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Abstract 

Spinal muscular atrophy (SMA) is a neuromuscular genetic disease caused by reduced survival motor neuron (SMN) 
protein. SMN is ubiquitous and deficient levels cause spinal cord motoneurons (MNs) degeneration and muscle 
atrophy. Nevertheless, the mechanism by which SMN reduction in muscle contributes to SMA disease is not fully 
understood. Therefore, studies evaluating atrophy mechanisms in SMA muscles will contribute to strengthening 
current knowledge of the pathology. Here we propose to evaluate autophagy in SMA muscle, a pathway altered in 
myotube atrophy. We analized autophagy proteins and mTOR in muscle biopsies, fibroblasts, and lymphoblast cell 
lines from SMA patients and in gastrocnemius muscles from a severe SMA mouse model. Human MNs differentiated 
from SMA and unaffected control iPSCs were also included in the analysis of the autophagy. Muscle biopsies, fibro‑
blasts, and lymphoblast cell lines from SMA patients showed reduction of the autophagy marker LC3‑II. In SMA mouse 
gastrocnemius, we observed lower levels of LC3‑II, Beclin 1, and p62/SQSTM1 proteins at pre‑symptomatic stage. 
mTOR phosphorylation at Ser2448 was decreased in SMA muscle cells. However, in mouse and human cultured SMA 
MNs mTOR phosphorylation and LC3‑II levels were increased. These results suggest a differential regulation in SMA of 
the autophagy process in muscle cells and MNs. Opposite changes in autophagy proteins and mTOR phosphorylation 
between muscle cells and neurons were observed. These differences may reflect a specific response to SMN reduc‑
tion, which could imply diverse tissue‑dependent reactions to therapies that should be taken into account when 
treating SMA patients.
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Introduction
Spinal muscular atrophy (SMA) is a genetic neuro-
muscular disorder characterized by progressive mus-
cle weakness and atrophy [1]. In infants, SMA is the 
most common cause of death due to a genetic origin 
and affects 1 in 6,000 to 10,000 live births [2]. SMA is 

initiated by deficient levels of the Survival Motor Neu-
ron (SMN) protein, which is codified by the SMN genes 
[3]. In humans there are two versions of SMN,  SMN1 
gene responsible for the production of full-length SMN 
protein (ubiquitously expressed), and several copies 
of SMN2  gene that suffers alternative splicing and pro-
duces predominantly a short version of SMN lacking 
exon 7 [4, 5]. When SMN1  is absent by mutation, dele-
tion, or conversion, SMN2  is not able to compensate for 
the loss of SMN1.
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Spinal cord motoneurons (MNs) loss during SMA 
is a hallmark of the disease, together with severe mus-
cle atrophy [1]. Muscle-specific studies in SMA suggest 
deleterious changes in muscle tissue previous to MN 
degeneration [6] and recent results showed that selec-
tive depletion of SMN in muscle tissue reveals MN-
independent disease [7]. However, the role of muscle 
cells in the SMA pathology is not entirely understood. 
Intracellular processes related to protein turnover regula-
tion may contribute to muscle defects observed in SMA. 
Autophagy is a highly regulated pathway responsible for 
the degradation of cytoplasmic proteins and organelles 
captured by the autophagosomes. After fusion and con-
tent exchange with the lysosomes, the autophagosome 
cargo is degraded [8]. Experimental models have con-
firmed the role of autophagy during muscle atrophy. For 
instance, oxidative stress induced by overexpression of a 
mutant superoxide dismutase protein  (SODG93A) causes 
muscle atrophy by activating autophagy [9]. Muscle-spe-
cific inactivation of genes encoding autophagy-related 
proteins demonstrate the essential role of autophagy in 
muscle homeostasis in mice [10]. In addition, myofiber 
degeneration is associated with complete inhibition of 
autophagosome formation [11, 12]. Nevertheless, an 
exaggerated increase in autophagy also impairs myofiber 
homeostasis by excessive removal of cellular components 
needed for normal activities, indicating that unbalanced 
autophagy can be a pathogenic mechanism in muscle dis-
eases [10]. Protein synthesis and degradation in skeletal 
muscle are largely regulated by the mammalian target 
of rapamycin (mTOR) as part of the complex mTORC1 
[13]. mTOR regulates many fundamental cell processes, 
including negative modulation of the autophagy process 
[14]. The positive regulation of mTOR pathway may be 
involved in muscle protection in SMA pathology [15, 16].

Previous findings in SMA models suggested an increase 
of autophagy in lower MNs [17, 18] and the regulation of 
SMN protein levels by autophagy modulators [19, 20]. 
Based on these findings it has been proposed the inhi-
bition of autophagy as a therapeutic approach in SMA 
[21]. To further study the interaction between SMN defi-
ciency and autophagy pathways, we analyzed autophagy 
markers and mTOR phosphorylation (Ser2448) in SMA 
muscle, fibroblasts and MNs. Human SMA muscle biop-
sies and cultured fibroblasts had reduced levels of the 
autophagosome indicator LC3-II. We observed decreased 
levels of LC3-II, Beclin 1 and p62/SQSTM1 in gastrocne-
mius samples from postnatal day 2 SMA mice, suggest-
ing reduced autophagosome formation and increased 
autophagic flux. Nevertheless, LC3-II level was increased 
in human differentiated SMA MNs. On the other hand, 
mTOR phosphorylation at Ser2448 was reduced in SMA 
gastrocnemius and fibroblasts, but significantly increased 

in isolated MNs from mouse and human SMA models. 
In summary, non-neuronal and neuronal cells from SMA 
models displayed different molecular signs of autophagy 
and mTOR. Improved understanding of non-neuronal 
and skeletal muscle alterations in SMA will help to 
advance our understanding of SMA pathogenesis and 
the development of novel therapeutic strategies based on 
combinatorial treatments.

