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Pancreatic cancer (PanC) is an intractable malignancy with a high mortality.
Metabolic processes contribute to cancer progression and therapeutic responses, and
histopathological subtypes are insufficient for determining prognosis and treatment
strategies. In this study, PanC subtypes based on metabolism-related genes were
identified and further utilized to construct a prognostic model. Using a cohort of
171 patients from The Cancer Genome Atlas (TCGA) database, transcriptome data,
simple nucleotide variants (SNV), and clinical information were analyzed. We divided
patients with PanC into metabolic gene-enriched and metabolic gene-desert subtypes.
The metabolic gene-enriched subgroup is a high-risk subtype with worse outcomes
and a higher frequency of SNVs, especially in KRAS. After further characterizing the
subtypes, we constructed a risk score algorithm involving multiple genes (i.e., NEU2,
GMPS, PRIM2, PNPT1, LDHA, INPP4B, DPYD, PYGL, CA12, DHRS9, SULT1E1,
ENPP2, PDE1C, TPH1, CHST12, POLR3GL, DNMT3A, and PGS1). We verified
the reproducibility and reliability of the risk score using three validation cohorts
(i.e., independent datasets from TCGA, Gene Expression Omnibus, and Ensemble
databases). Finally, drug prediction was completed using a ridge regression model,
yielding nine candidate drugs for high-risk patients. These findings support the
classification of PanC into two metabolic subtypes and further suggest that the
metabolic gene-enriched subgroup is associated with worse outcomes. The newly
established risk model for prognosis and therapeutic responses may improve outcomes
in patients with PanC.

Keywords: pancreatic cancer, transcriptome, metabolic genes, subtype, risk model

INTRODUCTION

Pancreatic cancer (PanC) is the fourth most common cause of cancer-related deaths in the
United States and accounts for over 227,000 deaths each year globally (Raimondi et al., 2009). The
prevalence and incidence have increased in the past few years and this trend is expected to continue
(Oshi et al., 2020). The etiology of PanC is complex and multiple risk factors have been reported,
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including genetic factors, lifestyle factors, prior diseases,
infections, and occupational exposure (Vincent et al., 2011).
Universal treatment strategies fail to manage PanC owing
to its heterogeneity at the level of molecular phenotypes
and pathological and clinical properties (Makohon-Moore
and Iacobuzio-Donahue, 2016). The complicated molecular
characteristics render histopathology insufficient for clinical
decisions and prognostic analyses (Collisson et al., 2019). The
Cancer Genome Atlas (TCGA) Research Network completed
integrated genomic, transcriptomic, and proteomic profiling
of 150 pancreatic ductal adenocarcinoma specimens. They
revealed a complex molecular landscape of pancreatic ductal
adenocarcinoma and provided a roadmap for precision medicine
(Cancer Genome Atlas Research Network, 2017). Two large
researches using PanC samples recently reported gene expression
subtypes of PanC, extending the subtypes previously described
by Collisson et al. (2011), Bailey et al. (2016), Martinez-Useros
et al. (2021). Sinkala et al. employed transcriptomic, copy
number alteration and mutation profiling datasets from PanC
patients together with data on clinical outcomes to show that the
three PanC subtypes each display distinctive aberrations in cell
signaling and metabolic pathways (Sinkala et al., 2018). Sinkala
et al. also identified another two PanC subtypes and biomarker
sets that can be used to accurately and sensitively classify novel
pancreatic tumors (Sinkala et al., 2020).

Cancer metabolism plays an important role in oncogenesis
and progression, and metabolic activity could be considered a
cancer hallmark. There is compelling evidence that tumors
reprogram cellular pathways for nutrient retrieval and
consumption, allowing cancer cells to meet the demands
of bioenergy generation, biosynthesis, and redox reactions
(DeBerardinis and Chandel, 2016; Reina-Campos et al., 2017).
Orchestrating adaptations of malignant cells in the hypoxic
environment, cancer metabolism also presents heterogeneity and
plasticity, even within the same malignancy, with differences
among subpopulations, such as cell clusters with distinct rates
of division (Birsoy et al., 2014; LeBleu et al., 2014; Yoshida,
2015). The dominant genetic alterations in pancreatic ductal
adenocarcinoma are KRAS oncogene mutations (Buscail et al.,
2020). In PanC cells, KRAS promotes extracellular glucose uptake
by upregulating the glucose transporter GLUT1 and hexokinase
(Ying et al., 2012). Furthermore, the hypoxic environment
in PanC induces the stabilization of the transcription factor
hypoxia-inducible factor 1, which promotes cancer cell
adaptation to hypoxic conditions and is associated with an
unfavorable prognosis (Jin et al., 2020). Metabolic mechanisms,
involving micropinocytosis, in PanC can predict therapeutic
efficacies (Commisso et al., 2013). Accordingly, studies of
metabolic diversity and the identification of reliable prognostic
markers for PanC are urgently needed.

