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ABSTRACT
◥

Purpose: Lineage plasticity in prostate cancer—most commonly
exemplified by loss of androgen receptor (AR) signaling and a
switch from a luminal to alternate differentiation program—is now
recognized as a treatment resistance mechanism. Lineage plasticity
is a spectrum, but neuroendocrine prostate cancer (NEPC) is the
most virulent example. Currently, there are limited treatments for
NEPC. Moreover, the incidence of treatment-emergent NEPC (t-
NEPC) is increasing in the era of novel AR inhibitors. In contra-
distinction to de novoNEPC, t-NEPC tumors often express the AR,
but AR’s functional role in t-NEPC is unknown. Furthermore,
targetable factors that promote t-NEPC lineage plasticity are also
unclear.

Experimental Design: Using an integrative systems biology
approach, we investigated enzalutamide-resistant t-NEPC cell lines
and their parental, enzalutamide-sensitive adenocarcinoma cell

lines. The AR is still expressed in these t-NEPC cells, enabling us
to determine the role of the AR and other key factors in regulating
t-NEPC lineage plasticity.

Results: AR inhibition accentuates lineage plasticity in t-NEPC
cells—an effect not observed in parental, enzalutamide-sensitive
adenocarcinoma cells. Induction of an AR-repressed, lineage plas-
ticity program is dependent on activation of the transcription factor
E2F1 in concert with the BET bromodomain chromatin reader
BRD4. BET inhibition (BETi) blocks this E2F1/BRD4-regulated
program and decreases growth of t-NEPC tumor models and a
subset of t-NEPC patient tumors with high activity of this program
in a BETi clinical trial.

Conclusions: E2F1 and BRD4 are critical for activating an AR-
repressed, t-NEPC lineage plasticity program. BETi is a promising
approach to block this program.

Introduction
The androgen receptor (AR) is a nuclear hormone receptor that

promotes luminal differentiation and growth of normal and trans-
formed prostatic epithelial cells alike. Because of this, suppression of
androgen synthesis to prevent AR activation has been the principal
treatment for patients with advanced prostate cancer for nearly
80 years. A common mechanism of castration-resistant prostate
cancer (CRPC) progression is intracrine androgen production (1).

Drugs such as abiraterone that reduce androgen synthesis or enzalu-
tamide, apalutamide, or darolutamide that are AR antagonists are now
approved for the treatment of men with CRPC as well as men with
castration-na€�ve, metastatic tumors (2–10). However, resistance to AR
pathway inhibition is nearly universal.

A variety of mechanisms have been identified that contribute to
resistance to novel AR signaling inhibitors, including: AR gain-of-
function point mutations, constitutively active AR transcript
variants, AR gene amplification, and most recently, amplifications
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of an enhancer upstream of the AR gene that regulates AR mRNA
expression (11–14). Furthermore, posttranslational modifications
of the AR or changes in AR coactivators also contribute to persistent
AR function (15).

Another recent discovery is that some prostate cancer tumors have
intrinsic resistance to AR-targeting agents, and these tumors appear to
have lower activity of canonical AR signaling (16–18). In addition, a
subset of these AR signaling inhibitor–resistant tumors exhibit lineage
plasticity (19). A National Cancer Institute Panel recently defined
lineage plasticity as “a biologic process that occurs during normal
development and later as a mechanism that promotes cell survival
when adapting to their environment, evading stress, or repairing
tissues” (19). In prostate cancer, lineage plasticity is most commonly
exemplified by loss of AR signaling and activation of an alternate
lineage program such as neuronal differentiation (20, 21). Lineage
plasticity is a spectrum with some tumors undergoing epithelial-to-
mesenchymal transition, while others exhibit alternate differentiation
programs divergent from a luminal program (19). Indeed, our recent
studies demonstrate that approximately 17% of men with CRPC—
particularlymenwhose tumors are resistant to drugs like enzalutamide
and abiraterone—undergo lineage plasticity and lineage switching to
treatment-emergent neuroendocrine prostate cancer (t-NEPC) with
reduced AR function (20). The frequency of these t-NEPC tumors is
much higher than de novo NEPC (<1% of patients; ref. 22), strongly
suggesting that AR interference induces tumor adaptation by pro-
moting lineage plasticity or leading to clonal selection.

Certain alterations, including RB1 loss of function, are commonly
found in both de novo and t-NEPC (20, 21). Moreover, both de novo and
t-NEPC tumors are transcriptionally enriched for gene sets linked to
neurogenesis, cell-cycle control, and activation of specific master regu-
lator transcription factors, including E2F1, suggesting an important role
for transcriptional regulation in lineage plasticity (20, 21, 23). However,
there are also distinctions between de novoNEPC and t-NEPC. De novo
NEPC tumors uniformly exhibit loss ofAR expression (21).However, the
influence of AR loss on the development of de novo NEPC is unclear
because this loss occurs concomitantly with the diagnosis of de novo
NEPC. Conversely, many t-NEPC tumors progressing on enzalutamide
and abiraterone retainAR expression; however, transcriptional measure-
ments indicate that the AR’s function is suppressed (20). This suggests
that loss of AR function may contribute to the emergence of t-NEPC.
Finally, targetable proteins that promote lineage plasticity and survival of
t-NEPC or other AR activity–low prostate cancer subsets are largely
unknown, demonstrating an unmet clinical need.

To identify mechanisms that contribute to t-NEPC lineage plastic-
ity, we used an integrative systems biology approach and focused on
AR activity–low, enzalutamide-resistant cell lines with persistent AR
expression that exhibit features of t-NEPC lineage plasticity (24).
Importantly, while these AR activity–low, enzalutamide-resistant cells
have transcriptional and chromatin features of t-NEPC at baseline,
enzalutamide treatment of these cells—but not parental, enzaluta-
mide-sensitive adenocarcinoma cells—further promotes t-NEPC line-
age plasticity. This effect is related to activation of AR-repressed genes
that we find to be upregulated in t-NEPC patient tumors. We propose
that activation of this AR-repressed program is critical for accentu-
ating t-NEPC lineage plasticity. Critically, we determined that the BET
bromodomain protein BRD4 cooperates with the master regulator
transcription factor E2F1 to activate this t-NEPC lineage plasticity
program and that BET bromodomain inhibition (BETi) blocks this
program and decreases t-NEPC cell survival. Corroborating our
preclinical results, we determined that t-NEPC tumors from patients
treated on a BETi clinical trial that express high levels of E2F1 and
BRD4 or that have activation of the AR-repressed, t-NEPC lineage
plasticity program appear to derive the greatest benefit from BETi.
These findings support the therapeutic potential of BETi in a subset of
patients whose tumors have undergone a t-NEPC lineage switch.

