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Abstract 

Background:  Approximately 30% of rheumatoid arthritis (RA) patients treated with Tripterysium glycosides (TG) 
tablets fail to achieve clinical improvement, implying the essentiality of predictive biomarkers and tools. Herein, we 
aimed to identify possible biomarkers predictive of therapeutic effects of TG tablets in RA.

Methods:  Gene expression profile in peripheral blood mononuclear cells obtained from a discovery cohort treated 
with TG tablets was detected by Affymetrix EG1.0 arrays. Then, a list of candidate gene biomarkers of response to 
TG tablets were identified by integrating differential expression data analysis and gene signal transduction network 
analysis. After that, a partial-least-squares (PLS) model based on the expression levels of the candidate gene biomark-
ers in RA patients was constructed and evaluated using a validation cohort.

Results:  Six candidate gene biomarkers (MX1, OASL, SPINK1, CRK, GRAPL and RNF2) were identified to be predictors of 
TG therapy. Following the construction of a PLS-based model using their expression levels in peripheral blood, both 
the 5-fold cross-validation and independent dataset validations showed the high predictive efficiency of this model, 
and demonstrated a distinguished improvement of the PLS-model based on six candidate gene biomarkers’ expres-
sion in combination over the commonly used clinical and inflammatory parameters, as well as the gene biomarkers 
alone, in predicting RA patients’ response to TG tablets.

Conclusions:  This hypothesis-generating study identified MX1, OASL, SPINK1, CRK, GRAPL and RNF2 as novel targets 
for RA therapeutic intervention, and the PLS model based on the expression levels of these candidate biomarkers may 
have a potential prognostic value in RA patients treated with TG tablets.
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Background
Tripterygium wilfordii Hook F (TwHF), a traditional Chi-
nese medicine, has been used in the treatment of rheu-
matoid arthritis (RA) for hundreds of years in China 
[1]. TwHF has been considered as a potential source for 
developing new drugs to treat RA, due to its considerable 
improvement in the outlook for patients suffering from 
RA [2]. Tripterysium glycosides (TG) tablets, as the main 
effective ingredients of TwHF, are the most commonly 
used TwHF-based therapy and display better therapeu-
tic effects than several first-line disease-modifying anti-
rheumatic drugs according to recent clinical observations 
[3]. However, approximately 30% of RA patients treated 
with TG tablets fail to achieve clinical improvement, 
depicting significant inter-individual variations caused 
by epigenetic, physiologic, environmental and especially 
genetic factors in combination or alone [4, 5]. The het-
erogeneity of RA patients in pathological manifestations, 
disease progression and treatment response implies the 
existence of several disease subtypes at the molecular 
level [6]. Researchers are trying to figure out various bio-
markers of therapeutic response in rheumatic diseases 
for further benefiting individualized treatment and cura-
tive outcomes, including microRNAs, genes, proteins and 
etc. [7]. However, existent biomarkers that reflect bone 
and cartilage turnover are insufficient surrogates for pre-
dicting therapeutic outcomes of certain drugs [8]. Thus, 
it is of great clinical significance to identify biomarkers 
and to develop tools, which are predictive of RA patients’ 
response to TG tablets.

In recent years, high-capacity genomics and transcrip-
tomics technologies, such as gene microarrays that detect 
expression profiles of numerous genes simultaneously 
and comprehensively, play important roles in identifying 
biomarkers for disease behavior and therapeutic response 
prediction [9, 10]. Although gene expression microarray 
is characterized with high sensitivity and high-through-
put, it is insufficient to comprehensively clarify the entire 
biological regulatory processes in RA. Moreover, varia-
tions in sample size and quality may often result in the 
inconsistencies among numerous differentially expressed 
genes identified by microarrays [11]. To address these 
problems, we herein designed a hypothesis-generating 
study combining the high-throughput merits of gene 
expression profiling and the comprehensive illustration 
of drug-disease interactions by molecular network analy-
sis, to assess the differentially expressed genes between 
responsive and non-responsive RA patients to TG tablets 
and to identify the candidate gene biomarkers accord-
ing to both the differential expression patterns and the 
network topological features, as well as to construct a 
partial-least-squares (PLS) model based on the expres-
sion levels of the candidate gene biomarkers in peripheral 

blood for stratification and prediction of RA patients’ 
response to TG tablets (Fig. 1).