Materials and methods
SMA animals
Experiments involved the severe SMA mouse model 
FVB·Cg-Tg (SMN2)89AhmbSmn1tm1Msd/J (mutSMA). 
MutSMA mice (Smn−/−; SMN2+/+ were obtained 
by crossing heterozygous animals. Littermates mut-
SMA and WT (Smn+/+; SMN2+/+) were used for the 
experiments.

A piece of the tail from neonatal offspring was collected 
for genotyping. The REDExtract-N-Amp Tissue PCR Kit 
(Sigma) was used for genomic DNA extraction and PCR 
setup, with the following primers: WT forward 5′-CTC 
CGG GAT ATT GGG ATT G-3′, SMA reverse 5′-GGT AAC 
GCC AGG GTT TTC C-3′ and WT reverse 5′- TTT CTT 
CTG GCT GTG CCT TT-3′. Birth was defined as post-
natal day 0 (P0); P2 and P5 animals were used for the 
experiments. All procedures were done in accordance 
with the Spanish Council on Animal Care guidelines and 
approved by the University of Lleida Advisory Commit-
tee on Animal Services (CEEA02- 01/17).

Human samples
Subjects (or legal guardians) were given oral and writ-
ten information about the experimental procedures and 
they provided written informed consent. All protocols 
were approved by Hospital Vall d’Hebron (Barcelona) and 
Hospital de la Santa Creu i Sant Pau (Barcelona) in agree-
ment with their Ethics Committee guidelines.

SMA was diagnosed using the criteria outlined by the 
International SMA Consortium [22] and confirmed by 
detection of molecular alterations in the SMN1 gene. 
SMN1 genotype and SMN2 copy number were deter-
mined as previously described [23, 24]. Human muscle 
samples were acquired from the Paediatric Neurology 
laboratory collection at Vall d´Hebron Hospital (Span-
ish Biobank Registry, reference C.0003146). A normal 
muscle sample was obtained from a 2-month-old girl 
undergoing surgery and a control (non-SMA) sample 
from a 4-month-old girl diagnosed with Pompe disease. 
The SMA muscle biopsies were obtained from type I and 
type II patients (quadriceps muscle, 4-month-old female, 
two copies of SMN2) and paraspinal muscle, 12-year-
old male, two copies SMN2), respectively. Samples were 
snap-frozen and homogenized in lysis buffer. All samples 
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were processed in parallel. In SMA type I (male, two cop-
ies of SMN2) and a healthy child (male), fibroblasts and 
EBV-immortalized lymphoblasts were cultured accord-
ing to standard protocols [25].

Human fibroblast cell lines culture
Cell lines were obtained from the Coriell Institute for 
Medical Research (Camden, NJ, USA). The Coriell Cell 
Repository maintains the consent and privacy of the 
donor samples. All cell lines and culture protocols in the 
present study were carried out under institutional review 
board guidelines at University of Lleida and the IRBLleida 
research center. Two human fibroblast cell lines from 
patients with SMA (GM03813, SMAII; and GM09677, 
SMAI) and one unaffected control (GM03814, Control) 
were purchased and cultured following manufacturer 
instructions. Cells were maintained in Eagle’s Mini-
mum Essential Medium (MEM) (Sigma) supplemented 
with non-inactivated fetal bovine serum (FBS; Gibco) 
(15% v/v), 0.5  M of L-Glutamine (Gibco), non-essential 
amino acids (Gibco) (1% v/v), and 20  μg/ml Penicil-
lin–Streptomycin (Gibco). Cells were subcultured every 
3–4  days. For western blot analysis, cells were plated at 
3000–4000 cells/cm2 in 35 mm tissue-culture dishes and 
maintained in supplemented MEM. Two days later, total 
cell lysates were collected and submitted to western blot 
analysis. For immunofluorescence experiments, 5,000 
cells/well were plated on 4-well dishes with collagen-
coated 1  cm2 glass coverslips, maintained in the MEM for 
24 h, then fixed in 4% paraformaldehyde in PBS.

Differentiation of human‑induced pluripotent stem cells 
(iPSCs) to MNs
Human iPSCs were purchased from Coriell Institute for 
Medical Research. The GM23411*B iPSC cell line (healthy 
non-fetal tissue) was the control and GM23240*B iPSC 
cell line (SMA) was from a patient with SMA type II 
(SMN2 2 copies; delta exon7-8 in SMN1). Control and 
SMA cells were differentiated to MNs as described [26], 
with minor modifications [27]. Briefly, human iPSCs 
were cultured on a layer of irradiated mouse embry-
onic fibroblasts (MEFs) (Gibco) and neuroepithelial and 
motoneuron progenitors (MNPs) were generated follow-
ing the protocol. To induce MN differentiation, MNPs 
were detached with Accutase and cultured in suspen-
sion in MN induction medium (NEPIM plus 0.5  μM 
retinoic acid, 0.1  μM purmorphamine). Medium was 
changed alternate days. After six days the neurospheres 
were dissociated and plated on laminin-coated plates in 
MN maturation medium (MN induction medium supple-
mented with 0.1 μM Compound E [Sigma], and 20 ng/ml 
ciliary neurotrophic factor [CNTF], and 20 ng/ml Insu-
lin-like growth factor 1 [IGF-1], [both from Peprotech]). 

