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In the past few years, the role of long noncoding RNAs (lncRNAs) in tumor development and progression has been disclosed
although theirmechanisms of action remain to be elucidated. An important contribution to the comprehension of lncRNAs biology
in cancer could be obtained through the integrated analysis of multiple expression datasets. However, the growing availability of
public datasets requires new data mining techniques to integrate and describe relationship among data. In this perspective, we
explored the powerness of the Association Rule Mining (ARM) approach in gene expression data analysis. By the ARM method,
we performed a meta-analysis of cancer-related microarray data which allowed us to identify and characterize a set of ten lncRNAs
simultaneously altered in different brain tumor datasets. The expression profiles of the ten lncRNAs appeared to be sufficient to
distinguish between cancer and normal tissues. A further characterization of this lncRNAs signature through a comodulation
expression analysis suggested that biological processes specific of the nervous system could be compromised.

1. Introduction

Cancer is a highly complex disorder characterized by the
dysregulation of the expression of several genes preserving
cellular identity and differentiation. A comprehensive anal-
ysis of gene expression profiles in different cancer types has
been performed and numerous expression signatures have
been identified [1–4]. In most cases the genes described for
their involvement in cancer were protein-coding oncogenes
and tumor suppressors. However, in the past few years it has
become increasingly clear that the human genome is perva-
sively transcribed and thousands of genes producing noncod-
ing RNAs (ncRNAs) with regulatory functions were identi-
fied [5]. In particular, long noncodingRNAs (lncRNAs), tran-
scripts longer than 200 nucleotides with no significant open
reading frames, have been shown as important regulators
of transcriptional and posttranscriptional events [6, 7]. This
finding has prompted the researchers to investigate their role
in cancer [8, 9] and several lncRNAs have been implicated in
both cancer development and progression, highlighting the
high genetic complexity of the disease [10].

The lncRNAs exert their functional role in cancer through
various biological mechanisms and in different stages of the
tumorigenic process [11]. For example HOTAIR, one of the
most well-known lncRNAs, was reported as a predictor of
breast cancer metastasis and poor prognosis. HOTAIR inter-
acts with chromatin-remodeling complexes to induce hete-
rochromatin formation in different genomic loci thus silenc-
ing gene expression [12, 13]. lncRNAs have been described
also for their direct interaction with negative regulators of
transcription, like in the case of lincRNA-p21 that is activated
by p53 upon DNA damage and plays its role associating
with hnRNP-K which acts as a transcriptional repressor [14].
However, besides these and few other examples, the lncRNAs
functional mechanisms are poorly understood and their role
in cancer biology remains to be fully elucidated.

An important contribution to the comprehension of lncR-
NAs biology in cancer could be obtained through the inte-
grated analysis of multiple expression datasets. Traditionally,
the methods used to analyze gene expression data are mostly
based on the application of clustering algorithms to datasets
of specific biological conditions, an approach which leads to
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the identification of comodulated groups of genes. However,
with the growing availability of publicly available datasets,
the use of new data mining techniques to integrate and to
describe relationships among different types of data is highly
desirable. In this perspective, the Association Rule Mining
(ARM) based approaches, looking for frequent patterns in
the data, have been proposed as an alternative methodology
to analyze expression data [15, 16]. While this technique is
commonly used in many research fields, its application in the
analysis of gene expression is still limited due to the difficul-
ties to deal with the high level of complexity and interconnec-
tion of biological processes despite several customization
being proposed to overcome this issue [17–20].

In this paper, we proposed a new implementation of the
ARM method for the meta-analysis of gene expression data
and, in particular, to study differential expression profile of
lncRNAs in multiple tumor types. The application of the
ARM algorithm led us to define a total of 102 nonredundant
frequent rules in lncRNAs transcriptional levels distinguish-
ing tumor from corresponding normal tissues.We focused on
the rule including the highest number of lncRNAs in brain
cancers that was confirmed by independent microarray and
RNA-seq datasets. Moreover, a comodulation analysis of the
lncRNAs rule allowed us to shed light on putative biological
processes impaired in brain tumors.