Methods
Ethics statement
This study was performed according to the guidelines of 
the Declaration of Helsinki for humans and was approved 
by the Research Ethics Committee of Guang’anmen 
Hospital. The informed consent was obtained from all 
patients.

Patients
Two RA patient cohorts, a discovery cohort (n = 12, 6 
responders and 6 non-responders, collected from Janu-
ary 2015 to December 2015 in Division of Rheumatology, 
Guang’anmen Hospital) and a validation cohort (n = 31, 
15 responders and 16 non-responders, collected from 
January 2016 to June 2017 in Division of Rheumatology, 
Guang’anmen Hospital), were enrolled into this study 
apart. The discovery cohort was used to detect the gene 
expression profile in peripheral blood mononuclear cells 
(PBMCs) and to train PLS model predictive of response 
to TG tablets. The validation cohort was used to vali-
date the expression levels of candidate gene biomarkers 
of response to TG tablets by qPCR assay and to evalu-
ate the predictive efficiency of PLS-based model in an 
independent dataset test. Inclusion Criteria of the two 
cohorts included (1) a diagnosis of active RA based on 
the American College of Rheumatology (ACR) 1987 cri-
teria for RA or the 2010 ACR/European League against 
Rheumatism (EULAR) Criteria [12]; (2) a symptom 
duration of less than 1 year; (3) no use of DMARDs pre-
viously; (4) Availability of clinical and laboratory param-
eters at initiation of TG tablets (purchased from Zhejiang 
Deengde Co., Ltd., Z33020422, Xinchang, Zhejiang) and 
after 12 weeks, as well as availability of peripheral blood 
samples. Patients received oral TG tablets (20mg.tid.po) 
for 12 weeks. Responders to TG tablets were defined as 
patients who were treated with TG tablets for 12 weeks 
achieved ACR 20, and non-responders were defined as 
patients who were treated with TG tablets for 12 weeks 
but not achieved ACR 20 [13]. There are no significant 
differences in clinical and laboratory parameters between 
the cohorts (Table 1 and Additional file 1).

Gene expression profiling
Peripheral blood samples (1.5  mL) were collected from 
RA patients before the treatment of TG tablets in EDTA 
plasma tubes. Peripheral blood mononuclear cells 
(PBMCs) were isolated by standard Ficoll density-gradi-
ent centrifugation, and washed twice in sterile phosphate 
buffered saline (PBS). Total cellular RNA was isolated 
from PBMC using QIAGEN RNeasy Mini Kit according 
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to the manufacturer’s protocol (Cat.No.217004, Qia-
gen, Hilden, Germany). Residual DNA contamination 
was removed using the RNase-Free DNase Set (Cat.
No.79254, Qiagen, Hilden, Germany). The concentration 
of total RNA was measured using a NanoDrop spectro-
photometer (Nanodrop technologies, Montchanin, DE, 
USA). Total RNA was eluted in 15 μl of RNase-free water 
and stored at − 80 °C.

mRNA expression profile in PBMCs obtained from 
responders and non-responders of TG tablets were 
respectively detected using Affymetrix EG1.0 array car-
ried out by Shanghai GMINIX Biotechnology Corpora-
tion, Shanghai, China. The mRNA expression microarray 

data of GSE106893 are provided in National Center of 
Biotechnology Information Gene Expression Omni-
bus (https​://www.ncbi.nlm.nih.gov/geo/query​/acc.
cgi?acc=GSE10​6893).

Differentially expressed mRNAs screening
mRNAs with significantly differential expression between 
responder and non-responder groups were identified 
using the criteria of |log2 fold change (FC)| > 0.5 and P 
value < 0.05 by the RVM t-test. The heat map package in 
R (version 1.0.2, R Core Team, Vienna, Austria) was used 
for the hierarchical clustering analysis.