Machine learning approaches can provide insights into disease
diagnosis and treatment based on large amounts of data
(Rajkomar et al., 2019). In PanC, Zhu et al. used a bioinformatics
approach to identify TMPRSS4, SERPINB5, SLC6A14, SCEL,
and TNS4 as diagnostic biomarkers in PanC (Cheng et al.,
2019). Machine learning provides depth and width in PanC
investigations and may facilitate precision medicine (Herbst and

Zheng, 2019). Another interesting study identified pancreatic
ductal adenocarcinoma morphological subtypes using machine
learning, providing new ideas for PanC management (Kalimuthu
et al., 2020). In our study, we hypothesized that PanC could
be divided into subtypes with distinct metabolic involvement,
and genes related to these subtypes could be utilized to
predict outcomes. In particular, we identified and characterized
two subgroups with metabolic-enriched and metabolic-desert
characteristics based on genes from Molecular Signatures
Database v7.2. Finally, we trained and validated a risk model
based on these metabolic classifications.

MATERIALS AND METHODS

Data Acquisition and Processing
Transcriptome profiles, simple nucleotide variant (SNV), and
clinical data for 171 patients with PanC were downloaded
from The Cancer Genome Atlas (TCGA)1 (Blum et al., 2018).
All analyses of TCGA data were performed using R 3.6.3.
Pathological and clinical information is shown in Table 1. A risk
prediction model was developed. Two additional datasets were

1https://portal.gdc.cancer.gov/

TABLE 1 | The disease-related clinical information of patients with pancreatic
cancer included in the study.

Characteristics Value

Patients(n) 171

Age(year), median(IQR) 65.7(57.2–73.3)

Gender, n(%)

female 78(45.6%)

male 93(54.4%)

Pathological M, n(%)

M0 77(45.0%)

M1 4(2.3%)

NA 90(52.7%)

Pathological T, n(%)

T1 + T2 28(16.4%)

T3 + T4 141(82.5%)

NA 2(1.1%)

Pathological N, n(%)

N0 47(27.5%)

N1 + N1b 119(69.6%)

NA 5(2.9%)

Pathological stage, n(%)

Stage I 19(11.1%)

Stage II 142(83.0%)

Stage III + IV 7(4.1%)

NA 3(1.8%)

Outcome, n(%)

Dead 91(46.8%)

Alive 80(53.2%)

IQR, interquantile range; NA, not analyzed.
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TABLE 2 | Information of the two publicly available independent validation datasets.

Dataset Sample size Transcriptome platform Tissue

GSE729 125 Agilent-014850 Whole Human Genome Microarray Fresh frozen

E-MTAB-6134 288 Affymetrix Human Genome U219 Array Fresh frozen and formalin-fixed paraffin-embedded

obtained from ArrayExpress2 and Gene Expression Omnibus3 to
validate the effectiveness of the model. The details of these two
datasets are provided in Table 2. One flow chart was displayed in
Figure 1 to summarize the process of this study.

Identification of Metabolism-Based
Subtypes
To filter out genes not associated with prognosis in PanC, a global
survival analysis for each gene was performed via log-rank test
and Cox regression using the survival R package. Thereafter,
metabolic genes were extracted from Molecular Signatures
Database v7.24 (Liberzon et al., 2015). The overlap between
survival-associated genes and metabolism-related genes was
obtained. Finally, the expression levels of intersecting genes were
used for a consensus clustering analysis to identify novel subtypes
using the ConsensusClusterPlus R package. Default parameters
were used (Wilkerson and Hayes, 2010). As determined using
the ConsensusClusterPlus R package, the curve of the cumulative
distribution function (CDF) and area under the CDF were
used to choose the best k-value for the number of clusters.
To evaluate differences between novel subtypes, a principal
component analysis (PCA) was used. Next, survival curves were
generated to evaluate the prognostic value of subtypes using
the survminer and survival R packages. Expression levels of ten
randomly selected genes used as inputs in the clustering analysis
were examined to further characterize the different subtypes. The
relationship (possible overlaps in patient samples) between the
transcription subtypes that have been previously defined and the
subtypes identified by us was shown via circle plot (Collisson
et al., 2011; Moffitt et al., 2015; Bailey et al., 2016). Finally, tumor
purity information acquired from TCGA Research Network was
compared between two subtypes by t-test (Cancer Genome Atlas
Research Network, 2017).

