



## Functional Genomics of PRUNE1 in Neurodevelopmental Disorders (NDDs) Tied to Medulloblastoma (MB) and Other Tumors

Francesca Bibbò<sup>1,2†</sup>, Carmen Sorice<sup>1,2†</sup>, Veronica Ferrucci<sup>1,2\*</sup> and Massimo Zollo<sup>1,2\*</sup>

<sup>1</sup> Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, Italy, <sup>2</sup> CEINGE Biotecnologie Avanzate, Naples, Italy

### **OPEN ACCESS**

#### Edited by:

Tao Jiang, Capital Medical University, China

#### Reviewed by:

Thomas Wieland, Heidelberg University, Germany Maria Giuseppina Miano, Institute of Genetics and Biophysics (CNR), Italy

#### \*Correspondence:

Veronica Ferrucci veronica.ferrucci@unina.it Massimo Zollo massimo.zollo@unina.it

<sup>+</sup>These authors have contributed equally to this work

#### Specialty section:

This article was submitted to Neuro-Oncology and Neurosurgical Oncology, a section of the journal Frontiers in Oncology

Received: 13 August 2021 Accepted: 28 September 2021 Published: 22 October 2021

#### Citation:

Bibbò F, Sorice C, Ferrucci V and Zollo M (2021) Functional Genomics of PRUNE1 in Neurodevelopmental Disorders (NDDs) Tied to Medulloblastoma (MB) and Other Tumors. Front. Oncol. 11:758146. doi: 10.3389/fonc.2021.758146 We analyze the fundamental functions of Prune\_1 in brain pathophysiology. We discuss the importance and maintenance of the function of Prune\_1 and how its perturbation influences both brain pathological conditions, neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies (NMIHBA; OMIM: 617481), and tumorigenesis of medulloblastoma (MB) with functional correlations to other tumors. A therapeutic view underlying recent discoveries identified small molecules and cell penetrating peptides to impair the interaction of Prune\_1 with protein partners (e.g., Nm23-H1), thus further impairing intracellular and extracellular signaling (i.e., canonical Wnt and TGF- $\beta$  pathways). Identifying the mechanism of action of Prune\_1 as responsible for neurodevelopmental disorders (NDDs), we have recognized other genes which are found overexpressed in brain tumors (e.g., MB) with functional implications in neurodevelopmental processes, as mainly linked to changes in mitotic cell cycle processes. Thus, with Prune\_1 being a significant target in NDDs, we discuss how its network of action can be dysregulated during brain development, thus generating cancer and metastatic dissemination.

Keywords: PRUNE\_1, medulloblastoma, metastasis, proliferation rate, microtubules polymerization, Wnt, TGFtransforming growth factor, neurodevelopmental disorder with microcephaly, hypotonia, variable brain anomalies (NMIHBA)

## INTRODUCTION

*PRUNE\_1*, the human homolog of the *Drosophila melanogaster pn* gene, was firstly identified by viable mutations responsible for the brunish purple eye color compared to the red of wild-type fly (1). The phenotype of *pn* mutant flies was due to alterations in the metabolism of drosopteridines (1). Interestingly, the same homozygous or hemizygous *pn* mutation became lethal when the protein encoded by abnormal wing disc (i.e., *awd*) gene was also mutated (i.e., *p.P97S*) (2). *Awd* is the homolog of the human *NME1* gene encoding for the Nm23-H1 (or NDPK-A) protein, one of the known Prune\_1 binders. In this regard, the double mutant flies died at the second/third larval developmental stage because of anomalies of mesoderm development and central nervous system (CNS)-like cells. Interestingly, the mutant *p.P97S awd* protein still retained the ability to bind

1

Prune\_1 protein (3). Thus, the "lethal interaction" between *awd* and *pn* mutant proteins was hypothesized to be due to neomorphic mutations unbalancing the switch from guanosine triphosphate (GTP) to guanosine diphosphate (GDP; mainly mediated by *awd* protein), thus causing alterations in the modulation of GTPases and/or GTPase-activating proteins (4).

Importantly, Prune-M1 and Nm23-M1 (the mouse homologs of the human *PRUNE\_1* and *NME1* genes, respectively) showed significant co-expression patterns in the cortex, hippocampus, midbrain, and the cerebellum during murine neural development, thus suggesting a critical role for these proteins during neural development (5).

The human Prune\_1 protein belongs to the DHH (Asp-His-His) protein superfamily (that also includes the *pn* protein of *Drosophila* and the RecJ exonuclease of bacteria) and possesses a nucleotide phosphodiesterase (PDE) (6) and an exopolyphosphatase (exopolyphosphatase/pyrophosphatase, PPX/PPase) action, with greater affinity for short-chain over long-chain inorganic polyphosphates (polyPs) (7). Regarding its tertiary structure, human Prune\_1 is a naturally unfolded protein with the ability to interact with several intracellular binding partners, including GSK-3 $\beta$  (8) and Nm23-H1/H2 (9). Furthermore, Prune\_1 was also identified as a microtubuleassociated protein (MAP) with a role in the enhancement of microtubule (MT) polymerization in the mitotic spindle during cell division (10).

Because of the enzymatic activities and its interaction with several proteins, Prune\_1 was found able to modulate both intraand extracellular signaling cascades [including the canonical Wnt (8) and TGF- $\beta$  (11) pathways] that regulate cell proliferation, motility, and epithelial–mesenchymal transition (EMT) processes.

To date, Prune\_1 has been found highly expressed and positively correlated with the grading, EMT, and metastatic status in several tumors, including those of the CNS and the peripheral nervous system (PNS), and in medulloblastoma (MB) and neuroblastoma (NBL). Indeed, high expression levels of Prune\_1 were found in metastatic MB (11), the most common childhood brain tumor. In MB group 3, Prune\_1 drives a "metastatic axis," thus leading to the enhancement of the TGF- $\beta$  pathway, activation of EMT process, and the reduction of the amount of PTEN protein (11).

Furthermore, recessive mutations in *PRUNE\_1* locus (1q21.3) were also identified as candidate genetic causes of neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies (NMIHBA; MIM #617481) (10, 12–20). Similarly, other genes responsible for microcephaly (MCPH) and mainly implicated in cell division mechanisms were also found both overexpressed in brain tumors (i.e., MB) and mutated in neurodevelopmental disorders (NDDs).

In this review, we will focus on the Prune\_1 protein enzymatic activities, intracellular pathways, and protein interactors in the interplay between metastatic CSN tumor (i.e., MB) and NDD (i.e., NMIHBA) pathogenesis. In conclusion, we also highlight the use of Prune\_1-inhibitors as new potential therapies for the treatment of brain tumors. In the near future, once the mechanisms have been identified, we will then use this knowledge to understand their use and potential application in therapeutic interventions also in NDDs.

## **PRUNE\_1 ENZYMATIC ACTIVITIES**

Prune\_1 protein is part of DHH phosphoesterase superfamily. Its N-terminal domain contains the DHH motifs (6). Prune\_1 retains two different enzymatic functions—PDE (6) and PPX/ PPase activities—the latest with an order of magnitude higher (7).

## **Phosphodiesterase Activity**

Regarding PDE activity, Prune\_1 has the ability to hydrolyze the second messengers adenosine and guanosine 3',5'-cyclic nucleotides [i.e., cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)] in their corresponding 5'-monophosphates (i.e., 5'-AMP and 5'-GMP, respectively). cAMP has major affinity to Prune\_1, then cGMP  $(K_{\rm m} \text{ values: cAMP, } 0.9 \pm 0.03 \text{ M; cGMP, } 2.3 \pm 0.11 \text{ M})$  (6). Phosphodiesterase enzymes have important roles in cellular homeostasis because of the pivotal functions of cAMP and cGMP (as second messengers) in physiological processes due to the modulation of signaling pathway transduction (21). Furthermore, Prune\_1 PDE activity has been reported to enhance cell motility in vitro (6). In this regard, MBA-MB-435 cells that overexpressed mutant Prune\_1 proteins lacking PDE activity [through amino acid changes within the region containing motif III (DHRP126-129AAAA, Prune∆) were found with decreased migration rates (6). Furthermore, dipyridamole, a PDE inhibitor, was also found to affect the motility of breast cancer (BC) cells (i.e., MDA-MB231T) (22, 23). These data, thus, suggest that the PDE enzymatic activity of Prune\_1 protein may have a role in the modulation of the migratory properties of tumorigenic cells in which Prune\_1 is overexpressed.

## Exopolyphosphatase (PPX/PPase) Activity

The PPX/PPase (polyphosphate-phosphohydrolases) activity of Prune 1 was found to exceed its PDE function (7). Prune 1 has affinity for short-chain over long-chain inorganic polyPs. Indeed, it can hydrolyze linear polyPs by using Mg<sup>2+</sup> or Co<sup>2+</sup> as a cofactor. Among the inorganic polyPs with different chain lengths, the highest *K*<sub>cat</sub> values for Prune\_1 were observed by using triphosphates (P3), adenosine 5'-tetraphosphate (AP4), and guanosine 5'-tetraphosphate (GP4) as substrates. These values dramatically decreased with polyPs at increased chain lengths. Interestingly, PPi, ATP, and GTP were not significantly hydrolyzed (7). Of importance is that loss of PPX/PPase activity was found in the recombinant mutants p.N24H, p.D28A, p.D179A, and p.R348A Prune\_1 proteins when assayed in the presence of P3 and Mg<sup>2+</sup> as the substrate and cofactor, respectively. The other mutants, p.D106A, p.H107N, and p.H108N Prune\_1 proteins, had reduced but measurable PPX/PPase activity. In contrast, the mutant p.R128H Prune\_1 protein showed an increased  $K_{cat}$  value in comparison with the wild-type protein (7). These results suggest that variations within the DHH domain (e.g., p.D106A, p.H107N, and p.H108N) did not affect the PPX/PPase activity of Prune\_1 (7). In contrast, the same PPX/PPase enzymatic function resulted affected in mutant Prune\_1 proteins containing variations in those residues conserved in PPase and PPX enzymes (i.e., p.D28A, p.D179A, and p.R348A) (7).

At this time, questions were raised about the potential role of PPX/PPase activity in cell motility. In this regard, a delayed migratory rate was shown in HaCaT cells overexpressing PPX1 (the *Saccharomyces cerevisiae* homolog of the human *PRUNE\_1* gene) by performing would healing assays (24). However, different functions were also postulated due to the role that long-chain polyPs play in the induction of ERK1-2 (i.e., MAP kinase pathway) in human cells (25). Thus, how the PPX/PPAse activity of Prune\_1 influences migratory processes and cell motility in both physiological conditions is still not fully understood (in the context of polyP degradation and/or organelle cellular compartment storage). Future research studies and discoveries will address these questions.

Inorganic polyPs are polymers of linear orthophosphate (Pi) units ranging from five and several thousand orthophosphates that are linked through phosphoanhydride bonds (one of the most energy-rich linkages). In human, their amounts are very high in blood plasma, platelets, and osteoblasts, where they modulate blood clotting (26), mineralization processes, and the regulation of ATP level (27). Thus, polyPs are involved in many functions mostly related to additional sources of energy into the cells. Interestingly, polyPs were found to act as cytoprotective agents against human immunodeficiency virus type 1 (HIV-1) (28). In this regard, very recently, polyPs have been found able to exert antiviral actions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (29), during early phase of infection and replication (30).

Furthermore, high concentrations of polyPs were also found in mammalian brain, especially in astrocytes, where they were found to induce calcium signaling through P2Y1 purinergic receptors and phospholipase C induction, inositol 3 phosphate (IP3) delivery, and cytosolic Ca<sup>2+</sup> increase (31, 32). Moreover, PolyPs were also reported to amplify the proinflammatory response in endothelial cells via the activation of the same P2Y1 receptor (33), thus overall modulating mitochondrial functions. In this regard, the depletion of mitochondrial polyPs (through the overexpression and the activity of yeast PPX) significantly increased the levels of orthophosphates in the mitochondrial matrix (which is necessary for Ca<sup>2+</sup> binding), thus resulting in a decreased mitochondrial membrane potential and the inhibition of complex I of the respiratory chain (34, 35). Thus, the crucial role of polyPs in cell metabolism is clear, as also confirmed in transgenic mice widely expressing the scPPX1 exopolyphosphatase that displayed a reduced mitochondrial respiration in muscles (36).

