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Abstract

Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be
transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance
as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic
potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known
to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking
for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range
polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome
was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean
nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic
markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners.
Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential,
thus underpinning the prevention and control of toxocariasis in humans and other hosts.
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Introduction

Roundworms (nematodes) belong to a large phylum (Nematoda)

in the animal kingdom. This phylum contains a wide range of

species with exceptionally varied life histories [1]. Many nematodes

are parasites of plants or animals [2], causing significant diseases

and major socio-economic losses globally [3–5]. Central to the

control of such parasites is knowledge of their population genetics,

which has important implications for understanding many areas,

including systematics, epidemiology and ecology [6–9]. The basis

for investigating population structures is the accurate analysis of

genetic variation, which is known to be widespread in many

parasitic nematodes [6–8,10], utilizing molecular markers with

sufficient levels of intraspecific sequence variability.

Mitochondrial DNA markers are particularly suited to population

genetic and systematic investigations due to their high mutation rates

and proposed maternal inheritance [6,7,10–15]. In spite of the

availability of advanced DNA technologies, there is still a paucity of

knowledge of mitochondrial genomes for many parasitic nematodes

of socio-economic importance [16], such as members of the

Ascaridida, which is a key group of nematodes that parasitizes

humans and a range of other vertebrates. Although complete

mitochondrial genome sequences are available for Anisakis simplex [17]

and Ascaris suum [18], this is not the case for other parasites within this

order, such as Toxocara canis, the common roundworm of dogs. This

latter nematode parasitizes (at the adult stage) the small intestine of

canids (definitive host) and is also transmissible to a range of other

mammals, including rodents and humans, in which (after the oral

ingestion of infective eggs) the larvae of Toxocara canis invade the

tissues and cause covert toxocariasis, ocular larva migrans (OLM),

visceral larva migrans (VLM) or neurotoxocariasis [19–23]. Although

there has been a significant acquisition of knowledge about the

biology of T. canis, there are still major gaps in our knowledge of the

genetics, ecology and epidemiology of this enigmatic parasite [24]. In

addition, the detection of a cryptic species of ‘‘T. canis’’ from cats in

Malaysia [25,26], its subsequent genetic characterization [27] and its

description as a new species - Toxocara malayensis [28], emphasize the

need for detailed molecular genetic studies of T. canis populations

using suitable genetic markers [29]. Exploring the mitochondrial

genome of T. canis would provide such markers, as a foundation for

molecular epidemiological and ecological studies, detecting cryptic

species and assessing relationships of related species of Toxocara [29].

Furthermore, the sequencing of the mitochondrial genome of T. canis

provides a useful, comparative dataset to those of Anisakis simplex [17]

and Ascaris suum [18] within the order Ascaridida. Building on recent

progress in long PCR-coupled, automated sequencing [30], the

present study determined the sequence and structure of the

mitochondrial genome for a representative individual of T. canis

from Australia and compared it with those available for Anisakis

simplex and Ascaris suum as well as the sequences from related

nematode groups (Spirurida and Strongylida), as a foundation for

systematic, population genetic and epidemiological studies of T. canis.

Materials and Methods

An adult, male specimen of Toxocara canis (sample code Tcn2;

ref. [31]) was collected (during a routine autopsy) from the small

intestine of a fox from Victoria, Australia under the Scientific
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Procedures Premises License for the Faculty of Veterinary Science,