2. Materials and Methods

2.1. Long Noncoding RNA Definition. For the purpose of this
study, we employed the list of lncRNAs compiled from Gen-
code (release 19) [21].The selected genes corresponded to the
following transcript types: 3prime overlapping ncrna (21),
antisense (5276), lincRNA (7114), processed transcript (515),
sense intronic (742), and sense overlapping (202) for a total
of 13870 transcripts.

2.2. Expression Datasets Description. For the purpose of the
ARM analysis (see Section 2.3), items were represented by
differentially expressed genes. Differentially expressed genes
from cancer-related datasets were obtained from the Corre-
laGenes database [27]. In brief, human-specific datasets were
selected from the Gene Expression Omnibus (GEO) [28]
CuratedDataSets (GDS) and downloaded with the R package
GEOquery (ver. 2.32.0) [29].The datasets were analyzed with
R package limma (ver. 3.11.1) [30]. All the results were stored
in a PostgreSQL database (http://www.postgresql.org/). For
this study we selected those datasets performed on the
platform “Affymetrix Human Genome U133 Plus 2.0 Array”
and related to cancer tissues. This selection allowed the iden-
tification of 26 datasets including 50 comparisons. From each
comparison, we selected gene symbols with at least one
mapped probe having an absolute value of LFC greater or
equal to 1, False Discovery Rate (FDR) corrected 𝑝 value
lower than 0.05 and corresponding to a known lncRNA.This
selection allowed the identification of 34 gene lists that were
organized in the form of transactions for the application of
the Association Rule Mining algorithm.

The ARM analysis results were compared to differentially
expressed lncRNAs obtained in an independent dataset inclu-
ding samples from the tissues of interest. To this aim we
selected the dataset E-GEOD-16011 (GSE16011) that was not
present in the CorrelaGenes database.The expression set was
downloaded from the ArrayExpress repository in the form
of R expression set (http://www.ebi.ac.uk/arrayexpress/files/
E-GEOD-16011/E-GEOD-16011.eSet.r). The expression sets
were renormalized with Robust Multiarray Average (RMA)
expression measure process (R package affy ver. 1.44.0) [31]
and analyzed with R package limma (ver. 3.11.1) using gene
annotations from platform “Affymetrix Human Genome
U133 Plus 2.0 Array.”

2.3. Association Rule Mining Methodology. The identification
of frequent patterns was performed using the Association
Rule Mining algorithm implemented in the R package arules
ver. 1.1.5 [32]. In the ARM formalism, datasets are organized
in the form of transactions. Each transaction contains a list of
elements, called items, whose nature depends on the applica-
tion. In our context, each transaction corresponds to a com-
parison and includes all lncRNAs with at least one differen-
tially expressed probe (absolute value ≥ 1 and FDR adjusted 𝑝
value≤ 0.05).The application uses the transactions to identify
association rules (ARs) of the form IF A then C (A=>C). In
our context, these rules can be interpreted as follows: if Set of
Genes 1 is differentially expressed in a comparison then Set of
Genes 2 is differentially expressed as well [16].

Tomeasure the quality of the associations, we herein used
two indexes: support and confidence. Considering two gene-
ric gene sets𝑋 and𝑌 the twomeasures are defined as follows.
(i) Support: the probability to find all the genes in sets 𝑋 and
𝑌 differentially expressed in the same comparison. Formally
Sup. = Pr(𝑋∪𝑌). (ii) Confidence: the probability to find all the
genes in set 𝑌 differentially expressed in a comparison where
all the genes in set 𝑋 are differentially expressed. Formally
Conf. = Pr(𝑋 | 𝑌).

In our study we defined as redundant a set of rules char-
acterized by the same set of genes or a subset of it and with
the same support. In order to remove redundancy for each
set of redundant rules we retained only the set including the
highest number of genes (𝑋 ∪ 𝑌).