Dissociated neurospheres were plated in laminin-coated 
four-well tissue culture dishes (Nunc, Thermo Fisher Sci-
entific) for western blot analysis (60,000 cells/well). For 
immunofluorescence experiments, cells were plated on 1 
 cm2 laminin-coated glass coverslips placed into the four-
well dishes (15,000 cells/well).

Western blot analysis
Western blots were performed as previously described 
[28]. Spinal cord and gastrocnemius tissue samples were 
disaggregated using Direct Quant 100ST Buffer (DireCt 
Quant) and a G50 Tissue Grinder (Coyote Bioscience). 
Total cell lysates of cultured cells or tissue homogenates 
were resolved in SDS polyacrylamide gels and transferred 
onto polyvinylidene difluoride Immobilon-P transfer 
membrane filters (Millipore), using an Amersham Bio-
sciences semidry Trans-blot (Buckinghamshire, UK). The 
membranes were blotted with anti-SMN (1:5000; Cat. 
No. 610646, BD Biosciences), anti-LC3 (1:1000; Cat. No. 
2775), anti-BECLIN-1 (1:1000; Cat. No. 3738), anti-p62/
SQSTM1 (1:1000; Cat. No. 5114), anti-LAMP-1 (1:1000; 
Cat. No. 3243), anti-p-mTOR (1:1000; Cat. No. 5536) all 
from Cell Signaling Technology). To control the specific 
protein content per lane, membranes were reprobed 
with anti-CypA (1:10,000; Cat. No. BML-SA296-0100, 
Enzolifesciences) or monoclonal anti-α-tubulin antibody 
(1:50,000; Cat. No. T5168, Sigma). Blots were devel-
oped using LuminataTM ForteWestern HRP Substrate 
(Millipore).

Immunofluorescence
Gastrocnemius muscles from WT and mutSMA (P2 
and P5) mice were dissected and fixed in 4% paraform-
aldehyde (Sigma) for 24 h. Tissue samples were cryopro-
tected with 30% sucrose in PB for an additional 48 h and 
finally embedded in Tissue Freezing Medium (Electron 
Microscopy Sciences). Sections of 16 μm-thickness were 
obtained in a cryostat (Leica CM3000). To break pro-
tein cross-links and unmask the antigens and epitopes, 
tissue sections were incubated at 450 Watts for 15  min 
in 10  mM Citrate Buffer solution. Cultured fibroblasts 
and human MNs were fixed with 4% paraformaldehyde 
(Sigma) for 10 min, then with cold methanol (Sigma) for 
30 s.

Tissue sections and fixed cells were permeabilized with 
0.2% Triton X-100 and incubated for 2 h with 5% bovine 
serum albumin (BSA) in PBS. Primary antibody (anti-
LC3, 1:100, Cat. No. 2775; anti-beta-III-tubulin, 1:400, 
Cat. No. 5568, both from Cell Signaling Technology; 
anti-SMN 1:100; Cat. No. 610646, BD Bioscience; anti-
Laminin2, 1:75, Cat. No. L0663, Sigma; anti-HB9, 1:75, 
Cat. No. ab92606; anti-ChAT, 1:100, Cat. No. ab18736, 
both from Abcam; or anti-Islet1/2, 1:50, Cat. No. 39.4D5, 
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Developmental Studies Hybridoma Bank) was diluted 
in 0.2% Triton-X-100 and incubated overnight with 5% 
BSA in PBS. After washing, the secondary antibody was 
added: anti-mouse ALEXA555, 1:400, Cat. No. A21422; 
anti-rabbit ALEXA488, 1:400, Cat. No. A11008 (both 
from Invitrogen); Cy™3 AffiniPure F(ab’)2 Fragment 
Donkey anti-Rat IgG (H + L), 1:400, Cat. No. 712-166-
153; Cy™3 AffiniPure F(ab’)2 Fragment Donkey anti-
Sheep IgG (H + L), 1:400, Cat. No. 713-166-147 (both 
from Jackson ImmunoResearch). Hoechst (1:400, Sigma) 
staining was performed to identify nuclear localization 
in cell soma. Samples were mounted using Mowiol (Cal-
biochem) medium. Microscopy observations were per-
formed in a FV10i Olympus confocal microscope (Tokyo, 
Japan). Quantification of fluorescence was performed 
blinded, using the NIH ImageJ software [29]. For LC3 
puncta measures, the area of each cell or muscle fiber 
was selected and threshold level of the digital images 
was evenly adjusted to highlight all the spots. Quantifica-
tion of the number of spots in the selected area was per-
formed automatically using the “Find Maxima” tool.

Statistical analysis
All experiments were performed at least three independ-
ent times. Values were expressed as mean ± estimated 
standard error of the mean (SEM). Statistical analysis was 
done with GraphPad Prism, version 8 (graphPad Soft-
ware Inc). Differences between groups were assessed by 
two-tailed Student t-test or one-way ANOVA with Tuck-
ey’s multiple comparisons or Dunnett’s multiple compar-
isons test for all other analysis. Values were considered 
significant when p < 0.05.