University of Melbourne (SPPL045). Initially, the morphological

identification of the worm was based on the presence of a post-

oesophageal bulbus, the length and shape of the alae and the lengths

of the spicules [32]. Total genomic DNA was extracted from a small

portion (0.5 cm) of the specimen by sodium dodecyl-sulphate/

proteinase K treatment, phenol/chloroform extraction and ethanol

precipitation [33], and purified over a spin column (Wizard Clean-

Up; Promega) [34]. In order to independently verify the identity of

the specimen, the second internal transcribed spacer (ITS-2) of

nuclear ribosomal DNA was amplified by the polymerase chain

reaction (PCR) and sequenced according to an established method

[27]. The ITS-2 sequence obtained was a perfect match with that of

T. canis (accession number Y09489; ref. [34]).

Using each of the primer pairs MH39F-MH42R and MH5F-

MH40R [30,35,36], two regions of the entire mitochondrial

genome (of ,5 and 10 kb, respectively) were amplified by the long

PCR (Expand 20 kbPLUS kit, Roche) from ,20 ng of genomic

DNA from sample Tcn2. The cycling conditions in a 2400

thermocycler (Perkin Elmer Cetus) were: 92uC, 2 min (initial

denaturation); then 92uC, 10 s (denaturation); 50uC, 30 s

(annealing); 60uC (,5 kb region) or 68uC (,10 kb region),

10 min (extension) for 10 cycles, followed by 92uC, 10 s; 50uC,

30 s; 68uC or 60uC, 10 min for 20 cycles, with an elongation of

10 s for each cycle, and a final extension at 68uC or 60uC for

7 min [30]. Each PCR yielded a single amplicon, detected by

agarose gel electrophoresis [30]. Each amplicon was column-

purified (PCR-Preps, Promega) and subjected to automated

sequencing, either directly or following cloning (TOPO XL

PCR cloning kit, Invitrogen, according to instructions provided),

employing a ‘‘primer-walking’’ strategy [36] (see Figure 1).

Sequencing was performed using BigDye terminator (v.3.1) in a

3730 DNA Analyser (Applied Biosystems). The sequences

obtained were assembled manually, aligned with the mitochon-

drial genome sequence of Ascaris suum [18] using the program

Clustal X [37], and the circular map was drawn using the program

MacVector v.9.5 (http://www.macvector.com/index.html). Ami-

no acid sequences, translation initiation and termination codons,

codon usage, transfer RNA (tRNA or trn) secondary structures,

rRNA secondary structures and non-coding regions were

predicted using standard approaches [35]. The structure and

organization of the mitochondrial genome of T. canis was then

compared with those of the nematodes Anisakis simplex (GenBank

accession number AY994157; ref. [17]), Ascaris suum (X53453; ref.

[18]) (order Ascaridida); Brugia malayi (AF538716; ref. [38]),

Dirofilaria immitis (AJ537512; ref. [39]) and Onchocerca volvulus

(AF015193; ref. [40]) (order Spirurida); Ancylostoma duodenale

(AJ417718; ref. [35]) and Necator americanus (AJ417719; ref. [35])

(order Strongylida).

Results

Features and Organization of the Mitochondrial Genome
of Toxocara canis

The circular mitochondrial genome of T. canis (Figure 1) was

14162 bp in length (GenBank accession number EU730761) and

contained 36 genes: 12 protein-coding genes (adenosine triphos-

phatase subunit 6 [atp6], the cytochrome c oxidase subunits 1, 2

and 3 [cox1–cox3], cytochrome b (cytb) and the nicotinamide

dehydrogenase subunits 1–6 [nad1–nad6 and nad4l]), 22 tRNA

genes (two coding for leucine and two coding for serine) and the

small [rrnS] and large [rrnL] subunits of rRNA. Each protein-

coding gene had an open reading frame (ORF), and all genes were

located on the same strand and transcribed in the same direction

(59 to 39) (Figure 1), consistent with the mitochondrial genomes of

other secernentean nematodes characterized to date [16]. The

gene arrangement for the mitochondrial genome of T. canis was

consistent with that of GA2 [41]. This gene arrangement has been

reported previously for members of the Ascaridida, including

Anisakis simplex [17] and Ascaris suum [18] as well as members of the

order Strongylida, such as the hookworms Ancylostoma duodenale and

Necator americanus [35] as well as the barber’s pole worm,

Haemonchus contortus [42]. However, consistent with the mitochon-

drial genomes characterized to date for other Ascaridida (but not

the Strongylida), the AT-rich region for T. canis was located

between rrnS and nad1, flanked (59) by the genes trnS (UCN) and

(39) by trnN and trnY.