2.4. Principal Component Analyses. PCA is a technique that
uses an orthogonal transformation to convert a dataset onto
a linear space spanned by a number of linearly independent
components, named principal components, ordered by dec-
reasing variance. The projection of the observations onto the
first few principal components (i.e., PC1 and PC2) allows a
reduced dimensionality maximizing the variance retained.
PCA was performed with the R package FactoMineR ver.
1.29 [33]. The expression data table (Row: probes; Columns:
samples) related to the DataSets GDS1962 and E-GEOD-
16011 were extracted from the eSet R object and used for the
PCA. In the analysis we used as variables the log2 normalized
intensity values of platform probes without scaling. The
different samples were used as individuals and they were
labeled according to their histological classification.
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2.5. RNA-Seq Data Analysis. RNA-seq data were used as an
independent approach to validate differential expression of
lncRNAs. RNA-seq data used in this study were downloaded
from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/)
and NCBI SRA (http://www.ncbi.nlm.nih.gov/sra/) repos-
itories. Three samples of normal brain, under the accession
number E-MTAB-1733, were downloaded fromArrayExpress
(ERR315477, ERR315455, and ERR315432). All tumor samples
were downloaded from NCBI SRA (study SRP027383). We
used three samples of glioblastoma (SRR934934, SRR934966,
and SRR934911), three samples of oligodendroglioma
(SRR934990, SRR934971, and SRR934734), and three
samples of astrocytoma (SRR934772, SRR934784, and
SRR934794). All samples share common sequencing features:
they were sequenced using the Illumina HiSeq 2000 platform
and a paired-end protocol (2 × 101 bp) for a total of about 60
million reads each.

Processing of RNA-seq data was performed following the
protocol described in Trapnell et al. [34]. In brief, raw sra files
were transformed into fastq files using SRA Toolkit available
atNCBI. Raw readswere subjected to standard quality control
procedures with the NGSQC-toolkit software and aligned
to the human genome reference sequence (NCBI37/hg19) by
the TopHat alignment software. Genes were annotated using
the lncRNAs annotation file coming from Gencode (release
19). lncRNAs genes were quantified according to the TopHat-
Cufflinks protocol and differential gene expression analysis
was performed by CuffDiff [34]. Visualization of genomic
alignments of RNA-seq reads was obtained with the IGV tool
[35].

2.6. Comodulation Expression Analysis. The comodulation
expression analysis was performed with the CorrelaGenes
web application [27]. The tool uses an implementation of
the Association Rule Mining algorithm based on three main
customizations: (i) it extracts association rules based on two
genes; (ii) one of the involved genes is constrained to be the
gene selected by the user (target gene); (iii) the association
indexes are calculated based on the transitions where both
the target and the associated genes were present to account
for the heterogeneity of the different platforms. These cus-
tomizations allow CorrelaGenes to identify sets of genes
whose expression appeared altered in different experimental
conditions simultaneously with the target gene thus suggest-
ing their coordinated action in the same biological process.
The analysis in CorrelaGenes [27] was performed with the
default parameters with the exception of copresence ≥ 10,
LIFT ≥ 0, 𝜒2 𝑝 value ≤ 1. The gene Target Sign parameter was
selected, for each analysis, equal to the LFC sign of the gene in
brain cancer tissues (Sign +1 for ncRNA upregulated in brain
cancer; Sign −1 for ncRNA downregulated in brain cancer).
To improve the significance of the results we further ranked
the CorrelaGenes output based on the Correlation index
[36] calculated using the standardCorrelaGenes output.Only
genes with a Correlation index greater than 0.3 were retained
for the next step of the analysis.