Fig. 1  A schematic diagram of the systematic strategies to identify gene biomarkers and to construct PLS-based model that predictive of response 
to TG tablets

Table 1  Clinical and laboratory parameters of RA patients enrolled in the current study

Parameters Discovery cohort (n = 12) Validation 
cohort 
(n = 31)

Age (years, mean ± SD) 55.9 ± 10.4 57.9 ± 12.0

Gender (male/female) 2/10 8/23

Disease duration (months, mean ± SD) 36.5 ± 30.6 41.5 ± 21.5

Erythrocyte sedimentation rate (ESR, mm/H, mean ± SD) 58.4 ± 21.3 40.5 ± 27.3

C-reactive protein (CRP, mg/dL, mean ± SD) 25.6 ± 22.9 21.5 ± 36.7

Positive rheumatoid factor (n, %) 10, 83.3 24, 77.4

Positive anti-cyclic citrullinated peptide (CCP) antibodies (n, %) 9, 75 24, 77.4

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106893
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106893
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Gene signal transduction network analysis
Gene signal transduction network associated with the 
response to TG tablets was constructed using links 
among differentially expressed genes between responder 
and non-responder groups, according to the interac-
tion data obtained from the public database STRING 
(Search Tool for Known and Predicted Protein–Protein 
Interactions, version 10.0, http://strin​g-db.org/) [14]. 
Highly reliable gene–gene interaction data with a com-
bined evidence score higher than the median value of 
all scores were selected. In the network, nodes referred 
to differentially expressed genes between responder and 
non-responder groups, and edges referred to interactions 
between the nodes.

To identify the candidate gene biomarkers of the 
response to TG tablets, we evaluated the topological 
importance of each nodes by calculating the follow-
ing four topological features: (1) node degree: the sum 
of connection strengths of node i with the other genes, 
which measures how correlated a gene is with all other 
genes in a network; (2) node betweenness: the impor-
tance of a node in a network relative to other nodes; (3) 
node closeness: measuring how long it will take to spread 
information from node i to all other nodes sequentially. 
The larger a node degree/betweenness/closeness is, the 
more important the node is in the network.

Pathway enrichment analysis
To understand functions of candidate biomarkers 
screened by differential expression data analysis and 
network calculation, a pathway enrichment analysis was 
performed using the Database Visualization and Inte-
grated Discovery software (DAVID, http://david​.abcc.
ncifc​rf.gov/home.jsp, version 6.7) based on the pathway 
data obtained from the Kyoto Encyclopedia of Genes and 
Genomes database (KEGG, http://www.genom​e.jp/kegg/, 
updated on November 18, 2016) [15, 16]. Only functional 
annotations having the enrichment P values corrected 
by both algorithms Bonferroni and Benjamini (P < 0.05) 
were selected for further analysis.

Construction of gene-expression-signature-based PLS-
model and evaluation of model performance by 5-fold 
cross-validation.

The PLS algorithm was used to construct a model for 
predicting the response to TG tablets of RA patients 
based on the expression levels of candidate gene bio-
markers in peripheral blood. As our previous description 
[17], the objective criterion for constructing compo-
nents in PLS is to sequentially maximize the covariance 
between the response variable and a linear combina-
tion of the predictors. Let x be n×p matrix of n cases 
and p candidate gene biomarkers. Also, let y denote the 

n×1 vector of response values, such as the indicator of 
responders or non-responders. The components are con-
structed to maximize the objective criterion based on 
the sample covariance between y and xc . Thus, we find 
the weight vector w satisfying the following objective 
criterion.

Next, a training dataset was used to calculate weight 
coefficients of different gene biomarkers in PLS model. 
Six candidate gene biomarkers in PLS model are denoted 
as:

The score of the PLS model for each sample is defined 
as:

where LPi refers to the expression level of the candidate 
gene biomarker pi in each RA patient.

Then, the training dataset was used to input the PLS 
model so as to calculate the threshold value T  of score 
by selecting the cutoff value on which the area under 
receiver operating characteristic (ROC) curve ( AUC ) 
was the biggest. Finally, the PLS classifier decides: if 
Score > T  , the sample can be predicted as the responder 
of TG tablets.

For 5-fold cross-validation, the expression levels of six 
candidate gene biomarkers in the discovery cohort was 
divided into two parts: training dataset and testing data-
set. Due to the small sample size of the discovery cohort, 
the 5-fold cross-validation (five times) was performed. 
The average Accuracy,Sensitivity and Specificity , as well 
as the average area-under-curve ( AUC ) from receiver-
operating-characteristic (ROC) curves were calculated as 
the following formula:

where TP , TN  , FP , FN  respectively refer to the number of 
true positive, true negative, false positive and false neg-
ative result components in a test, while N  refers to the 
total number of predicted samples.

