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Abstract

Background

Matrix Metalloproteinase-9 (MMP-9) has been shown to play a key role in mediating inflam-

mation and tissue damage in inflammatory bowel disease (IBD). In patients with IBD, the

intestinal tight junction (TJ) barrier is compromised as characterized by an increase in intes-

tinal permeability. MMP-9 is elevated in intestinal tissue, serum and stool of patients with

IBD. Previous studies from our laboratory showed that MMP-9 causes an increase in intesti-

nal epithelial TJ permeability and that the MMP-9 induced increase in intestinal permeability

is an important pathogenic factor contributing to the development of intestinal inflammation

in IBD. However, the intracellular mechanisms that mediate the MMP-9 modulation of intes-

tinal barrier function remain unclear.

Aims

The main aim of this study was to further elucidate the molecular mechanisms involved in

MMP-9 induced increase in intestinal epithelial TJ permeability using Caco-2 monolayers as

an in-vitro model system.

Results

MMP-9 induced increase in Caco-2 TJ permeability was associated with activation and cyto-

plasmic-to-nuclear translocation of NF-κB p65. Knocking-down NF-κB p65 by siRNA trans-

fection prevented the MMP-9 induced expression of the NF-κB target gene IL-8, myosin

light chain kinase (MLCK) protein expression, and subsequently prevented the increase in

Caco-2 TJ permeability. In addition, the effect of MMP-9 on Caco-2 intestinal epithelial TJ

barrier function was not mediated by apoptosis or necrosis.
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Conclusion

Our data show that the MMP-9 induced disruption of Caco-2 intestinal epithelial TJ barrier

function is regulated by NF-κB pathway activation of MLCK.

Introduction

The intestinal epithelium is a single layer of cells within the gut lumen that serves an important

protective function. It acts as a selectively permeable barrier, which allows for absorption of

nutrients while preventing harmful luminal contents, such as gut microbes, from crossing the

intestinal epithelium [1, 2]. Defective intestinal tight junction barrier (TJ), manifested by an

increased intestinal permeability, serves as a key contributor to the pathogenesis of inflamma-

tory bowel disease (IBD) including Crohn’s disease (CD) and ulcerative colitis (UC), celiac dis-

ease, and other inflammatory conditions of the gut [3, 4]. Clinical studies in IBD patients have

shown the key role of intestinal TJ barrier function in the pathogenesis of intestinal inflamma-

tion and emphasized on the enhancement of intestinal barrier which correlated with sustained

long-term clinical remission [5, 6].

Recently, matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of

intestinal inflammation in IBD [7–9]. MMPs are classified into major subgroups including col-

lagenases (MMP-1, -8, -13, -18), gelatinases (MMP -2, -9), stromelysins (MMP -3, -7, -10, -11,

-19), elastase (MMP -12), and membrane type (MMP -1, -5) [8, 10]. Under normal physiologic

conditions, MMPs are involved in processes including angiogenesis, degradation and remodel-

ing of extracellular matrix (ECM), wound repair, and the activation of a wide range of inflam-

matory cytokines [11, 12]. Dysregulated MMP expression, however, can lead to an exaggerated

and prolonged inflammatory response, leading to chronic inflammation [12, 13]. MMP-9 has

been postulated to be proinflammatory and its levels are shown to be markedly elevated in intes-

tinal tissue, serum, and stool of patients with IBD and closely correlate with the disease activity

[14, 15]. Previous studies have shown that in animal models of colitis, MMP-9 was upregulated

and played an important role in the development of intestinal inflammation [16–19]. The dex-

tran sodium sulfate (DSS) and the trinitrobenzene sulfonic acid (TNBS)-induced colitis were

inhibited in MMP deficient mice [17, 20, 21]. Furthermore, it has been shown that MMP-9 inhi-

bition (by a pharmacologic inhibitor or by genetic knock down) prevented the intestinal inflam-

mation in an ileus model of enterocolitis [22]. Together, all previous data suggested the critical

role of MMP-9 in mediating the development of intestinal inflammation. Little is known about

the mechanisms of MMP-9 induced increase in intestinal TJ permeability, and even less has

been reported on whether MMP-9 has a critical role in the pathogenesis of IBD in relation to

the TJ barrier function. Our recent studies suggested that MMP-9 at clinically relevant concen-

trations causes an increase in intestinal epithelial TJ permeability in vitro and in vivo [23]; how-

ever, the intracellular mechanisms involved in MMP-9 induced increase in intestinal TJ

permeability remain unclear. The purpose of this study was to further elucidate the intracellular

mechanisms involved in the MMP-9 induced increase in intestinal epithelial TJ permeability,

using a well-established in vitro intestinal epithelial model system consisting of filter-grown