Materials and Methods
Metastatic tissue collection

We collected human metastatic tissues after Institutional Review
Board-approval at the participating sites. We obtained informed,
written patient consent from all subjects. Study enrollment and
procedures were consistent with the Declaration of Helsinki.

Cell culture
LNCaPcellswerepurchased fromATCC(CRL-1740).V16D,MR42D,

MR42F, ResA, DKO, and TKO were described previously (24–26).
LNCaP andV16D cells were grown in RPMI1640 (Gibco) supplemented
with 10% FBS (Premium Select grade, Atlanta Biologicals). MR42D,
MR42F, and ResA cells were grown in RPMIþ 10% FBS and 10 mmol/L
enzalutamide (MedChemExpress #HY-70002). DKO and TKO were
grown in DMEM/high glucose with L-glutamine, sodium pyruvate
(Cytiva) þ 10% FBS. For MR42D and MR42F washout conditions, the
cells were grown for 72 hours in the absence of enzalutamide prior to
subsequent treatments.

Data availability
The RNA sequencing (RNA-seq), ChIP sequencing (ChIP-seq),

and ATAC sequencing (ATAC-seq) datasets reported in this article
are available in the NCBI Gene Expression Omnibus (GEO) using
accession number GSE147877.

Details of experimental procedures for other methods, including:
cell viability assays, transfections, RT-qPCR, immunoblotting, chro-
matin immunoprecipitation, genomic and epigenomic profiling, data
analysis, and statistical analysis are included in the Supplementary
Materials and Methods.

Results
Enzalutamide treatment of AR-expressing t-NEPC cells
accentuates lineage plasticity

Prior work suggested that canonical AR transcriptional function is
suppressed in t-NEPC tumors, including subsets of t-NEPC tumors
with persistent expression of the AR (20). Notably, many of these

Translational Relevance

The incidence of treatment-emergent neuroendocrine prostate
cancer (t-NEPC) is increasing in the era of new, potent androgen
receptor (AR) inhibitors. AR expression or function is commonly
suppressed in t-NEPC. However, the influence of the AR on
preventing this phenotype and the identity of other factors that
are critical for t-NEPC’s emergence are unclear. We determined
that the master regulator E2F1 and the BET bromodomain protein
BRD4 cooperate to activate a t-NEPC lineage plasticity program
that is normally repressed by theAR.BETbromodomain inhibition
(BETi) abrogates E2F1 activation of this program and suppresses
growth of t-NEPC tumor models and tumors in patients with
activation of this program, suggesting that E2F1- and BRD4-
dependent t-NEPC tumorsmay be particularly susceptible to BETi.
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AR-expressing t-NEPC tumors were obtained from patients who
were still taking AR signaling inhibitors such as enzalutamide or
abiraterone at the time of biopsy (20), suggesting that continued drug
treatment may have contributed to suppression of AR function and
emergence of this phenotype. However, it is not clear what direct
functional role the AR plays in restraining the t-NEPC phenotype due
to insufficient models to study this question.

Previously, Bishop and colleagues determined that a subset of
enzalutamide-resistant, AR activity–low, LNCaP-derived CRPC cell
lines (e.g., MR42D and MR42F) exhibit persistent AR expression but
also expression of NEPC genes versus enzalutamide-sensitive, adeno-
carcinoma LNCaP or related LNCaP-derived CRPC, enzalutamide-
sensitive V16D cells (24). Using RNA-seq, we confirmed that a
signature (21) used previously to distinguish t-NEPC patient tumors
from adenocarcinoma patient tumors was highly activated in MR42D
and MR42F but not in V16D or LNCaP cells (Fig. 1A).

The AR protein is still highly expressed in V16D, MR42D, and
MR42F; however, PSA expression is low while the neuronal marker
neural cell adhesion molecule 1 (NCAM1) is highly expressed in
MR42D and MR42F but not in V16D cells, further demonstrating
the t-NEPC phenotype of MR42D and MR42F (Fig. 1B; ref. 24). To
determine whether enzalutamide affected important cancer hallmarks
in these cells, including proliferation and differentiation, we treated
MR42D or MR42F that had been washed out of enzalutamide for
72 hours (enzalutamide-washout) or V16D cells with enzalutamide
and measured changes in cell viability. Enzalutamide blocked prolif-
eration most significantly in V16D cells compared with the MR42D
and MR42F enzalutamide-washout cells (Fig. 1C). AR siRNA experi-
ments corroborated these results and demonstrated that MR42D and
MR42F are not dependent on the AR for proliferation (Supplementary
Fig. S1A). Importantly, enzalutamide treatment reduced PSA expres-
sion in all cell lines (Fig. 1D). Significantly, enzalutamide further
increased expression of the neuronal marker NCAM1 exclusively in
MR42D and MR42F cells, but not V16D cells (Fig. 1D)—an effect
recapitulated with apalutamide (Supplementary Fig. S1B)—suggesting
that AR interference may accentuate t-NEPC lineage plasticity in
these cells.

We next sought to identify gene expression changes induced by
AR interference in t-NEPC versus adenocarcinoma cells. Therefore,
we treated MR42D and MR42F enzalutamide-washout cells as well
as LNCaP and V16D cells with enzalutamide for 24 hours and
performed RNA-seq. Gene set enrichment analysis (GSEA) using
the Hallmark pathways demonstrated that the top deactivated
pathway with enzalutamide in MR42D, MR42F, V16D, and LNCaP
was AR signaling (Fig. 1E; Supplementary Fig. S1C; Supplementary
Table S1), confirming on-target effects of enzalutamide on blocking
canonical AR signaling and demonstrating target engagement
across the models.