(1)w = argmaxcov2(xw , y)

(2)p={pi}, i= 1, 2, 3, 4, 5, 6

(3)Score =
∑

LPi ×WPi , i = 1, 2, 3, 4, 5, 6

(4)Sensitivity=
TP

TP+ FN

(5)Specificity=
TN

TN + FP

(6)Accuracy=

∑
TP + TN

N

http://string-db.org/
http://david.abcc.ncifcrf.gov/home.jsp
http://david.abcc.ncifcrf.gov/home.jsp
http://www.genome.jp/kegg/
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Quantitative PCR analysis
To evaluate the predictive performance of our gene-
expression-signature-based PLS-model using inde-
pendent dataset test, quantitative PCR analysis for six 
candidate genes in the model was performed using the 
peripheral blood samples obtained from the valida-
tion cohort according to our previous studies [18, 19]. 
GAPDH and RPS18 were used as two internal controls 
for candidate gene expression normalization and quan-
tification. Quantitative PCR analysis and data collec-
tion were performed on the ABI 7900HT qPCR system 
using the primer pairs listed in Additional file 2. Relative 
quantification of gene expression was evaluated using 
the comparative cycle threshold (CT) method. The raw 
quantifications were respectively normalized to GAPDH 
and RPS18 values for each sample and fold changes were 
shown as mean ± SD in three independent experiments 
with each triplicate.

Evaluation of model performance by independent dataset 
test
The differential expression patterns of candidate gene 
biomarkers and the performance of our gene-expres-
sion-signature-based PLS-model that were predictive of 
response to TG tablets were both validated by the inde-
pendent dataset test using the validation cohort. The 
accuracy and area under ROC curves (AUC) were calcu-
lated as formula 4–6.

Statistical analyses
Statistical analyses were performed using SPSS software 
(Version 13.0, Statistical Program for Social Sciences, Inc: 
Chicago, IL, USA). Expression levels of candidate gene 
biomarkers between the responder and non-responder 
groups were compared by one-way analysis of variance. 
P-values < 0.05 were considered significant.

Results
Differentially expressed genes associated with response 
to TG tablets
The differentially expressed genes associated with the 
response to TG tablets were evaluated by comparing the 
gene expression profiles between responder and non-
responder groups. A total of 212 genes (102 upregulated 
and 110 downregulated) showed significantly differential 
expression levels between the two groups (all fold change 
> 1.2 and P < 0.05). The differentially expressed genes 
were listed in Additional file 3.

In addition, the heat-maps (Fig.  2a) and the unsuper-
vised hierarchical clustering of the above differentially 
expressed gene profiles revealed distinctive patterns for 
responders and non-responders to TG tablets. Accord-
ing to the pathway enrichment analysis, the differentially 

expressed genes associated with response to TG tablets 
were significantly enriched in the biological processes 
and pathways of inflammatory response and immune 
response, including acute inflammatory response, leuko-
cyte activation involved in immune response, cell activa-
tion involved in immune response, chemokine signaling 
pathway, leukocyte transendothelial migration, positive 
regulation of leukocyte migration, positive regulation 
of leukocyte chemotaxis, leukocyte activation involved 
in immune response, regulation of leukocyte migration, 
Fc epsilon RI signaling pathway and cytokine–cytokine 
receptor interaction (all P < 0.05, Fig. 2b, c). Growing evi-
dence show that the pathogenesis of RA may be related to 
the defects in immune-modulation and a host of inflam-
matory mechanisms [20–22], thus, the differentially 
expressed genes, such as CRK, GHR, RNF2, RNF8, VAV2, 
which are involved into these biological processes might 
influence the therapeutic effects of TG tablets in con-
trolling inflammation response and regulating immunity 
during RA progression. Moreover, several differentially 
expressed genes, such as CRK, VAV2, IGF1, were signifi-
cantly associated with focal adhesion (Fig. 2c), which has 
been proved to promote the proliferation, migration and 
invasion of synovial cells, and contributes to the occur-
rence and development of RA pathological changes [23].