Results
LC3‑II autophagosome marker is decreased in SMA muscle 
and fibroblasts, and increased in human SMA MNs
LC3-II isoform is incorporated to the autophago-
some membrane and the levels reflect the number of 
autophagosomes [30]. Western blot analysis of protein 
extracts obtained from SMA patients muscle biopsies 
(SMAI, SMA type I; and SMAII, SMA type II) showed 
reduced levels of LC3-II compared to non-affected con-
trol (Fig. 1A). As expected, LC3-II was increased in pro-
tein extracts obtained from muscle biopsy of a patient 
with Pompe disease, a well-known lysosomal storage 
disorder causing massive accumulation of autophago-
somes [31]. To further analyze the autophagy process in 
SMA muscle tissue, we dissected gastrocnemius muscles 
[32] from the SMA mouse model FVB·Cg-Tg (SMN2) 
89AhmbSmn1tm1Msd/j. Wild-type (WT) and mutant 
(mutSMA) genotyped mice at pre-symptomatic P2 and at 
disease end-point P5 [33] were used for the experiments. 
Protein extracts were obtained and submitted to western 
blot analysis using anti-LC3 antibody. LC3-II level was 
significantly reduced in mutSMA (0.46 ± 0.07, p = 0.0034) 
condition compared to WT control at P2 stage. In con-
trast, LC3-II protein was significantly increased in P5 
extracts from mutSMA (2.03 ± 0.25, p = 0.0051) com-
pared to the control. To validate western blot observa-
tions, the number of autophagosomes per myotube area 
of WT and mutSMA P2 gastrocnemius was explored by 
immunofluorescence using an anti-LC3 antibody and 
analyzed with the NIH ImageJ software as described [19]. 
The number of LC3 puncta per myotube area was sig-
nificantly reduced in mutSMA (35.43 ± 4.63, p < 0.0001) 
compared to WT control (77.67 ± 7.84) (Fig. 1B).

Fig. 1 LC3‑II protein level in human and murine samples from SMA muscle biopsies, and human lymphoblast and fibroblast cell lines. A Muscle 
biopsies from Control, Pompe and SMA type I and SMA type II patients were disaggregated and protein extracts were submitted to western blot 
analysis using anti‑LC3 antibody. Membranes were reprobed with anti‑CypA antibody, used as a loading control. Graph values represent the 
expression of LC3‑II vs CypA. B Total cell lysates of gastrocnemius from genotyped WT and mutSMA P2 (left) and P5 (right) mice were submitted 
to western blot analysis using anti‑LC3 and anti‑SMN antibodies. Membranes were reprobed using an antibody against α‑tubulin. Graph values 
represent the expression of LC3‑II vs α‑tubulin at P2 and P5, and correspond to the quantification of three independent experiments ± SEM. 
Asterisks indicate significant differences using Student t test (**p < 0.01). B Representative immunofluorescence images of gastrocnemius sections 
of P2 WT and P2 mutSMA mice using an anti‑LC3 (green) and an anti‑Laminin (red) antibodies. Hoechst dye (blue) was used to identify nuclei. 
Scale bar, 20 μm. Graphs represent the mean of LC3 positive puncta measured in WT and mutSMA myofibers, corresponding to the quantification 
of tree independent experiments ± SEM. Asterisks indicate significant differences using Student t Test (****p < 0.0001). C Protein extracts from 
fibroblast and lymphoblast cell lines were submitted to western blot analysis using anti‑LC3 and anti‑SMN antibodies. Membranes were reprobed 
with anti‑α‑tubulin antibody, used as a loading control. Graph values represent the expression of LC3‑II versus α‑tubulin. C Control (unaffected) 
and SMA II and SMA I patient fibroblast cell lines were plated and maintained in supplemented MEM. Forty‑eight hours after plating, cell lysates 
were obtained and submitted to western blot using anti‑LC3 and anti‑SMN antibodies. Membranes were reprobed with an anti‑α‑tubulin antibody. 
Graph values represent the expression of LC3‑II versus α‑tubulin and correspond to the quantification of six independent experiments. Asterisks 
indicate significant differences using one‑way ANOVA with Tukey’s multiple comparisons post‑test (***p < 0.001, **p < 0.001). Representative 
immunofluorescence images of 2‑day cultured Control, SMA II, and SMA I fibroblasts using anti‑LC3 (green), anti‑SMN (red) antibodies and Hoechst 
staining (blue). Hoechst was used to identify fibroblast nuclei. Scale bar, 25 µm. Graph represents the mean of LC3 positive puncta per cell and 
corresponds to the quantification of three independent experiments ± SEM. Asterisks indicate significant differences using one‑way Anova with 
Tuckey’s multiple comparisons post‑test (*p < 0.05; ****p < 0.0001)