SNVs in the Subtypes
Using SNV data obtained from TCGA, the mutation frequencies
of all genes were calculated. Thereafter, the ten genes with the
highest mutation rates were utilized to evaluate the difference
between subtypes using the GenVisR R package. Differences
were visualized using waterfall plots. Next, genes with significant
differences in SNV statuses were identified and the relationships
between SNV statuses and transcript levels were determined.
Finally, survival curves based on SNV statuses of these genes were
generated using the survival and survminer R packages.

2https://www.ebi.ac.uk/arrayexpress/
3https://www.ncbi.nlm.nih.gov/geo/
4https://www.gsea-msigdb.org/gsea/msigdb

Weighted Correlation Network Analysis
of Genes Related to Subtypes
Although novel subtypes were identified using the
ConsensusClusterPlus package based on the expression
levels of selected genes, this analysis did not reveal the precise
genes related to each subtype and the sample size of genes was
not sufficient for a network analysis. Therefore, a weighted
correlation network analysis (WGCNA) was employed to
identify gene co-expression modules related to the characteristics
of the subtypes (Langfelder and Horvath, 2008) using the R
package WGCNA. As recommended in the package instructions,
the soft threshold was set to 7. For gene module fusion, the cutoff
value was set to 0.25, as described previously (Kong et al., 2020).

Identification of Hub Genes Based on
Subtypes
Based on the WGCNA, genes that were highly related to the
high-risk subtype were obtained. These genes were used as
inputs for an enrichment analysis using Metascape5 (Kong
et al., 2020) using default parameters. According to the
annotations in Metascape, for each given gene list, protein-
protein interaction enrichment analysis has been carried out,
and if the network contains between 3 and 500 proteins, the
Molecular Complex Detection (MCODE) algorithm would be
applied to identify densely connected network components.
Pathway and process enrichment analysis has been applied to
each MCODE component independently, and the five best-
scoring terms by p-value have been selected.

Enrichment Analyses of Subtypes
To further clarify the crucial processes activated in the high-risk
subtype, a GSEA was performed. Hallmark gene sets were used
as the background set (Liberzon et al., 2011). Fold change values
were obtained for the comparison between high-risk and low-
risk subtypes using the DESeq2 R package (Love et al., 2014).
Next, the clusterProfiler R package was used to perform the
GSEA (Yu et al., 2012). Furthermore, Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses directly based on the genes found up-regulated in C1
and also on the genes up-regulated in C2 were conducted via
clusterProfiler R package (Yu et al., 2012).

Development of a Risk Prediction Model
Based on Metabolism-Related Subtypes
A risk prediction model was developed based on the metabolism-
associated subtypes. A group of genes associated with the high-
risk subgroup was used to develop a risk model by the least

5https://metascape.org/
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FIGURE 1 | The flow chart summarizing the process of this study. WGCNA, weighted correlation network analysis. GO, gene ontology. KEGG, Kyoto Encyclopedia
of Genes and Genomes.

absolute shrinkage and selection operator (Lasso), a frequently
adopted method (Zhang E. et al., 2020; Zhang H. et al., 2020;
Zhang M. et al., 2020). The set of 171 patients from TCGA
was divided into a training group (n = 120) and internal
validation group (n = 51) using the caret R package. This
package ensures that patients are equally divided into two distinct
groups. Subsequently, data for patients in the training group

were used to construct a risk model by Lasso. The regression
analysis was performed using the glmnet R package with default
parameter settings. The model was validated using the training
group, internal validation group, and two additional external
validation data sets. A survival analysis and time-dependent
receiver operating characteristic (tdROC) curves were used as
indicators for model effectiveness. Finally, the risk score of our
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model was compared to that of an existed four-gene prognostic
model in term of tdROC curves (Yan et al., 2020).