Caco-2 monolayers. Our results showed that the MMP-9 induced increase in Caco-2 TJ perme-

ability was mediated by an activation of NF-κB signaling pathway. Identification of intracellular

and molecular processes involved in the MMP-9 disruption of intestinal TJ barrier function

could be important in developing new restorative approaches to enhance the intestinal TJ bar-

rier and subsequently in preventing intestinal inflammation.
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Materials and methods

Reagents

DMEM, trypsin, FBS, glutamine, penicillin, streptomycin, PBS and horseradish peroxidase

(HRP)-conjugated secondary antibodies for Western blot analysis were purchased from Invi-

trogen Life Technologies (San Francisco, CA). MLCK antibody was obtained from Sigma

(St. Louis, MO). Phospho-NF-κB p65 and IκB-α, NF-κB p65 and β-actin antibodies were pur-

chased from Santa Cruz (Dallas, TX). SiRNA of NF-κB p65 (RelA), and transfection reagents

were obtained from Dharmacon (Lafayette, CO). The active form of MMP-9 was purchased

from Abcam (Cambridge, MA), isolated from stimulated human neutrophil granulocytes,

disulfide-bridged MMP-9 homodimer. All other chemicals were of reagent grade and were

purchased from Sigma-Aldrich (St. Louis, MO), VWR (Aurora, CO), or Fisher Scientific

(Pittsburgh, PA).

Cell culture

Caco-2 cells (passage 20) were purchased from the American Type Culture Collection-ATCC

(Manassas, VA) and maintained at 37˚C in a culture medium composed of DMEM with 4.5

mg/ml glucose, 50 U/ml penicillin, 50 U/ml streptomycin, 4 mM glutamine, 25 mM HEPES,

and 10% FBS. The cells were kept at 37˚C in a 5% CO2 environment. For growth on filters,

high-density Caco-2 cells (1 X 105 cells) were plated on Transwell filters with 0.4-μm pore

(Corning, Corning, NY) and monitored regularly by visualization with an inverted microscope

and by epithelial resistance measurements. Caco-2 monolayers were cultured for 3–4 weeks

after seeding and only Caco-2 cells from passages 21 to 28 were used to maintain consistency.

The filter-grown Caco-2 monolayers have been used extensively over the last 20 years as in
vitro model system of functional epithelial barrier [24].

Determination of epithelial monolayer resistance and paracellular

permeability

The transepithelial electrical resistance (TER) of the filter-grown Caco-2 intestinal monolayers

was measured using an epithelial voltohmeter (EVOM; World Precision Instruments, Sara-

sota, FL) as previously reported [23, 25]. Electrical resistance was measured in 5% difference

on three consecutive measurements. Caco-2 paracellular permeability was assessed by measur-

ing the luminal-to-serosal flux rate of a paracellular probe, fluorescein isothiocyanate-labeled

FITC dextran 10 kDa (mol wt.: 10,000 g/mol). For determination of mucosal-to-serosal flux

rates, known concentration (25 μg/ml) of FITC dextran 10 kDa was added to the apical solu-

tion at the beginning of each experiment. After each experimental period, the solution from

the basolateral chamber was collected and measured in a fluorescence microplate reader (Bio-

tek Flx 800). All flux studies were carried out at 37˚C and filter-grown Caco-2-monolayers

having epithelial resistance of 400–550 O�cm2 were used. All of the permeability experiments

were repeated three to four times in triplicate.

Assessment of protein expression by Western blot analysis

Protein expression from Caco-2 cells was assessed by Western blot analysis, as previously

described [23, 26]. Cells were lysed with lysis buffer (50 mM Tris�HCl, pH 7.5, 150 mM NaCl,

500 M NaF, 2 mM EDTA, 100 M vanadate, 100 M PMSF, 1 g/ml leupeptin, 1 g/ml pepstatin A,

40 mM paranitrophenyl phosphate, 1 g/ml aprotinin, and 1% Triton X-100) on ice for 30 min.