(See figure on next page.)
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To study changes in LC3-II levels in other SMA cel-
lular models, patient SMA lymphoblast and SMA fibro-
blast cell lines were analyzed. Protein extracts were 
obtained from 2-day cultured SMA lymphoblast or 
fibroblast samples (kindly provided by Dr. Eduardo Tiz-
zano, Hospital Santa Creu i Sant Pau, Barcelona) and 
submitted to western blot analysis using anti-LC3 anti-
body. LC3-II protein level was clearly reduced in both 
cellular types, compared to controls (Fig.  1C). Addi-
tionally, primary myoblasts obtained from the paraspi-
nal muscle biopsy in SMA type II (3 copies of SMN2) 
showed reduced LC3-II levels (data not shown). Like-
wise, total protein cell lysates of 2-day cultured SMAII 
and SMAI fibroblasts (from Coriell Institute; see Mate-
rials and Methods) were analyzed. Results showed that 
LC3-II protein level was significantly decreased in SMA 
fibroblasts (SMAII 0.65 ± 0.06, p = 0.0006; and SMAI 
0.73 ± 0.08, p = 0.004) compared to the clinically unaf-
fected control (Fig. 1C). To further analyze changes in 
the number of autophagosome compartments in SMA 
fibroblasts, 1-day cultures were processed for immuno-
fluorescence analysis of LC3 protein. Cells were fixed 
and LC3 immunostaining was performed with anti-LC3 
antibody. The number of fluorescent LC3 puncta was 
quantified using NIH ImageJ software. The area of each 
fibroblast was selected and LC3 puncta were counted 
per cell. Fluorescent puncta in SMA fibroblasts (SMAII 
32.76 ± 3.01, p = 0.0104; and SMAI 24.97 ± 2.96, 
p < 0.0001) were significantly reduced compared to the 
control (46.37 ± 3.76) (Fig. 1C).

SMA and non-affected control human iPSC cells (from 
Coriell Institute, see Materials and Methods) were dif-
ferentiated to MNs following the protocol described 
[26, 27] (Fig.  2A). We examined LC3 level in six days 
differentiated SMA and control MNs. Since MNs are 
highly polarized cells, we chose immunofluorescence 
to observe LC3 protein in cell soma and neurites. After 
differentiation, cultures were fixed and processed using 
anti-LC3 antibody. The number of LC3 puncta was quan-
tified using NIH ImageJ software. Results showed a sig-
nificant increase of LC3 in soma and neurites of human 
SMA differentiated MNs (soma, 21.72 ± 1.67 puncta per 
soma, p < 0.0001; neurites, 0.22 ± 0.018 puncta per µm, 
p < 0.0001) compared to the unaffected control (soma, 
4.87 ± 0.47 puncta per soma; neurites, 0.06 ± 0.012 
puncta per µm) (Fig.  2B). Protein extracts of 7-day dif-
ferentiated human SMA and control MNs were submit-
ted to western blot analysis using an anti-LC3 antibody. 
LC3-II level was increased in human SMA (3.33 ± 0.96, 
p = 0.035) MNs compared to control condition (Fig. 2C). 
Together these results indicated an increase of LC3-II 
autophagosome marker in mouse isolated and human 
differentiated SMA MNs.

Beclin 1, p62/SQTM1 and LAMP‑1 protein level are altered 
in SMA gastrocnemius and human SMA fibroblasts
To further explore changes in SMA muscle and fibro-
blasts autophagy pathway, we next analyzed the levels 
of Beclin 1, p62/SQTM1 (p62) and LAMP-1 proteins. 
Beclin 1 activity controls the assembly of the double-
membrane autophagosome and regulates the number of 
these structures and LC3-II level [34]. Protein extracts 
of WT and mutSMA P2 and P5 genotyped mice were 
submitted to western blot analysis using an anti-Bec-
lin1 antibody. Beclin 1 protein level was significantly 
reduced in both SMA P2 (0.49 ± 0.028, p < 0.0001) 
and SMA P5 (0.65 ± 0.098, p = 0.022) conditions com-
pared to the P2 and P5 WT controls (Fig.  3A, B). To 
evaluate whether Beclin 1 was also reduced in human 
SMA fibroblast cell lines, protein extracts from 2-day 
cultured control, SMAII, and SMAI fibroblasts (Cori-
ell Institute) were submitted to western blot analysis 
using an anti-Beclin 1 antibody. No significant differ-
ences between control and SMA Beclin 1 protein levels 
were observed, although the level was slightly reduced 
in SMA conditions (SMAII 0.87 ± 0.047 and SMAI 
0.81 ± 0.097) (Fig. 3C).

p62/SQTM1 protein (p62) is degraded by autophagy 
and links ubiquitinated proteins to the autophagic 
machinery to enable their degradation in the lyso-
some [35, 36]. Accumulation of p62 indicates reduced 
autophagic flux. p62 protein level was significantly 
reduced in both P2 mutSMA (0.73 ± 0.078, p = 0.022) 
and P5 mutSMA 0.62 ± 0.14, p = 0.049) compared to 
the respective WT controls (Fig.  3A, B), suggesting 
increased autophagic flux in SMA gastrocnemius. In 
contrast, western blot analysis of protein extracts from 
2-day cultured human control and SMA fibroblasts 
revealed significantly increased p62 in SMA (SMAII 
1.43 ± 0.17, p = 0.014; and SMAI 2.04 ± 0.33, p = 0.01) 
compared to control, suggesting reduced autophagic 
flux in these cells (Fig. 3C).