# PRUNE\_1 PROTEIN INTERACTION WITH PROTEIN BINDING PARTNERS

Human Prune\_1 is a naturally unfolded multi-domain adaptor protein. The three-dimensional structure of the carboxylterminus (C-terminus) region of Prune\_1 was obtained through nuclear magnetic resonance (NMR) studies and molecular dynamics techniques (37). Two globular regions responsible for its enzymatic activities (i.e., DHH and DHHA2 domains) were found within the amino-terminus (N-terminus) domain of Prune\_1 (37). The DHHA2 domain also contained a conserved DXK motif at its N-terminus. An intrinsically disordered domain (starting at 371 amino acid residue) containing two stretches with a tendency for helix structures was also identified. The C-terminal domain of Prune\_1 is characterized by residues (postulated to reside between 393 and 420) that are involved in its homodimerization and a small globular region responsible for its interactions with other proteins (38, 39). In fact, Prune\_1 was found with the ability to bind several intracellular protein partners mainly involved in cytoskeletal rearrangement, including  $\alpha$ - and  $\beta$ -tubulins, glycogen synthase kinase  $3\beta$  (GSK- $3\beta$ ) (40), and Nm23-H1/H2 (or NDPK-A/B) (6). Through these interactions, Prune\_1 can modulate different intracellular pathways that might be then also translated into extracellular signaling, including the canonical Wnt via GSK-3 $\beta$  (8) and TGF- $\beta$  via Nm23-H1 binding (11).

## Prune\_1 Interaction With GSK-β

The region of Prune\_1 responsible for the interaction with GSK- $3\beta$  starts from 330 to 394 amino acid residues within the C-terminus domain (8, 40). Because of the co-localization between Prune\_1 and the focal adhesion proteins (i.e., F-actin, paxillin, and vinculin) in several cell types, this Prune\_1–GSK- $3\beta$  interaction suggests that Prune\_1 can also modulate the microtubular architecture and dynamics (40–42). Importantly, GSK- $3\beta$  is considered a negative modulator of the canonical WNT/ $\beta$ -catenin pathway through phosphorylation at its amino acid residues S9 and S21 (8, 9). Of importance is that, through GSK- $3\beta$  interaction, Prune\_1 was found to activate  $\beta$ -catenin signaling cascade and to further promote Wnt3a secretion in non-small cell lung cancer (NSCLC) cells (8); thus, a connectome related to the WNT signaling activation was identified (43).

# Prune\_1 Interaction With NME-1 (Nm23-H1)

Prune\_1 was also shown to physically interact with the Cterminus domain of Nm23-H1 through its D388 and D422 residues (37). *Nm23-H1* is described as the first anti-metastatic gene with different functions: a nucleoside diphosphate kinase (NDPK) activity that catalyzes the transfer of a phosphoryl group from a nucleoside triphosphate (NTP) to a nucleotide diphosphate (NDP), a histidine kinase function, and a 3'-5' exonuclease activity (44). In detail, *in vitro* studies demonstrated that the complex formation involved the dimer of Prune\_1 and the hexameric form of Nm23-H1 (38). Interestingly, Nm23-H1 and GSK-3 $\beta$  could bind Prune\_1 at the same time by using nonidentical regions of its C-terminus domain for their binding, thus suggesting two independent interaction sites for signaling complex assembly (38). Moreover, other *in vitro* studies demonstrated that the Prune\_1/Nm23-H1 interaction complex requires casein kinase I/II-mediated phosphorylation on three serine residues (S120, S122, and S125) of Nm23-H1. Phosphorylated Nm23-H1 on S120, S122, and S125 was also found to increase its hexameric form (41). Of importance the overexpression of both Prune\_1 and Nm23-H1 was found in different tumors, such as MB (11), NBL (37) and BC (45). In this regard, the data indicate that the Prune\_1/Nm23-H1 complex could affect the anti-metastatic activity of Nm23-H1 and increase the cell motility properties (45, 46).

### Prune\_1 Interaction With $\alpha$ - and $\beta$ -Tubulins

Other potential Prune\_1 interactors were identified through a pull-down assay coupled to mass spectrometry analysis in BC cells (42). Through this approach, new potential Prune\_1 binders were identified. Among these, the interaction between Prune\_1 and β-tubulin was proposed because of the crucial functions played by tubulins, MTs, and MAPs in neural development (47, 48). Furthermore, this interaction was also confirmed by coimmunoprecipitation assays (Prune\_1 protein and both  $\beta$ - and  $\alpha$ -tubulins) in NBL inducible cell clones (SH-SY5Y) (10). Of significance is that Prune\_1 protein was also identified as a MAP by performing a cell-based microtubule-binding protein spindown assay using the same neuronal SH-SY5Y cell clones (10). These data were also confirmed by MT polymerization assays in vitro and "in cells," thus showing an enhancement of the MT polymerization rate (nucleation, growth, and steady-state phases) in the presence of a recombinant wild-type Prune\_1 protein (10). Furthermore, Prune\_1 was also found to co-localize with MTs (i.e.,  $\beta$ -tubulin) in mitotic spindles during cell division (prometaphase, metaphase, anaphase, and cytokinesis) in Hela cells (10). Taken altogether, these data indicate an important role for Prune\_1 protein in cellular division processes.

# PRUNE\_1 IN NEURODEVELOPMENTAL DISORDER

# The Role of Prune\_1 During Neural Development

Prune\_1 was found to take part in fundamental processes occurring during neural development. In this regard, Prune-M1 and Nm23-M1 (i.e., the murine homologs of human *PRUNE\_1* and *NME-1*, respectively) had similar expression patterns in the developing murine nervous system, from early brain development to adulthood (5). In fact, a significant spatiotemporal co-expression of both Prune-M1 and Nm23-M1 during brain development, within the cortex, hippocampus, and midbrain, was observed. Regarding the telencephalon, both genes were found expressed in the ventricular zone (VZ) of the neopallial cortex, a region involved in proliferation processes. Furthermore, the expressions of Prune-M1 and Nm23-M1 were also shown within the intermediate zone and in the ganglionic eminence. These regions allow neurons to migrate to the pial surface of the forebrain to then undergo differentiation processes. Furthermore, Prune-M1 and Nm23-M1 were also expressed in the cerebellum during development in both granular and Purkinje neuron precursors (5). These findings suggest fundamental functions for Prune\_1 and Nm23-H1 during cell proliferation, migration, and differentiation processes occurring in the developing brain and mainly in the cerebellum. Of interest is that the expressions of Prune-M1 and Nm23-M1 were also shown during the murine postnatal phases in cortical layers II and IV and in the basal ganglia of the striatum, thus indicating a potential involvement of the complex in somatosensory processing and in synaptic function and plasticity (5). Interestingly, Nme-X1 and Prune-X1 (i.e., Xenopus homolog proteins) were also reported with a potential function in Muller gliogenesis during retinal development in Xenopus (49). This, thus, indicates a role for the Prune\_1 and Nm23-H1 complex also during the development of the retina and in eve morphogenesis.

# Recessive Mutations in *PRUNE\_1* Locus Are Responsible for NDD

Recently, homozygous and composite heterozygous mutations in *PRUNE\_1* locus (1q21.3) were found [through whole-exome sequencing (WES) analyses] in several patients worldwide as causative of the autosomal-recessive NMIHBA (MIM #617481). NMIHBA is a severe disease due to the global developmental delay and the intellectual disability. In fact, most of the affected patients presented MCPH and brain, cerebellar, and optic atrophy. Other cerebral abnormalities were also reported in these patients (through brain imaging), such as cortical atrophy, thickness of the corpus callosum, and hypoplasia of the cerebellum. Some patients were also described with seizure, peripheral spasticity, and slight delay in myelination process. Furthermore, the phenotype is often accompanied by a decreased muscle tone (i.e., "truncal hypotonia"), impossibility to ambulate, or speech and broad dysmorphism.

This complex phenotypic spectrum in NMIHBA patients can be reasoned by the genotypic diversity in PRUNE\_1 locus. To date, 64 patients carrying different mutations in the PRUNE\_1 gene have been reported worldwide (Figure 1 and Table 1). Regarding the genotypic differences, among the variants identified in patients with PRUNE\_1, the most representative was the homozygous c.G316A (p.D106N) variant that was found in 15 subjects: seven from Turkey (12, 16, 18), three from Italy (10, 14), one from Sri Lanka (19), one from Caucasus (17), and three from Lebanon (16). The majority of homozygous mutations were found within the DHH domain of PRUNE\_1, including c.G88A (p.D30N) in six patients from Oman (10) and one from Saudi Arabia (12), c.160C>A (p.P54T) in seven Iranian subjects (10), c.383G>A (p.R128Q) in two patients from Saudi Arabia (15), and c.515T>C (p.L172P) in three children from North Africa (16). Two types of homozygous mutations were also found within the DHHA2 domain: the missense variant c.C889T (p.R297W) in two patients from India (10) and the



variant p.H292Qfs\*3 have been represented.

frameshift variant c.874\_875insA (p.H292Qfs\*3) in one subject from Turkey (52). Interestingly, different compound heterozygous mutations were also identified, comprising the c.[G383A];[G520T] [p.(R128Q); (G174X)] variant in two affected siblings from the USA (12) and two European patients (54) and c.[316G>A];[540T>A] [p.(D106N);(C180\*)] in two Japanese subjects (17, 20). Furthermore, two different homozygous splicing variants were also described in several patients. In detail, a mutation in the splicing acceptor site (canonical) within intron 4 of *PRUNE\_1* (c.521-2A>G [IVS4-

| Nucleotide variations      | Amino acid variations | Zygosity               | Percentage of patients | No. of patients | Ethnicity     | References |
|----------------------------|-----------------------|------------------------|------------------------|-----------------|---------------|------------|
| c.50dup                    | p.Leu18Serfs*8        | Homozygous             | 1.56                   | 1               | Japan         | (17)       |
| c.G88A                     | p.D30N                | Homozygous             | 10.94                  | 6               | Oman          | (10)       |
|                            |                       |                        |                        | 1               | Saudi Arabia  | (12)       |
| c.132+2T>C                 | -                     | Homozygous             | 7.81                   | 5               | Sudan         | (50)       |
| c.160C>A                   | p.P54T                | Homozygous             | 10.94                  | 7               | Iran          | (10)       |
| c.G316A                    | p.D106N               | Homozygous             | 23.44                  | 7               | Turkey        | (12, 16)   |
|                            |                       |                        |                        | 3               | Italy         | (10)       |
|                            |                       |                        |                        | 1               | Sri Lanka     | (19)       |
|                            |                       |                        |                        | 1               | Caucasus      | (17)       |
|                            |                       |                        |                        | 3               | Lebanon       | (16)       |
| c.383G>A                   | p.R128Q               | Homozygous             | 3.13                   | 2               | Saudi Arabia  | (15)       |
| c.515T>C                   | p.L172P               | Homozygous             | 4.69                   | 3               | North Africa  | (16)       |
| c.521-2A>G                 | -                     | Homozygous             | 15.63                  | 1               | Oji-Cree      | (13)       |
|                            |                       |                        |                        | 9               | Manitoba-Cree | (51)       |
| 540T>A                     | C180*                 | Homozygous             | 1.56                   | 1               | Japan         | (17)       |
| c.874_875insA              | p.H292Qfs*3           | Homozygous             | 1.56                   | 1               | Turkey        | (52)       |
| c.C889T                    | p.R297W               | Homozygous             | 3.13                   | 2               | India         | (10)       |
| c.3G>A                     | M1?                   | Homozygous             | 3.13                   | 2               | Iran          | (53)       |
| g.1509-84457-151016-662del | -                     | Homozygous             | 3.13                   | 2               | Austria       | (16)       |
| c.[316G>A];[540T>A]        | [p.(D106N);(C180*)]   | Composite heterozygous | 3.13                   | 2               | Japan         | (17)       |
| c.[G383A];[G520T]          | [p.(R128Q);(G174X)]   | Composite heterozygous | 6.25                   | 2               | Europe        | (54)       |
|                            |                       |                        |                        | 2               | USA           | (12)       |

TABLE 1 | List of genotyping features of patients affected by neurodevelopmental disorders (NDDs) due to mutations in PRUNE\_1 locus.

2A>G]) was found in an Oji-Cree male (13) and in nine patients belonging to four Manitoba-Cree families (51). A different mutation in the splice donor site within intron 2 of the *PRUNE\_1* gene (i.e., c.132+2T>C) was also described in five patients from two consanguineous Sudanese families (50). Moreover, homozygous deletion (g.1509-84457-151016-662del) starting from exon 2 to exon 8 including the 3'UTR was also found in two female children from Austria (16). Similarly, a homozygous truncating c.50dup (p.Leu18Serfs\*8) variant was found in a Japanese child (17). Recently, a start loss c.3G>A (p.Met1)? variant in the *PRUNE\_1* gene was also reported in two Iranian patients (53).