Identification of candidate gene biomarkers that predict 
response to TG tablets based on the discovery cohort
To identify the candidate gene biomarkers that predict 
response to TG tablets, the gene–gene interaction data 
of 212 differentially expressed genes were obtained from 
STRING database and the gene signal transduction net-
work was constructed as shown in Fig. 3a. Following the 
calculation of degree, closeness and betweenness central-
ity values, 16 genes with the three feature values higher 
than the corresponding median values simultaneously 
were identified as the major genes with great topological 
importance in the gene–gene interaction network associ-
ated with response to TG tablets (Table  2). In addition, 
the 16 major genes’ sub-module (Fig. 3b) was constructed 
using the direct interactions among them, implying that 
these major genes had the closed links with each other in 
the network. According to differential expression levels of 
the 16 major genes in the comparison between responder 
and non-responder groups, MX1, OASL, SPINK1, CRK, 
GRAPL and RNF2 showed more significant dysregulation 
[ Fold − change(responder/non−responder) > 1.5 and P < 0.05] 
than other genes (Table  2). Moreover, according to the 
database of GeneCards (http://www.genec​ards.org/, Ver-
sion 4.5.1), the six candidate gene biomarkers were func-
tionally involved into several signal pathways associated 
with major pathological events during RA progression, 
such as inflammatory cell infiltration, inflammation, 

http://www.genecards.org/
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synovial pannus formation, angiogenesis, joint destruc-
tion and bone resorption, as well as drug metabolism 
(Table  3 and Fig.  3b). Considering their significantly 
differential expression patterns, great network topo-
logical importance and functional relevance to RA, we 
selected MX1, OASL, SPINK1, CRK, GRAPL and RNF2 
as the candidate gene biomarkers and their expression 
levels in peripheral blood would be used to construct 

the PLS-based model for predicting the response to TG 
tablets.

Validation of candidate gene biomarkers that predict 
response to TG tablets based on the validation cohort
Following the identification of the six most recognized 
genes (MX1, OASL, SPINK1, CRK, GRAPL and RNF2) 
as candidate biomarkers of response to TG tablets, we 

Fig. 2  Differentially expressed genes associated with response to TG tablets. a Heat map showing hierarchical clustering of mRNAs, whose 
expression changes were more than 1.5-fold in the comparison between the responder and non-responder groups. In clustering analysis, up- and 
down-regulated genes are colored in red and green, respectively. b, c Top 30 of GO items and KEGG pathways enriched by the differentially 
expressed genes in the comparison between the responder and non-responder groups. GO items and KEGG pathways with red marks were 
significantly associated with RA development and progression
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tried to validate the microarray data using the validation 
cohort of 31 patients by quantitative PCR analysis. Con-
sistently, the expression levels of MX1, OASL and SPINK1 
in peripheral blood obtained from the responders were 

significantly lower than the non-responders based on 
both two internal controls RPS18 and GAPDH (all 
P < 0.001, Fig. 4a–c). In addition, the expression levels of 
CRK, GRAPL and RNF2 were markedly elevated in the 

Fig. 3  Gene signal transduction network associated with patients’ response to TG tablets. a Gene signal transduction network based on the 
interaction data of 212 differentially expressed genes obtained from STRING database. Red and blue circle nodes respectively refer to the 
upregulated and downregulated mRNAs in the responder group compared to the non-responder group. The node sizes represented the degree 
values according to the ascending order. b The 16 major genes’ sub-module constructed using the direct interactions among them. Red and blue 
circle nodes respectively refer to the upregulated and downregulated mRNAs in the responder group compared to the non-responder group. The 
node sizes represented the fold-change of gene expression levels in responder and non-responder groups according to the ascending order

Table 2  Network topological features and differential expression patterns of 16 major genes associated with RA patients’ 
response to TG tablets

The italic marks refer to the candidate gene biomarkers with high topological importance and high fold-change (> 1.5) of expression levels in responder and non-
responder groups