Because AR interference activated expression of the neuronal
marker NCAM1 in MR42D and MR42F—but not V16D—we next
focused on pathways activated by enzalutamide in MR42D or MR42F
but not in LNCaP or V16D and determined whether these unique
pathways were linked to t-NEPC lineage plasticity. Several gene
sets met these criteria, including those shown previously to be
enriched in AR activity–low or t-NEPC tumors such as: epithelial-
to-mesenchymal transition (EMT), IFN response, apoptosis, mitotic
spindle, or E2F targets (Supplementary Table S1; refs. 16, 20, 21).
Furthermore, gene ontology (GO) pathway analysis demonstrated
that enzalutamide treatment activated multiple gene sets linked to
neuronal development or differentiation exclusively in MR42D or
MR42F, but not LNCaP or V16D (Supplementary Table S1).

Specific AR-repressed target genes are enriched in t-NEPC
patient tumors and promote t-NEPC cell survival

We next focused on identifying direct, AR-repressed target genes
uniquely activated by enzalutamide in t-NEPC cells but not in LNCaP
or V16D. We focused on MR42D and identified 1,542 genes that were
uniquely activated by enzalutamide in our RNA-seq data (Supple-
mentary Table S2). To determine whether AR directly regulates the
expression of these unique enzalutamide-induced genes, we treated
MR42D enzalutamide-washout cells with vehicle or enzalutamide for
24 hours and performed AR ChIP-seq. Analysis of nuclear and
cytoplasmic protein extractions confirmed that enzalutamide depleted
the AR from the nucleus (Supplementary Fig. S2A), and AR ChIP-seq
demonstrated that enzalutamide reduced AR DNA occupancy
(Supplementary Fig. S2B). By integrating the 2,462 genes from which
AR was evicted from our ChIP-seq analysis with the genes uniquely
induced with enzalutamide treatment in MR42D versus LNCaP and
V16D, we identified 76 direct, AR-repressed target genes (Fig. 2A;
Supplementary Table S2). Functional enrichment analysis determined
that the top 10 pathways associated with these 76 genes were linked to
neuronal development or differentiation, further suggesting that the
AR represses genes linked to neurogenesis in MR42D t-NEPC cells
(Fig. 2B). This lineage plasticity gene program was also significantly
activated by enzalutamide in MR42F cells (Supplementary Fig. S2C),
demonstrating its relevance in another t-NEPC lineage plasticity
model. Furthermore, this lineage plasticity gene programwas activated
in several othermodels of AR activity loss orNEPC lineage plasticity—
all ofwhich are E2F1 activity–high—including: enzalutamide-resistant
ResA, TRAMP NEPC mouse tumors, and PTEN/RB1 double knock
out (DKO) and PTEN/RB1/TP53 triple knockout (TKO) NEPC
mouse tumors (Supplementary Fig. S2D–S2F; refs. 25–27).

To determine the clinical significance of the 76 AR-repressed genes
identified in our integrative analysis, we examined their expression in
two publicly available CRPC datasets that include both t-NEPC and
adenocarcinoma tumors (20, 21). The 76-gene, AR-repressed program
was enriched in t-NEPC versus adenocarcinoma in both datasets
(Fig. 2C). Furthermore, we examined matched biopsies from 3
patients treated with enzalutamide whose baseline tumors were ade-
nocarcinoma but whose progression tumors following enzalutamide
treatment had undergone t-NEPC lineage plasticity (28). Genes from
the AR-repressed gene program were significantly higher in the
enzalutamide-resistant t-NEPC tumors versus the baseline adenocar-
cinoma tumors (Fig. 2D; Supplementary Fig. S2G). These data
strongly suggest that the emergence of t-NEPC after enzalutamide
treatment coincides with activation of the AR-repressed, t-NEPC
lineage plasticity gene program we identified.

Our integrative analysis identified a clinically relevant program
of AR-repressed genes—many of which were associated with
neurogenesis—that were higher in expression in tumor models and
patient tumors that had undergone t-NEPC lineage plasticity. To
further confirm our RNA-seq results implicating the t-NEPC lineage
plasticity program, we performed RT-qPCR analysis using RNA from
MR42D washout cells versus V16D cells treated with vehicle or
enzalutamide.We focused on several genes that were linked previously
to neuronal differentiation or survival of AR activity–low cells: BCL2,
MET, KIAA0319, and CHAC1 (17, 29–32). Enzalutamide decreased
expression of the AR-activated gene KLK3 in both V16D andMR42D;
however, enzalutamide increased the expression of BCL2, MET,
KIAA0319, and CHAC1 only in MR42D (Fig. 2E; Supplementary
Fig. S2H). We additionally confirmed that increased BCL2 and MET
mRNA expression with enzalutamide treatment corresponded to
increased protein expression (Supplementary Fig. S2I). BCL2 and
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Figure 1.

Enzalutamide treatment of AR-expressing t-NEPC cells accentuates lineage plasticity. A, Beltran NEPC signature enrichment scores in LNCaP, V16D, MR42D, and
MR42F cells. The difference in scores between cell lines is significant (P¼ 0.02 by the Kruskal–Wallis test). B,Western blot depicting NCAM1, AR, PSA, and GAPDH
levels in V16D cells and MR42D and MR42F enzalutamide-maintenance cells. C, Cell viability of V16D cells or MR42D and MR42F enzalutamide-washout cells was
measured at the indicated time points posttreatment with vehicle (veh) or 10 mmol/L enzalutamide using live/dead cell counting. Data are reported as individual
replicates (n¼ 5)� 95% confidence interval, and two-tailed Student t tests were performed; V16D P¼ 0.0001, MR42D P¼ 0.001, MR42F P¼ 0.5. D,Western blots
depicting PSA, NCAM1, and GAPDH levels in V16D, MR42D, and MR42F whole-cell lysates from C. E, GSEA enrichment plots of the Hallmark pathway androgen
response using RNA-seq from V16D, MR42D, and MR42F cells treated with 10 mmol/L enzalutamide or vehicle for 24 hours.
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Figure 2.