To evaluate whether alteration of the autophagic flux 
in muscle cells and fibroblasts is associated to changes 
in the lysosomal compartment, we analyzed the level of 
lysosome associated membrane protein-1 (LAMP-1), 
one of the major protein components of the lysosomal 
membrane [37]. LAMP-1 protein level was not statis-
tically different in SMA P2 (1.04 ± 0.24, p = 0.75) and 
P5 (0.805 ± 0.19, p = 0.43) mouse gastrocnemius com-
pared to the respective WT control conditions (Fig. 3A, 
B). Conversely, LAMP-1 was significantly reduced in 
human SMA fibroblasts (SMAII 0.85 ± 0.02, p = 0.03; 
SMAI 0.64 ± 0.04, p = 0.0004) compared with non-
affected control (Fig.  3C), indicating that lysosomal 
compartment may be altered in these cells.
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Fig. 2 Increased levels of LC3‑II in human SMA differentiated MNs. A Representative phase contrast and immunofluorescence images of 
7‑day differentiated Control and SMA human MNs, showing the MN markers HB9 (green left section), ChAT (red left section), Islet 1/2 (red right 
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Fig. 3 Beclin 1, p62/SQTM1 and LAMP‑1 protein levels in SMA gastrocnemius and human SMA fibroblast cell lines. Total cell lysates of 
gastrocnemius from P2 (A) and P5 (B) genotyped WT and mutSMA mice were submitted to western blot analysis using anti‑Beclin 1, anti‑p62/
SQSTM1 or anti‑LAMP‑1, and anti‑SMN antibodies. Membranes were reprobed using an antibody against α‑tubulin. Graph values represent 
the expression of the targeted proteins vs α‑tubulin at P2 and P5, and correspond to the quantification of four and three independent 
experiments ± SEM, respectively. Asterisks indicate significant differences using Student t test (*p < 0.05, ****p < 0.0001, no significant differences 
(ns) p > 0.05). C Control (unaffected) and SMA II and SMA I patient fibroblast cell lines were maintained in the presence of supplemented MEM. 
Forty‑eight hours after plating, cell lysates were obtained and submitted to western blot analysis using anti‑Beclin 1, anti‑p62/SQSTM1 or 
anti‑LAMP‑1, and anti‑SMN antibodies. Membranes were reprobed with an anti‑α‑tubulin antibody. Graph values represent the expression of the 
targeted proteins versus α‑tubulin and correspond to the quantification of three independents experiments ± SEM. Asterisks indicate significant 
differences using one‑way Anova with Tuckey’s multiple comparisons post‑test (*p < 0.05, ***p < 0.0005, no significant differences (ns) p > 0.05)

(See figure on next page.)
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mTOR phosphorylation at Ser2448 is reduced in SMA 
muscle and increased in cultured SMA MNs
mTORC1 signaling is a well-known negative regula-
tor of the autophagy pathway and muscle atrophy 
has been related to the reduction of mTOR phospho-
rylation at Ser2448 [38]. In this context, we examined 
mTOR protein level and Ser2448 phosphorylation in 
SMA models. Protein extracts from genotyped WT 
and mutSMA P2 and P5 mouse gastrocnemius were 

submitted to western blot analysis using anti-mTOR 
antibody or anti-mTOR (phospho Ser2448) antibody. 
No differences of mTOR protein level were observed 
in WT and mutSMA samples at P2 and P5. Neverthe-
less, mTOR Ser2448 phosphorylation level was signifi-
cantly reduced in P2 and P5 mutSMA (P2, 0.52 ± 0.06, 
p < 0.0001; P5, 0.504 ± 0.13, p = 0.037), compared to 
WT controls (Fig.  4A). Total protein cell lysates of 
control, SMAII and SMAI 2-day cultured fibroblasts 
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Fig. 4 Changes of mTOR protein level and phosphorylation at Ser2448 in protein extracts of SMA tissues and human SMA fibroblast cell lines. A 
Total cell lysates of P2 and P5 gastrocnemius from WT and mutSMA genotyped mice were submitted to western blot analysis using anti‑mTOR, 
anti‑phospho‑mTOR(Ser2448) and anti‑SMN antibodies. Membranes were reprobed using an anti‑α‑tubulin antibody. Graph values represent 
the expression of mTOR or phospho‑mTOR(Ser2448) (p‑mTOR) versus α‑tubulin and correspond to the quantification of at least five independent 
experiments ± SEM. Asterisks indicate significant differences using Student t test (*p < 0.05; ****p < 0.0001; non statistic (ns) p > 0.05). B Protein 
extracts from 48 h cultured control (unaffected) and SMA II and SMA I patient fibroblast cell lines were submitted to western blot using anti‑mTOR 
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were submitted to western blot analysis. mTOR pro-
tein level was significantly reduced in cell lysates from 
SMA fibroblasts (SMAII 0.41 ± 0.096, p = 0.0002; SMAI 
0.32 ± 0.10, p < 0.0001) (Fig. 4B). As expected, the level 
of mTOR Ser2448 phosphorylation was reduced in 
SMA fibroblasts (SMAII 0.59 ± 0.13, p = 0.0114; SMAI 
0.41 ± 0.077, p = 0.0009) compared to the clinically 
unaffected control (Fig. 4B).