A genotype/phenotype correlation study was performed to dissect the function of mutant Prune\_1 proteins focusing on the cG88A (p.D30N) and c.C889T (p.R297W) variants (10). Of interest is that the recombinant p.D30N and p.R297W mutant proteins (as synthetized and purified in Escherichia coli) were shown to have an increased PPX/PPase activity in vitro on tetraphosphates (P4) as substrates in comparison to the wild-type protein  $(K_{cat}/K_m \text{ values: wild-type, 0.014 mM/s;})$ p.D30N, 0.312 mM/s; p.R297W, 0.064 mM/s), thus suggesting a "gain-of-function" activity. The same mutant Prune\_1 proteins (i.e., p.D30N and p.R297W) were also shown to affect both the cell proliferation and migration rates in NBL inducible cell clones (SH-SY5Y) (10). Furthermore, the MT polymerization kinetics was found delayed in the presence of the same mutant Prune\_1 proteins both in vitro and in cells (10). Altogether, these in vitro results suggest that the cG88A (p.D30N) and c.C889T (p.R297W) variants in the PRUNE\_1 gene are gain-of-function mutations responsible for the alteration of cell proliferation and migration via impairment of MT polymerization using a neuronal model (i.e., SH-SY5Y cells). These results are in agreement with the homodimeric

form of Prune\_1 as reported *in vitro* (38) and confirmed in cells (41).

In contrast, another study reported that the missense c.G316A (p.D106N) and c.G383A (p.R128Q) variants result in a complete loss of PPX/PPase enzymatic activity on both P3 and P4 as substrates with respect to the wild-type Prune\_1 protein, thus suggesting a loss-of-function activity for these mutants (54). Additionally, in the same paper, the authors showed an increased proteasome-dependent intracellular degradation of mutant p.D30N and p.D106N Prune\_1 proteins using unsynchronized human embryonic kidney 293 (HEK-293) cells. In contrast, cells expressing the mutant p.G174\* protein showed absence of Prune\_1, while those expressing mutant p.R128Q resulted in an amount of Prune\_1 protein comparable to that expressed by wild-type HEK-293 cells (54). Furthermore, homozygous null alleles in Prune 1 knockout mice were embryonic lethal at E9.5 with several vascular anomalies, including those in the yolk sac and in the cephalic vascular system (54). Thus, in contrast to the previous study, these data suggest a reduced function of mutant Prune\_1 proteins due to hypomorphic variant alleles. Future research studies should be focused on this topic to functionally dissect these "gain or loss" single amino acid changes in PRUNE\_1 locus using in vivo state-of-the-art mouse development technology and/or functional analyses in fibroblast-derived organoids from affected patients.

#### **PRUNE\_1 IN TUMORIGENESIS**

To date, high expressions of Prune\_1 have been found in several metastatic solid tumors: MB groups 3 and 4 (11), gastric cancer (GC) (55), esophageal squamous cell carcinoma (ESCC) (56), NSCLC (8), thyroid cancer (TC) (57), colorectal cancer (CRC)

(58), NBL (37), BC, and metastatic triple-negative breast cancer (TNBC) (6, 45, 59). Prune\_1 overexpression occurs *via* the amplification and/or gain of chromosome 1q (as identified in tumors of epithelial origin), where *PRUNE\_1* is located (i.e., 1q21.3) (6). For instance, MB group 3 ( $\gamma$ -subtype), in which Prune\_1 was found overexpressed, has a trend for gain of chromosome 1q (60). Moreover, the gain of chromosomal region 1q21 was predominantly reported in BC belonging to the "basal-like" and TNBC subgroups (30%–40%) (61) and also in those recurrent (70%) (62), in which the levels of Prune\_1 were found higher (45).

## MEDULLOBLASTOMA

MB is an embryonal tumor occurring in the cerebellum and represents ~20% of all primary childhood CNS tumors. Recent integrative genomics, messenger RNA (mRNA) expression, and methylation profiling have allowed MB to be stratified into different molecular subgroups: Wingless (WNT), Sonic Hedgehog (SHH), group 3, and group 4 (60). Heterogeneity within these subgroups has been recognized, and it has been suggested that MB may consist of up 12 subtypes [i.e., WNT ( $\alpha$ and  $\beta$ ), SHH ( $\alpha$ ,  $\beta$ ,  $\gamma$ , and  $\delta$ ), group 3 ( $\alpha$ ,  $\beta$ , and  $\gamma$ ), and group 4  $(\alpha, \beta, \text{and } \gamma)$  (60). Distinctive transcriptional, mutational, and epigenetic profiles were reported for each MB subtype, with different clinical features (60). The MB SHH subgroup is characterized by an aberrant activation of the SHH pathway and arises from cerebellar granule neuron progenitors (GNPs) mainly mutated in PTCH1 or SMO receptors, although a noncanonical SHH/GLI activation has also been frequently observed (60). Although ~60% of MB belongs to groups 3 and 4, future studies are needed to clarify the developmental origins and the biological mechanisms of these latest subgroups (60). MB group 3 is considered the most aggressive subgroup because of the high metastatic potential and the poor survival rate. The amplification of c-MYC is a common genetic feature in MB group 3 patients that was found to be inversely correlated with the clinical outcomes (63). One-third of MB group 4 patients are diagnosed with metastasis and show recurrent alterations in the genes involved in chromatin modification (64). Furthermore, amplifications of the MYCN and cyclin-dependent kinase 6 (CDK6) genes are alterations more commonly found in MB group 4 (65). In contrast, isochromosome 17q is found in more than 50% of both MB group 3 and 4 patients, thus being considered a common cytogenetic hallmark for these two subgroups. Of interest is that bulk high-throughput genomic profiling studies have recently reported a strong heterogeneity in MB groups 3 and 4 in terms of molecular and clinical features, thus showing a subset of tumors with overlapping signatures (66). The impact of this heterogeneity on therapy has been limited to trials testing Smoothened (SMO) antagonists for patients with MB SHH (67) and efforts to reduce therapy for those children affected by the MB WNT subgroup (68), who have relatively good outcomes. Outside of these trials, tailored therapies for MB groups 3 and 4 are currently lacking, and the combination of surgery, craniospinal radiotherapy (except in young children for whom radiotherapy has devastating neurocognitive side effects), and multi-agent chemotherapy is used (69).

Recently, high expressions of Prune\_1 were found in these metastatic MB subgroups (i.e., MB groups 3 and 4), and a new metastatic axis (independent of c-MYC amplification) was dissected in MB group 3 with the poorest prognosis. In this regard, Prune\_1 protein, due to the binding to Nm23-H1, enhances the canonical TGF- $\beta$  pathway, thus leading to OTX2 and SNAIL upregulation, PTEN reduction, and EMT activation (11). Furthermore, gene expression and gene ontology analyses allowed other genes (i.e., OTX2, CYFIP1, and GLI2) involved in neurogenesis to be correlated to Prune\_1 (11). Interestingly, a cell competitive permeable peptide (cell-penetrating peptide, CPP) that impairs Prune\_1/Nn23-H1 complex formation was found to impair both tumorigenesis and metastatic spread in orthotopic models implanted with metastatic MB group 3 cells overexpressing c-MYC and mutated for TP53 (i.e., D425-Med cells), thus representing the most aggressive type of MB with the poorest prognosis (70). Furthermore, an anti-Prune\_1 molecule (pyrimido-pyrimidine derivative, i.e., AA7.1) (23) was also found with the ability to bind Prune\_1 protein, to enhance its intracellular degradation and to increase the PTEN protein level, thus inhibiting the Prune\_1-mediated metastatic network both in vitro in primary human medullospheres obtained from patients and also in vivo in orthotopic xenograft models of metastatic MB group 3 (11).

## **Other Tumours**

#### **Gastric Cancer**

Prune\_1 was found overexpressed in one-third of a cohort of human GC as measured *via* quantitative PCR (qPCR) and immunohistochemical analyses (55). Prune\_1 was positively correlated with advanced tumor grade, lymph node metastasis, and poor prognosis. In this regard, GC patients expressing Prune\_1 showed worse survival rates compared to those in which Prune\_1 was not detected. Furthermore, the majority of these GC specimens (87%) were also found with positivity for the Nm23-H1 protein. Interestingly, the presence of Nm23-H1 was detected in all Prune\_1-positive GC samples. Altogether, these findings indicate that the overexpression of both Prune\_1 and Nm23-H1 is associated with poor clinical outcomes in GC (55).

### Esophageal Squamous Cell Carcinoma

Prune\_1 was also found increased in 21% of a cohort (n = 205) of ESCC patients. Its protein levels were found to be positively correlated with the tumor size (T; p < 0.0001) and regional lymph nodes (N; p < 0.0001). These data show that *PRUNE\_1* could be used to identify ESCC patients with increased risk of disease recurrence or poor clinical outcomes (56).

### Non-Small Cell Lung Cancer

Prune\_1 was shown to modulate the Wnt pathway in NSCLC *via* its binding to GSK-3 $\beta$  and, as a consequence, the activation of  $\beta$ -catenin cascade (8). In this regard, Prune\_1 silencing

PRUNE\_1 in MB and NDDs

(through adenoviral approach) resulted in the reduction of activated  $\beta$ -catenin, inhibition of cell invasion, and decrease of the proliferation rate in NSCLC cells (8). Furthermore, the silencing of Prune\_1 was also reported to inhibit lung metastasis formation *in vivo* using a murine xenograft model injected (*via* tail vein) with A549-Luc cells (overexpressing the firefly luciferase gene) silenced for Prune\_1. Tumorigenesis was followed using *in vivo* bioluminescence (BLI) technology (71). Mice receiving these cells silenced for Prune\_1 showed significant reduction of the tumor burden and lung metastasis nodules compared to those in the control group (8). Furthermore, Prune\_1 protein was also detected in the serum of NSCLC patients *via* ELISA (8), thus suggesting that it could represent an early diagnostic marker for this type of tumors.

#### **Thyroid Cancer**

The role of Prune\_1 in TC was also studied (57). In this regard, Prune\_1 was detected in anaplastic TC and metastatic lymph node specimens. Prune\_1 silencing and the inhibition of its PDE activity *via* dipyridamole were found to inhibit cell motility in human TC cells (i.e., 8505C and KTC-3) (57). These data were also confirmed *in vivo*, in which the inhibition of Prune\_1 was reported to suppress tumor invasion and pulmonary metastasis in an orthotopic mouse model of TC (57). Thus, these analyses altogether confirm Prune\_1 as a candidate target in anaplastic TC.

#### **Colorectal Cancer**

Prune\_1 expression was found to be correlated with cell motility and EMT in CRC liver metastases (CRLM) (58). Prune\_1 was found to positively regulate migration and EMT processes through *in vitro* assays performed using cells overexpressing or silenced for Prune\_1 (58). Furthermore, *in vivo* experiments (with murine xenograft models) also confirmed the association of Prune\_1 with tumor invasion and distant metastases (58). Interestingly, immunohistochemical analyses detected the Prune\_1 protein in 28% of a cohort of CRC patients. Importantly, these Prune\_1-positive CRC tumors showed significant lower overall survival (OS) rates (p =0.003) (58).

#### Hepatocellular Carcinoma

Prune\_1 was found overexpressed in HCC in a cohort of 304 patients using tissue microarray (TMA) (72). Of importance is that the expression of Prune\_1 was found to be correlated with poorer OS and disease-free survival (DFS). Furthermore, gene expression analyses performed in HCC patients overexpressing Prune\_1 demonstrated a statistically significant enrichment of the genes with roles in proliferative processes, DNA methylation, and the canonical Wnt pathway (72). Moreover, mutational spectra in HCC tumors with higher Prune\_1 protein levels showed higher mutation burdens in *RPS6KA3* and *RB1* genes (72). Altogether, these findings suggest that *PRUNE\_1* acts as a tumor promoter gene in HCC. Furthermore, at this time, its role in the epigenetic changes occurring in cancer-related genes can be postulated.

### Breast Cancer and Triple-Negative Breast Cancer

High expression levels of Prune\_1 were found associated with metastasis in regional lymph nodes (p = 0.017) and in distant sites (p = 0.029) in a cohort of BC-affected patients (45). These results were also recently confirmed in patients with TNBC through TMA immunohistochemistry technologies (59). In detail, the levels of Prune\_1 protein had a positive correlation with distant metastasis (lung) and infiltrating pro-tumorigenic tumor-associated macrophages (M2-TAMs) with antiinflammatory functions in the tumor microenvironment (TME). Furthermore, a genetically engineered mouse model (GEMM) of metastatic TNBC characterized by the overexpression of both human Prune\_1 and Wnt1 in breast [through the use of the mouse mammary tumour virus (MMTV) promoter, i.e., MMTV-Prune\_1/Wnt1] revealed that Prune\_1 enhances the polarization of TAMs toward the M2 phenotype in the TME via the activation of the canonical (SMAD2-mediated) TGF- $\beta$  pathway, IL17F secretion, and extracellular vesicle protein content modulation (59). Worth noting is that the non-toxic small anti-Prune\_1 molecule (i.e., AA7.1) was found with the ability to impair the extracellular crosstalk between TNBC cells characterized by Prune\_1 overexpression and TAMs, thus reducing the metastatic properties of the tumorigenic cells in vivo by using a GEMM of metastatic TNBC (i.e., MMTV-Prune\_1/Wnt1) (59).