Univariate and Multivariate Cox
Regression Analyses
To determine the independent prognostic value of the model,
univariate and multivariate Cox regression analyses of the model
and other clinical or pathological variables were performed.
A univariate Cox regression was performed first. Statistically
significant variables in the univariate analysis were included
in the multivariate analysis, as described previously (Kong
et al., 2020). These analyses were performed using the
survival R package.

Drug Target Prediction
Using the CTRP2.0 and PRISM databases, the sensitivities of
various agents for patients with high risk scores based on
gene expression levels were predicted via ridge regression. The
pRRophetic R package was used for prediction (Geeleher et al.,
2014). Components with significantly lower areas under the
dose–response curve (dr-AUC) in high-risk patients than in low-
risk patients were selected. Thereafter, Spearman’s correlation
coefficients for the relationship between dr-AUC and risk score
were determined. Components with significantly negative rho
values (i.e., less than −0.3) were obtained.

Statistical Analysis
All statistical analyses were performed using R version 3.6.3.
In a global survival of all genes, log-rank test and Cox
regression were used, setting P < 0.01 as the cut-off value for
significance. In all other analyses, P < 0.05 was the threshold for
statistical significance.

RESULTS

Identification of Two
Metabolism-Associated Subtypes
In total, 60 genes were included in a consensus clustering analysis
(Figure 2A). As shown in Figure 2B, k = 2 was the optimal
value. As shown in Figure 2C, the area under the CDF did
not increase significantly for k > 2, further indicating that the
optimal k-value was 2. Figure 2D shows the consensus matrix
for two subtypes (referred to as C1 and C2). A PCA further
supported the difference between the two subtypes (Figure 2E).
A survival analysis indicated that patients with the C1 subtype
had a worse prognosis than that of patients with the C2 subtype
(Figure 2F). As shown in Figures 2G–P, the C1 subtype was
highly enriched for metabolism-related genes. We found that
the classical subtype identified by Collisson et al. was mainly
a subset of C1 subtype (Supplementary Figure 1A) (Collisson
et al., 2011). Furthermore, progenitor and squamous subtypes via
Bailey et al. were mainly subsets of C1 subtype (Supplementary
Figure 1A) (Bailey et al., 2016). Finally, high tumor purity
might be the driver factor for the characteristics of C1 subtype
(Supplementary Figure 1B, t-test P < 0.001).

Difference in SNVs Between Subtypes
We compared SNVs in the two subgroups. As shown in
Figures 3A,B, the proportion of SNVs was higher in C1 than
in C2. KRAS, TP53, SMAD3, and CDKN2A had high SNV
frequencies. There were 69 patients harbored KRAS mutation
in C1 subtype, and 10 patients harbored KRAS mutation in
C2 subtype. There were 65 patients harbored TP53 mutation
in C1 subtype, and 17 patients harbored TP53 mutation in C2
subtype. We found that there were lots of patients harbored
TTN mutations in C1 and C2 subtypes. However, TTN was
not significantly mutated based on the MutSigCV algorithm
on Firebrowse database6 (Broad Institute TCGA Genome Data
Analysis Center, 2016). We found that patients with SNVs of
KRAS, SMAD3, and CDKN2A exhibited a worse overall survival
(Figures 3C–F). Finally, we found that patients with SNVs in
KRAS and CDKN2A exhibited higher gene expression levels than
those in patients without SNVs. However, the SNV in SMAD4
was correlated with a lower level of gene expression. SNVs in
TP53 did not show a significant relationship with the level of
gene expression (Figures 3G–J). Furthermore, KRAS expression
was significantly higher in the C1 subtype than in the C2 subtype
(Figure 3K, Wilcoxon test P < 0.001). SMAD4 expression was
significantly lower in the C1 subtype than in the C2 subtype
(Figure 3M, Wilcoxon test P < 0.001). However, there was no
significant difference for levels of TP53 and CDKN2A between
C1 and C2 subtypes (Figures 3L,N). Generally, alterations in
gene expression levels in the C1 subtype could be explained
by the SNV status.