Nucleotide Contents and Codon Usage
The coding strand of the mitochondrial genome sequence of T.

canis consisted of 21.6% A, 9.4% C, 22.1% G and 46.7% T

(Table 1). Though AT-rich (68.4% AT), the sequence had a

slightly lower AT content than has been reported for other

nematode species (,70–80%; refs. [17,18,35,39,41,42]). In the

protein-coding genes, the AT-contents varied from 63.1% (cox1) to

73.4% (nad6), with the overall ranking (increasing richness) of cox1,

cox3, nad1, cox2, cytb, nad4, atp6, nad5, nad2, nad4L, nad3 followed by

nad6. To date, studies of secernentean nematodes have shown that

the cytochrome c oxidase genes tend to have the lowest AT-

contents [35,39,41,42]. Although the overall AT-content of the

mitochondrial genome sequence of T. canis was ,2.8% and

,3.6% less than those of Anisakis simplex (71.2%; ref. [17]) and

Ascaris suum (72.0%; ref. [18]), respectively, there was no

appreciable impact on the relative amino acid codon usage in

the protein-coding genes. As has been reported for other

secernentean nematodes (e.g., refs. [17,18,35,39,41,42]), the usage

in the protein-coding genes favoured codons with many A or T

residues (e.g., 13.7% were TTT [phenylalanine]) over those with

many C or G residues (e.g., none were CGA [arginine]) (data not

shown).

All but the two serine tRNAs (AGN and UCN) had a predicted

secondary structure containing a DHU arm and loop and a TV-

replacement loop instead of the TyC arm and loop (Figure 2). As

reported previously for secernentean nematodes [15,16,43,44], the

two serine tRNAs each contained the TyC arm and loop but

lacked the DHU arm and loop. The rrnL and rrnS genes were 923

and 693 bp in length, respectively; the predicted secondary

structure of each of these two genes are displayed in Figure 3

Author Summary

Toxocara canis (Nematoda: Ascaridida) is the common
roundworm of canids. This parasite is transmissible to
humans as well as a range of other accidental or paratenic
vertebrate hosts, in which (after the oral ingestion of
infective eggs) the larvae of Toxocara canis invade the
tissues and can cause different forms of clinical disease
(toxocariasis). Although some aspects of the biology of T.
canis are well understood, there are still significant gaps in
our knowledge of areas including the molecular genetics,
systematics, ecology and epidemiology of this and related
parasitic nematodes. The present study elucidates the
sequence, structure and organization of the mitochondrial
genome of T. canis and provides mitochondrial gene
markers for studies in these areas using molecular tools. A
greater understanding of the epidemiology of species of
Toxocara would improve the prevention and control of
toxocariasis in humans and other animals.

Mitochondrial Genome of Toxocara canis
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Figure 1. A map of the circular mitochondrial genome (mtDNA) of Toxocara canis. All 12 protein-coding genes and the large and small
ribosomal subunits of the rRNA genes are indicated in italics. Each tRNA gene is identified by its anticodon (in brackets). The direction of transcription
is indicated by an arrow. The positions of oligonucleotide primers (see table) used for PCR-amplification or sequencing are indicated in the map
(drawn to scale).
doi:10.1371/journal.pntd.0000273.g001

Mitochondrial Genome of Toxocara canis
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(rrnL) and Figure 4 (rrnS). The AT-content of the sequences of rrnL,

rrnS and the AT-rich (‘‘control’’) region were 77.9%, 66.5% and

78.1%, respectively. The relatively low AT-richness exhibited in

the mitochondrial genome of T. canis was pronounced for the

rRNA genes: The AT-content of the rrnL sequence was 4.2% and

4.9% less compared with Anisakis simplex (76.1%) [17] and Ascaris

suum (76.8%) [18], respectively. The AT-content of the rrnS

sequence of T. canis was 5.5% and 5.4% less than that reported for

Anisakis simplex (72.0%) [17] and Ascaris suum (71.9%) [18],

respectively. Interestingly, the AT-content of the T. canis

mitochondrial rRNA genes does not alter their predicted

secondary structures with respect to those of other secernentean

nematodes studied to date [35,39,41,42].