#### Neuroblastoma

Prune 1 and its interactor Nm23-H1 were also found significantly overexpressed in NBL (37). Interestingly, a positive correlation trend between Nm23-H1, Prune\_1, and patients' survival rates was also reported (37). Taken altogether, these findings suggest that the formation of the Prune\_1/Nm23-H1 complex may have a role in cancer progression in NBL. Furthermore, high levels of Prune\_1 and Nm23-H1 increased the aggressiveness of NBL cells (SH-SY5Y and SK-N-BE) in vitro and in vivo (37). In this regard, Prune\_1 and Nm23-H1 were found to enhance the formation of metastatic foci in a mouse orthotopic xenograft model of NBL (37). Importantly, a cell CPP mimicking the region of Nm23-H1 that is responsible for its interaction with Prune\_1 was found with the ability to impair the cell motility *in vitro* and the tumor growth and metastasis formation in vivo (37). Thus, the Prune\_1/Nm23-H1 complex was found to enhance NBL tumorigenesis, and its impairment using CPP may be a useful strategy for NBL treatment.

## PRUNE\_1 AS TARGET FOR ANTI-TUMORIGENIC THERAPIES

## Targeting Prune\_1/Nm23-H1 Complex

Due to their prominent role in metastatic tumors, targeting the Prune\_1/Nm23-H1 protein complex represents a promising therapeutic target for cancer treatment. The protein complex formation between Prune\_1 and Nm23-H1 is dependent on casein kinase 1 (CKI)-mediated

| Tumour type                                | Treatment<br>strategy        | In vitro (cell lines)                                                                                                                                         | In vivo (murine models)                                                                                                                                       | References   |
|--------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Medulloblastoma<br>(MB)                    | AA7.1<br>CPP                 | AA7.1: MB group 3 cell lines (D283-MED, D341-MED,<br>D425-MED) and primary MB group3/4 cells<br>CPP: MB group 3 cell lines (D283-MED and D425-MED)            | AA7.1 and CPP: orthotopic xenograft mouse models with metastatic MB group 3 cell line (D425-MED)                                                              | (11)         |
| Neuroblastoma<br>(NBL)                     | CPP                          | NBL cell line (SH-SY5Y)                                                                                                                                       | Mouse orthotopic xenograft models with NBL cells (SH-SY5Y)                                                                                                    | (8, 73)      |
| Triple-negative<br>breast cancer<br>(TNBC) | AA7.1<br>Dipyridamole<br>CPP | AA7.1: murine TNBC cells (MMTV-Prune_1/Wnt1)<br>Dipyridamole: murine and human TNBC cell lines (4T1<br>and MDA-MB-231T)<br>CPP: TNBC cell lines (MDA-MB-231T) | AA7.1: GEMM of metastatic TNBC (MMTV–Prune_1/<br>Wnt1 cells)<br>Dipyridamole: orthotopic xenograft mouse models with<br>TNBC cell lines (MDA-MB-231T and 4T1) | (22, 59, 73) |
| Breast cancer (BC)                         | CPP                          | BC (ER+, PG+) cell line (MCF-7)                                                                                                                               |                                                                                                                                                               | (73)         |
| Thyroid cancer (TC)                        | Dipyridamole                 |                                                                                                                                                               | Orthotopic xenograft mouse models with TC cell line (8505C)                                                                                                   | (57)         |
| Prostate cancer                            | CPP                          | Prostate cancer cell line (PC3)                                                                                                                               | Orthotopic xenograft mouse models with prostate cancer cell line (PC3)                                                                                        | (73)         |
| Colorectal cancer<br>(CRC)                 | CPP                          | CRC cell lines (HT29 and SW480)                                                                                                                               |                                                                                                                                                               | (73)         |

TABLE 2 | List of the therapeutic strategies to impair Prune\_1 in vitro and/or in vivo.

GEMM, genetically engineered mouse model; CPP, cell-penetrating peptide.

phosphorylation in S120, S122, and S125 on the C-terminus domain of Nm23-H1 protein (41). Thus, therapeutic strategies aimed to inhibit Prune\_1/Nm23-H1 complex formation via targeting these phosphorylation processes could be applied in tumorigenic cells. In this regard, a CPP was developed to mimic the region of Nm23-H1 (from amino acids 115 to 129) that contains these residues (i.e., S120, S122, and S125) that are phosphorylated by the CKI enzyme. The ability of CPP to impair the Prune\_1/Nm23-H1 complex was assayed in different tumorigenic cells in vitro (Table 2) (73). As a consequence, CPP reduced the cell proliferation and cell motility in vitro in BC, prostate cancer (PC), CRC, NBL, and MB cells (11, 73). The delivery of CPP in these tumorigenic cells was performed through adenoviral particles carrying the sequences encoding for CPP and for the transactivating protein of HIV. The absence of cytotoxicity in vitro in nontumorigenic cells (i.e., HEK-293) indicated a specific action of CPP against cancer cells. The same adenoviral approach was also used in vivo (using xenograft murine models) to show the therapeutic benefits of CPP against PC, NBL, and MB (Table 2) (11, 37, 73). Of importance is that the biosafety of CPP in mice was also reported in terms of hematological parameters. Altogether, these data address the potential future use of CPP for the treatment of PC, NBL, and MB.

## **Targeting Prune\_1 Enzymatic Activities**

The impairment of the PDE or PPX/PPase activities of Prune\_1 represents another promising anti-tumorigenic strategy to impair tumor progression. In this regard, the PDE activity of Prune\_1 was found to stimulate cellular motility *in vitro* and, as a consequence, metastatic progression. Furthermore, the anti-tumorigenic action of dipyridamole (an anti-platelet aggregation agent and one of the selective PDE inhibitors) in TNBC was also investigated *in vivo* using xenograft mice (**Table 2**) (22). Thus, PDE inhibitors could be used as therapeutic agents for Prune\_1-overexpressing tumors. Interestingly, dipyridamole did not affect the PPX/PPase

enzymatic function of Prune\_1, as measured using P3 as a substrate (7).

The PPX/PPAse activity was shown to be diminished by Nm23-H1 *in vitro* (7). Indeed, Nm23-H1 was able to inhibit the P3-hydrolyzing activity of Prune\_1 at micromolar concentrations (7). These data suggest a potential binding competition between Nm23-H1 and the P3 substrate for Prune\_1. Thus, small-molecule activators of Nm23-H1 (e.g., NMac1) (74) represent future strategies to impair cancer progression in tumors characterized by the overexpression of Prune\_1 and Nm23-H1.

It is of interest that long-chain polyPs (poor substrates of Prune\_1) were also found to reduce the Prune\_1-catalyzed hydrolysis of P3 substrate (7). This inhibitory effect may be due to Mg<sup>2+</sup> chelation or to the competition between P3 and long-chain polyPs for active site binding of Prune\_1. To date, other studies have reported on the anti-tumorigenic actions of polyPs. In this regard, the anti-metastatic activity of polyPs (P75) was reported for melanoma *in vivo* using murine xenograft models (75). Furthermore, treatment with polyPs (P120) was found to reduce the intracellular ATP level in NSCLC and increased their sensitivity to X-irradiation (76). Thus, polyPs can be promising targets for the development of novel anti-tumorigenic therapies in humans.

# Targeting Prune\_1 as Downregulating Its Protein Levels

To date, a pyrimido-pyrimidine derivative (AA7.1) was found with the ability to decrease Prune\_1 protein intracellular levels may be *via* enhancement of its proteasomal-dependent degradation (11). Protein-drug interaction studies (*via* NMR approaches) showed the amino acid residues of Prune\_1 that are mainly responsible for the binding to AA7.1 (i.e., L359 and D364) (11). This molecule was also found able to decrease Prune\_1 mRNA and protein levels in different MB group 3 (11) and TNBC (59) cells (**Table 2**). *In vitro* and *in vivo* assays also showed the ability of AA7.1 to decrease the cell proliferative

PRUNE\_1 in MB and NDDs

and migratory processes (**Table 2**). In detail, in MB group 3, AA7.1 impaired the metastatic axis driven by Prune\_1, thus leading to impairment in TGF- $\beta$ , decreased levels of OTX2, upregulation of PTEN, inhibition of EMT, reduction in Nestin, and increases in Tuj1 and GFAP differentiation neuronal markers (11). These results suggest the potential of AA7.1 to inhibit the neural stem/progenitor cell markers and to increase neuronal differentiation processes, thus inhibiting the role of Prune\_1 in these very important biological processes during neurogenesis.

Furthermore, the pharmacological inhibition of Prune\_1 protein in TNBC (achieved through AA7.1 treatment) decreased the number of metastatic foci in vivo also via inhibiting the switch of TAMs in the TME toward the M2 phenotype (59). In TNBC, AA7.1-mediated tumor inhibition occurred through the impairment of the TGF- $\beta$  pathway, reduction of inflammatory cytokines (i.e., IL-17F) and the modulation of the protein content of extracellular vesicles (i.e., vimentin) (59). Importantly, this small molecule is not toxic, as suggested by the lack of acute toxicity measured in naive mice (Balb/C) that were intraperitoneally administered escalating doses (15, 30, and 60 mg/kg) of AA7.1 daily for 1 week (11). The results showed no immediate acute toxicity of AA7.1 (in terms of hematological parameters, hepatotoxicity, or nephrotoxicity) in treated mice, as measured via glutamate-pyruvate transaminase 1, glutamic oxaloacetic transaminase, creatinine blood levels, and blood urea nitrogen (11). Thus, altogether, these findings suggest that AA7.1 is a nontoxic potential immunomodulatory molecule with the ability to modulate the inflammatory processes in the TME, thus inhibiting the metastatic spread in Prune\_1-overexpressing tumors.

To date, none of these therapeutic approaches (as summarized in Table 2) has entered clinical testing. However, the pharmacological approach via Prune\_1 downregulation (though AA7.1 treatment) has shown therapeutic benefits in murine models of MB and TNBC with the absence of acute toxicity (11). Regarding the inhibition of Prune\_1/Nm23-H1 complex formation, CPP was also tested in vivo in xenograft mice of NBL and prostate cancer, thus also representing a promising strategy against tumors overexpressing both Prune\_1 and Nm23-H1. Therefore, future studies should be focused on developing i) small molecules (e.g., AA7.1 derivatives) with a higher affinity to Prune 1 in order to reduce the dose to be used in vivo and ii) synthetic peptides with the ability to impair the interaction between Prune\_1 and Nm23-H1, hence overcoming the use of adenoviral infection that might suffer from tissuespecific trophism.

## DISCUSSION

Neural development involves a dynamic orchestrated sequence of cellular events driven by proliferation and migration processes involving neural progenitor cells (77). A tight spatial/temporal regulation of the proliferation and migration events in neural progenitor cells (NPCs) may prevent developmental malformations (as a result of hypo-proliferation) and tumor formation (due to hyper-proliferation). In this regard, NDDs (e.g., MCPH) may be caused by genetic mutations affecting the genes that modulate the proliferation and migration properties of NPCs. Similarly, brain tumorigenic cells can also derive from NPCs. Thus, the proliferation rate of brain tumorigenic cells may be regulated by the same genes that exert control on normal proliferative cells (78). Indeed, the different MB subgroups can originate from neural stem cells residing in the VZ of the cerebellum or from NPCs localized in the external granular layer of the cerebellum or rhombic lip (79). Since MB cells have been found to retain the genetic and molecular features of the cell of origin (80), the proteins involved in the growth and survival processes of neural stem cells or NPCs may also exert the same functions in brain tumorigenic cells.

Among these proteins, the PRUNE\_1 gene was reported both mutated in NDDs (i.e., NMIHBA) and overexpressed in pediatric brain tumors (i.e., MB). In this regard, Prune\_1 was found with a fundamental role in the proliferation and migration processes occurring during neural development. Its expression, together with Nm23-H1, was detected in the mouse developing brain in the cortex, hippocampus, midbrain, and in the VZ, in which proliferation processes take place (5). Furthermore, mutations in the different regions of the human PRUNE\_1 gene (mainly in the region encoding for the DHH domain) were found to be causative of NDDs characterized by MCPH (the majority of the patients) and other brain anomalies (i.e., NMIHBA). At the same time, the Prune\_1 protein was also described as overexpressed in both CNS and PNS tumors, including pediatric MB group 3, which drives the metastatic spread (11).