Identification of Gene Networks Related
to the C1 and C2 Subtypes by WGCNA
As shown in Figure 4A, when the soft threshold was set to
7, the gene networks satisfied both a high degree of internal
connectivity and high gene similarity. The top 5000 genes with
a high degree of variation were divided into gene networks. Gene
networks whose genes showed no significant differences were
merged and finally 13 networks were identified (Figure 4B).
Next, correlations between networks and phenotypes were
evaluated. The blue network shown in Figure 4C was most
closely related to the C1 subtype and the turquoise network
was most related to the C2 subtype. The significance (i.e., the
extent to which it represents the corresponding phenotype) and
module membership of genes in the blue network are shown
in Figure 4D, and these parameter values exhibited a strong
positive correlation.

Enrichment Analysis and Hub Gene
Selection
Owing to the worse prognosis of the C1 subtype, we
focused on the network that was most strongly correlated
with this subtype (i.e., the blue network in Figure 4).
We extracted genes in this network and used them as
inputs for an analysis using the Metascape database. As
determined via an enrichment analysis, the downregulation

6http://firebrowse.org
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FIGURE 2 | Identification of two metabolism-associated subtypes. (A) In total, 60 genes were identified in the intersection between survival-associated genes and
metabolism-related genes. (B) CDF curve for different k-values (representing the number of clusters in the consensus clustering analysis). When the optimal k-value
is reached, the area under the CDF curve does not increase significantly as the k-value increases. (C) Relative change in the area under the CDF curve for different
values of k. (D) Consensus matrix obtained when k = 2. Consistency values range from 0 to 1, where 0 indicates that genes never cluster together (white) and 1
indicates that they always cluster together (dark blue). (E) PCA showed a significant difference between subtypes. (F) Survival curves for patients with different
subtypes. (G–P) Boxplot depicting expression levels of some metabolic genes in the C1 and C2 subtypes. CDF, cumulative distribution function. PCA, principal
components analysis. P < 0.05 is defined as statistically significant.

of P53 signaling and activation of KRAS, AKT, and MEK
signaling were enriched in the blue network, suggesting that
these biological activities were likely associated with the C1
subtype (Figures 5A,B). Thereafter, hub genes were selected

using the MCODE algorithm. As shown in Figure 5C,
five sub-networks were selected. KRT18 was identified as a
hub gene with the potential to affect the development of
PanC (Figure 5D).
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FIGURE 3 | Differences in SNVs between C1 and C2 subtypes. (A) Waterfall plot for the C1 subtype. (B) Waterfall plot for the C2 subtype. (C–F) Kaplan–Meier
survival analysis of patients with mutations in KRAS, TP53, SMAD4, and CDKN2A. P-values obtained via log-rank tests are shown. (G–J) Boxplots illustrating
correlations between gene expression levels and SNVs for KRAS, TP53, SMAD4, and CDKN2A. (K–N) Violin plots exhibit differences in expression levels of KRAS,
TP53, SMAD4, and CDKN2A between C1 and C2 subtypes. Wilcoxon test P-values are shown. SNV: simple nucleotide variation. P < 0.05 was defined as
statistically significant.
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FIGURE 4 | WGCNA results. (A) Relationship between the soft threshold and TOM-based dissimilarity (left). Relationship between the soft threshold and mean
connectivity (right). (B) After cutting and merging, 13 gene modules were finally generated. (C) Heat map of the correlations between gene modules and phenotypes.
(D) Scatter plot depicting the correlations between gene significance and module membership of genes in the blue network. WGCNA: weighted correlation network
analysis. TOM, topological overlap matrix. P < 0.05 is defined as statistically significant.

GSEA of the High-Risk Subtype
We selected statistically significant gene sets in the GSEA
and ranked these sets according to normalized enrichment
scores (NES). The top five results are displayed in
Figures 6A–F. We found that HALLMARK_E2F_TARGETS,
HALLMARK_MYC_TARGETS_V1, HALLMARK_GLYCOLYSI

S, HALLMARK_MTORC1_SIGNALING, and HALLMARK_
NOTCH_SIGNALING were all activated in the C1 subtype.
These biological activities were all cancer-promoting processes,
consistent with the high-risk feature of the C1 subtype
(Sancho et al., 2015; Di Malta et al., 2017; Qin et al., 2019;
Katoh and Katoh, 2020; Oshi et al., 2020). Furthermore,
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FIGURE 5 | Enrichment analysis and hub gene selection. (A) Bar plot depicting the results of an enrichment analysis of genes in the blue module. (B) Interaction
network with enrichment terms. (C) Protein–protein interaction networks for genes generated using MCODE. (D) Five key protein–protein interaction networks
identified using MCODE. (MCODE: molecular complex detection).

the GO and KEGG enrichment results were showed in
Supplementary Figure 2.