The lysates were centrifuged at 1000 g for 10 min in an Eppendorf centrifuge (5417R; Haup-

pauge, NY) to obtain a clear lysate. The supernatant was collected and protein concentration
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was determined using the Bio-Rad Protein Assay kit (Bio-Rad, Hercules, CA). Laemmli gel

loading buffer (Bio-Rad) was added to the lysate containing 10–20 μg of protein and boiled at

100˚C for 7 min, after which proteins were separated on an SDS-PAGE gel. Proteins from the

gel were transferred to a nitrocellulose membrane overnight. The membrane was incubated

for 2 hrs in blocking solution (5% dry milk in TBS-Tween-20 buffer) and then incubated with

antibody in blocking solution. After a wash in TBS-1% Tween buffer, the membrane was incu-

bated in secondary antibody and developed using enhanced chemi-luminescence reagents on

ChemiDoc Gel Imaging (Biorad, Hercules, Ca).

Transfection of siRNA NF-κB p65

Targeted siRNAs were obtained from Dharmacon (Chicago, IL). Caco-2 monolayers were

transiently transfected using DharmaFect transfection reagent. Briefly, 5 x 105 cells per filter

were seeded into a 12-well transwell plate and grown to confluence. Caco-2 monolayers were

then washed twice with PBS and 0.5 ml of Accell Media was added to the apical compartment

of each filter and 1.5 ml was added to the basolateral compartment of each filter. Five nano-

grams of the siRNA and 2 μl of DharmaFect reagent were added to the apical media. Non-tar-

get (NT) siRNA was used as a control. The MMP-9 experiments were carried out 72 hrs after

transfection. The efficiency of silencing was confirmed by Western blot analysis.

Nuclear extracts and ELISA

Filter-grown Caco-2 cells were treated with MMP-9 for 60 minutes. Nuclear and cytoplasmic

fractions were extracted according to the manufacturer’s protocol using Nuclear Extract Kit

from ActiveMotif [27]. The NF-κB DNA-binding activity assay was performed using Trans-

AM ELISA-based kits from Active Motif according to the manufacturer’s protocol. In brief,

the binding reactions contained 1 pM biotinylated probe (Integrated DNA Technologies) and

5 μg of nuclear extract in complete binding buffer with a total volume of 50 μl. After 30 min of

incubation, the solution was transferred to an individual well on the plate and incubated for 1

h. Rabbit NF-κB p65 Ab (2 μg/ml) was added to the well to bind NF-κB p65 from the nuclear

extract. After incubation for 1 hr, NF-κB p65 Ab was removed, and 100 μl of anti-rabbit HRP-

conjugated IgG were added to the well and incubated for 1 hr. Subsequently, 100 μl of develop-

ing solution was added for 2–10 min, and 100 μl of stop solution were added. The absorbance

at 450 nm was determined using the SpectraMax 190 (Molecular Devices).

Immunostaining of NF-κB p65

Cellular localization of the transcription factor NF-κB p65 was assessed by an immunofluores-

cent Ab-labeling technique as previously described [28]. At the end of the experimental period,

filter-grown Caco-2 monolayers were washed twice in cold PBS and were fixed with methanol

for 20 min. Then, cells were permeabilized with 0.1% Triton X-100 in PBS at room tempera-

ture for 20 min. The Caco-2 monolayers were then incubated in blocking solution composed

of BSA and normal donkey serum in PBS for 1 hr. Cells were then labeled with primary Abs in

blocking solution overnight at 4˚C. After being washed with PBS, the filters were incubated in

FITC-conjugated secondary Ab for 1 hr at room temperature. Prolong Gold antifade reagent

with DAPI was used to mount the filters onto the coverslips. Immunostaining of NF-κB p65

was visualized and images obtained using a Nikon fluorescence microscope equipped with

Axiocam digital camera in automatic mode. Images were processed with Zen software (Zeiss).
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Measurement of IL-8

Caco-2 monolayers were treated with MMP-9 (400 ng/ml) for 24 hrs in serum-free DMEM

medium. The culture media was then collected and centrifuged and IL-8 levels were then mea-

sured using Multi-Analyte ELISArray kit from Qiagen according to the manufacturer’s protocol.