On the other hand, total protein extracts from P2 
and P5 spinal cord lumbar fragments of genotyped WT 
and mutSMA mouse were submitted to western blot to 
analyze mTOR and phospho-mTOR. The mTOR pro-
tein level was not significantly modified in WT and 
mutSMA conditions. Nevertheless, phospho-mTOR at 
Ser2448 was significantly reduced in P2 and P5 mutSMA 
(P2, 0.58 ± 0.054, p = 0.006; P5, 0.67 ± 0.11, p = 0.026) 
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conditions compared to P2 and P5 WT controls, respec-
tively (Fig. 5A). To further explore whether mTOR phos-
phorylation at Ser2448 was altered in isolated MNs, we 
analyzed mTOR protein and phospho-Ser2448-mTOR 
in cell lysates from mouse and human cultured MNs. 
MNs were obtained from spinal cords of genotyped WT 
and mutSMA mouse embryos (E13.5) [28]. After 6 days 
in  vitro, total cell lysates were collected and submitted 
to western blot. Protein level of mTOR was not signifi-
cantly modified in mutSMA MNs compared to the WT 
condition. However, phospho-mTOR analysis revealed a 
significant increase of Ser2448 phosphorylation in mut-
SMA (2.39 ± 0.33, p = 0.0125) cultures compared to WT 
controls (Fig. 5B). Protein extracts of seven days differen-
tiated human SMA and control MNs were obtained and 
submitted to western blot analysis. The mTOR protein 
level did not show significant differences between SMA 
and control MNs. However, mTOR phosphorylation at 
Ser2448 was increased in SMA (1.38 ± 0.13, p = 0.0198) 
condition compared to the control (Fig. 5C).

Discussion
In the present work, we analyzed proteins related to the 
autophagy process in several SMA models, including 
muscle tissue. Degeneration and loss of function of spinal 
cord MNs and muscle denervation are two of the patho-
logical hallmarks of SMA. How SMN depletion leads to 
MN degeneration is not fully understood and remains 
the focus of intense research. Recent advances have high-
lighted the involvement of other tissues in the patho-
physiology of SMA and skeletal muscle appears to be 
an important candidate [7, 39] Therefore, the analysis of 
muscle contribution to neurodegeneration has acquired 
particular importance and further studies in muscle col-
lapse might lead to new strategies in SMA therapy. Sev-
eral pathways trigger muscular atrophy, amongst which 
autophagy deregulation has a primary role [40].

Two main findings emerged from our study: the 
autophagy process was significantly altered in SMA 
muscle cells; and mTOR and autophagy pathways altera-
tions had different profiles in SMA muscle, fibroblasts, 
and MNs. The reduced levels of the autophagosome 
marker LC3-II in muscle, lymphocytes, and fibroblasts 
indicate either decreased autophagosomes formation or 
increased autophagy flux. In contrast, at the disease end-
point (P5 gastrocnemius) LC3-II was clearly increased 
in SMA condition, indicating augmented autophago-
somes in muscle cells at the final stage of the disease 
when cells are likely collapsed. Previous results suggested 
that skeletal muscle atrophy in severe SMA mouse is 
marked by increased proteasomal degradation but not 
by autophagosomal protein breakdown [33]. However, 
our results indicated that autophagy markers, including 

LC3, Beclin 1 and p62/SQSTM1, are deregulated in SMA 
muscle. In this context, some evidence indicates that 
proteasome and autophagy activity are compromised in 
Smn-reduced MNs [17, 19, 41, 42]. Treatment with the 
autophagy inhibitor Baphilomycin A1 reduces Smn pro-
tein level in MNs and the inhibition of the proteasome 
activity reverts this effect [19]. These results indicate that 
both autophagy and proteasome regulate Smn protein 
level in SMA neurons. In terms of muscle tissue, the atro-
phy process may be exacerbated when both pathways are 
altered [43] and muscle-specific regulatory mechanisms 
could make the scenario more complex [7, 44].

Beclin 1 is a BH3-only domain autophagy protein that 
regulates autophagy and membrane trafficking involved 
in several physiological and pathological processes. It can 
mediate at every major step in autophagic pathways, from 
autophagosome formation to autophagosome/endosome 
maturation [34]. In the present work, we described a 
significant reduction in Beclin 1 protein level in mouse 
SMA gastrocnemius. Beclin 1 reduction may contribute 
to the slowdown/decrease of autophagosome formation 
and lowering LC3-II levels [34]. Beclin 1 is the substrate 
of several proteases including caspases and calpain [45, 
46]. It is known that caspase and calpain pathways are 
deregulated in Smn-reduced cells in SMA pathology [27, 
47, 48]; therefore, the activation of these pathways in 
muscle cells could be the basis for a decrease in Beclin 
1. Studies of muscle-specific SMN reduction may help to 
elucidate the contribution of autophagy, apoptosis, and 
calpain pathways on SMA muscle atrophy.

Based on our analysis, we developed a hypothesis that 
autophagy deregulation in SMA cells could be subject to 
the cell type. For instance, p62/SQSTM1 protein which 
is a well-known indicator of autophagic flux modifica-
tions [35, 36], is significantly reduced in SMA gastroc-
nemius suggesting an increase in the autophagic flux. 
Interestingly, in SMA fibroblasts western blot analy-
sis revealed an increase of p62/SQSTM1, indicating a 
reduced autophagic flux in these cells. These observa-
tions, together with our results showing no differences in 
Beclin 1 level in SMA fibroblasts (Fig. 3B) and autophagy 
analysis in SMA MNs and spinal cord, supported this 
hypothesis. LC3-II level (Fig.  6), Beclin 1, and p62/
SQSTM1 are increased in SMA MNs [17, 19, 21] further 
reinforcing the hypothesis suggesting differences in the 
autophagy process between SMA muscle cells and SMA 
MNs. Therefore, it would be worthwhile to include the 
regulation of the autophagy pathway as a complementary 
treatment strategy for SMA disease; however, tissue type 
autophagy changes should be considered in developing 
this therapeutic approach.