The AT-rich region (Figure 1) was 828 bp in length and was

predicted to exhibit a complex secondary structure (Figure 5). In

addition, the AT-rich region contained 13 regions consisting of a

varying numbers of the dinucleotide (AT) repeat (n = 3 to 21)

between nucleotide positions 307 and 806 (see Figure 5). The

presence of multiple AT repeats was similar to that described in

the AT-rich region of several parasitic nematodes, including Ascaris

suum [18], Anisakis simplex [17], Ancylostoma duodenale and Necator

americanus [35], but distinct from the repetitive elements (CR1–

CR6) within the AT-rich region of the free-living nematode

Caenorhabditis elegans [18].

Comparative Analysis with Other Nematodes
Pairwise comparisons were made among the amino acid

sequences inferred from individual protein-coding genes and the

nucleotide sequences of the rRNA genes in the T. canis

mitochondrial genome with those representing seven other

nematodes (of the orders Ascaridida, Spirurida and Strongylida)

(Table 2). The amino acid sequence similarities in individual

inferred proteins ranged from 70.3% (NAD2) to 94.4% (COX1)

between T. canis and Ascaris suum and from 74.3% (CYTB) to 93.1%

(COX1) between T. canis and Anisakis simplex. The amino acid

sequence similarities between T. canis and each species of Spirurida

(Brugia malayi, Dirofilaria immitis and Onchocerca volvulus) or Strongylida

(Ancylostoma duodenale and Necator americanus) included ranged from

21.5% (ATP6) to 51.6% (COX1) and from 49.3% (NAD6) to

90.6% (COX1), respectively. The nucleotide sequence similarities

(Table 2) in rrnS were 80.5–81.1%between T. canis and the two

other species of Ascaridida, 59.0–60.0% between T. canis and the

three members of the order Spirurida, and 71.8–72.4% between T.

canis and the two species of Strongylida. In addition, the nucleotide

sequence similarities in rrnL were 74.8–78.0%, 59.2–61.0% or 65.2–

67.0% between T. canis and individual species representing the

order Ascaridida, Spirurida or Strongylida, respectively (Table 2).

Discussion

Implications for Testing the Phylogeny of Parasitic
Nematodes

Pairwise comparisons of the amino acid sequences conceptually

translated from the protein-coding genes as well as the nucleotide

sequences of the ribosomal RNA genes indicated that the

mitochondrial genome of T. canis most closely resembles those of

selected members of the order Ascaridida. However, based on

pairwise comparisons of sequence data, the next most similar

nematode group is the Strongylida, but not the Spirurida. This

finding is consistent with previous phylogenetic analyses of

mitochondrial datasets, such as concatenated amino acid sequenc-

es for all 12 protein-coding genes [15] or gene arrangements [41].

These studies placed the Spirurida in a strongly supported clade

separate from all other secernentean nematodes for which data

were available, being in accordance with the evolutionary

relationships based on traditional, taxonomic data [32,45–47].

This placement of the Spirurida relative to the Ascaridida and

Strongylida contrasts the classification of the Nematoda based on

phylogenetic analysis of sequence data for the small subunit (SSU)

of nuclear rRNA [48], inferring that members of the order

Strongylida belong to ‘‘clade V’’, whereas those of the orders

Ascaridida and Spirurida are within ‘‘clade III’’. The distinct

taxonomic placement of the Spirurida relative to the Ascaridida

and Strongylida is further evidenced by the variation in anti-codon

usage in some of the mitochondrial tRNA genes of members of the

Spirurida (i.e. Brugia malayi, Dirofilaria immitis and Onchocerca volvulus)

as compared with the Strongylida and Ascaridida studied to date

[15,39]. The incongruence in the inferred relationships of these

three nematode orders (i.e. among the Ascaridida, Strongylida and

Spirurida) challenges the proposed molecular phylogeny for the

Nematoda based on SSU sequence data [48] and stimulates

further investigation of a broader range of nematodes.