2.7. Gene Ontology Term Enrichment Analysis and Network
Visualization. The analysis of the Gene Ontology (GO) term

enrichment was performed by the GOFunction R package
ver. 1.14.0 [37]. The R packages biomaRt 2.20 was used to
convert gene symbols into Entrez Gene IDs required by
the GOFunction R package. The GO terms definition was
obtained by the org.Hs.eg.db 3.0.0 R package [38]. The Ben-
jamini correction was applied to Fisher Exact Test 𝑝 values of
enrichedGO terms and considered as significant if lower than
0.05. In order to minimize the Gene Ontology (GO) term
overrepresentation we selected the most specific term of
each ontology (i.e., marked as “Final” in the GOFunction R
package).The lists of genes associated with specific GO terms
were downloaded using the QuickGO web tool (http://www
.ebi.ac.uk/QuickGO/) [39].

TheGeneMANIA (http://www.genemania.org/) [40] and
STRING 9.1 (http://string-db.org/) [41] web tools were used
to visualize the network of interactions among genes.

3. Results and Discussion

3.1. Association Rule Mining Meta-Analysis. We applied the
ARM method to identify common patterns of long non-
coding RNAs differential expression distinguishing tumor
samples from their respective not affected tissues. For this
purpose, we selected 26 microarray datasets from the GEO
Datasets Archive (http://www.ncbi.nlm.nih.gov/gds) from
which a total of 34 pairwise comparisons (i.e., tumor against
normal tissue) showing expression modulation for at least
one lncRNA were assessed (see Section 2.2 and Supplemen-
tary Table I available online at http://dx.doi.org/10.1155/2015/
146250). The lists of differentially expressed lncRNAs were
used as input for the ARM algorithm. After applying a
support threshold of ≥0.15, ensuring that the identified rules
were present in at least 6 out of 34 comparisons tested, and a
confidence threshold equal to 1, ensuring that the identified
rules were confirmed in all the comparisons where the gene
set is differentially expressed (i.e., the rule “if gene 𝑋 is
modulated then gene 𝑌 is modulated” is true in all the com-
parisonswhere the gene𝑋 ismodulated), theARMalgorithm
identified 59,542 redundant rules each including a number of
lncRNAs ranging from 2 to 13. The obtained rules resulted
based on the differential expression of 53 lncRNAs assorted in
102 nonredundant rules (Supplementary Tables II and III). In
Figure 1 is shown the distribution of the identified 102 nonre-
dundant rules based on (i) the number of ncRNAs contained
(Figure 1(a)) and (ii) the threshold of support (Figure 1(b)).

In order to verify the consistency of the results obtained
we performed a simulation analysis running the ARM algo-
rithm for 100 times on a comparable set of randomly selected
comparisons and applying the same selection thresholds to
extract rules. The results of the simulation test were analyzed
in terms of the number of rules obtained and of the number
of lncRNAs included in each rule. We found that only four
simulations generated a number of redundant rules (i.e.,
>10.000) comparable with those found in the cancer dataset
and only 4 simulations produced at least one rule containing
more than 10 lncRNAs (Figure 2).
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Figure 1: Distribution of the identified 102 nonredundant rules. (a)
Distribution of identified rules based on the number of lncRNAs
contained; (b) distribution of the identified rules based on support
thresholds.

The implementation of the ARM algorithm we proposed
here represents a new way to integrate heterogeneous expres-
sion data converting them in transactions that could be then
compared to identify frequent patterns of differential expre-
ssion. This application of the ARM method allowed us to
identify 102 nonredundant rules representing frequent pat-
terns of lncRNAs expression potentially elucidating the bio-
logical processes involved in tumorigenesis. To reduce the
likelihood of generating false hypotheses, we applied a con-
servative confidence threshold (Conf. = 1) accounting for the
limited number of comparisons available for this meta-
analysis.The availability of a larger number of datasets would
produce informative results even considering a lower confi-
dence threshold. The consistence of our approach was ass-
essed through a 100-run simulation on randomly selected
datasets showing that the results obtained were unlikely due
to randomness thus supporting further investigation.