Specific AR-repressed target genes are enriched in t-NEPC patient tumors and promote t-NEPC cell survival. A, Venn diagram of the upregulated, differentially
expressed genes (DEGs) by RNA-seq in MR42D enzalutamide-washout cells and V16D or LNCaP cells treated with enzalutamide (FDR<0.05), and genes identified
by ChIP-seq where AR binding was reduced in MR42D washout cells treated with enzalutamide (P < 0.001; fold enrichment > 4). Seventy-six unique, AR-repressed
genes were identified by comparing the exclusively upregulated DEGs in MR42D (but not LNCaP and V16D) and AR-evicted genes. B, Top 10 enriched pathways
for the 76 unique, AR-repressed genes in MR42D as determined by the MSigDB enrichment tool (see Methods). The dashed line corresponds to q ¼ 0.05. C, The
single-sample gene-set variation analysis (GSVA) score of 76 unique, AR-repressed genes in Beltran and WCDT datasets. D, Heatmap depicting scaled TPM
gene expression of AR-repressed genes from A in matched biopsies from three patients with baseline adenocarcinoma tumors treated with enzalutamide
whose progression biopsies showed t-NEPC. E, Validation of gene expression changes with enzalutamide treatment by RT-qPCR at KLK3 and selected t-NEPC
genes. Gene expression was normalized to a GAPDH internal control (n ¼ 3). F, Relative viability of V16D cells or MR42D and MR42F enzalutamide-maintenance
cells 72 hours after introducingMET, BCL2, or NTC siRNAoligonucleotides (top; n¼ 6).Western blots indicate protein levels (bottom).G,Validation of AR occupancy
data by ChIP-qPCR at KLK3 and selected t-NEPC genes. UNTR4 region was used as a negative control (NEG; n¼ 3). In E and G, V16D cells or MR42D enzalutamide-
washout cells were treated with vehicle or 10 mmol/L enzalutamide for 72 hours. Data are reported as the average � SD, and two-tailed Student t tests
were performed (� , P < 0.05; �� , P < 0.01; ��� , P < 0.001).
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MET have been previously linked to promoting survival of AR-
independent CRPC (29, 30). To determine the functional significance
of these genes, we used siRNA to suppress their expression. siRNA-
mediated suppression of each gene reduced survival of MR42D and
MR42F but not V16D cells (Fig. 2F), demonstrating the importance of
these AR-repressed, enzalutamide-activated genes in t-NEPC lineage
plasticity.

To determinewhether theARuniquely binds regulatory elements of
these AR-repressed genes in MR42D, we treated MR42D enzaluta-
mide-washout cells or V16D cells with vehicle or enzalutamide and
performed ChIP-qPCR using primers for KLK3, BCL2, MET,
KIAA0319, and CHAC1 gene regions from our ChIP-seq where AR
was depleted by enzalutamide in MR42D cells (Supplementary
Fig. S2J). Our results show that AR was bound to the regulatory
element of the AR-activated gene KLK3 in both MR42D and V16D,
and enzalutamide reduced AR binding to KLK3 at 24 and 72 hours
(Fig. 2G; Supplementary Fig. S2K). Significantly, enzalutamide also
reduced AR binding at BCL2, MET, KIAA0319, and CHAC1 in both
V16D and MR42D at both time points (Fig. 2G; Supplementary
Fig. S2K).

The chromatin state of enzalutamide-resistant t-NEPC cells is
conducive to lineage plasticity gene expression

AR eviction from chromatin was not sufficient to explain activation
of the t-NEPC lineage plasticity program in MR42D cells (Fig. 2G;
Supplementary Fig. S2K). We hypothesized that differences in chro-
matin accessibility in the ground statemay contribute to neuronal gene
activation following AR suppression. Therefore, we performed assay
for transposase-accessible chromatin sequencing (ATAC-seq) in
MR42D enzalutamide-washout cells and V16D cells. We used GSEA
to define the top gene sets associated with hyper-accessible regions in
each cell line. Nearly all of the top gene sets enriched in hyper-
accessible regions in MR42D were associated with neuronal pathways
(Fig. 3A). Conversely, the top gene sets enriched in hyper-accessible
regions in V16D cells were associated with metabolic pathways
(Fig. 3A). These results demonstrate that MR42D cells have a chro-
matin hyper-accessibility profile that favors t-NEPC lineage plasticity,
a process accentuated by AR interference.

We hypothesized that activation of specific factors may explain how
t-NEPC lineage plasticity is accentuated with enzalutamide treatment
of MR42D, but not V16D. Histone acetylation is linked to gene
activation and lineage commitment (33). Therefore, we set out to
determine whether changes in histone acetylation contributed to gene
expression changes induced byAR suppression inMR42D.We treated
MR42D enzalutamide-washout cells with either enzalutamide or
vehicle and then performed H3K27 acetylation (H3K27ac) ChIP-seq.
Enzalutamide treatment dynamically increased H3K27ac levels at
regulatory regions corresponding to t-NEPC lineage plasticity genes
(Fig. 3B). These results suggest that the chromatin profile of MR42D
cells may contribute to enzalutamide-induced activation of genes
highly expressed in t-NEPC.

The H3K27ac chromatin mark is recognized by BET bromodomain
proteins, including BRD4, an important chromatin reader and regu-
lator of lineage commitment (33). To determinewhether enzalutamide
treatment impacted BRD4 binding, we performed BRD4 ChIP-seq.
There was a strong colocalization of increased H3K27ac and BRD4
signals (Fig. 3B; Supplementary Fig. S3A), and these two signals were
highly correlated (Pearson correlation r ¼ 0.76, P < 1 � 10–15). To
confirm our ChIP-seq findings, we treated V16D cells or MR42D
enzalutamide-washout cells with vehicle or enzalutamide and per-
formed ChIP-qPCR. Enzalutamide increased H3K27ac and BRD4

binding at BCL2, MET, KIAA0319, and CHAC1 genes in MR42D
cells, but not in V16D cells (Fig. 3C and D; Supplementary Fig. S3B
and S3C). These results suggest that H3K27ac and BRD4 occupancy
enhances t-NEPC lineage plasticity and that other cooperating factors
may also be important.