Implications for Systematic, Population Genetic,
Epidemiological and Ecological Studies

There is major significance in the use of mitochondrial DNA

markers for investigating the genetic make-up of species of the

Toxocara, particularly given that there are no morphological features

which allow the specific identification of some stages (e.g., larvae)

[29] and given that cryptic species have been detected within the

Ascaridoidea [27,49–62]. In nematodes, mitochondrial DNA is

proposed to be maternally inherited (cf. [16]) and is usually more

variable in sequence within a species than nuclear ribosomal DNA

[9]. Various different mitochondrial gene regions are suited to

studying the population genetics of parasitic nematodes

[8,10,15,63–67]. However, surprisingly, there has been a paucity

of information on the mitochondrial genomes of ascaridoid

nematodes [16], which appeared to have related mainly to technical

Table 1. Lengths and A+T contents (%) of the sequences of
the 12 protein-coding genes, the large and small ribosomal
RNA genes, the AT-rich region and of the entire mitochondrial
genome of Toxocara canis.

Mitochondrial
gene/region Length (bp) A C G T AT

atp6 599 17.4 8.0 23.2 51.4 68.8

cox1 1575 18.0 11.3 25.4 45.1 63.1

cox2 698 20.9 9.9 24.5 44.7 65.6

cox3 768 16.7 10.6 24.2 48.6 65.2

cytb 1101 17.8 9.4 24.2 48.6 66.4

nad1 880 16.0 10.3 23.0 49.0 65.0

nad2 855 17.7 7.8 21.6 52.6 70.3

nad3 330 20.4 3.1 24.2 52.4 72.8

nad4 1230 19.3 21.8 10.5 48.5 67.7

nad4L 233 21.0 6.9 21.9 50.2 71.2

nad5 1578 19.5 8.8 21.9 49.9 69.4

nad6 435 18.6 8.7 17.7 54.9 73.6

rrnL 924 25.4 7.5 20.0 46.3 71.9

rrnS 693 30.3 10.7 22.4 36.2 66.5

AT-rich 828 38.6 9.9 11.8 39.5 78.1

Genome 14162 21.6 9.4 22.1 46.7 68.4

doi:10.1371/journal.pntd.0000273.t001
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Figure 2. Secondary structures predicted for the 22 tRNA genes in the mitochondrial genome of Toxocara canis (cf. [15,18]).
doi:10.1371/journal.pntd.0000273.g002
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limitations and the cost associated with mitochondrial genome

sequencing. To overcome this constraint, Hu et al. [30,36]

developed the long PCR approach applied herein to T. canis, which

has broad applicability to a range of ascaridoids, including other

species of Toxocara, Toxascaris, Baylisascaris, Lagochilascaris and

members of the Anisakis complex [29,68].

The characterization of the first complete mitochondrial

genome sequence for T. canis, in the present study, provides a

Figure 3. The secondary structure predicted for the large subunit (rrnL) of the rRNA gene in the mitochondrial genome of Toxocara
canis. Bonds between C:G and U:A are indicated by a straight line and those between U:G by a closed circle (cf. [35]). Binding sites for the amino-acyl
trn (A), peptidyl-transferase (P) or both (AP) [101] are indicated by lines.
doi:10.1371/journal.pntd.0000273.g003

Mitochondrial Genome of Toxocara canis
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foundation for addressing ecological and epidemiological questions

regarding this and related species. Conserved primers can be

rationally and selectively designed to relatively conserved regions

flanking ‘‘variable tracts’’ in the mitochondrial genome considered

to be most informative (based on sequencing from a small number

of individuals from particular populations, or genetic variants

detected using nuclear ribosomal markers; refs. [29,67]). Using

such primers, single-strand conformation polymorphism (SSCP)