3.2. Thirteen-Gene Rule Characterization and Validation. We
concentrated our attention on the rule containing the highest
number of lncRNAs (i.e., 13 lncRNAs) showing modulation
of their expression in a total of six comparisons. Among the
13 lncRNAs of the rule, five (i.e., CRNDE, DLEU2, MEG3,
PART1, and RFPL1S) were previously reported as involved
in multiple tumor types [22, 24–26, 42] while nothing was
known for six of them (i.e., KRTAP5-AS1, LINC00301, OIP5-
AS1, PPP1R26-AS1, RUSC1-AS1, and UBL7-AS1). For two of
the lncRNAs included in the rule (i.e., SYN2 and UHRF1),
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Figure 2: Distribution of the results of the 100 simulation runs. (a)
Distribution of the number of redundant rules produced in the sim-
ulation runs; (b) distribution of the number of lncRNAs contained
in the wider rule in each simulation run.

the noncoding transcript overlaps with protein-coding iso-
forms of the same gene thus preventing us to distinguish bet-
ween the two types of molecules (Table 1).

The 13 lncRNAs rule was identified in five comparisons
from the GEO dataset GDS1962 testing different kind of
human brain tumors (i.e., astrocytoma grades II and III, glio-
blastoma grade IV, and oligodendroglioma grades II and III)
against normal brain tissues. In the five comparisons, the dif-
ferential expression of the 13 lncRNAs was highly consistent
showing eight lncRNAs always downregulated and five
lncRNAs always upregulated (Table 2).The sixth comparison
supporting the 13 lncRNAs rule came from GEO dataset
GDS3592 in which ovarian cancer epithelial cells were
compared to normal tissue. In this comparison, the majority
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Table 1: List of the 13 lncRNAs.

Number lncRNA symbol lncRNA name Reference

1 CRNDE Colorectal neoplasia differentially expressed Ellis et al., 2012 [22]
Zhang et al., 2012 [23]

2 DLEU2 Deleted in lymphocytic leukemia 2 Lerner et al., 2009 [24]
3 KRTAP5-AS1 KRTAP5-1/KRTAP5-2 antisense RNA 1
4 LINC00301 Long intergenic non-protein coding RNA 301

5 MEG3 Maternally expressed 3 Wang et al., 2012 [25]
Zhang et al., 2012 [23]

6 OIP5-AS1 OIP5 antisense RNA 1
7 PART1 Prostate androgen-regulated transcript 1 Zhang et al., 2013 [26]
8 PPP1R26-AS1 PPP1R26 antisense RNA 1
9 RFPL1S RFPL1 antisense RNA 1 Zhang et al., 2012 [23]
10 RUSC1-AS1 RUSC1 antisense RNA 1
11 SYN2∗ Synapsin II
12 UBL7-AS1 UBL7 antisense RNA 1

13 UHRF1∗ Ubiquitin-like with PHD and ring finger
domains 1

∗lncRNA not distinguishable from the protein coding isoform.

of the lncRNAs (10/13) resulted upregulated and seven
lncRNAs (i.e., MEG3, KRTAP5-AS1, LINC00301, PART1,
PPP1R26-AS1, SYN2, and CRNDE) appeared modulated in
the opposite direction with respect to the brain tumor sam-
ples (Table 2).