Assessment of apoptosis and cell death

After MMP-9 experimental treatment (24 and 48 hrs), Caco-2 cells were trypsinized and

assessed for apoptosis using the Annexin VFITC Apoptosis Detection kit II from Biolegend

according to the manufacturer’s instructions. Cells were digested by 0.25% trypsin-EDTA

solution, washed twice with cold PBS and stained with Annexin V-PE (5 μL) and 7-amino-

actinomycin D (7-AAD) (5 μL) in binding buffer. Annexin VFITC was used to stain for the apo-

ptotic cells and 7-AAD was used to stain the necrotic cells. Cells were washed two times with

FACS staining buffer and analyzed by 16-color BD LSR Fortessa. Treated or untreated cells

were washed and 20,000 cells were re-suspended in 20ul of trypan blue. Cells were counted

under a microscope by using a cell counting hemocytometer. Trypan blue-stained dead or

necrotic cells were excluded from the total number of cells.

Statistical analysis

Results are expressed as mean ± SD of triplicate measurements. Two-way ANOVA were per-

formed to determine whether different treatments affect the outcomes. Multiple comparisons

were conducted following significant ANOVA by using t-tests. All analyses were performed

using GraphPad Prism (GraphPad Prism 7.00 for Windows, GraphPad Software). A P value of

0.05 was used to indicate statistical significance. All experiments were repeated at least three

times to ensure reproducibility.

Results

NF-κB requirement in MMP-9 induced increase in Caco-2 TJ permeability

In these experiments, MMP-9 (400 ng/ml) caused a time-dependent drop in Caco-2 trans-epi-

thelial resistance (TER) (Fig 1A), as also shown previously by us [23], MMP-9 caused time-

dependent drop in Caco-2 TER (25%) between 24 and 72 hrs of treatment. Conversely, MMP-9

caused a correlated increase in Caco-2 permeability to a paracellular marker, dextran 10 kDa

(Fig 1B) starting at 12 hrs of MMP-9 treatment and continued up to 72 hrs of treatment (~

Fig 1. Time-course effect of MMP-9 on Caco-2 intestinal epithelial TJ permeability. (A) Time-course effect of

MMP-9 (400 ng/ml) on Caco-2 TER and (B) mucosal-to-serosal flux of paracellular marker dextran 10 kDa (n = 4). ���

P< 0.001 vs control. The effect of MMP-9 on Caco-2 TER and paracellular permeability were measured over a 72-hr

experimental period. (C) Effect of recovery after MMP-9 treatment cessation on Caco-2 TER (n = 4). ��� P< 0.001 vs

control; � P< 0.05 vs control. Filter-grown Caco-2 monolayers were refreshed with control media after MMP-9

experimental period ended.

https://doi.org/10.1371/journal.pone.0249544.g001
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10-fold). The time course of Caco-2 TER recovery following MMP-9 removal was also examined.

The removal of MMP-9 after 72 hrs of treatment resulted in recovery of the Caco-2 TER starting

at 24 hrs and continued up to 72 hrs of removal until full recovery was achieved (Fig 1C).

Many studies have reported the important role of NF-κB activation in regulating the intesti-

nal TJ barrier function in vitro and in vivo [29–36]. In these experiments, we examined the

possible involvement of NF-κB in MMP-9 induced increase in Caco-2 TJ permeability. MMP-

9 treatment caused a time-dependent increase in phosphorylated NF-κB p65, peaking at 1 hr

of treatment and continued up to 4 hrs of treatment (Fig 2A). Since IκB-α degradation is

required for the activation of NF-κB p65, we also examined the effect of MMP-9 on IκB-α deg-

radation in Caco-2 monolayers. MMP-9 caused a time-dependent degradation of IκB-α, indi-

cating that MMP-9 caused activation of NF-κB p65 (Fig 2A).

To further validate the MMP-9 activation of NF-κB p65 in Caco-2 monolayers, we examined

the effect of MMP-9 on cytoplasmic-to-nuclear translocation of NF-κB p65 by measuring NF-

κB p65 expression in the cytoplasmic and nuclear fractions. In control Caco-2 monolayers, NF-

κB p65 is expressed mostly in the cytoplasmic fraction, with only minimal amount in the

nuclear fraction (Fig 2B). MMP-9 treatment resulted in cytoplasmic NF-κB p65 translocation

into the nuclear fraction (Fig 2B). MMP-9 induced NF-κB p65 cytoplasmic-to-nuclear translo-

cation was also examined by immunostaining. MMP-9 treatment resulted in a rapid increase in

NF-kB p65 cytoplasmic-to-nuclear translocation following MMP-9 treatment (1-hr

Fig 2. Effect of MMP-9 on NF-κB p65 activation in Caco-2 monolayers. (A) Phospho-NF-κB p65 and IκB-α expression were

determined in filter-grown Caco-2 monolayers treated with MMP-9 (400 ng/ml) for increasing time periods (0–6 hrs). (B) NF-

