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showed that spaceflight increases Oxalobacter species, the bac- 
terium responsible for gut oxalate metabolism. 

The third factor contributing to kidney stone formation is the 
antidiuretic effect of spaceflight ( Fig. 1 ) , which was clearly visi- 
ble as a decrease in free water clearance in astronauts [1 ]. A pre- 
vious animal study demonstrated that microgravity ( simulated 
by hindlimb unloading) enhanced hypotension-induced vaso- 
pressin secretion [3 ]. This suggests that antidiuresis occurs sec- 
ondarily to the haemodynamic changes provoked by micro- 
gravity. Although vasopressin or copeptin was not measured 
by Siew et al . [1 ], they did provide an alternative explana- 
tion. In their multi-omics dataset from humans, rats and mice, 
they observed downregulation of SLCO2A1 , which encodes a 
prostaglandin transporter in the collecting duct. Reduced ac- 
tivity of this transporter causes prostaglandin E2 to accumu- 
late in tubular fluid, enabling it to activate its EP4 receptor and 
subsequently aquaporin-2 water channels. This form of nephro- 
genic antidiuresis has also been implicated in the pathogenesis 
of thiazide-induced hyponatraemia [4 ]. 

One of the strengths of the study by Siew et al. [1 ] is that 
it combines a ‘pan-omics’ approach with classic physiological 
and morphological analysis of the kidney. A crude but inter- 
esting observation is that both microgravity and GCR increased 
kidney weight in mice and rats relative to body weight. This is 
reminiscent of chronic potassium depletion in which kidney 
hypertrophy is attributed to an increase in insulin-like growth 
factor 1, which also occurs during spaceflight [2 , 5 ]. When 
zooming in on the architecture of the distal convoluted tubule, 
known for its plasticity, a clear pattern of tubular remodelling 
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paceflight is taking off both in terms of space tourism and
lanned missions into deep space. This brings renewed atten- 
ion to the health impact of spaceflight, which is primarily
riven by the effects of microgravity and, for deep space mis-
ions, galactic cosmic radiation ( GCR) [1 ]. While the impact of 
paceflight on muscles, bones and the cardiovascular system 

as been extensively studied, the effects on the kidneys have
een somewhat overlooked. This is surprising, as spaceflight 
eads to an unusually high risk of kidney stones and the kidney
s exquisitely sensitive to radiation [1 , 2 ]. Siew et al. [1 ] fill this gap
y identifying several spaceflight-induced kidney perturbations 
or which they coined the term ‘cosmic kidney disease’. 

The authors investigated blood, urine, stool and kidney tissue 
rom humans, mice and rats before and after exposure to actual
paceflights or simulations of microgravity and GCR. They chal- 
enged the long-held belief that kidney stone formation during 
paceflight is a secondary phenomenon due to bone resorption 
 Fig. 1 ) [2 ]. Proteomic analysis of mouse kidney tissue revealed a
triking dephosphorylation of several channels and transporters 
n the distal tubule, including the sodium–potassium–chloride 
otransporter 2 ( NKCC2, SLC12A1) . Dephosphorylation of NKCC2 
educes its activity and results in hypercalciuria, which was ob-
erved in astronaut urine samples during spaceflight. In addi- 
ion to hypercalciuria, hyperoxaluria was identified as another 
ro-lithogenic factor contributing to kidney stone risk ( Fig. 1 ) .
lthough the origin of hyperoxaluria could not be established 
ith certainty, a microbiome analysis of human stool samples 
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Figure 1: A new theory for kidney stone formation during spaceflight. According to the previous theory, the main cause was the impact of microgravity on bone, leading 
to bone resorption, which in turn caused hypercalciuria and increased the risk of kidney stone formation. The new theory proposed by Siew et al. [1 ] suggests that the 
primary cause is the direct effect of microgravity on the kidneys and gut microbiome. This leads to tubular remodelling, resulting in antidiuresis, hypercalciuria and 

hyperoxaluria, all of which contribute to the risk of developing kidney stones [1 ]. The figure was created using BioRender. 
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as identified, characterized by increased tubule size but a loss 
f overall density [1 ]. Tubular remodelling is increasingly recog- 
ized as a response of the kidney tubule to adjust transporter 
apacity to changes in homeostasis [6 ]. 

Siew et al. [1 ] also investigated the effect of long-term 

xposure to GCR ( ≈1.5- or ≈2.5-year dose equivalent) on the 
ouse kidney. This revealed overt thrombotic microangiopathy 

n several cases, possibly triggered by micro-RNAs causing 
ascular damage in the inner stripe of the outer medulla. Of 
nterest, in back-to-back articles, the use of antagomirs against 
hree micro-RNAs was effective in mitigating the vascular 
amage from simulated deep space radiation [7 ]. In addition 
o the vascular kidney lesions, GCR caused proximal and distal 
ubular injury leading to albuminuria and magnesiuria. 

Some questions regarding cosmic kidney disease remain to 
e addressed, including what exactly triggers tubular remod- 
lling and how reversible is it, considering that kidney stone risk 
emains increased after returning to Earth [2 ]. Another ques- 
ion is how to reconcile hypercalciuria with the observation that 
he sodium–chloride cotransporter ( NCC, SLC12A3) was also de- 
hosphorylated, which would be expected to cause hypocalci- 
ria. This is also relevant when considering whether astronauts 
ight benefit from thiazide diuretics to prevent kidney stones 
nd bone loss. Preventing cosmic kidney disease is clearly rele- 
ant for those traveling to Mars, if only because a renal colic in 
his setting would be rather inconvenient, to say the least. 
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