In order to assess the reliability of our findings, we exploi-
ted the E-GEOD-16011 microarray dataset downloaded from
the ArrayExpress archive (https://www.ebi.ac.uk/arrayexp-
ress/) and RNA-seq data from NCBI SRA study SRP027383
including brain tumor samples with an histological classifi-
cation comparable to the ones in the GDS1962 dataset. The
validation of ovarian cancer data could not be performed
due to the unavailability of comparable expression datasets.
From the analysis of expression profiles obtained in the E-
GEOD-16011 and in the SRP027383 RNA-seq study, we were
able to confirm the altered expression of six lncRNAs (i.e.,
RFPL1S, KRTAP5-AS1, PART1, and SYN2 which appeared
consistently downregulated and DLEU2 and UHRF1 which
appeared consistently upregulated). The expression of four
of the 13 lncRNAs was considered as consistent with pre-
vious findings although they showed less severe modula-
tion of their transcription levels (i.e., OIP5-AS1 and UBL7-
AS1) or their expression values could not be assessed in
all samples tested (i.e., CRNDE and RUSC1-AS1). Three
lncRNAs were not validated: two of them (i.e., LINC00301
and PPP1R26-AS1) resulted not significantly modulated in
the RNA-seq analysis and the MEG3 lncRNA appeared
modulated in two out of three samples but with discordant
values (Table 3). In Figure 3, the expression profiles of the
CRNDE and PART1 lncRNAs from RNA-seq data were
shown as example (the expression profiles of the eight remai-
ning lncRNAs were shown in Supplementary Figure 1). Thus,
we were able to confirm the altered expression of 10 out of the
13 lncRNAs identified by the ARMmethod on GDS1962.

Among the 10 confirmed lncRNAs, four were previously
described as involved in the genesis of different tumors. In

particular, CRNDE appeared to be upregulated in colorectal
cancer, leukemia, and gliomas concordantly with our obser-
vations [22, 26]. DLEU2 was known to be frequently deleted
in lymphocytic leukemia [24], while our study revealed an
upregulation of its expression in gliomas suggesting a tissue-
specific regulation of this gene. Interestingly, three out of 10
lncRNAs were previously identified as part of a signature able
to distinguish among different types and grades of gliomas
[26, 42]. Consistently with the signatures of Zhang et al.,
identified using the same datasets of the present analysis, we
reported the differential expression of CRNDE, PART1, and
RFPL1S. The lack of a complete overlap between the studies
could be due to three main factors: (i) different criteria to
select probes mapped to lncRNAs; (ii) a different statistical
model for the identification of differential expressed genes, or
(iii) a different study design to identify gene signatures.These
observations, validated in different datasets and confirmed by
previous studies, suggest that the ARMmethodwas a suitable
approach to identify set of genes whose altered expression is
peculiar of brain tumor.

3.3. Principal Component Analysis. In order to investigate the
power of the 10 lncRNAs rule to distinguish among brain
tumor and normal samples, we performed a Principal Com-
ponent Analysis (PCA) using the probe intensity values from
GEOdatasetGDS1962 as variables. Figure 4 showedprincipal
components (PC) 1 and 2 obtained using intensities of all
probes (Figure 4(a)) or only probes corresponding to the 10
lncRNAs (Figure 4(b)). In both analyses, the majority of nor-
mal brain samples appeared as a separate cluster distinguish-
able from tumor tissues. This observation was confirmed
by the PCA performed on ArrayExpress dataset E-GEOD-
16011 (Figures 4(c) and 4(d)) that showed similar pattern of
clustering among normal and tumor samples. Moreover, a
certain degree of clustering was also appreciable when tumor
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Figure 3: Genomic alignments of RNA-seq reads corresponding to the lncRNAs: (a) CRNDE and (b) PART1 in the three brain tumors types.
The visualization of the alignment was obtained with the IGV software.

samples were labeled according to tumor type and grade
(Supplementary Figure 2).

The PC analysis performed on the two independent data-
sets suggested that the 10 lncRNAs expression levels were suf-
ficient to clearly separate samples belonging to the two
groups.

3.4. Comodulation Gene Expression Analysis. In order to get
insight into the putative involvement of the 10 long noncod-
ing molecules in specific biological processes, we performed
a comodulation analysis. For this purpose, we exploited our
CorrelaGenes tool [27] looking for set of genes altered in
their expression levels simultaneously with the up- or down-
regulation of each of the 10 lncRNAs. The CorrelaGenes
tool (http://www.igm.cnr.it/cabgen/web-correlagenes0/) was
queried for each lncRNAs with LFC > +1 or LFC < −1 accord-
ing to their sign in the rule, in order to identify genes showing
significant alteration of their expression (i.e., |LFC| > 1) in
a significant proportion of comparisons tested. The analyses
resulted in a total of 10 gene lists including a number of genes
between 1675 and 6601 (Supplementary Tables S4 and S5).
For each gene list, an enrichment analysis for Gene Ontology
terms was conducted by means of the R/Bioconductor GO-
function package [37] using up- or downregulated genes
separately (Supplementary Tables S6 and S7).