κB p65 expression in the cytoplasmic and nuclear fractions was assayed by Western blot analysis after MMP-9 treatment (1-hr

experimental period). (C) NF-κB p65 cytoplasmic-to-nuclear translocation was determined by immunostaining. (Yellow, NF-kB

p65; Blue, DAPI (nuclei)). Original magnification, ×40. (D) NF-κB p65 binding to the oligonucleotide probe containing the κB-

binding site was determined by ELISA-binding assay. MMP-9 caused a significant increase in NF-κB p65 binding (1-hr

experimental period). The oligonucleotide containing a mutated NF-κB-binding (mut) motif did not inhibit the NF-κB p65

binding to the DNA probe; however, the addition of wild-type (WT) oligonucleotide containing the consensus NF-κB

p65-binding site as a competitive inhibitor prevented the binding of NF-κB. ��� P< 0.001 vs control. (E) NF-κB p65 siRNA

transfection resulted in a marked depletion in NF-κB p65 protein expression. Caco-2 monolayers were transfected with NF-κB

p65 siRNA for a 72-hr time period, (NT; not-target siRNA). (F) NF-κB p65 siRNA knock-down prevented the MMP-9 induced

increase in NF-κB p65 binding to the oligonucleotide probe containing the κB-binding site. ��� P< 0.0001 vs control; ###

P< 0.001 vs MMP-9 treatment.

https://doi.org/10.1371/journal.pone.0249544.g002
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experimental period) (Fig 2C), confirming that MMP-9 causes activation and translocation of

NF-κB p65 in Caco-2 monolayers. Next, we examined the effect of MMP-9 on NF-κB p65 activ-

ity by assessing the nuclear binding of NF-κB p65 to its consensus sequence by ELISA-binding

assay. As shown in Fig 2D, MMP-9 caused a significant and marked increase in NF-κB p65

binding to the consensus κB sequence (50-GGGACTTTCC-30) on the oligonucleotide probe,

suggesting an increase in NF-κB p65 transcriptional activity in response to MMP-9 in Caco-2

monolayers. The specificity of NF-κB p65 binding to the DNA probe was confirmed by adding

a high dose of wild-type oligonucleotide containing the consensus κB-binding site as a competi-

tive inhibitor for NF-κB p65 binding. As expected, the addition of wild-type oligonucleotide

inhibited the binding of NF-κB p65 to the DNA probe. In contrast, the mutated NF-κB-binding

motif (50-CTCACTTTCC-30) did not inhibit the NF-κB p65 binding (Fig 2D), indicatingthat

MMP-9-activated and -transclocated NF-κB p65 binds to a κB site on DNA. To further investi-

gate the requirement of NF-κB p65 in the MMP-9 induced increase in Caco-2 intestinal TJ per-

meability, we knocked-down the expression of NF-κB p65 by siRNA transfection in filter-

grown Caco-2 monolayers. As shown in Fig 2E, knocking-down NF-κB p65 by siRNA transfec-

tion resulted in a near-complete silencing of p65 expression, and completely inhibited the

MMP-9 induced increase in NF-κB p65 nuclear binding to its DNA probe (Fig 2F).

NF-κB p65 requirement for MMP-9 induced increase in MLCK expression

In the following studies, we showed that knocking-down NF-κB p65 by siRNA transfection

prevented the MMP-9 induced drop in Caco-2 TER and increase in dextran 10 kDa flux (Fig

3A and 3B), suggesting a crucial regulatory role of NF-κB p65 in the MMP-9 induced increase

in Caco-2 intestinal TJ permeability. Furthermore, we examined the effect of MMP-9 treat-

ment on NF-kB down-stream target gene IL-8 production in Caco-2 monolayers. Fig 3C

showed that MMP-9 treatment resulted in a significant increase in IL-8 levels in medium col-

lected from Caco-2 cultures as measured by ELISA. Knocking-down NF-kB p65 by siRNA pre-

vented the MMP_9 induced increase in IL-8 production, suggesting that MMP-9 activation of

NF-kB is associated with an increase in the release of the pro-inflammatory cytokine IL-8.