mTOR is mostly known for its role in cell proliferation 
and growth, but is also involved in additional cellular 
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functions such as autophagy [49]. mTOR research has 
revealed the enormous complexity of its signaling net-
work in mammalian cells. Early studies of mTOR signal-
ing revealed that mTORC1 activation is associated with 
muscle hypertrophy [50]. However, chronic mTORC1 
activation in the muscle also results in severe muscle 
atrophy, primarily due to an inability to induce autophagy 
in this tissue [13, 40]. Considering that turnover of old 
or damaged tissue plays a critical role in muscle growth, 
these outcomes suggest that alternating periods of high 
and low mTORC1 activity are essential for maintain-
ing optimal muscle health and function [13]. Atrophy 
and hypertrophy of skeletal muscle are associated with 
decreased and increased in Ser2448 phosphorylation, 
suggesting that modulation of this site may have an 
important role in the control of protein synthesis [38]. 
Our results indicate reduced Ser2448 phosphorylation 
in SMA mouse gastrocnemius with no modifications 
of mTOR protein level. The activation of mTOR is also 
essential for neuromuscular junction (NMJ) maintenance 
and its inhibition causes NMJ loss and triggers a dying-
back process producing MN injury [51]. For instance, 
it has been recently published that SMA muscle regu-
lates mTOR dependent axonal local translation via the 
secreted molecule CTRP3, compromising axonal out-
growth and protein synthesis in SMA neurons [52]. Our 
results showed that mTOR phosphorylation in isolated 

SMA mouse and human MNs was significantly increased 
in these cells, but was reduced in protein extracts from 
spinal cords. Spinal cord lysates include MNs and their 
surrounding cells, therefore, reduced mTOR phosphoryl-
ation indicates a generalized decrease in the spinal cord. 
These observations may suggest a differential regulation 
of mTOR phosphorylation in MNs and non-neuronal 
cells in the context of SMA. In addition, mTOR inhibi-
tion by rapamycin is deleterious for SMA mice [21] and 
for SOD1 (G93A) ALS mice [53], but some autophagy 
inductors have a beneficial effect on ALS [54–56]. 
However, it should be noted that mTOR inhibition in 
SMA and ALS models may have a differential effect on 
autophagy and mTOR functions in muscle and MNs. For 
instance, different responses to autophagy induction have 
been described in muscle and nervous system in a Hun-
tington disease mouse model treated with the rapamycin 
homolog everolimus [57].

Conclusions
The present study describes modified autophagy-
related proteins in SMA muscle tissue. The analysis of 
mouse SMA gastrocnemius revealed an autophagy pro-
file compatible with reduced autophagosome formation 
and increased autophagic flux. However, our results 
and previous SMA MNs studies [17, 19, 21] suggest 
an increase of autophagosome formation and reduced 

Fig. 6 Schematic representation of the differences in autophagy‑related proteins expression and mTOR phosphorylation occurring in Spinal 
Muscular Atrophy disease models. SMA skeletal muscle reveals an autophagy profile compatible with reduced autophagosome formation and 
increased autophagic flux. Nevertheless, human SMA fibroblast cell lines evidence reduced autophagosome formation and reduced autophagic 
flux. Finally, the results in SMA MNs suggest an increase of autophagosome formation and reduced autophagic flux (figure created with www. BioRe 
nder. com)

http://www.BioRender.com
http://www.BioRender.com
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autophagic flux (Table  1 and Fig.  6). The third type of 
SMA cells analyzed, human fibroblasts cell lines, evi-
denced a different autophagy pattern with reduced 
autophagosome marker and increased p62/SQSTM1. 
Additionally, mTOR protein level and Ser2448 phos-
phorylation were dissimilar in the SMA cells analyzed, 
mTOR level was not modified in gastrocnemius and 
MNs but was reduced in fibroblast, and Ser2448 phos-
phorylation was reduced in muscle cells and increased 
in MNs. Our observations indicate that autophagy and 
mTOR deregulation differ between SMA cell types 
(Fig. 6), suggesting a need to consider such differences 
before using autophagy modulators as combinato-
rial therapies for SMA treatment. Additionally, cur-
rent SMA treatments might modify the tissue specific 
autophagy response. Hence, to further explore these 
effects could provide new insights into the SMA ther-
apy field.
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Table 1 Representation of autophagic markers protein level amongst different human and mouse Spinal Muscular Atrophy models

Autophagy marker Protein level SMA cell type and tissue References

LC3‑II Decreased Human: muscle, lymphocytes, fibroblasts
Mouse: muscle

Present work

Increased Human: differentiated MNs
Mouse: spinal cord, isolated MNs

Present work [17, 21, 27]

Beclin 1 Decreased Mouse: muscle Present work

Increased Mouse: spinal cord, isolated MNs [17, 21]

p62/SQSTM1 No change Mouse: spinal cord [21]

Increased Human: differentiated MNs, fibroblasts
Mouse: isolated MNs

[18–20]

Decreased Mouse: muscle Present work

LAMP‑1 No change Mouse: muscle Present work

Increased Human: fibroblasts Present work

mTOR No change Human: differentiated MNs
Mouse: muscle, spinal cord, isolated MNs

Present work

Decreased Human: fibroblasts Present work

p‑mTOR (Ser2448) Decreased Human: fibroblasts
Mouse: muscle, spinal cord

Present work [16]

Increased Human: differentiated MNs
Mouse: isolated MNs

Present work
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