BET bromodomain proteins cooperate with specific master regu-
lator transcription factors to promote gene expression and lineage
commitment (33, 34). To identify factors that may cooperate with
BRD4, we first performed functional enrichment analysis of the shared
H3K27ac and BRD4 peaks in the enzalutamide condition. This
analysis showed a strong enrichment for pathways previously linked
to t-NEPC lineage plasticity, including Myc targets, E2F targets, and
G2–M checkpoint genes (Supplementary Fig. S3D; refs. 20, 21). To
further define transcription factorswhose activation statewas uniquely
modulated in MR42D and MR42F, we used RNA-seq data from
MR42D, MR42F, V16D, and LNCaP cells treated with enzalutamide
or vehicle and performedmaster regulator transcription factor analysis
using the Virtual Inference of Protein-activity (VIPER) algorithm
(16, 35). Importantly, VIPER predicted that enzalutamide deactivated
AR function in all cell lines, corroborating our GSEA results
(Supplementary Table S3; Fig. 1E; Supplementary Fig. S1C). In
examining the top 10 transcription factors predicted to be activated
by enzalutamide in each line, only E2F1 was uniquely activated in
MR42D and MR42F but not V16D and LNCaP (Supplementary
Table S3). Indeed, enzalutamide treatment of V16D and LNCaP
was predicted to deactivate E2F1 (Supplementary Table S3). This is
consistent with our results showing activation of the AR-repressed,
lineage plasticity program in other AR activity–low, E2F1 activity–
highmodels (Supplementary Fig. S2D–S2F) and strongly suggests that
E2F1 may be important for activation of this program.

E2F1 activates a t-NEPC lineage plasticity gene expression
program and confers enzalutamide resistance

We and others previously showed that E2F10s gene sets are
highly enriched in human t-NEPC versus adenocarcinoma patient
tumors (20, 23). In addition, our prior work using master regulator
analysis also implicated E2F1 activation in t-NEPC versus adenocar-
cinoma CRPC patient tumors (20, 28). Furthermore, E2F1 activation
has been strongly linked to stemness and associatedwithNEPC lineage
plasticity (20, 23, 25, 26, 36). Therefore, we sought to determine E2F10s
importance for the AR-repressed, t-NEPC lineage program we iden-
tified. E2F1 was more highly expressed in human t-NEPC patient
tumors versus adenocarcinoma in two datasets (Fig. 4A; refs. 20, 21).
We also examined E2F1 expression in matched biopsies from patients
whose baseline tumors were adenocarcinoma but whose progression
tumors following enzalutamide treatment were t-NEPC (Fig. 2D).
E2F1 expression was increased in two of the three t-NEPC progression
samples after enzalutamide treatment (Supplementary Fig. S4A).
Moreover, E2F1 protein andmRNAexpressionwere higher in t-NEPC
MR42D and MR42F cells versus V16D adenocarcinoma cells
(Fig. 4B), as was nuclear localization of E2F1 protein (Supplementary
Fig. S4B). To determine mechanisms that contribute to E2F1 up-
regulation in t-NEPC cells, we performed ChIP-qPCR for H3K27ac
and BRD4. Importantly, H3K27ac levels and BRD4 binding were
higher at the E2F1 promoter in MR42D versus V16D (Fig. 4C),
suggesting that BRD4may contribute toE2F1 upregulation. In keeping
with that notion, there was a strong correlation with BRD4 and E2F1
expression in published human CRPC datasets, especially in t-NEPC
tumors (Fig. 4D; refs. 20, 21). Finally, like E2F1 expression (Fig. 4A),
BRD4 expression was increased in t-NEPC samples (Supplementary
Fig. S4C), including patient tumor samples that had undergone
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t-NEPC lineage plasticity after enzalutamide treatment (Supplemen-
tary Fig. S4A). These results suggest E2F1 and BRD4may cooperate to
promote t-NEPC lineage plasticity.

To determine whether E2F1 was necessary and sufficient for
activating genes highly expressed in t-NEPC, we performed gain-
of-function experiments in V16D and LNCaP and loss-of-function
experiments in MR42D and MR42F. While enzalutamide treatment

and AR eviction were insufficient to increase expression of t-NEPC
genes in V16D cells at 24 or 72 hours (Fig. 2E and G; Supplementary
Fig. S2H, S2I, and S2K), E2F1 overexpression was sufficient to increase
expression of genes highly expressed in t-NEPC in both V16D and
LNCaP cells (Fig. 4E; Supplementary Fig. S4D). Using ChIP-qPCR
assays, we confirmed that E2F1 overexpression led to increased E2F1
occupancy at promoter elements for these genes and that E2F1 binding
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Figure 3.

The chromatin state of enzalutamide-resistant t-NEPC cells is conducive to lineage plasticity gene expression. A, The top 10 pathways enriched in ATAC-seq hyper-
accessible peaks in MR42D enzalutamide-washout cells or V16D cells. B, Alignment of representative genome browser views from H3K27ac and BRD4 ChIP-seq for
the indicated genes. Depicted datasets include H3K27ac and BRD4 ChIP-seq of MR42D enzalutamide-washout cells treated with vehicle or 10 mmol/L enzalutamide
for 24 hours. C,H3K27ac ChIP-qPCR showing levels of H3K27ac at the indicated genes in V16D or MR42D cells.D, BRD4 ChIP-qPCR showing BRD4 occupancy levels
at the indicated genes in V16D or MR42D cells. In C andD, V16D cells or MR42D enzalutamide-washout cells were treated with vehicle or 10 mmol/L enzalutamide for
72 hours. UNTR4 region was used as a negative (NEG) control region (n¼ 3). Data are reported as the average� SD, and two-tailed Student t tests were performed
(� , P < 0.05; �� , P < 0.01; ��� , P < 0.001).
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Figure 4.