analysis [69] can be applied to pre-screen large numbers of

individuals representing different populations and, based on the

‘pre-screen’, samples representing the entire spectrum of haplo-

typic variability can be selected for subsequent sequencing and

analyses. Such an approach has been applied effectively, for

example, to explore the genetic make-up of the Ascaris populations

in humans and pigs in six provinces in China [70]. This study

indicated restricted gene flow between human Ascaris and porcine

Ascaris, and supported the conclusions from other previous

epidemiological and experimental investigations [71,72] that pigs

Figure 4. The secondary structure predicted for the small subunit (rrnS) of the rRNA gene in the mitochondrial genome of Toxocara
canis. Bonds between C:G and U:A are indicated by a straight line and those between U:G by a closed circle [35]. Conserved secondary structure
elements [102] indicated by numbers 1–48.
doi:10.1371/journal.pntd.0000273.g004

Mitochondrial Genome of Toxocara canis
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Figure 5. Secondary structure predicted for the AT-rich region in the mitochondrial genome of Toxocara canis.
doi:10.1371/journal.pntd.0000273.g005

Mitochondrial Genome of Toxocara canis

www.plosntds.org 8 August 2008 | Volume 2 | Issue 8 | e273



are not a significant source of Ascaris infection to humans in

endemic regions.

Utilizing a range of mitochondrial gene markers (with differing

degrees of intraspecific variability), such a mutation scanning-

targeted approach is also readily and directly applicable to species

of Toxocara. This is particularly relevant now, given that population

variation and cryptic species have been detected within Toxocara

[27,28,31] and that almost nothing is known about the

transmissibility of these or other, as yet undetected, variants

and/or cryptic species to humans and other hosts. For instance,

early reports from Malaysia [25,26] described the occurrence of a

parasite in cats, which was identified as T. canis, based on the

presence of an oesophageal ventriculus and spear-shaped cervical

alae in the adult [73]. This parasite differed from the common

species known to parasitize cats [73–76], such as Toxocara cati,

which has arrow-shaped cervical alae, and Toxascaris leonina, which

lacks a ventriculus. Because T. canis has been found only rarely in

cats elsewhere in the world [76–81], the question arose as to the

specific identity of this parasite in Malaysian cats. A molecular

study, using markers in the first and second internal transcribed

spacers (ITS-1 and ITS-2, respectively) of nuclear ribosomal DNA

markers, was undertaken to genetically characterize specimens of

this parasite, then called Toxocara sp. cf. canis [27]. The molecular

investigation indicated clearly that Toxocara sp. cf. canis from

Malaysian cats was genetically distinct from T. canis and T. cati, a

conclusion which was supported by a subsequent morphological

study of a number of ascaridoids from Malaysia [28]. Three

morphological features (for lips, alae and spicules) were identified

which consistently differentiated Toxocara sp. cf. canis from T. canis,

T. cati and other congeners, such as T. tanuki (from canids), T.

apodemi and T. mackerrasae (from rodents), T. paradoxura and T.

sprenti (from viverrids), T. vajrasthirae (from mustelids) and T.

pteropodis (from bats). Hence, the findings from the molecular and

classical systematic studies supported the conclusion that Toxocara

sp. cf. canis represented a distinct species, subsequently named T.

malaysiensis [28].

Although T. canis is well recognized as the causative agent of

toxocariasis in humans, including ocular larva migrans (OLM)

and/or visceral larva migrans (VLM), other congeners, such as T.

malaysiensis, T. cati and T. vitulorum, may have greater zoonotic

importance than assumed [82,83]. T. malaysiensis is of particular

interest as a potential zoonotic pathogen, given its high prevalence

(11%) in cats [26]. The transmissibility of this species to other host

species (e.g., mouse, rat, rabbit and pig) warrants assessment,

together with epidemiological surveys utilizing molecular tools

employing genetic markers from the mitochondrial genome of T.

canis as well as specific nuclear markers in the ITS-1 and/or ITS-2.

The discovery of T. malaysiensis in cats in Malaysia [27] also raises

important questions as to the identity and zoonotic potential of

ascaridoids considered to represent T. canis in cats in other

geographical regions, including South Africa, Panama, the USA

and Czech Republic [76–81,84], which provides a stimulus for the

genetic characterization of additional Toxocara isolates from a

broad range of hosts and geographical origins and to subsequently

evaluate their potential to infect humans and/or other hosts.