Gene Network topological features Differential expression patterns

Degree Closeness Betweenness P_value Fold_change Style

ACTL6B 2 2.69 1.37 0.04 0.82 Down

CRK 5 2.71 7.99 0.02 1.52 Up

GHR 3 2.69 1.37 0.03 1.25 Up

GRAPL 3 2.73 12.48 0.02 1.59 Up

IGF1 4 2.69 1.43 0.02 0.81 Down

MX1 5 2.72 11.21 0.02 0.55 Down

OASL 5 2.70 5.02 0.01 0.62 Down

RAB28 2 2.69 2.64 0.02 1.22 Up

RAB33B 2 2.66 1.37 0.02 1.24 Up

RNF2 3 2.68 2.64 0.02 1.65 Up

RNF8 2 2.66 1.37 0.04 0.80 Down

RPL23 3 2.67 1.37 0.04 0.79 Down

SPINK1 3 2.71 6.66 0.02 0.63 Down

UST 3 2.68 2.64 0.04 1.23 Up

VAV2 2 2.68 1.37 0.03 1.21 Up

ZNF384 2 2.66 1.37 0.01 1.23 Up
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responders compared with the non-responders, which 
were also in line with the microarray data (all P < 0.001, 
Fig. 4d, e).

The PLS‑based model efficiently predicts response to TG 
tablets
The PLS-based model using expression levels of the six 
gene biomarkers (MX1, OASL, SPINK1, CRK, GRAPL 
and RNF2) was constructed. The discovery cohort was 
used to determine the weight value of each gene bio-
marker and the threshold of the model. As a result, the 
weight values of MX1, OASL, SPINK1, CRK, GRAPL and 
RNF2 were respectively − 0.4694, − 0.2494, − 0.5592, 
0.3429, 0.4054 and 0.3504, and the threshold was − 0.03.

In addition, the 5-fold cross-validation confirmed that 
the accuracy values of the model in the five tests were 
respectively 83.33, 100.00, 83.33, 83.33 and 100.00%, and 
the AUC values were respectively 1.000, 0.889, 1.000, 
1.0000, 0.875. In the independent test validation, the 
expression levels of MX1, OASL, SPINK1, CRK, GRAPL 
and RNF2 in 31 RA peripheral blood samples (normal-
ized by GAPDH and RPS18, respectively) were used to 
validate the performance of our model. As a result, the 
accuracy and AUC values of the PLS-based model based 
on the expression levels of the six gene biomarkers using 
GAPDH as an internal control were respectively 90.32% 
and 0.950, which was consistent with the PLS-based 

model based on the expression levels of the six gene bio-
markers using RPS18 as an internal control (the accu-
racy was 87.10% and the AUC value was 0.934). Both the 
5-fold cross-validation and the independent test valida-
tion indicated the great reliability and efficacy to screen 
responders to TG tablets from RA patients against differ-
ent test datasets.

Our PLS-based model was constructed by combining 
the expression levels of the six candidate gene biomark-
ers due to their topological importance and relevance 
in the gene signal transduction network associated with 
the response to TG tablets. To verify the rationality of 
this design, we firstly compared the performance of the 
PLS-based model with the six candidate gene biomarkers 
alone based on the validation cohort. As shown in Fig. 5, 
neither the expression level of the single gene biomarker 
nor their average level showed better power in predicting 
response to TG tablets than the PLS-based model which 
was constructed based on the expression levels of all six 
candidate gene biomarkers using GAPDH and RPS18 as 
internal controls.

To determine the advantage of our PLS-based model 
in predicting response to TG tablets over various com-
monly used clinical and inflammatory parameters of 
RA, we compared its prediction efficacy with patients’ 
age, gender, erythrocyte sedimentation rate (ESR), as 
well as levels of C-reactive protein (CRP), rheumatoid 

Table 3  Candidate gene biomarkers and the involved RA-related pathways

Gene biomarkers Pathways Relevance to RA

MX1 Cytokine signaling in immune system Inflammatory cell infiltration
Inflammation
Synovial pannus formation

Innate immune system

Peginterferon alpha-2a/peginterferon alpha-2b pathway (Hepatocyte), pharma-
codynamics

Drug metabolism

OASL Cytokine signaling in Immune system Inflammatory cell infiltration
Inflammation
Synovial pannus formation

Innate immune system

Immune response IFN alpha/beta signaling pathway

Interferon signaling

RNF2 Cellular senescence Drug metabolism

SUMOylation of DNA damage response and repair proteins

Metabolism of proteins

Chromatin regulation/acetylation

DNA damage

SPINK1 Regulation of peptidase activity Inflammatory cell infiltration
Inflammation
Synovial pannus formation