E2F1 activates a t-NEPC lineage plasticity gene expression program and confers enzalutamide resistance. A, Box plots of E2F1 expression in t-NEPC compared
with adenocarcinoma tumors from Beltran (ref. 21; left) and WCDT (ref. 20; right) patient datasets. The P values were determined by Student t test using the
log2-transformed TPM values. B, Western blot of E2F1 and GAPDH in V16D or MR42D and MR42F enzalutamide-maintenance whole-cell extracts (left). Relative
E2F1 mRNA expression in V16D cells and MR42D and MR42F enzalutamide-maintenance cells (right). E2F1 was normalized to GAPDH (n ¼ 3). The protein lysates
used are from the same experiment shown in Fig. 1B. The same GAPDH blot serves as a loading control for both Figs. 1B and 4B. C, ChIP-qPCR showing relative
enrichment of H3K27ac (left) and BRD4 (right) at the E2F1 promoter in V16D and MR42D cells. D, Scatter plots and linear fitted lines of log-transformed TPM
expression of BRD4 and E2F1 in samples from the Beltran (top) orWCDT datasets (bottom). Pearson correlation coefficients (r) and P values are shown. E,V16D cells
were harvested 48 hours after transient transfection with empty vector (EV; E2F1 OE –) or E2F1 OE plasmids (E2F1 OE þ). Western blot of E2F1 OE (left). RT-qPCR
of the indicated genes in EV or E2F1 OE V16D cells (n ¼ 3; right). F, ChIP-qPCR showing relative enrichment of E2F1, H3K27ac, and BRD4 at t-NEPC gene
promoters 48 hours after transient E2F1 overexpression in V16D cells. G, Relative viability of V16D or LNCaP cells 72 hours after transfection with EV or E2F1
OE plasmids treated with DMSO (–) or 10 mmol/L enzalutamide (þ) for the final 66 hours (n¼ 6; top). Western blots of indicated protein expression (bottom). In B
and C, and E–G, data are reported as average � SD. Two-tailed Student t tests were performed (� , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001).
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coincided with increased levels of H3K27ac and BRD4, strongly
suggesting cooperation between these factors at chromatin (Fig. 4F).

E2F1 overexpression in V16D and LNCaP cells also conferred
resistance to enzalutamide, and this effect was not due to maintenance
of AR function based on levels of PSA expression (Fig. 4G). Further
supporting a role for E2F1 in t-NEPC lineage plasticity, E2F1 siRNA
reduced viability of MR42D and MR42F cells but not V16D cells
(Supplementary Fig. S4E), and E2F1 siRNA in t-NEPC cells reduced
expression of lineage plasticity genes (Supplementary Fig. S4F).

BET bromodomain inhibition blocks E2F1 function, t-NEPC
lineage plasticity gene expression, and t-NEPC cell survival

Our integrative analysis and cell-based experiments suggested that
E2F1 cooperates with BRD4 to activate expression of genes that are
highly expressed in t-NEPC.AlthoughE2F1 is not currently targetable,
BET bromodomain inhibitors (BETi) have been developed and are
currently in clinical testing (NCT02711956). Therefore, we sought to
determine the antitumor activity of BETi in t-NEPC andwhether those
effects were linked to suppression of E2F1 function.

First, we treatedMR42D andMR42Fwith three chemically different
drugs that block BET bromodomain function: JQ1, a pan-BETi; ARV-
771, a pan-BET degrader (BETd) that causes BRD4 degradation; and
ZEN-3694, a pan-BETi currently undergoing clinical investigation.
Importantly, each drug reduced expression of E2F1 and AR-repressed
lineage plasticity genes implicated in our analyses (Fig. 5A). We
confirmed these results using AR activity–low, E2F1 activity–high
ResA cells (25), in which JQ1 and ZEN-3694 similarly blocked these
genes’ expression (Supplementary Fig. S5A).

BETi act by binding to the bromodomains of BRD4 and interfering
with its recruitment to acetylated histones on chromatin (37, 38). To
confirm this effect, we treated MR42D cells with JQ1 and then
performed BRD4 ChIP-qPCR. JQ1 treatment evicted BRD4 from
E2F1, BCL2, MET, KIAA0319, and CHAC1 regulatory elements,
demonstrating that BRD4 inhibition is linked to reduced expression
of these genes (Fig. 5B).

Next, we sought to determine whether E2F1 activation of genes
highly expressed in t-NEPC was dependent on BET bromodomain
proteins. JQ1 reduced expression of an E2F1-driven reporter con-
struct, and this effect was linked to reduced E2F1 mRNA and protein
expression (Supplementary Fig. S5B and S5C). Furthermore, while
E2F1 overexpression increased BCL2, MET, KIAA0319, and CHAC1
expression, JQ1 abrogated those effects (Fig. 5C; Supplementary
Fig. S5D). Importantly, the abrogation of E2F1 function by JQ1 was
not linked to changes in ectopic E2F1 expression (Fig. 5C; Supple-
mentary Fig. S5D), suggesting that BET bromodomain proteins may
regulate E2F1 function independently of E2F1 expression.

To more comprehensively identify gene expression changes linked
to BETbromodomain interference, we treatedMR42Dcells with either
the BETi JQ1 or the BETd ARV-771 and performed RNA-seq. As
predicted, because ARV-771 is a BRD4 degrader, ARV-771 reduced
BRD4 protein levels while JQ1 did not (Supplementary Fig. S5E).
Importantly, many of the genes downregulated by ARV-771 and JQ1
were shared (Fig. 5D; Supplementary Table S4). We sought to
determine the influence of these treatments on AR-repressed genes
important for t-NEPC lineage plasticity. Therefore, we compared the
list of genes downregulated by both ARV-771 and JQ1 versus genes
induced by enzalutamide treatment ofMR42D cells. The expression of
519 genes was decreased by both JQ1 and ARV-771 but increased with
enzalutamide (Fig. 5D; Supplementary Table S4). The top pathway of
the intersecting genes was linked to E2F1, followed by other pathways
previously implicated in t-NEPC, including EMT, G2–M, and apo-

ptosis (Fig. 5E; refs. 20, 21). Furthermore, using VIPER, we deter-
mined that E2F1 was the top transcription factor predicted to be
deactivated by both JQ1 and ARV-771, further suggesting coopera-
tivity between E2F1 and BET proteins (Supplementary Table S5).
Importantly, the neural transcription factor POU3F2 has been linked
previously to survival of t-NEPC cells, including MR42D and
MR42F (24). However, master regulator analysis did not implicate
POU3F2 as being deactivated by JQ1 or ARV-771 (Supplementary
Table S5).