Recent studies from our laboratory indicated that the MMP-9-induced increase in intestinal

TJ permeability in vitro and in vivo was mediated by an increase in MLCK protein expression

and activity [23]. However, the intracellular pathways involved in the MMP-9 regulation of

MLCK gene and protein expression remain unclear. We examined the possibility that the NF-

κB p65 pathway regulates the MMP-9 induced up-regulation of MLCK protein expression.

MMP-9 caused an increase in Caco-2 MLCK protein expression (Fig 3D), and knocking-

down NF-κB p65 by siRNA transfection inhibited the MMP-9 induced increase in MLCK

expression (Fig 3D). These findings indicated that MMP-9 activation of the NF-κB p65 path-

way mediated the increase in MLCK expression. It has also been reported that MMP-9 modu-

lation of MLCK expression was mediated by p38 kinase activation [23]. To examine the role of

p38 kinase in MMP-9-activation of NF-κB in Caco-2 monolayers, we silenced p38 kinase by

siRNA transfection and determined MMP-9 activation of NF-κB p65 in Caco-2 monolayers.

SiRNA p38 kinase prevented the MMP-9 induced activation/phosphorylation of NF-κB p65

(Fig 3E), suggesting that NF-κB p65 regulation of MLCK is down-stream of p38 kinase

MMP-9 induced increase in Caco-2 TJ permeability is not due to apoptosis

MMP-9 has been previously shown to play controversial pro-apoptotic and anti-apoptotic roles in

different cell types [37–45]. In the following studies, we examined whether MMP-9 induced dis-

ruption of Caco-2 TJ barrier was due to apoptosis or cell death. MMP-9 effect on Caco-2 cell apo-

ptosis and necrosis was determined by flow cytometry by labeling the apoptotic cells with
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Annexin VFITC and necrotic cells with 7-amino-actinomycin D (7-AAD) [46]. Apoptosis quantifi-

cation was determined by detecting membrane phosphatidylserine using Annexin V as a probe.

While, necrosis was determined by measuring the membrane integrity where 7-AAD is able to

permeate across the cell membrane to label the DNA. As shown in Fig 4, MMP-9 treatment did

not result in Caco-2 cell apoptosis or necrosis, indicating that the MMP-9 induced increase in

Caco-2 TJ permeability was due to intracellular mechanisms not involving apoptosis or cell death.

Discussion

Despite its central importance in mediating the inflammatory process in IBD and animal mod-

els of colitis, the intracellular mechanisms of MMP-9 regulation of intestinal TJ barrier

Fig 3. Effect of NF-κB inhibition on MMP-9 induced increase in Caco-2 TJ permeability and increase in MLCK

expression. (A) NF-κB p65 siRNA transfection prevented the MMP-9-induced drop in Caco-2 TER and (B) increase in

dextran 10 kDa flux (n = 4). ��� P< 0.001 vs control; ## P< 0.01 vs MMP-9 treatment; ���� P< 0.0001 vs control; ####

P< 0.0001 vs MMP-9 treatment. (C) MMP-9 treatment resulted in a significant increase in NF-κB target gene IL-8. NF-κB

p65 siRNA prevented the IL-8 production by Caco-2 monolayers after MMP-9 treatment (24 hrs). IL-8 secretion was

determined by collecting and centrifuging the media and then assayed by ELISA-based kit. ��� P< 0.0001 vs control; ###

P< 0.001 vs. MMP-9 treatment. (D) Knocking-down NF-κB p65 inhibited the MMP-9 induced increase in MLCK protein

expression as assessed by western blot analysis. (NT; non-target siRNA). (E) Silencing p38 kinase by siRNA transfection

prevented the MMP-9-induced activation of NF-κB p65 as assessed by phosphorylation of p65. Caco-2 monolayers were

transfected with p38 kinase siRNA for a 72-hr time period and then treated with MMP-9 for 1 hr, (NT; not-target siRNA).

https://doi.org/10.1371/journal.pone.0249544.g003

Fig 4. Effect of MMP-9 on Caco-2 cell death. (A) Dual-color dot plots representing cellular apoptosis. Upper left

panel, Necrotic cells; lower right panel, apoptotic cells. Caco-2 monolayers were treated with MMP-9 for 24 and 48 hrs.