From epidemiological and ecological perspectives, it would be

interesting, utilizing mitochondrial genomic data, to confirm or

refute the involvement of Toxocara in human VLM cases in Japan,

currently considered to be caused by Ascaris suum based on

serological evidence [85,86], as there has been considerable

controversy as to the specific identity of the causative agent of the

disease in these instances [87]. It would also be particularly

relevant to explore whether specific genotypes/haplotypes of

Toxocara canis have a particular affinity to the human host and/or

predilection sites in tissues to cause different types of toxocariasis

and whether there are specific subpopulations of T. canis that

undergo arrested development in tissues. Using molecular tools, in

combination with traditional parasitological and serological

methods, it should also be possible to characterize in detail

experimental infections in ‘‘model host systems’’ (e.g., mouse,

rabbit or pig) [24,88–93]. Furthermore, mitochondrial markers

would be useful for exploring the zoonotic risk of paratenic hosts,

particularly those commonly encountered in an agricultural setting

(e.g. chickens, ducks or pigs [94–98]), and determining the specific

identity of eggs in the environment [99].

In conclusion, the present study emphasizes the relevance of the

mitochondrial genome of T. canis defined herein, should provide a

foundation for a range of systematic, population genetic,

epidemiological, ecological and biological studies. Although the

PCR-based sequencing-cloning approach used herein was effec-

tive, the PCR-coupled 454 technology platform [100], constructed

recently for the direct sequencing of mitochondrial genomes from

single nematodes [42], provides perhaps the most exciting

development for large-scale, high throughput population genetic

and mitochondrial genomic studies of nematodes and other

organisms.
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Table 2. Percentage of similarity in the amino acid sequences
inferred from the 12 protein-coding genes and in the
nucleotide sequence of each of the two ribosomal genes (rrnL
and rrnS) upon pairwise comparison between Toxocara canis
and seven other parasitic nematodes (representing the orders
Ascaridida, Spirurida and Strongylida).

Protein/rRNA Asi Asu Bm Di Ov Adu Na

ATP6 82.9 81.9 23.5 22.0 21.5 76.3 75.0

COX1 93.1 94.4 49.8 51.0 51.6 90.2 90.6

COX2 90.5 93.1 42.3 44.2 42.7 84.0 84.4

COX3 89.4 90.9 33.9 34.7 33.9 84.3 82.4

CYTB 74.3 80.5 49.4 48.3 49.5 73.5 71.8

NAD1 84.1 80.0 49.8 46.3 47.8 67.3 68.3

NAD2 74.7 70.3 36.7 33.3 35.2 51.0 51.4

NAD3 87.5 83.0 38.3 36.2 40.1 66.9 66.9

NAD4 81.9 82.3 46.6 45.9 47.0 62.3 61.8

NAD4L 87.1 88.3 35.4 38.7 43.7 70.1 71.4

NAD5 76.8 75.0 37.4 35.9 37.4 62.6 62.1

NAD6 77.0 76.3 29.8 28.0 28.6 49.3 57.6

rrnL 74.8 78.0 60.7 61.0 59.2 67.0 65.2

rrnS 80.5 81.1 59.2 60.0 59.0 72.4 71.8

Asi = Anisakis simplex (Ascaridida: Anisakidae) [17].
Asu = Ascaris suum (Ascaridida: Ascarididae) [18].
Bm = Brugia malayi (Spirurida: Onchocercidae) [38].
Di = Dirofilaria immitis (Spirurida: Onchocercidae) [39].
Ov = Onchocerca volvulus (Spirurida: Onchocercidae) [40].
Adu = Ancylostoma duodenale (Strongylida: Ancylostomatidae) [35].
Na = Necator americanus (Strongylida: Ancylostomatidae) [35].
doi:10.1371/journal.pntd.0000273.t002
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