Construction and Validation of an
18-Gene Risk Model
Due to patients in C1 subtype had the worst prognosis, we used
the genes in blue network, which is most related to C1 subtype,

to train the risk model via Lasso regression using the training
group. During the selection of genes for the model, the C-index
obtained by cross-validation was used for feature selection.
Figure 7A showed the corresponding C-index values for models
with different gene combinations. The X-axis is the number
of genes in the corresponding model. As shown in Figure 7A,
a combination of 18 genes showed the highest C-index.
Figure 7B shows the coefficients for each gene and combination.
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FIGURE 6 | GSEA of the two subtypes. (A) Top five enrichment terms (ranked in descending order of NES). (B) HALLMARK_E2F_TARGETS.
(C) HALLMARK_MYC_TARGETS_V1. (D) HALLMARK_GLYCOLYSIS. (E) HALLMARK_MTORC1_SIGNALING. (F) HALLMARK_NOTCH_SIGNALING. NES:
normalized enrichment scores. P < 0.05 was defined as statistically significant.

Finally, we developed an 18-gene risk model, providing a
basis for determining risk levels of patients as follows: Risk
score = NEU2 × 0.390 + GMPS × 0.350 + PRIM2 × 0.144 + PNP
T1 × 0.154 + LDHA × 0.0004 + INPP4B × 0.011 + DPYD × 0.187
+ PYGL × 0.363 + CA12 × 0.098 + DHRS9 × 0.080 + SULT1E1
× 0.158 - ENPP2 × 0.039 - PDE1C × 0.297 - TPH1 × 0.042 -
CHST12 × 0.145 - POLR3GL × 0.421 - DNMT3A × 0.456 -
PGS1 × 0.267. Next, patients in the training group (n = 120),
internal validation group (n = 51), GSE729 data set (n = 125), and

E-MTAB-6134 data set (n = 288) were ranked according to risk
scores (Figures 7C–N). The expression levels of these 18 genes
were globally evaluated in the four groups and the stability of
the results were robust. Thereafter, survival and tdROC analyses
were used to evaluate the effectiveness of the risk model in four
data sets. As shown in Figures 8A–D, patients with higher risk
scores had a worse overall survival. In the tdROC, the AUC
values all exceeded 0.65, indicating good model performance
(Figures 8E–H). Finally as shown in Figure 8I, we found that our
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FIGURE 7 | Construction of the risk model using LASSO. (A) Cross-validation based on the C-index to determine the optimal number of genes in the model.
(B) Genes in different combinations and corresponding coefficients. (C,G,K) Patients in the training set (n = 120) were arranged in ascending order of risk scores.
(D,H,L) Patients in the internal validation set (n = 51) were arranged in ascending order of risk scores. (E,I,M) Patients in the GSE729 data set (n = 125) were
arranged in ascending order of risk scores. (F,J,N) Patients in the E-MTAB-6134 data set (n = 288) were arranged in ascending order of risk scores. (C–F) Patients
were divided into different risk levels according to median risk scores in their respective data sets. (G–J) Relationships between survival outcomes and risk levels.
Low-risk patients are shown on the left side of the dotted line and high-risk patients are shown on the right side. (K–N) Heat maps for genes in the model. LASSO,
least absolute shrinkage and selection operator. P < 0.05 was defined as statistically significant.
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FIGURE 8 | Verification of the effectiveness of the prognostic signature. (A–D) Survival analysis based on Kaplan–Meier curves. (E–H) ROC curve for 1-year
follow-up. (A,E) Results obtained using the training set. (B,F) Results obtained using the internal validation set. (C,G) Results obtained using GSE729. (D,H) Results
obtained using E-MTAB-6134. (I) The comparison between our model and the existed four-gene model in term of tdROC curves. (AUC, area under curve; tdROC,
time-dependent receiver operating characteristic). The clinical outcome endpoint was overall survival. P < 0.05 was defined as statistically significant.

model performed better than the existed four-gene prognostic
model in TCGA-PAAD cohort (n = 171) (AUC of our model at 1
year: 0.77; AUC of four-gene model at 1 year: 0.76; AUC of our
model at 3 years: 0.84; AUC of four-gene model at 3 years: 0.79).