For all the 10 lists of downregulated genes, the
analysis showed highly significant enrichments mainly
concentrated in three categories: (i) “Synaptic transmission”
(GO:0007268), (ii) “Ion transport” (GO:0006811) and
related terms, and (iii) “Nervous System Development”
(GO:0007399). The analysis of a list of 503 “common” genes,
found in at least nine out of the 10 lists, confirmed the enri-
chment for the same categories (Figure 5 and Supplementary
Figure 3). Interestingly, these results appeared highly
consistent with the neuronal enriched GO categories found
in the article of Liu and coauthors [43]. In this paper, authors
performed an analysis of miRNAs differential expression
in pediatric gliomas together with a GO terms enrichment
analysis of miRNA target genes resulting in the identification
of several neuronal GO categories belonging to the “Synaptic
transmission” and “Nervous System Development” clades.
Any GO term related to the “Ion transport” category resulted
significantly enriched in the work of Liu and colleagues
leading us to speculate about a specific role of lncRNAs in
this specific biological process.

Taking into consideration the upregulated transcripts, the
number of “common genes” resulted highly reduced (i.e., 𝑛 =
150) and, as expected, not significantly enriched for any GO
term. However, the analysis of single gene lists allowed us
to group some recurrent GO terms in three enriched cate-
gories: (i) “Cell cycle” (GO:0007049) and related terms such
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Figure 4: Principal Component Analysis (PCA) performed on the GEO dataset GDS1962 (a and b) and ArrayExpress dataset E-GEOD-16011
(c and d) considering intensity values of all probes (a and c) or only probes corresponding to the 10 lncRNAs (b and d). Red dots correspond
to brain tumor samples and black dots correspond to normal brain samples.

as “Mitotic cell cycle” (GO:0000278), “Cell cycle process”
(GO:0022402), and “Cell cycle checkpoint” (GO:0000075),
enriched in seven out of 10 gene lists (with adjusted 𝑝
values ranging from 1 × 10−14 to 1 × 10−2); (ii) the “RNA
metabolic process” (GO:0016070) which includes terms such
as “mRNA metabolic process” (GO:0016071), “RNA splic-
ing” (GO:0008380), and “Regulation of mRNA stability”
(GO:0043488), enriched in five out of 10 gene lists (with
adjusted 𝑝 values ranging from 1 × 10−9 to 1 × 10−3); (iii)
the “Gene expression” (GO:0010467) to which belong terms
as “Regulation of transcription from RNA polymerase II

promoter” (GO:0006357) and “Positive regulation of gene
expression” (GO:0010628), enriched in four out of 10 gene
lists (with adjusted 𝑝 values ranging from 1 × 10−6 to 1 × 10−3).

Among several other features, we focused on the “RNA
metabolic process” category that includes many genes invo-
lved in posttranscriptional modification pathways. Taking
into account all genes annotated in the “RNA metabolic pro-
cess” category and all its children terms, a pool of 109 genes
were found present in at least seven out of the 10 lists of
upregulated genes. A functional analysis performed using
both STRING and GeneMANIA tools allowed us to select
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lncRNA n 1 2 3 4 5
GO:0007268 GO:0007399 GO:0043269 GO:0006887 GO:0006836