Thus, the deregulation of Prune\_1 in somatic or germinal cells may result in oncogenesis or neural developmental defects, respectively. The explanation for this dual phenotypic effect might be provided by the pleiotropic role of Prune\_1 in modulating several cellular processes, including proliferation, migration, MT polymerization during mitosis, and the regulation of signaling pathways.

We think that all these different functions are modulated by the enzymatic activities of Prune\_1 (i.e., PPX/PPase and phosphodiesterase) and its property of being a naturally unfolded protein able to interact with other proteins with a role in these processes (i.e., Nm-23-H1/H2 and GSK-3 $\beta$ ) (**Figure 1C**). How these interactions influence these processes is still to be discovered in detail in the near future. All these different functions are regulated by the enzymatic activities of Prune\_1 (i.e., PPX/PPase and phosphodiesterase) and its unfolded structure in the C-terminus domain that allows it to interact with different proteins (i.e., Nm-23-H1/H2 and GSK-3 $\beta$ ) (**Figure 1C**).

Of interest is that, through *in silico* analyses of 5,000 bp upstream of the transcription start site (TSS) of the *PRUNE\_1* gene, a number of sequences predicted to act as binding sites for transcriptional regulators have been identified (see **Figures 2A–D** and **Table 3**). This genomic region also contains sites (highly



*PRUNE\_1* shows H3K27Ac peaks, as marker of the enhancer regions. (**B**, **C**) Data obtained from chromatin immunoprecipitation sequencing (ChIP-seq) experiments performed on seven different cell lines, as reported in ENCODE (https://www.encodeproject.org/). (**D**) Peaks of the conserved genomic elements upon species are present in the upstream region of the gene.

conserved through evolution) targeted by epigenetic modifications. Furthermore, the presence of a CpG island was also found (**Figure 2A**), thus suggesting potential DNA methylation sites associated with transcriptional repression. Overall, these predicted sites could be of importance for potential negative/positive modulation of *PRUNE\_1* expression. Of note is that, among these putative transcriptional factors

present at the 5' region of the *PRUNE\_1* gene (**Table 3**), we found mutations in *SMARCA4* that are available in a significant frequency of MB and pancreatic cancers and in many other tumor subtypes (81–83). *SMARCA4* was reported as the most frequently mutated gene in MB group 3 (83). Future research issues will be aimed at defining this finding and the transcriptional regulation of the *PRUNE\_1* gene program in neurogenesis, development,

| Transcription<br>factor | Chromosomal position (hg38 assembly)                                            | Consensus sequences                            | Biological process                        |
|-------------------------|---------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|
| CTCF                    | chr1:151006584–151007134; chr1:151006744–151007094                              | 5'-CCGCGNGGNGGCAG-3'                           | Development                               |
| FOXA1                   | chr1:151007690-151008630                                                        | 5'-[AC]A[AT]T[AG]TT[GT][AG][CT]T[CT]-<br>3'    | Development                               |
| RBL2                    | chr1:151006386–151006759; chr1:151007954–151008902;<br>chr1:151007961–151008350 | Co-repressor (not directly binding to DNA)     | Cell division/neuronal<br>differentiation |
| SMARCA4                 | chr1:151004300-151009699                                                        | SWI/SNF subunit (chromatin remodeling complex) | Neuronal differentiation                  |
| TFAP2C                  | chr1:151007930-151008730                                                        | 5'-GCCNNNGGC-3'                                | Neural tube development                   |

TABLE 3 | List of putative transcription factor predicted to bind the regulatory elements (ORegAnno https://www.bcgsc.ca/resources/software/oreganno) 5000 bp upstream of the transcription start site of *PRUNE\_1* gene.

epidermal differentiation, and cell cycle regulation. However, the roles and the transcriptional mechanisms of Prune\_1 in both oncogenesis and NDDs still need further future investigations.

The mechanisms responsible for correct mitosis are of importance for both normal brain development and primary brain tumor growth (i.e., MB). Besides PRUNE\_1, the other five genes (i.e., KIF11, KIF14, ASPM, CDK6, and ATR) have been reported as mutated in hereditary MCPH and overexpressed in primary brain tumors (e.g., MB). The products encoded by these genes are known to play crucial roles in regulating mitotic entry or cell cycle progression (78). Here, we analyzed public gene expression data related to the genes reported as causative of primary MCPH (47, 48) (Table 4) and PRUNE\_1 by interrogating available MB datasets (i.e., Pfister, Delattre, Gilbertson, and Kool) through the R2 Genomics Analysis and Visualization Platform (http://r2.amc.nl) (Figure 3). Interestingly, these data showed that the expression levels of the majority of these genes (i.e., 77.8%) were higher in MB samples compared to those in normal cerebellum (Figure 3). On these genes mutated in MCPH and overexpressed in MB, further analyses were performed using KEGG in order to identify a potential network of proteins (Figure 4). The data showed that these proteins are mainly involved in biological processes such as cell cycle (red, GO:0007049), mitotic cell cycle (blue, GO:1903047), MT-based process (green, GO:0007017), and CNS development (yellow, GO:0007417). Future studies will be needed to study the transcriptional activation of these genes and their functions on proliferation and migration in brain tumors.

Intriguingly, Prune\_1 was reported to activate the canonical Wnt pathway through its binding to GSK-3 $\beta$ . However, its overexpression in MB was found in metastatic groups 3 and 4, but not in tumors belonging to the Wnt molecular subgroup. This may be due to the different frequencies of genetic aberration (e.g., amplification of chromosome 1q) in the different subtypes of MB (60) and also because of the heterogeneity among the MB subtypes and their distinct developmental origins. In this regard, the cerebellum is thought to be the origin site for MB SHH, group 3, and group 4, while the lower rhombic lip of the developing brain stem seems to represent the site from which MB WNT arises (79). More in detail, the cells of origin for MB SHH are the granule cell precursors (GCPs) (79). In contrast, MB group 3 develops from Nestin<sup>+</sup> cerebellar stem cells, and MB group 4 derives from

progenitor cells giving rise to both GCP and unipolar brush cell (UBC) lineages (79).

To date, among the mutations identified in PRUNE\_1 locus in NMIHBA patients, only three gene variants have been reported within the public data of Catalog of Somatic Mutations in Cancer (COSMIC, v94, released May 29, 2021) of 39,615 samples collected. In detail, the missense p.D30N Prune 1 variant (COSM5843581) was found in one patient affected with malignant melanoma, the p.R297W mutation (COSM462922) was reported in one subject suffering from clear cell renal cell carcinoma and in three patients diagnosed with colon adenocarcinoma, and the splicing c.521-2A>G variant (COSM7836151) was found in one patient with squamous cell lung carcinoma. Nevertheless, because of the paucity of tumor samples with PRUNE\_1 mutations and due to the lack of information regarding the zygosity of the identified variants, we cannot hypothesize a role for these PRUNE\_1 mutations in tumorigenic processes. Thus, further studies will be needed to address this issue.

Different genotype to phenotype correlation studies have been reported to dissect the role of mutant Prune\_1 protein in children affected with NMIHBA. In this regard, opposing enzymatic activities for mutated Prune\_1 proteins have been reported (10, 54). The contrasting results about the biochemical activity of the mutant Prune\_1 proteins could be reasoned by the homodimeric form reported for Prune\_1 (38), the interaction with intracellular binding partners (whose protein abundance is dependent of the cell district) that can modulate its enzymatic function (e.g., Nm23-H1) (7), and the possible oscillatory changes in Prune\_1 protein abundance (and activity) during the cell cycle because of its role in the mitotic spindle during mitosis (10). Thus, further studies taking into account the potential role of polyPs at short chain lengths (as Prune\_1 substrates) in neurogenesis and the homodimeric structure of Prune\_1 and its interactors will be needed to address this issue.

Of interest is that Prune\_1 acts as a MAP, enhances the MT polymerization (*in vitro* and in cells), and co-localizes with  $\beta$ -tubulin in the mitotic spindle in dividing cells (10). Importantly, its interactor, Nm23-H1, was also described to be an active constituent of the centrosomes (84) and was reported to be associated with  $\alpha$ - and  $\beta$ -tubulins with a role in their

#### TABLE 4 | List of the genes identified as causative for primary microcephaly (MCPH).

| Gene<br>name | Gene ontology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MCPH1        | Microcephalin. Implicated in chromosome condensation and DNA damage-induced cellular responses. May play a role in neurogenesis and regulation of the size of the cerebral cortex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CDK5RAP2     | CDK5 regulatory subunit-associated protein 2. Potential regulator of CDK5 activity <i>via</i> its interaction with CDK5R1. Negative regulator of centriole disengagement (licensing), which maintains centriole engagement and cohesion. Involved in the regulation of mitotic spindle orientation. Plays a role in spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoters. Together with MAPRE1, it may promote                                                                                                                                                                                                                                                                                                                                                        |
| CEP152       | microtubule polymerization, bundle formation, growth, and dynamics at the plus ends. Hegulates centrosomal maturation.<br>Centrosomal protein of 152 kDa. Necessary for centrosome duplication; the function seems to also involve <i>CEP63</i> , <i>CDK5RAP2</i> , and <i>WDR62</i> through a stepwise assembled complex at the centrosome that recruits CDK2 required for centricle duplication. Acts as a molecular scaffold facilitating the interaction of <i>PLK4</i> and <i>CENPJ</i> , two molecules involved in centricle formation. Proposed to snatch <i>PLK4</i> away from <i>PLK4</i> : <i>CEP92</i> complexes in early G1 daughter centricle and to reposition <i>PLK4</i> at the outer boundary of a newly forming <i>CEP152</i> ring structure. Also plays a key role in deuterosome-mediated centricle. |
| ASPM         | Abnormal spindle-like microcephaly-associated protein. Involved in mitotic spindle regulation and coordination of mitotic processes. Its function in regulating microtubule dynamics at spindle poles, including spindle orientation, astral microtubule density, and poleward microtubule flux, seems to depend on the association with the katanin complex formed by <i>KATNA1</i> and <i>KATNB1</i> . Enhances the microtubule lattice severing activity of <i>KATNA1</i> by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth; reversely, this function can be enhanced by the katanin complex.                                                                                                                                                                                 |
| CENPJ        | Centromere protein J. Plays an important role in cell division and centrosome function by participating in centriole duplication. Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles. Required for centriole elongation and for <i>STIL</i> -mediated centriole amplification. May be involved in the control of centriolar microtubule growth.                                                                                                                                                                                                      |
| STIL         | SCL-interrupting locus protein. Immediate-early gene. Plays an important role in embryonic development and in cellular growth and proliferation. Its long-<br>term silencing affects cell survival and cell cycle distribution and decreases CDK1 activity correlated with the reduced phosphorylation of CDK1. Plays a<br>role as a positive regulator of the Sonic Hedgehog pathway, acting downstream of <i>PTCH1</i> . Plays an important role in the regulation of centricle<br>duplication. Bequired for the onset of procepticate formation and proper mitotic progression                                                                                                                                                                                                                                        |
| CEP135       | Centrosomal protein of 135 kDa. Centrosomal protein involved in centriole biogenesis. Acts as a scaffolding protein during early centriole biogenesis.<br>Required for the targeting of centriole satellite proteins to centrosomes such as of <i>PCM1</i> , <i>SSX2IP</i> , and <i>CEP290</i> and the recruitment of <i>WRAP73</i> to centrioles. Also required for centriole–centriole cohesion during interphase by acting as a platform protein for <i>CEP250</i> at the centriole. Belongs to the <i>CEP135/TSGA10</i> family.                                                                                                                                                                                                                                                                                      |
| CASC5        | Kinetochore scaffold 1. Performs two crucial functions during mitosis: it is essential for spindle assembly checkpoint signaling and for correct chromosome alignment. Required for the attachment of the kinetochores to the spindle microtubules. Directly links <i>BUB1</i> and <i>BUB1B</i> to kinetochores. Part of the MIS12 complex, which may be fundamental for kinetochore formation and proper chromosome segregation during mitosis. Acts in coordination with <i>CENPK</i> to recruit the NDC80 complex to the outer kinetochore.                                                                                                                                                                                                                                                                           |
| PHC1         | Polyhomeotic-like protein 1. Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including <i>Hox</i> genes, throughout development. PcG PRC1 complex acts <i>via</i> chromatin remodeling and modification of histones. It mediates the monoubiquitination of histone H2A "Lys-119," rendering chromatin heritably changed in its expressibility. Required for proper control of cellular levels of <i>GMNN</i> expression.                                                                                                                                                                                                                                                                                  |
| CDK6         | Cyclin-dependent kinase 6. Serine/threonine protein kinase involved in the control of cell cycle and differentiation. Promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in the initiation and maintenance of cell cycle exit during cell differentiation. Prevents cell proliferation and negatively regulates cell differentiation, but is required for the proliferation of specific cell types (e.g., erythroid and hematopoietic cells).                                                                                                                                                                                                                          |
| CENPE        | Centromere-associated protein E. Microtubule plus-end-directed kinetochore motor that plays an important role in chromosome congression, microtubule-<br>kinetochore conjugation, and spindle assembly checkpoint activation. Drives chromosome congression (alignment of chromosomes at the spindle equator<br>resulting in the formation of the metaphase plate) by mediating the lateral sliding of polar chromosomes along spindle microtubules toward the spindle<br>equator and by aiding the establishment and maintenance of connections between kinetochores and spindle microtubules.                                                                                                                                                                                                                          |
| ANKLE2       | Ankyrin repeat and LEM domain-containing protein 2. Involved in mitotic nuclear envelope reassembly by promoting the dephosphorylation of BAF/BANF1 during mitotic exit. Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting the dephosphorylation of BAF/<br>BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly. It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in the recruitment of the PP2A complex. Involved in brain development.                                                                                                                                                                                                                                                        |
| COPB2        | Coatomer subunit beta. The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER <i>via</i> the Golgi up to the trans-Golgi network. The coatomer complex is required for budding from Golgi membranes and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated with ADP-ribosylation factors (AEEs), which are small GTP-binding proteins.                                                                                                                                                                                                                     |
| KIF14        | Kinesin-like protein KIF14. Microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity. Plays a role in many processes such as cell division, cytokinesis, and also in cell proliferation and apoptosis. During cytokinesis, targets to the central spindle and midbody through its interaction with <i>PRC1</i> and <i>CIT</i> , respectively. Regulates cell growth through the regulation of cell cycle progression acts through SCE-dependent protescent unit utility-dependent protein                                                                                                                                                                                                                                                     |
| NCAPD2       | Condensin complex subunit 1. Regulatory subunit of the condensin complex, a complex required for the conversion of interphase chromatin into mitotic-<br>like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases<br>and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. May target the condensin complex to DNA <i>via</i> its C-<br>terminal domain. Belongs to the CND1 (condensin subunit 1) family.                                                                                                                                                                                                                                                                            |
| NCAPD3       | Condensin-2 complex subunit D3. Regulatory subunit of the condensin-2 complex, a complex that establishes mitotic chromosome architecture and is involved in the physical rigidity of the chromatid axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### TABLE 4 | Continued