Prior work demonstrated that BETi is a promising approach to
block growth of AR-driven tumors (37), and we recently extended
these findings and confirmed the antitumor activity of BETi inAR-null
adenocarcinoma CRPC (34, 38). Thus, we sought to determine the
antitumor activity of BETi in t-NEPC cells or those with low AR
activity but high E2F1 activity. Treatment of MR42D or MR42F
with BETi suppressed growth of these cells in a dose-dependent
manner (Fig. 5F; Supplementary Fig. S5F). Furthermore, BETi treat-
ment of ResA cells, PTEN/RB1 DKO and PTEN/RB1/TP53 TKO
knockout mouse NEPC cell lines (26), and t-NEPC patient–derived
organoids WCM154 and WCM155 (39) recapitulated this effect
(Fig. 5F). Finally, we treated AR-null t-NEPC LuCaP patient-
derived xenograft cultures in vitro with JQ1 or ZEN-3694. These
LuCaP cultures do not proliferate well long-term, but BETi treatment
using concentrations ≤ 1 mmol/L of either agent led to cell death
(Supplementary Fig. S5G). BRD4 siRNA also reduced cell survival of
MR42D and MR42F and suppressed expression of E2F1-activated
t-NEPC lineage plasticity genes, recapitulating the effects of BETi
treatment and suggesting that interference with BRD4 contributes to
the antitumor effects of BETi (Supplementary Fig. S5H and S5I).

Preliminary clinical activity of BETi ZEN-3694 in patients with
t-NEPC

We recently completed a first-in-man, phase I trial of ZEN-3694 in
combination with enzalutamide in men with metastatic CRPC pro-
gressing on enzalutamide or abiraterone (NCT02711956). Important-
ly, we determined that patients with the poorest response to enzalu-
tamide or abiraterone prior to enrolling on this clinical trial or those
with the lowest AR transcriptional activity in baseline biopsies expe-
rienced the best tumor control with ZEN-3694 (40). In examining the
13 baseline metastatic tissue biopsies taken prior to treatment that had
tumor tissue present, we identified four subjects whose tumors had
evidence of t-NEPChistology or gene expression based on activation of
a previously described t-NEPC gene set (ref. 20; Supplementary Fig. S6;
gene set shown in Supplementary Table S6). We confirmed this gene
set was activated in t-NEPC tumors versus adenocarcinoma tumors
from the Beltran dataset (ref. 21; Supplementary Fig. S6), demon-
strating this signature’s accuracy in identifying tumors with t-NEPC
gene expression. Two of the four subjects with t-NEPC (patients 1 and
2) had prolonged disease control with ZEN-3694 (168 weeks and
40 weeks), while two other subjects (patients 3 and 4) progressed more
rapidly (16 weeks and 8.5 weeks; Fig. 6A). This prolonged disease
control was not explained by differences in ZEN-3694 dosage as
patients 1, 2, and 3 each received 48mg, while patient 4 received 96mg.

Next, we examined expression of E2F1, BRD4, and AR in these four
tumors. Tumors from the two patients with t-NEPC with prolonged
disease control demonstrated higher E2F1 and BRD4 mRNA expres-
sion butmuch lowerAR expression (Fig. 6B). Finally, the 76-gene, AR-
repressed program (Supplementary Table S2) was activated in the
patients with more durable control, strongly suggesting these t-NEPC
tumorsweremore E2F1- andBRD4-dependent but lessAR-dependent
(Fig. 6C). These preliminary clinical results support the potential of
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BET bromodomain inhibition blocks E2F1 function, t-NEPC lineage plasticity gene expression, and t-NEPC cell survival. A, RT-qPCR of t-NEPC genes in MR42D or
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BETi to block growth of t-NEPC tumors that harbor an AR-repressed,
E2F1/BRD4–activated t-NEPC lineage plasticity program.

Discussion
We previously determined that 17% of metastatic CRPC tumor

biopsies have evidence of t-NEPC lineage plasticity (20). t-NEPC
tumors have distinct histologic and transcriptomic profiles from
adenocarcinoma tumors, and emerging data suggest that t-NEPC

tumors may develop from adenocarcinoma tumors through the
acquisition of genomic and epigenomic changes induced by treatments
that block AR function (21, 28, 41). Our results herein demonstrate
that AR inhibition in susceptible cells activates a lineage plasticity cell
survival program linked to t-NEPC and that this program may be
activated through E2F1- and BRD4-dependent mechanisms.

It is well appreciated that genes activated by the AR are lost in
t-NEPC tumors while neuronal gene expression is activated (21, 28).
Historically, the only cell-based model used to study NEPC was the
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de novo NEPC cell line NCI-H660 that lacked AR expression (42).
Recent work also demonstrates that specific genomic alterations, in-
cluding PTEN, TP53, and RB1 loss, promote lineage plasticity and
differentiation to nonluminal lineages and that this occurs in the set-
ting of AR suppression and E2F1 activation in the case of RB1 loss
(26, 43). Nonetheless, the contribution of AR loss itself to lineage
plasticity was still unclear, and the identity of key factors that promote
activation of a t-NEPC lineage plasticity program—including factors
that might normally be repressed by the AR—were poorly characterized.

