-Diarylmethyl Thioether 8

To a solution of 2,6-di-tert-butyl-4-(phenyl(tosyl)methyl) phenol (45 mg, 0.1 mmol) in 1 mL methyl
tert-butyl ether, Cs2CO3 (36 mg, 0.01 mmol) and TBAB (3.6 mg, 0.01 mmol) were added. Benzenethiol
(13.68 µL, 0.12 mmol) was added to the solution dropwise, and the mixture was stirred at 80 ◦C.
The reaction was monitored by TLC. After complete reaction, the mixture was concentrated in vacuo.
The crude product was then purified by flash column chromatography on silica gel to afford the pure
product 8.

2,6-Di-tert-butyl-4-(phenyl(phenylthio)methyl)phenol (8): [42] Colorless gummy liquid; 76% yield. 1H-NMR
(600 MHz, CDCl3) δ 7.38 (d, J = 7.4 Hz, 2H), 7.20 (t, J = 7.3 Hz, 2H), 7.12 (t, J = 7.0 Hz, 3H), 7.10–7.00 (m,
5H), 5.35 (d, J = 23.3 Hz, 1H), 5.01 (d, J = 23.1 Hz, 1H), 1.29 (s, 18H). 13C-NMR (151 MHz, CDCl3) δ
152.00 (s), 144.65 (s), 136.75 (s), 135.42 (s), 135.29 (s), 134.46 (s), 128.95 (s), 128.09 (s), 127.19 (s), 125.92 (s),
125.54 (s), 123.80 (s), 121.92 (s), 120.11 (s), 119.23 (s), 110.89 (s), 48.84 (s), 34.35 (s), 30.40 (s).

4. Conclusions

In summary, we developed the TBAB-promoted sulfa-1,6-conjugated addition of para-quinone
methides with sulfonyl hydrazines in water. This reaction provides a green and sustainable method for
direct synthesis of various unsymmetrical diarylmethyl sulfones with good functional group tolerance,
scalability, and regioselectivity. Further transformation of the resulting diarylmethyl sulfones provides
an efficient route to some functionalized molecules.

Supplementary Materials: The following are available online, the 1H-NMR, 13C-NMR spectra of compounds
3aa–3ay and 4aa–4am, 7, 8; HRMS data of 4ad, 4ai and 4aj; crystal data of 4af are available as supporting data.
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Abbreviations

THF Tetrahydrofuran
DCE Dichloroethane
DMSO Dimethylsulfoxide
CTAB Cetyltrimethyl Ammonium Bromide
TBAI Tetrabutyl Ammonium Iodide
TEBAC Triethylbenzyl Ammonium Chloride
TBAB Tetrabutyl Ammonium Bromide
SDS Sodium Dodecyl Sulfate
HRMS High Resolution Mass Spectroscopy
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