| Gene<br>name | Gene ontology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCAPH        | Condensin complex subunit 2. Regulatory subunit of the condensin complex, a complex required for the conversion of interphase chromatin into mitotic-<br>like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases<br>and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases.                                                                                                                                                                                                       |
| NUP37        | Nucleoporin Nup37. Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC. The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression, and chromosome segregation.                                                                                                                                                                                                                                                                                                 |
| LMNB1        | Lamin-B1. Lamins are components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane, which is thought to provide a framework for the nuclear envelope and may also interact with chromatin.                                                                                                                                                                                                                                                                                                                                                                              |
| LMNB2        | Lamin-B2. Lamins are components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane, which is thought to provide a framework for the nuclear envelope and may also interact with chromatin. Belongs to the intermediate filament family.                                                                                                                                                                                                                                                                                                                                 |
| WDR62        | WD repeat-containing protein 62. Required for cerebral cortical development. Plays a role in neuronal proliferation and migration. Plays a role in mother-<br>centriole-dependent centriole duplication. The function seems to also involve <i>CEP152</i> , <i>CDK5RAP2</i> , and <i>CEP63</i> through a stepwise assembled complex at<br>the centrosome that recruits CDK2 required for centriole duplication.                                                                                                                                                                                                     |
| MFSD2A       | Sodium-dependent lysophosphatidylcholine symporter 1. Sodium-dependent lysophosphatidylcholine (LPC) symporter, which plays an essential role for<br>blood-brain barrier formation and function. Specifically expressed in the endothelium of the blood-brain barrier of microvessels and transports LPC into the<br>brain. Transport of LPC is essential because it constitutes the major mechanism by which docosahexaenoic acid (DHA), an omega-3 fatty acid that is<br>essential for normal brain growth and cognitive function, enters the brain.                                                              |
| SASS6        | Spindle assembly abnormal protein 6 homolog. Central scaffolding component of the centrioles ensuring their ninefold symmetry. Required for centrosome biogenesis and duplication: required both for mother-centriole-dependent centriole duplication and deuterosome-dependent centriole amplification in multi-<br>ciliated cells. Overexpression results in excess foci-bearing centriolar markers. Required for the recruitment of <i>STIL</i> to the procentriole and for <i>STIL</i> -mediated centriole amplification.                                                                                       |
| WDFY3        | WD repeat and FYVE domain-containing protein 3. Required for selective macroautophagy (aggrephagy). Acts as an adapter protein by linking specific proteins destined for degradation to the core autophagic machinery members, such as the ATG5-ATG12-ATG16L E3-like ligase, SQSTM1, and LC3. Along with p62/SQSTM1, involved in the formation and autophagic degradation of cytoplasmic ubiquitin-containing inclusions (p62 bodies, ALIS/ aggresome-like induced structures). Along with SQSTM1, required to recruit ubiquitinated proteins to PML bodies in the nucleus. Important for normal brain development. |
| ZNF335       | Zinc finger protein 335. Component or associated component of some histone methyltransferase complexes that may regulate transcription through the recruitment of these complexes on gene promoters. Enhances ligand-dependent transcriptional activation by nuclear hormone receptors. Plays an important role in neural progenitor cell proliferation and self-renewal through the regulation of specific genes involved in brain development, including <i>REST</i> . Also controls the expressions of genes involved in somatic development and regulates, for instance, lymphoblast proliferation.             |

C7ORF43 Chromosome 7 open reading frame 43, with unknown function.



FIGURE 3 | Representative expression gene panel list of genes that have been found causative of microcephaly (MCPH). RNA log2 expression of the genes reported as causative of primary MCPH (MCPH1, WDR62, CDK5RAP2, CEP152, ASPM, CENPJ, STIL, CEP135, ZNF335, CASC5, PHC1, CDK6, CENPE, SASS6, MFSD2A, ANKLE2, WDFY3, COPB2, KIF14, NCAPD2, NCAPD3, NCAPH, NUP37, C7orf43, LMNB1, and LMNB2) and PRUNE\_1 derived from transcriptome analysis of the primary cohorts of medulloblastoma (MB) in public available datasets (Pfister, Delattre, Gilbertson, and Kool) and normal cerebellum (Root) using the R2 Genomics Analysis and Visualization Platform (http://r2.amc.nl).



polymerization (85, 86), probably acting as a source of GTP necessary for  $\alpha$ - and  $\beta$ -tubulins during their assembly. Altogether, these data suggest a potential role for the Prune\_1 and Nm23-H1 complex during MT polymerization processes.

At this time, we can postulate that the Prune\_1 protein may be implicated in both NDD and brain tumor development mostly due to its enzymatic activities and its ability to activate signaling cascades (Figure 5). Prune\_1, by acting as a MAP, enhances MT polymerization, thus modulating the dynamics of MTs in the mitotic spindle during mitosis. Thus, in NMIHBA patients, mutated Prune\_1 proteins were found to be responsible for the delayed MT polymerization and the decreased cell proliferation and migration processes (Figure 5, upper panel). On the other hand, in tumorigenic cells, the Prune\_1 protein was found to activate canonical Wnt (via its binding to GSK-3 $\beta$ ), thus promoting the activation of  $\beta$ catenin and the secretion of Wnt3a. Prune\_1 was also reported to enhance the TGF- $\beta$  pathway (through interaction with Nm23-H1), increase OTX2 and N-cadherin levels, and reduce PTEN levels. Moreover, Prune 1 was reported to modulate the secretion of soluble cytokines (including IL-17F) and the vesicle protein content (e.g., vimentin). These mechanisms of action lead to the increase of the cell proliferation rate of tumorigenic cells and their metastatic spread (Figure 5, bottom panel).



patients with neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies (NMIHBA) (bottom panel). Upper panel: Prune\_1 acting as a microtubule-associated protein (MAP) in the mitotic spindle thus increases the microtubule (MT) polymerization rate. Similarly, Nm23-H1 was also shown to take part in polymerization processes. When Prune\_1 is mutated (e.g., p.D30N and p.R297W), MT polymerization is delayed, thus unbalancing the MT dynamics in mitotic cells, causing mitotic defects and decreasing the cell proliferation rate. Bottom panel: Once overexpressed in tumorigenic cells (e.g., MB), Prune\_1 was reported to enhance canonical TGF- $\beta$  pathways via interaction with Nm23-H1, thus increasing phosphorylated SMAD2 and leading to OTX2 upregulation, PTEN inhibition, and epithelial-mesenchymal transition (EMT) activation (through the upregulation of N-cadherin). Prune\_1 was also shown to enhance canonical Wnt signaling through its interaction with GSK-β, which causes the increase of its inhibitory phosphorylation on Ser9 and Ser21 residues, thus leading to the activation of  $\beta$ -catenin. Through the activation of these two signaling cascades, Prune\_1 can also take part in extracellular pathways, thus increasing the secretion of Wnt3a and IL17F and modulating the protein contents of extracellular vesicles (EVs). These actions are responsible for the increased proliferation rate of tumorigenic cells and their metastatic dissemination.

In conclusion, Prune\_1 is emerging as a novel attractive target in both NDD and brain tumorigenesis. To date, several approaches (e.g., pharmacological inhibition or cell competitive permeable peptides) to impair Prune\_1 protein, its enzymatic activities, or its interaction with other protein binding partners have been tested *in vitro* and/or *in vivo* in preclinical animal models (**Table 2**). Furthermore, the development of new small molecules able to rescue the altered enzymatic activity of mutated Prune\_1 proteins could also be useful for the treatment of tumors in which the same mutations in *PRUNE\_1* locus were found.

Despite the promising results here presented related to the use of novel modalities of Prune\_1 inhibitors, these small molecules have not been tested yet in clinical settings. We envision, at this time, that aggressive and metastatic tumors will greatly benefit from these inhibitors in new clinical programs.

## **AUTHOR CONTRIBUTIONS**

FB and CS performed the expression analyses and generated the protein network and the gene ontology. VF and MZ wrote the manuscript. All authors discussed the data and contributed to the final work.