Prognostic Value of the Model
To determine whether the model is an independent predictor
of prognosis, we performed univariate and multivariate Cox
regression analyses. In the univariate Cox regression analysis,
metabolism-associated subtype, pathological T, pathological N,

age, and risk score from the model were risk factors for prognosis
(Figure 9A). Next, these variables were included in a multivariate
Cox regression analysis, which showed that age and risk score are
independent predictors of prognosis (Figure 9B).

Target Drug Prediction for High-Risk
Patients
As shown in Figure 10A, afatinib, dasatinib, paclitaxel,
pluripotin, and saracatinib were predicted with high sensitivity
in patients with high risk scores (Spearman correlation test
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FIGURE 9 | Establishment of the model as an independent prognostic factor. (A) Univariate Cox regression. (B) Multivariate Cox regression. P < 0.05 was defined
as statistically significant.

rho < -0.3, Spearman correlation test P < 0.001, and Wilcoxon
test P < 0.001). As shown in Figure 10B, AZD8330, ispinesib,
LY2606368, and trametinib showed high sensitivity for patients
with high risk scores (Spearman correlation test rho < –0.3,
Spearman correlation test P < 0.001, and Wilcoxon test
P < 0.01). Collectively, we predicted nine target drugs for high-
risk patients; paclitaxel, AZD8330, and LY2606368 showed the
highest effectiveness.

DISCUSSION

Recent studies have offered ample insight into multi-omics
landscapes to define PanC subtypes (Noll et al., 2016; Mishra
and Guda, 2017; Puleo et al., 2018; Lomberk et al., 2018).
Lomberk et al. performed multi-parametric integrative analyses
of chromatin immunoprecipitation-sequencing on multiple
histone modifications, RNA-seq, and DNA methylation to define
epigenomic landscapes for PanC subtypes, which can predict
their relative aggressiveness and survival. Puleo et al. identified
five PanC subtypes, based on features of cancer cells and
the tumor microenvironment. Kumar Mishra et al. performed
genome-scale methylome analysis of PanC data from TCGA
and provided a strong basis for future work on the molecular
subtyping of epigenetic regulation in PanC. Using data obtained
from multiple platforms (TCGA, GSE729, and E-MTAB-6134),
we identified novel PanC subtypes and prognostic signatures
based on cancer metabolism. Patients with PanC from the TCGA
dataset were divided into metabolic-enriched and metabolic-
desert groups, C1 and C2, respectively. Multiple metabolic genes
(AGPS, GART, GLUD1, GMPS, MTHFD1, MTMR2, PAFAH1B2,
PIK3CB, PNPT1, and PRIM2) related to aggressiveness and poor
outcomes in cancer showed higher expression levels in the C1
group than in the C2 group. Alkylglyceronephosphate synthase
(AGPS), an essential metabolic enzyme in cancer, is involved
in the synthesis of ether lipids and promotes the aggressive
features of multiple malignances (Benjamin et al., 2013). Widely
recognized as a prognostic factor in many cancers, glucose

transporter-1 (GLUT1) is associated with both a poor prognosis
and drug resistance in cancers, such as PanC, cervical cancer,
and breast cancer (Nagarajan et al., 2017; He et al., 2019; Kim
and Chang, 2019). Other metabolic genes with notably higher
expression in C1 than in C2 are also related to tumorigenesis
and shown prognostic value (Knox et al., 2009; Sdelci et al., 2019;
Wang et al., 2019). Consistent with these findings, the survival
rate in the metabolic-enriched group was significantly lower
than that in the metabolic-desert group. The evaluation of the
SNV profile of the novel two subtypes further demonstrated that
KRAS, TP53, SMAD4, and CDKN2A are frequently mutated in
the C1 subtype. According to Terumi et al., KRAS, TP53, SMAD3,
and CDKN2A are the key driver genes in PanC (Kamisawa et al.,
2016). KRAS mutations resulting in the persistent activation
of the protein contribute to PanC (Buscail et al., 2020). The
KRAS protein could activate several signaling pathways to
promote the proliferation, invasion, and migration of cancer
cells (Buscail et al., 2020). As a hallmark oncogene, KRAS
upregulates glycolysis-related enzymes and promotes energy
supply in cancer cells, indicating a worse survival (Buscail et al.,
2020). Furthermore, TP53, SMAD4, and CDKN2A are frequently
mutated genes in malignancies (Alhejaily et al., 2014; Bykov et al.,
2018; Ritterhouse et al., 2019). The KRAS mutation frequency
was significantly higher in the C1 group than in the C2 group,
and KRAS mutations were associated with increased expression.
These findings support the reliability of the novel metabolic
subtypes and the association between the metabolism-related
gene-enriched group (C1) and a poor prognosis.