Nitric oxide mediated signal transduction

Regulation of peptidyl-tyrosine phosphorylation

CRK RET signaling Angiogenesis

MET promotes cell motility Joint destruction

Focal adhesion Bone resorption

Integrin alphaIIb beta3 signaling Angiogenesis

GRAPL RET signaling Angiogenesis
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Fig. 4  Expression levels of the six candidate gene biomarkers (a for MX1; b for OASL; c for SPINK1; d for CRK; e for GRAPL; f for RNF2) detected by 
microarray and quantitative PCR analyses. Each dot displayed the expression levels of the six candidate gene biomarkers in each individual patients 
(n = 6 for each group in the discovery cohort; n = 16 and 15 for non-responder and responder groups in the validation cohort, respectively)
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factor (RF) and anti-cyclic citrullinated peptide (CCP) 
antibodies. ROC comparison analysis demonstrated the 
marked better performance of the PLS model based on 
the expression levels of the six candidate gene biomark-
ers than the clinical and inflammatory parameters (AUC 
value comparisons, all P < 0.05, Fig. 6).

Discussion
Since the clinical observations have indicated that not 
all RA patients benefit to the same extent from the treat-
ment of TG tablets, the identification of drug response 
biomarkers and the development of predictive tools 
based on the biomarkers may be of great significance to 
determine patients with a low probability of response 
to TG tablets, allowing clinicians to choose alternative 
drugs at an earlier stage of the disease without any delay 
of efficacious treatment. In the current study, we inte-
grated the drug response-related gene expression profile 
and gene–gene interactions to identify the six candidate 
gene biomarkers that are predictive of response to TG 
tablets. Then, we applied the PLS algorithm to construct 
the prediction model for the treatment outcome based on 

the expression levels of these candidate gene biomarkers. 
Both 5-fold cross-validation and the independent dataset 
validations showed the high predictive accuracy (87.50–
100.00%) and area under ROC curve (0.875–1.000) of 
this model. More importantly, our data demonstrated a 
distinguished improvement of the PLS-model based on 
the expression levels of the six candidate gene biomark-
ers in combination over the commonly used clinical and 
inflammatory parameters, as well as the gene biomarkers 
alone, in predicting RA patients’ response to TG tablets. 
To the best of our knowledge, this is the first study that 
identified the gene biomarkers of RA patients’ response 
to TG tablets and also evaluated their utility in the pre-
diction model of the clinical treatment outcome.

To facilitate the implementation of personalized medi-
cine and the improvement of therapeutic outcomes of 
patients with RA, recent studies have been trying to iden-
tify various predictors of response to therapy, including 
single nucleotide polymorphisms, genes, proteins and 
microRNAs, based on genomics, transcriptomics, pro-
teomics and miRNomics, respectively [2, 24–26]. How-
ever, the studies only based on the “omics” data analysis 

Fig. 5  ROC comparison of the six candidate gene biomarkers alone, their average expression level with the PLS-based model in predicting 
response to TG tablets. a ROC curves and AUC comparison results of MX1, OASL, SPINK1, CRK, GRAPL, RNF2, and the average of their expression 
levels using GAPDH as an internal control, as well as the PLS-based model in predicting response to TG tablets. b ROC curves and AUC comparison 
results of MX1, OASL, SPINK1, CRK, GRAPL, RNF2, and the average of their expression levels using RPS18 as an internal control, as well as the 
PLS-based model in predicting response to TG tablets
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may fail to fully explain all of the alterations occurring 
during the RA progression. The need for a deeper under-
standing of how molecular regulatory networks func-
tion in response to therapy may lead to increased efforts 
to model multiple “omics” dimensions simultaneously. 

In the context, we here performed a systematic integra-
tion of the differential expression analysis on microarray 
data and topological features of gene signal transduction 
network, which offers us two main advantages: first, it 
enables us to sufficiently utilize the gene co-expression 