## FUNDING

This study was supported by PRIN Ministero dell'Università e Ricerca Italiana Project no. 2017FNZRN3 (MZ), the Italian Association for Cancer Research (AIRC; grant IG no. 22129) to MZ, Fondazione Cariplo (to VF and MZ), Fondazione Celeghin Italiana (to MZ), and Ministero dell'Università e

## REFERENCES

- Banfi S, Borsani G, Rossi E, Bernard L, Guffanti A, Rubboli F, et al. Identification and Mapping of Human cDNAs Homologous to Drosophila Mutant Genes Through EST Database Searching. *Nat Genet* (1996) 13 (2):167–74. doi: 10.1038/ng0696-167
- Timmons L, Shearn A. Germline Transformation Using a Prune cDNA Rescues Prune/Killer of Prune Lethality and the Prune Eye Color Phenotype in Drosophila. *Genetics* (1996) 144(4):1589–600. doi: 10.1093/ genetics/144.4.1589
- Reymond A, Volorio S, Merla G, Al-Maghtheh M, Zuffardi O, Bulfone A, et al. Evidence for Interaction Between Human PRUNE and Nm23-H1 NDPKinase. Oncogene (1999) 18(51):7244–52. doi: 10.1038/sj.onc.1203140
- Teng DH, Engele CM, Venkatesh TR. A Product of the Prune Locus of Drosophila Is Similar to Mammalian GTPase-Activating Protein. *Nature* (1991) 353(6343):437–40. doi: 10.1038/353437a0
- Carotenuto P, Marino N, Bello AM, D'Angelo A, Di Porzio U, Lombardi D, et al. PRUNE and NM23-M1 Expression in Embryonic and Adult Mouse Brain. J Bioenerg Biomembr (2006) 38(3-4):233–46. doi: 10.1007/s10863-006-9044-z
- D'Angelo A, Garzia L, Andre A, Carotenuto P, Aglio V, Guardiola O, et al. Prune cAMP Phosphodiesterase Binds Nm23-H1 and Promotes Cancer Metastasis. *Cancer Cell* (2004) 5(2):137–49. doi: 10.1016/S1535-6108(04) 00021-2
- Tammenkoski M, Koivula K, Cusanelli E, Zollo M, Steegborn C, Baykov AA, et al. Human Metastasis Regulator Protein H-Prune Is a Short-Chain Exopolyphosphatase. *Biochemistry* (2008) 47(36):9707–13. doi: 10.1021/ bi8010847
- Carotenuto M, De Antonellis P, Liguori L, Benvenuto G, Magliulo D, Alonzi A, et al. H-Prune Through GSK-3beta Interaction Sustains Canonical WNT/beta-Catenin Signaling Enhancing Cancer Progression in NSCLC. Oncotarget (2014) 5(14):5736–49. doi: 10.18632/oncotarget.2169
- Diana D, Smaldone G, De Antonellis P, Pirone L, Carotenuto M, Alonzi A, et al. Mapping Functional Interaction Sites of Human Prune C-Terminal Domain by NMR Spectroscopy in Human Cell Lysates. *Chemistry* (2013) 19 (37):12217–20. doi: 10.1002/chem.201302168
- Zollo M, Ahmed M, Ferrucci V, Salpietro V, Asadzadeh F, Carotenuto M, et al. PRUNE Is Crucial for Normal Brain Development and Mutated in Microcephaly With Neurodevelopmental Impairment. *Brain* (2017) 140 (4):940–52. doi: 10.1093/brain/awx014
- Ferrucci V, de Antonellis P, Pennino FP, Asadzadeh F, Virgilio A, Montanaro D, et al. Metastatic Group 3 Medulloblastoma Is Driven by PRUNE1 Targeting NME1-TGF-Beta-OTX2-SNAIL via PTEN Inhibition. Brain (2018) 141(5):1300–19. doi: 10.1093/brain/awy039
- Karaca E, Harel T, Pehlivan D, Jhangiani SN, Gambin T, Coban Akdemir Z, et al. Genes That Affect Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease. *Neuron* (2015) 88(3):499– 513. doi: 10.1016/j.neuron.2015.09.048

della Ricerca Italiana (PRIN; grant no. 2017FNZRN3) (to MZ).

### ACKNOWLEDGMENTS

We thank HAIMBIO, Seoul Korea, in the name of Dr. Hong-Yeoul Kim, for sharing ideas and compounds to be used as inhibitor of Prune\_1 to reduce the activated mitochondrial cancer metabolism and for studies related to the use of polyPs. We further thank Prof. Werner Muller for helpful discussion on PolyPs and Sars-Cov-2 infection and replication in the context of Prune\_1 overexpression. We also thank Associazione S.P.R.IN.T. Onlus for supporting research on Prune\_1 and other tubulinopathy genes involving microtubule dynamics.

- Costain G, Shugar A, Krishnan P, Mahmutoglu S, Laughlin S, Kannu P. Homozygous Mutation in PRUNE1 in an Oji-Cree Male With a Complex Neurological Phenotype. *Am J Med Genet A* (2017) 173(3):740–3. doi: 10.1002/ajmg.a.38066
- Iacomino M, Fiorillo C, Torella A, Severino M, Broda P, Romano C, et al. Spinal Motor Neuron Involvement in a Patient With Homozygous PRUNE Mutation. *Eur J Paediatr Neurol* (2018) 22(3):541–3. doi: 10.1016/j.ejpn.2017.12.005
- Alfadhel M, Nashabat M, Hundallah K, Al Hashem A, Alrumayyan A, Tabarki B. PRUNE Syndrome Is a New Neurodevelopmental Disorder: Report and Review. *Child Neurol Open* (2018) 5:2329048X17752237. doi: 10.1177/ 2329048X17752237
- Alhaddad B, Schossig A, Haack TB, Kovacs-Nagy R, Braunisch MC, Makowski C, et al. PRUNE1 Deficiency: Expanding the Clinical and Genetic Spectrum. *Neuropediatrics* (2018) 49(5):330–8. doi: 10.1055/s-0038-1661396
- Imagawa E, Yamamoto Y, Mitsuhashi S, Isidor B, Fukuyama T, Kato M, et al. PRUNE1-Related Disorder: Expanding the Clinical Spectrum. *Clin Genet* (2018) 94(3-4):362–7. doi: 10.1111/cge.13385
- Okur D, Daimaguler HS, Danyeli AE, Tekgul H, Wang H, Wunderlich G, et al. Bi-Allelic Mutations in PRUNE Lead to Neurodegeneration With Spinal Motor Neuron Involvement and Hyperckaemia. *Turk J Pediatr* (2019) 61 (6):931–6. doi: 10.24953/turkjped.2019.06.015
- Papuc SM, Abela L, Steindl K, Begemann A, Simmons TL, Schmitt B, et al. The Role of Recessive Inheritance in Early-Onset Epileptic Encephalopathies: A Combined Whole-Exome Sequencing and Copy Number Study. *Eur J Hum Genet* (2019) 27(3):408–21. doi: 10.1038/s41431-018-0299-8
- Fujii H, Sato N, Takanashi JI, Kimura Y, Morimoto E, Shigemoto Y, et al. Altered MR Imaging Findings in a Japanese Female Child With PRUNE1-Related Disorder. *Brain Dev* (2020) 42(3):302–6. doi: 10.1016/j.braindev.2019.12.001
- Essayan DM. Cyclic Nucleotide Phosphodiesterases. J Allergy Clin Immunol (2001) 108(5):671–80. doi: 10.1067/mai.2001.119555
- Spano D, Marshall JC, Marino N, De Martino D, Romano A, Scoppettuolo MN, et al. Dipyridamole Prevents Triple-Negative Breast-Cancer Progression. *Clin Exp Metastasis* (2013) 30(1):47–68. doi: 10.1007/s10585-012-9506-0
- Virgilio A, Spano D, Esposito V, Di Dato V, Citarella G, Marino N, et al. Novel Pyrimidopyrimidine Derivatives for Inhibition of Cellular Proliferation and Motility Induced by H-Prune in Breast Cancer. *Eur J Med Chem* (2012) 57:41– 50. doi: 10.1016/j.ejmech.2012.08.020
- Simbulan-Rosenthal CM, Gaur A, Sanabria VA, Dussan LJ, Saxena R, Schmidt J, et al. Inorganic Polyphosphates Are Important for Cell Survival and Motility of Human Skin Keratinocytes. *Exp Dermatol* (2015) 24(8):636–9. doi: 10.1111/exd.12729
- Bondy-Chorney E, Abramchuk I, Nasser R, Holinier C, Denoncourt A, Baijal K, et al. A Broad Response to Intracellular Long-Chain Polyphosphate in Human Cells. *Cell Rep* (2020) 33(4):108318. doi: 10.1016/j.celrep.2020.108318
- Morrissey JH. Polyphosphate: A Link Between Platelets, Coagulation and Inflammation. Int J Hematol (2012) 95(4):346–52. doi: 10.1007/s12185-012-1054-5

- Muller WEG, Schroder HC, Wang X. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. *Chem Rev* (2019) 119(24):12337–74. doi: 10.1021/acs.chemrev.9b00460
- Lorenz B, Leuck J, Kohl D, Muller WE, Schroder HC. Anti-HIV-1 Activity of Inorganic Polyphosphates. J Acquir Immune Defic Syndr Hum Retrovirol (1997) 14(2):110–8. doi: 10.1097/00042560-199702010-00003
- Ferrucci V, Kong DY, Asadzadeh F, Marrone L, Boccia A, Siciliano R, et al. Long-Chain Polyphosphates Impair SARS-CoV-2 Infection and Replication. *Sci Signal* (2021) 14(690). doi: 10.1126/scisignal.abe5040
- 30. Zollo M, Ferrucci V, Izzo B, Quarantelli F, Domenico CD, Comegna M, et al. SARS-CoV-2 Subgenomic N (sgN) Transcripts in Oro-Nasopharyngeal Swabs Correlate with the Highest Viral Load, as Evaluated by Five Different Molecular Methods. *Diagnostics (Basel)* (2021) 11(2):288. doi: 10.3390/ diagnostics11020288
- Angelova PR, Agrawalla BK, Elustondo PA, Gordon J, Shiba T, Abramov AY, et al. *In Situ* Investigation of Mammalian Inorganic Polyphosphate Localization Using Novel Selective Fluorescent Probes JC-D7 and JC-D8. *ACS Chem Biol* (2014) 9(9):2101–10. doi: 10.1021/cb5000696
- Holmstrom KM, Marina N, Baev AY, Wood NW, Gourine AV, Abramov AY. Signalling Properties of Inorganic Polyphosphate in the Mammalian Brain. *Nat Commun* (2013) 4:1362. doi: 10.1038/ncomms2364
- 33. Dinarvand P, Hassanian SM, Qureshi SH, Manithody C, Eissenberg JC, Yang L, et al. Polyphosphate Amplifies Proinflammatory Responses of Nuclear Proteins Through Interaction With Receptor for Advanced Glycation End Products and P2Y1 Purinergic Receptor. *Blood* (2014) 123(6):935–45. doi: 10.1182/blood-2013-09-529602
- 34. Abramov AY, Fraley C, Diao CT, Winkfein R, Colicos MA, Duchen MR, et al. Targeted Polyphosphatase Expression Alters Mitochondrial Metabolism and Inhibits Calcium-Dependent Cell Death. *Proc Natl Acad Sci USA* (2007) 104 (46):18091–6. doi: 10.1073/pnas.0708959104
- Pavlov E, Aschar-Sobbi R, Campanella M, Turner RJ, Gomez-Garcia MR, Abramov AY. Inorganic Polyphosphate and Energy Metabolism in Mammalian Cells. J Biol Chem (2010) 285(13):9420–8. doi: 10.1074/ jbc.M109.013011
- Nakamura A, Kawano N, Motomura K, Kuroda A, Sekiguchi K, Miyado M, et al. Degradation of Phosphate Polymer polyP Enhances Lactic Fermentation in Mice. *Genes Cells* (2018) 23(10):904–14. doi: 10.1111/gtc.12639
- Carotenuto M, Pedone E, Diana D, de Antonellis P, Dzeroski S, Marino N, et al. Neuroblastoma Tumorigenesis Is Regulated Through the Nm23-H1/h-Prune C-Terminal Interaction. *Sci Rep* (2013) 3:1351. doi: 10.1038/srep01351
- Middelhaufe S, Garzia L, Ohndorf UM, Kachholz B, Zollo M, Steegborn C. Domain Mapping on the Human Metastasis Regulator Protein H-Prune Reveals a C-Terminal Dimerization Domain. *Biochem J* (2007) 407(2):199– 205. doi: 10.1042/BJ20070408
- Marino N, Zollo M. Understanding H-Prune Biology in the Fight Against Cancer. *Clin Exp Metastasis* (2007) 24(8):637–45. doi: 10.1007/s10585-007-9109-3
- Kobayashi T, Hino S, Oue N, Asahara T, Zollo M, Yasui W, et al. Glycogen Synthase Kinase 3 and H-Prune Regulate Cell Migration by Modulating Focal Adhesions. *Mol Cell Biol* (2006) 26(3):898–911. doi: 10.1128/MCB.26.3.898-911.2006
- Garzia L, D'Angelo A, Amoresano A, Knauer SK, Cirulli C, Campanella C, et al. Phosphorylation of Nm23-H1 by CKI Induces Its Complex Formation With H-Prune and Promotes Cell Motility. *Oncogene* (2008) 27(13):1853–64. doi: 10.1038/sj.onc.1210822
- Garzia L, Roma C, Tata N, Pagnozzi D, Pucci P, Zollo M. H-Prune-Nm23-H1 Protein Complex and Correlation to Pathways in Cancer Metastasis. J Bioenerg Biomembr (2006) 38(3-4):205–13. doi: 10.1007/s10863-006-9036-z
- 43. Freeman J, Smith D, Latinkic B, Ewan K, Samuel L, Zollo M, et al. A Functional Connectome: Regulation of Wnt/TCF-Dependent Transcription by Pairs of Pathway Activators. *Mol Cancer* (2015) 14:206. doi: 10.1186/ s12943-015-0475-1
- 44. Ferrucci V, Pennino FP, Siciliano R, Asadzadeh F, Zollo M. A Competitive Cell-Permeable Peptide Impairs Nme-1 (NDPK-A) and Prune-1 Interaction: Therapeutic Applications in Cancer. *Lab Invest* (2018) 98(5):571–81. doi: 10.1038/s41374-017-0011-6
- 45. Zollo M, Andre A, Cossu A, Sini MC, D'Angelo A, Marino N, et al. Overexpression of H-Prune in Breast Cancer Is Correlated With Advanced Disease Status. *Clin Cancer Res* (2005) 11(1):199–205.