Caco-2 monolayers were labeled with Annexin VFITC (apoptosis) or 7-AAD (necrosis). MMP-9 did not induce

apoptosis or cell necrosis in Caco-2 monolayers. (B) % of live cell detection by trypan blue exclusion method. MMP-9

treatment did not affect total number of dead Caco-2 cells compared to control.

https://doi.org/10.1371/journal.pone.0249544.g004

PLOS ONE MMP-9 regulation of intestinal tight junction barrier via NF-κB activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0249544 April 7, 2021 8 / 17

https://doi.org/10.1371/journal.pone.0249544.g003
https://doi.org/10.1371/journal.pone.0249544.g004
https://doi.org/10.1371/journal.pone.0249544


function have not been identified. The present study demonstrated the involvement of NF-κB

p65 in MMP-9 induced increase in intestinal epithelial TJ permeability. The results showed

that MMP-9 at a physiologically relevant concentration (400 ng/ml) caused rapid and early

activation of NF-κB p65 in filter-grown Caco-2 monolayers. Moreover, knocking-down NF-

κB p65 by siRNA prevented the MMP-9 induced increase in Caco-2 TJ permeability. Addi-

tionally, silencing NF-κB p65 prevented the MMP-9 induced up-regulation of MLCK, a key

regulator of the intestinal TJ barrier. Moreover, the MMP-9 induced increase in Caco-2 intes-

tinal epithelial TJ permeability was not mediated by apoptosis.

MMP-9 is one of the metalloproteinases family consisting of 25 members [47]. MMP-9 is

unique as its protein expression and activity is undetectable in most healthy intestinal tissues

but has been shown to be highly expressed in a variety of inflammatory states, including IBD

[48]. It has been shown recently that MMP-9 caused an increase in intestinal epithelial TJ per-

meability in Caco-2 monolayers [23]; however, the intracellular mechanisms involved have yet

to be delineated. In this study, we examined potential intracellular mechanisms that mediate

the MMP-9 induced increase in Caco-2 intestinal epithelial TJ barrier. Extensive studies have

indicated that the transcription factor NF-κB plays a crucial role in regulating the intestinal TJ

barrier function and increased permeability in vitro and in animal models of colitis [30, 33,

49–53], and inhibition of NF-κB signaling improved symptoms of DSS-induced colitis in mice

[54, 55]. It is also worth noting that NF-κB activity was found to be increased in patients with

IBD [56]. Moreover, previous studies have provided compelling evidence on the crucial role

that the NF-κB signaling pathway plays in mediating the cytokine-induced increase in intesti-

nal epithelial TJ permeability, including TNF-α, IL-1β, IL-6, IL-8, IFN-γ, IL-13 and others [26,

30, 57–62]. Although there appears to be an existing relationship between NF-κB activity and

downstream activation of MMP-9 in intestinal inflammation, there is no clear evidence of

MMP-9 activating NF-κB to modulate the intestinal epithelial TJ barrier. For example, it has

been shown that TNF- α induced the expression of MMP-9 in human bronchial epithelial cells

and that this induction is mediated via the NF-κB -mediated pathway [63, 64]. Earlier studies

have shown that Helicobacter pylori induced activation of NF-κB, leading to MMP-9 gene

transcription in gastric epithelial cells [65]. More recent studies have shown that aluminum

caused an increase in HT-29 intestinal epithelial TJ permeability that was mediated by NF-κB

induced up-regulation of MMP-9 [66]. In addition to their roles in increasing intestinal per-

meability, the current study showed the sequential relationship of MMP-9 activating the

downstream effector NF-κB to regulate the intestinal epithelial TJ barrier function. MMP-9

caused a rapid degradation of IκB-α and phosphorylation of NF-κB p65 subunit in Caco-2

cells. The requirement of NF-κB p65 in the MMP-9 induced increase in TJ permeability was

demonstrated by the silencing of NF-κB p65 expression in Caco-2 cells. NF-κB p65 depletion

by NF-κB p65 siRNA transfection significantly attenuated the MMP-9-induced increase in

Caco-2 TJ permeability. In combination, these studies confirmed the requirement of NF-κB in

mediating the MMP-9 induced increase in Caco-2 TJ permeability. Interestingly, our results

showed that inhibition of NF-κB also prevented the MMP-9 activation of the NF-κB target

gene IL-8. This finding is consistent with previous reports demonstrating the requirement of

intestinal epithelial MMP-9 in mediating intestinal inflammation through increase secretion

of IL-8 and disruption of intestinal epithelial barrier in a genetically engineered mouse model

that can overexpress MMP-9 specifically in intestinal epithelial cells [67]. Additional investiga-

tion is needed to delineate the MMP-9 induced mechanisms in vivo, including possible recruit-

ment of immune cells that produce pro-inflammatory cytokines leading to further disruption

of the intestinal epithelial TJ barrier.