We now know that loss of AR function in CRPC is a continuum and
that not all tumors with loss of AR function are t-NEPC. Indeed, our
own work demonstrates that there is a subset of AR-expressing,
enzalutamide and abiraterone–na€�ve CRPC adenocarcinoma tumors
that harbor an AR activity–low, stemness-high program; these tumors
are much less likely to respond to enzalutamide treatment (16).
Furthermore, some AR activity–low tumors—so-called double nega-
tive prostate cancer (tumors negative for both AR andNEPCmarkers)
—lose AR expression without NEPC differentiation, and these tumors
appear to be increasing in frequency (44, 45). This demonstrates that
AR loss is not sufficient for t-NEPC development.

A subset of enzalutamide- and abiraterone-resistant tumors
demonstrates t-NEPC lineage plasticity; AR function is suppressed
in these t-NEPC tumors even though some continue to express the
AR (16, 20, 45). Our results suggest that treatment with AR
inhibitors may block AR function and contribute to activation of
a t-NEPC lineage plasticity program or that AR inhibitors select for
preexisting clones with this phenotype in patients. Indeed, we
showed that pharmacologic AR inhibition in cell models and
patient tumors activates an AR-repressed program that promotes
t-NEPC lineage plasticity. Moreover, using AR activity–low or
t-NEPC lineage plasticity tumor models (25, 26), we confirmed
that AR loss of function or expression coincides with activation of
an AR-repressed, lineage plasticity program, highlighting the clin-
ical relevance of the program we identified and the cell systems we
used. Furthermore, these results suggest that persistent loss of AR
function or expression may lock in this lineage plasticity program in
certain tumors, potentially making them more reliant on critical
factors that maintain this program.

Importantly, several of the AR-repressed genes in the program we
identified have been shown previously to promote survival of t-NEPC
tumors or AR activity–low tumors, includingMET and BCL2, and are
targetable with drugs approved for other cancers (29, 30, 46). This
suggests that these drugs are worthy of further study in t-NEPC and
other AR activity–low tumors. Indeed, a clinical trial with the BCL2
inhibitor venetoclax is ongoing in men with CRPC (NCT03751436).

The chromatin landscape of cells is critical for the regulation of gene
expression, and this landscape varies widely across tissue types,
including in cancer (47, 48). Importantly, our ATAC-seq studies
demonstrate that enzalutamide-resistant t-NEPC cells have a distinct
chromatin accessibility profile versus adenocarcinoma cells and that
the top hyper-accessible chromatin regions in t-NEPC are linked with
neuronal differentiation as opposed to metabolic processes. While it is
unclear what mechanisms explain the greater chromatin accessibility
profiles for neuronal genes between these cell types, these changes
appear to have been induced during the acquisition of enzalutamide
resistance. Our results suggest that the chromatin context in which AR
is suppressedmay be an important determinant of which specific genes
are activated and the phenotype that ensues. Further study is clearly
warranted to understand whether specific differences in chromatin
hyper-accessibility—like those we observed—are linked with t-NEPC
or the risk of t-NEPC’s emergence after treatment with AR inhibitors.

Significantly, we demonstrated that the master regulator transcrip-
tion factor E2F1 may be a key player that promotes t-NEPC lineage
plasticity through activation of genes normally repressed by the AR.
Indeed, E2F1 overexpression in adenocarcinoma cells was sufficient to
activate expression of genes highly expressed in t-NEPC, and E2F1
overexpression coincided with E2F1, H3K27ac, and BRD4 cooccu-
pancy on chromatin, suggesting E2F1 may promote chromatin
changes that facilitate NEPC lineage plasticity. Furthermore, E2F1
overexpression blunted the growth-suppressive effects of enzaluta-
mide, indicating that E2F1may confer enzalutamide resistance. Taken
together, these data strongly suggest E2F1 is a factor worthy of further
study in t-NEPC.

Although E2F1 is not currently targetable, we determined that BETi
blocks E2F1 activation of t-NEPC gene expression, demonstrating
cooperativity between E2F1 and BET bromodomain proteins. While
our studies focused on E2F1, we fully acknowledge that other tran-
scription factors are important for activation of this t-NEPC program
and that mechanisms described herein may be recapitulated by other
master regulators. Indeed, because of the redundancy of transcription
factors for promoting phenotypes such as t-NEPC, we predict an
approach to target them broadly through shared cooperating factors—
such as BET bromodomain proteins—would be more effective than
targeting any single transcription factor.

The antitumor activity of BETi in CRPC has been primarily linked
to suppression of AR function (37, 49). However, we recently dem-
onstrated that BETi also blocks the growth ofAR-null adenocarcinoma
CRPC tumors in preclinical studies (34, 38) and growth of patient
tumors that responded poorly to enzalutamide or abiraterone, many
of which are AR activity–low (40). Thus, though this current report
focuses on t-NEPC, it is clear that mechanisms of BETi response
described herein may also be quite relevant to AR activity–low tumors
that may not have undergone t-NEPC lineage plasticity.

Importantly, we also determined that BETi treatment blocks expres-
sion of AR-repressed genes highly expressed in t-NEPC tumors,
strongly suggesting that BET bromodomain proteins are critically
important for promoting adaptive survival in t-NEPC tumorswith loss
of AR function. BETi suppressed growth of t-NEPC cell lines and
patient-derived organoids and induced death of patient-derived xeno-
graft cultures. Finally, treatment with the BETi ZEN-3694 led to
prolonged tumor control in patients with t-NEPC whose tumors
harbored high E2F1 and BRD4 expression and activation of the
76-gene, AR-repressed gene programwe identified. These early clinical
results suggest the potential of BETi in a subset of men whose tumors
have undergone t-NEPC lineage plasticity—patients for whom there
are currently no effective treatment options.

The significance of t-NEPC lineage plasticity as a critical
determinant of resistance to AR-signaling inhibitors is becoming
increasingly evident (19, 20). We anticipate that future studies will
identify additional therapeutic vulnerabilities—like E2F1 and BRD4
cooperativity—that will lead to the design of rational clinical trials
to more effectively control subsets of tumors that have undergone
t-NEPC lineage plasticity.
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