- Galasso A, Zollo M. The Nm23-H1-H-Prune Complex in Cellular Physiology: A "Tip of the Iceberg' Protein Network Perspective. *Mol Cell Biochem* (2009) 329(1-2):149–59. doi: 10.1007/s11010-009-0115-4
- Siskos N, Stylianopoulou E, Skavdis G, Grigoriou ME. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. *Brain Sci* (2021) 11(5). doi: 10.3390/brainsci11050581
- Bahi-Buisson N, Poirier K, Fourniol F, Saillour Y, Valence S, Lebrun N, et al. The Wide Spectrum of Tubulinopathies: What Are the Key Features for the Diagnosis? *Brain* (2014) 137(Pt 6):1676–700. doi: 10.1093/brain/awu082
- Bilitou A, De Marco N, Bello AM, Garzia L, Carotenuto P, Kim M, et al. Spatial and Temporal Expressions of Prune Reveal a Role in Muller Gliogenesis During Xenopus Retinal Development. *Gene* (2012) 509(1):93– 103. doi: 10.1016/j.gene.2012.08.001
- 50. Koko M, Yahia A, Elsayed LE, Hamed AA, Mohammed IN, Elseed MA, et al. An Identical-by-Descent Novel Splice-Donor Variant in PRUNE1 Causes a Neurodevelopmental Syndrome With Prominent Dystonia in Two Consanguineous Sudanese Families. Ann Hum Genet (2021) 85(5):186–95. doi: 10.1111/ahg.12437
- 51. Hartley JN, Simard LR, Ly V, Del Bigio MR, Frosk P. A Homozygous Canonical Splice Acceptor Site Mutation in PRUNE1 Is Responsible for a Rare Childhood Neurodegenerative Disease in Manitoba Cree Families. Am J Med Genet A (2019) 179(2):206–18. doi: 10.1002/ajmg.a.60690
- Karakaya M, Yilmaz S, Storbeck M, Hoelker I, Heller R, Serdaroglu G, et al. PRUNE1: A Disease-Causing Gene for Secondary Microcephaly. *Brain* (2017) 140(10):e61. doi: 10.1093/brain/awx197
- 53. Mehdi Agha Gholizadeh MM-S, Fardanesh F, Garshasbi M. Neurodevelopmental Disorder With Microcephaly, Hypotonia, And Variable Brain Anomalies In A Consanguineous Iranian Family Is Associated With A Novel Homozygous Start Loss Variant In The PRUNE1 Gene. In Review. BMC Med Genomics (2021). doi: 10.21203/rs.3.rs-789457/v1
- Nistala H, Dronzek J, Gonzaga-Jauregui C, Chim SM, Rajamani S, Nuwayhid S, et al. NMIHBA Results From Hypomorphic PRUNE1 Variants That Lack Short-Chain Exopolyphosphatase Activity. *Hum Mol Genet* (2021) 29 (21):3516–31. doi: 10.1093/hmg/ddaa237
- 55. Oue N, Yoshida K, Noguchi T, Sentani K, Kikuchi A, Yasui W. Increased Expression of H-Prune Is Associated With Tumor Progression and Poor Survival in Gastric Cancer. *Cancer Sci* (2007) 98(8):1198–205. doi: 10.1111/ j.1349-7006.2007.00515.x
- Noguchi T, Oue N, Wada S, Sentani K, Sakamoto N, Kikuchi A, et al. H-Prune Is an Independent Prognostic Marker for Survival in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol (2009) 16(5):1390–6. doi: 10.1245/s10434-007-9585-3
- Nambu J, Kobayashi T, Hashimoto M, Tashiro H, Sugino K, Shimamoto F, et al. H-Prune Affects Anaplastic Thyroid Cancer Invasion and Metastasis. Oncol Rep (2016) 35(6):3445–52. doi: 10.3892/or.2016.4759
- Hashimoto M, Kobayashi T, Tashiro H, Arihiro K, Kikuchi A, Ohdan H. H-Prune Is Associated With Poor Prognosis and Epithelial-Mesenchymal Transition in Patients With Colorectal Liver Metastases. *Int J Cancer* (2016) 139(4):812–23. doi: 10.1002/ijc.30118
- Ferrucci V, Asadzadeh F, Collina F, Siciliano R, Boccia A, Marrone L, et al. Prune-1 Drives Polarization of Tumor-Associated Macrophages (TAMs) Within the Lung Metastatic Niche in Triple-Negative Breast Cancer. *iScience* (2021) 24(1):101938. doi: 10.1016/j.isci.2020.101938
- Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, et al. Intertumoral Heterogeneity Within Medulloblastoma Subgroups. *Cancer Cell* (2017) 31(6):737–754 e6. doi: 10.1016/j.ccell.2017.05.005
- Silva GO, He X, Parker JS, Gatza ML, Carey LA, Hou JP, et al. Cross-Species DNA Copy Number Analyses Identifies Multiple 1q21-Q23 Subtype-Specific Driver Genes for Breast Cancer. *Breast Cancer Res Treat* (2015) 152(2):347– 56. doi: 10.1007/s10549-015-3476-2
- Goh JY, Feng M, Wang W, Oguz G, Yatim S, Lee PL, et al. Chromosome 1q21.3 Amplification Is a Trackable Biomarker and Actionable Target for Breast Cancer Recurrence. *Nat Med* (2017) 23(11):1319–30. doi: 10.1038/ nm.4405
- Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, et al. Medulloblastoma Comprises Four Distinct Molecular Variants. J Clin Oncol (2011) 29(11):1408–14. doi: 10.1200/JCO.2009.27.4324
- 64. Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, et al. Molecular Subgroups of Medulloblastoma: An International Meta-

Analysis of Transcriptome, Genetic Aberrations, and Clinical Data of WNT, SHH, Group 3, and Group 4 Medulloblastomas. *Acta Neuropathol* (2012) 123 (4):473–84. doi: 10.1007/s00401-012-0958-8

- 65. Sharma T, Schwalbe EC, Williamson D, Sill M, Hovestadt V, Mynarek M, et al. Second-Generation Molecular Subgrouping of Medulloblastoma: An International Meta-Analysis of Group 3 and Group 4 Subtypes. Acta Neuropathol (2019) 138(2):309–26. doi: 10.1007/s00401-019-02020-0
- Hovestadt V, Smith KS, Bihannic L, Filbin MG, Shaw ML, Baumgartner A, et al. Resolving Medulloblastoma Cellular Architecture by Single-Cell Genomics. *Nature* (2019) 572(7767):74–9. doi: 10.1038/s41586-019-1434-6
- Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, et al. Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. J Clin Oncol (2015) 33 (24):2646–54. doi: 10.1200/JCO.2014.60.1591
- 68. Goschzik T, Schwalbe EC, Hicks D, Smith A, Zur Muehlen A, Figarella-Branger D, et al. Prognostic Effect of Whole Chromosomal Aberration Signatures in Standard-Risk, Non-WNT/Non-SHH Medulloblastoma: A Retrospective, Molecular Analysis of the HIT-SIOP PNET 4 Trial. *Lancet* Oncol (2018) 19(12):1602–16. doi: 10.1016/S1470-2045(18)30532-1
- Gajjar AJ, Robinson GW. Medulloblastoma-Translating Discoveries From the Bench to the Bedside. Nat Rev Clin Oncol (2014) 11(12):714–22. doi: 10.1038/ nrclinonc.2014.181
- Hill RM, Kuijper S, Lindsey JC, Petrie K, Schwalbe EC, Barker K, et al. Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease. *Cancer Cell* (2015) 27(1):72–84. doi: 10.1016/j.ccell.2014.11.002
- Asadzadeh F, Ferrucci V, DE Antonellis P, Zollo M. *In Vivo* Bioluminescence Imaging Using Orthotopic Xenografts Towards Patient's Derived-Xenograft Medulloblastoma Models. *Q J Nucl Med Mol Imaging* (2017) 61(1):95–101. doi: 10.23736/S1824-4785.16.02959-9
- Liao H, Liao M, Xu L, Yan X, Ren B, Zhu Z, et al. Integrative Analysis of H-Prune as a Potential Therapeutic Target for Hepatocellular Carcinoma. *EBioMedicine* (2019) 41:310–9. doi: 10.1016/j.ebiom.2019.01.001
- Carotenuto M, de Antonellis P, Chiarolla CM, Attanasio C, Damiani V, Boffa I, et al. A Therapeutic Approach to Treat Prostate Cancer by Targeting Nm23-H1/h-Prune Interaction. *Naunyn Schmiedebergs Arch Pharmacol* (2015) 388 (2):257–69. doi: 10.1007/s00210-014-1035-8
- Lee JJ, Kim HS, Lee JS, Park J, Shin SC, Song S, et al. Small Molecule Activator of Nm23/NDPK as an Inhibitor of Metastasis. *Sci Rep* (2018) 8(1):10909. doi: 10.1038/s41598-018-29101-6
- Han KY, Hong BS, Yoon YJ, Yoon CM, Kim YK, Kwon YG, et al. Polyphosphate Blocks Tumour Metastasis via Anti-Angiogenic Activity. Biochem J (2007) 406(1):49–55. doi: 10.1042/BJ20061542
- 76. Tsutsumi K, Matsuya Y, Sugahara T, Tamura M, Sawada S, Fukura S, et al. Inorganic Polyphosphate Enhances Radio-Sensitivity in a Human Non-Small Cell Lung Cancer Cell Line, H1299. *Tumour Biol* (2017) 39 (6):1010428317705033. doi: 10.1177/1010428317705033
- Budday S, Steinmann P, Kuhl E. Physical Biology of Human Brain Development. Front Cell Neurosci (2015) 9:257. doi: 10.3389/fncel.2015.00257

- 78. Lang PY, Gershon TR. A New Way to Treat Brain Tumors: Targeting Proteins Coded by Microcephaly Genes?: Brain Tumors and Microcephaly Arise From Opposing Derangements Regulating Progenitor Growth. Drivers of Microcephaly Could be Attractive Brain Tumor Targets . *Bioessays* (2018) 40(5):e1700243. doi: 10.1002/bies.201700243
- Vladoiu MC, El-Hamamy I, Donovan LK, Farooq H, Holgado BL, Sundaravadanam Y, et al. Childhood Cerebellar Tumours Mirror Conserved Fetal Transcriptional Programs. *Nature* (2019) 572(7767):67–73. doi: 10.1038/s41586-019-1158-7
- Dirks PB. Brain Tumor Stem Cells: Bringing Order to the Chaos of Brain Cancer. J Clin Oncol (2008) 26(17):2916–24. doi: 10.1200/JCO.2008.17.6792
- Shain AH, Pollack JR. The Spectrum of SWI/SNF Mutations, Ubiquitous in Human Cancers. *PloS One* (2013) 8(1):e55119. doi: 10.1371/journal.pone.0055119
- Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, et al. Convergent Structural Alterations Define SWItch/Sucrose NonFermentable (SWI/SNF) Chromatin Remodeler as a Central Tumor Suppressive Complex in Pancreatic Cancer. *Proc Natl Acad Sci USA* (2012) 109(5):E252–9. doi: 10.1073/pnas.1114817109
- Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting the Genomic Complexity Underlying Medulloblastoma. *Nature* (2012) 488 (7409):100–5. doi: 10.1038/nature11284
- Roymans D, Vissenberg K, De Jonghe C, Willems R, Engler G, Kimura N, et al. Identification of the Tumor Metastasis Suppressor Nm23-H1/Nm23-R1 as a Constituent of the Centrosome. *Exp Cell Res* (2001) 262(2):145–53. doi: 10.1006/excr.2000.5087
- Lombardi D, Sacchi A, D'Agostino G, Tibursi G. The Association of the Nm23-M1 Protein and Beta-Tubulin Correlates With Cell Differentiation. *Exp Cell Res* (1995) 217(2):267–71. doi: 10.1006/excr.1995.1086
- 86. Pinon VP, Millot G, Munier A, Vassy J, Linares-Cruz G, Capeau J, et al. Cytoskeletal Association of the A and B Nucleoside Diphosphate Kinases of Interphasic But Not Mitotic Human Carcinoma Cell Lines: Specific Nuclear Localization of the B Subunit. *Exp Cell Res* (1999) 246(2):355–67. doi: 10.1006/ excr.1998.4318

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

**Publisher's Note:** All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Bibbò, Sorice, Ferrucci and Zollo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.