We explored the core differences between the subtypes.
Using a GSEA, we identified five hallmark gene sets,
HALLMARK_E2F_TARGETS, HALLMARK_MYC_TARGETS_
V1, HALLMARK_GLYCOLYSIS, HALLMARK_MTORC1_
SIGNALING, and HALLMARK_NOTCH_SIGNALING, activa
ted in the C1 (high risk) group. Repressed by the tumor
suppressor gene RB1 (retinoblastoma susceptibility gene) in
RB-E2F complexes, E2F1 induces cell cycle entry and could be
a cancer inducer (Fischer and Müller, 2017). Amplification
of the MYC gene is related to poor outcomes in PanC
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FIGURE 10 | Prediction of candidate agents with higher drug sensitivity in patients with high risk score. (A) The results of Spearman’s correlation analysis and
differential drug response analysis of three CTRP-derived compounds. (B) The results of Spearman’s correlation analysis and differential drug response analysis of
three PRISM-derived compounds. Note that lower values on the y-axis of boxplots imply greater drug sensitivity. * means P < 0.05, ** means P < 0.01,
*** means P < 0.001, ns means P > 0.05, and P < 0.05 is defined as statistically significant.

(Witkiewicz et al., 2015). Additionally, mTORC signaling,
glycolysis-related genes, and NOTCH signaling all contribute to
the pathogenesis of PanC (Mann et al., 2016; Gao et al., 2017;
Yang et al., 2020). And based on network system biology we
select one target KRT18 associated with poor prognosis in PanC.
KRT18 could induce proliferation, migration, and invasion via
MAKP signaling in gastric cancer (Wang et al., 2020). However,
the mechanism by which KRT18 contributes to PanC has not
been determined and should be a focus of further research.

Pancreatic cancer (PanC) is a highly lethal malignancy with
high complexity and heterogeneity (Yao et al., 2020). The Cancer
Genome Atlas Research Network completed integrated genomic,

transcriptomic, and proteomic profiling of 150 pancreatic ductal
adenocarcinoma specimens. They revealed a complex molecular
landscape of pancreatic ductal adenocarcinoma and provided a
roadmap for precision medicine (Cancer Genome Atlas Research
Network, 2017). Two large researches using PanC samples
recently reported gene expression subtypes of PanC, extending
the subtypes previously described by Collisson et al. (Collisson
et al., 2011; Moffitt et al., 2015; Bailey et al., 2016; Martinez-
Useros et al., 2021). Sinkala et al. employed transcriptomic,
copy number alteration and mutation profiling datasets from
PanC patients together with data on clinical outcomes to
show that the three PanC subtypes each display distinctive
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aberrations in cell signaling and metabolic pathways (Sinkala
et al., 2018). Sinkala et al. also identified another two PanC
subtypes and biomarker sets that can be used to accurately
and sensitively classify novel pancreatic tumors (Sinkala et al.,
2020). Inspired by previous researches, we developed novel risk
model and metabolic subtypes to deepen our understanding of
PanC and to facilitate individualized diagnosis and treatment in
clinical settings.

This study had several limitations. First, despite our use of
data for large patient cohorts obtained from multiple platforms
supporting the reliability and reproducibility of our results,
prospective studies are needed before applying the risk model
in clinical settings. Additionally, our risk score formula is based
on 18 metabolic genes; however, further studies on interactions
among these genes and their biological mechanisms are needed.

CONCLUSION

In this study, we identified two subtypes, a metabolic gene-
enriched subtype (C1) and metabolic gene-desert subtype (C2), in
PanC based on the degree of metabolic gene enrichment. The C1
subtype was related to a worse prognosis based a survival analysis
and distinct SNVs. We then developed a risk model based on
genes associated with the high-risk subgroup (C1) and validated
the reliability of the predictive model using an internal validation
dataset of TCGA and two external validation datasets. Finally,
nine drugs were identified for high-risk patients.
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