GO:0007268 Synaptic transmission
GO:0044708 Single-organism behavior

241 392 96 86 51

GO:0023061 Signal release

GO:0007268 GO:0007269 GO:0031175 − −

GO:0007600 Sensory perception

− −

GO:0032940 Secretion by cell

120 27 100 − −

GO:0006396 RNA processing

GO:0006836 GO:0007268 GO:0007399 GO:0007626 GO:0030001

GO:0042391 Regulation of membrane potential
GO:0043269 Regulation of ion transport

58 250 334 57 127

GO:0017157 Regulation of exocytosis

GO:0007268 GO:0006396 GO:0034660 GO:0007399 GO:0006996

GO:0060341 Regulation of cellular localization
GO:0006813 Potassium ion transport

215 160 83 345 448

GO:0006996 Organelle organization

GO:0006812 GO:0007268 GO:0034220 GO:0007399 GO:0043269

GO:0006836 Neurotransmitter transport
GO:0007269 Neurotransmitter secretion

100 146 89 179 55

GO:0031175 Neuron projection development

GO:0006836 GO:0007268 GO:0007399 GO:0034220 GO:0044708

GO:0050877 Neurological system process

GO:0007399 Nervous system development

73 316 524 195 143
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GO:0030001 Metal ion transport
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GO:0007611 Learning or memory
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GO:0006811 Ion transport
GO:0034220 Ion transmembrane transport
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GO:0007186 G-protein coupled receptor signaling pathway

GO:0006836 GO:0007268 GO:0007399 GO:0050877 GO:0006812

GO:0006887 Exocytosis
GO:0050890 Cognition

55 261 392 179 165

GO:0007154 Cell communication

GO:0007268 GO:0007399 GO:0032940 GO:0007611 GO:0060341

GO:0006812 Cation transport

149 222 113 42 113
GO:0007268 GO:0034220 GO:0007399 GO:0006836 GO:0023061
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Figure 5: Enrichment analysis of downregulated genes from comodulation results.

a core of 18 genes highly interconnected on the basis of
experiments/database or physical interactions annotations,
respectively, implemented in the two tools (Figure 6).

The investigation of downregulated genes resulted highly
concordant in the 10 gene lists and highlighted the putative

impairment of neuronal development and functionality acc-
ording to brain tumors characteristics. The analysis of the
10 lists of upregulated genes showed the enrichment of a
wider range of biological processes. In agreement with the
tumorigenic model, many genes showing an increase of their
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Figure 6: Gene networks of the selected 18 genes obtained by the tools: (a) STRING 9.1 and (b) GeneMANIA.

transcriptional levels were related to different aspects of
the cell cycle. Moreover, the involvement of posttranscrip-
tional regulation mechanisms was demonstrated by a relative
enrichment of the “RNA metabolic process” GO category. A
detailed characterization of upregulated genes belonging to
this clade allowed us to identify a subset of 18 genes whose
correlations were independently supported by different kind
of studies as, for example, between YBX1 and SYNCRIP [44–
46] or between CCAR1 and WWTR1 [47]. The 18 genes
selected appeared to operate in several mechanisms of post-
transcriptional regulation such as ILF3 in pre-mRNA splic-
ing, mRNA cytoplasmic export, and mRNA stability [48] or
QKI in alternative splicing [49]. Remarkably, some studies
already demonstrated the impact of expression alterations on
cell cycle and proliferation of some of these genes like SRSF3
[50] and EZH2 [51].

4. Conclusions

In this paper, we described the implementation of the Asso-
ciation Rule Mining methodology for the meta-analysis of
gene expression data. The application of the ARM method
resulted in the identification of a 10 lncRNAs pattern that
was validated in two independent datasets of brain tumors
expression data. Throughout a Principal Component Anal-
ysis, we assessed the potential of the 10 lncRNAs rule to
distinguish between cancer and normal tissues. Moreover, by
a comodulation analysis, wewere able to outline some specific
biological processes that could be putatively related to the
altered expression of the 10 lncRNAs. In conclusion, we
proposed this new ARM-based approach as a valuable tool to
extract relevant biological information in the form of com-
mon expression patterns.
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