Fig. 6  ROC comparison of the six commonly used clinical and inflammatory parameters of RA with the PLS-based model in predicting response 
to TG tablets. a ROC curves of patients’ age, gender, ESR, CRP, RF and anti-CCP, as well as their comparisons with the PLS model based on the 
expression levels of the six candidate genes using GAPDH and RPS18 as internal controls. b Statistical analysis of AUC comparison between the six 
commonly used clinical and inflammatory parameters of RA, and the PLS model in predicting response to TG tablets
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information provided by the microarray data, which is 
believed to be more informative than expression changes 
of individual genes for target gene identification. Sec-
ond, network analysis is a powerful tool to understand 
disease occurrence and progression, as well as therapies 
and drug responses. By integrating the topological fea-
tures of biological network, some information lost in 
the differential expression analysis may be added to the 
identification of the candidate gene biomarkers predic-
tive of response to TG tablets. Functionally, as shown in 
Table 3, these candidate gene biomarkers were associated 
with RA pathogenesis and drug metabolism. Especially, 
MX1 and OASL both function as interferon (IFN-I)-
inducible genes and are predominantly involved into 
signal pathways in the immune system. Recent studies 
have indicated that the IFN-I signature in RA may dis-
play clinical relevance in relation to disease onset and 
therapeutic response [27, 28]. Sanayama et al. [29] iden-
tified MX2 (a member in the same family with MX1), 
and OASL as biomarkers for predicting the therapeutic 
response to tocilizumab in patients with RA. RNF2 (the 
RING domain-containing E3 ubiquitin-protein ligases 
RING finger protein 2) is involved in the maintenance of 
histone H2A levels and impacts transcriptional activity 
[30]. RING E3 ligases have been revealed to be involved 
into the control of multiple cellular processes and also 
regarded as candidate therapeutic target of many human 
diseases, including RA [31]. The ubiquitin/proteasome 
protein degradation pathways were found to offer a con-
tribution to prolonging the survival of synovial fibro-
blasts in RA tissue [32]. Interestingly, Torre et  al. [33] 
found that a E3 ubiquitin ligase might positively regu-
late type I interferon responses and promote pathogen-
esis during neuroinflammation, implying several possible 
associations of RNF2 with MX1 and OASL. Crk family 
adaptors have been reported to be widely expressed and 
mediate the timely formation of signal transduction pro-
tein complexes upon a variety of extracellular stimuli. 
Hisakawa et al. [34] found that tyrosine phosphorylation 
of Crk-associated substrate lymphocyte-type (Cas-L) was 
markedly enhanced in synovial fluid T cells from patients 
with RA. Miyake-Nishijima et al. [35] demonstrated the 
overexpression of Cas-L protein and the increase of its 
tyrosine phosphorylation in RA mouse model, as well as 
observed a large number of Cas-L-positive lymphocytes 
infiltrating to the inflammatory lesions of RA patients, 
implying the important roles of Cas-L in the pathophysi-
ology of RA. The above literature reports support the 
evidence that the candidate gene biomarkers identified 
in the current study may be associated with disease pro-
gression and treatment outcome of RA.

To determine the clinical utility of the candidate gene 
biomarkers, we established a PLS-based prediction 

model for the treatment of TG tablets using the expres-
sion levels of the six candidate gene biomarkers in 
patients with RA. PLS is a method for modeling a rela-
tionship between two sets of multivariate data via a latent 
space, and of performing least squares regression in that 
space. It maps input and output variables to low-dimen-
sional spaces so that the covariance of data in the latent 
spaces is maximized. The algorithm can efficiently differ-
entiate the two datasets by extracting effective informa-
tion from a large number of features [36–38]. Notably, 
both the cross-validation and the independent clinical 
cohort validation suggested that this model may be capa-
ble to predict the therapeutic effectiveness in RA patients 
treated with TG tablets, and also confirmed the essen-
tiality of the model construction by comparing the per-
formance of commonly used clinical and inflammatory 
factors, each gene biomarker alone and the model with 
gene combination.

Conclusions
This hypothesis-generating study identified MX1, OASL, 
SPINK1, CRK, GRAPL and RNF2 as novel targets for RA 
therapeutic intervention, and the PLS model based on 
their expression levels may have the potential prognos-
tic value in RA patients who are treated with TG tablets. 
Our PLS model may not only warrant evaluation in pro-
spective studies, but also potentially benefits individual-
ized therapy of RA in a daily clinical setting. However, the 
clinical cohort using in this study is the relatively small 
for the generation and validation of the predictive model, 
which may lead to some model over-fitting. Therefore, 
this is a hypothesis-generating study and future stud-
ies based on large clinical cohorts to verify the utility of 
the six gene biomarkers and the PLS model in predict-
ing and monitoring TwHF-based treatment outcome are 
required.
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