MMP-9 had been proposed to trigger apoptosis in many cell types [68–70] and the increase

in apoptosis in intestinal epithelial cells has been postulated to be an important mechanism for
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the leakiness observed in IBD patients [71–73]. Due to these findings, we examined the possi-

bility that the MMP-9 induced increase in Caco-2 TJ permeability may also be due to an

increase in cell apoptosis. MMP-9 treatment over different time periods did not induce apo-

ptosis or necrosis in Caco-2 cells, suggesting that Caco-2 cell apoptosis or cell death was not a

mechanism mediating the MMP-9-induced increase in Caco-2 TJ permeability. The role of

MMP-9 in apoptosis has been controversial: previous studies have shown that MMP-9 up-reg-

ulation had a protective effect in colitis associated cancer (CAC) and induced apoptosis via

activation of Notch-1 signaling [37, 39]; other studies have shown that knock-out models of

MMP-9 resulted in delayed apoptosis of hypertrophic chondrocytes [74]. It is worth noting

that apoptosis has been suggested to be an important intracellular mechanism for some cyto-

kine (TNF-α, IFN-γ IL-4, and IL-13)-induced increase in intestinal TJ permeability [51, 75–

77]. In line with our current studies, NF-κB has been shown to protect cells from death by

inducing expression of anti-apoptotic proteins, including Bcl-xL, FLICE-like inhibitory pro-

tein, and members of the inhibitor of apoptosis (IAP) family [78, 79]. In contrast, other reports

have shown that NF-κB activation in epithelial cells caused an increase in the production of

Fig 5. Schematic diagram of intracellular mechanism involved in MMP-9 regulation of Caco-2 TJ barrier function.

https://doi.org/10.1371/journal.pone.0249544.g005
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inflammatory chemokines that recruit immune cells to tissues, thereby initiating an inflamma-

tory amplification cascade and acting in a pro-apoptotic manner [80]. Since we have found

herein that MMP-9 caused an increase in intestinal epithelial TJ permeability in an apoptosis-

independent manner, future studies identifying the anti-apoptotic proteins involved will be of

great insight into understanding the intracellular mechanisms required in MMP-9 induced

increase in intestinal TJ permeability and barrier defect.

Previous studies from our laboratory and others have shown the central role of myosin light

chain kinase (MLCK) in regulating the intestinal epithelial TJ permeability [81–84]. MLCK is a

Ca2+-calmodulin-dependent serine/threonine kinase that has been shown to regulate peri-junc-

tional acto-myosin filaments and mechanical induced opening of the TJ barrier in intestinal epi-

thelial cells. Moreover, previous studies have found that increased MLCK expression activity

strongly correlated with active inflammation in IBD [85]. MLCK has also been shown to be

essential in mediating the TNF-α, IL-1β and IL-13-induced increase in intestinal epithelial TJ

permeability in vitro and in vivo [25, 30, 34, 85–88]. In addition, several studies have found a

pathogenic role of MLCK in both intestinal barrier dysfunction and intestinal inflammation in

animal models of IBD [88–90]. Recently, we showed that MMP-9 induced increase in intestinal

epithelial TJ permeability was also mediated by an increase in MLCK expression in a p38 kinase-

dependent manner in vitro and in vivo and in a DSS-colitis mouse model [23, 91]. However, the

involvement of NF-κB in MMP-9 induced increase in MLCK expression was not determined. In

the current study, we demonstrated the requirement of NF-κB activation in MMP-9-upregula-

tion of MLCK expression in Caco-2 monolayers. Silencing of the NF-κB p65 subunit prevented

the MMP-9 induced increase in MLCK expression and subsequent increase in intestinal epithe-

lial TJ permeability. Consistent with the current data, previous studies have shown that the NF-

κB signaling pathway mediated the cytokine-induced MLCK activation leading to an MLCK-

dependent increase in intestinal TJ permeability in vitro and in vivo [30, 88, 92, 93].

In conclusion, the current results demonstrated for the first time that NF-κB plays a key

role in MMP-9 induced increase in MLCK expression and subsequently leads to an increase in

intestinal epithelial TJ permeability in Caco-2 monolayers. An overall schematic diagram of

the intracellular pathway examined in this study is shown in Fig 5.
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