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Abstract: Increasing planting density is an effective way to improve maize yield, but high plant
populations often cause a lodging problem. This experiment was conducted to investigate the effect
of increasing planting density on stalk lodging resistance and grain yield, and to explore the effects
on stalk and yield properties of spraying ethephon in densely planted summer maize. The summer
maize hybrid, Xundan20 (XD20), was used as experimental material. It was grown by spraying
water (CK) or ethephon (E) at BBCH (BASF, Bayer, Ciba-Geigy and Hoechst) 17 under three different
planting densities of 60,000 plants ha−1 (L), 75,000 plants ha−1 (M) and 90,000 plants ha−1 (H) in
order to explore the possibility of synergistic improvement in stalk lodging resistance and grain
yield. The results from this experiment suggested that the gravity center height of densely planted
summer maize was significantly increased, the stem diameter, area and number of vascular bundles
were significantly decreased and the dry weight per unit internode was significantly decreased,
thereby weakening the stalk rind penetration strength and bending performance, resulting in a
significant increase in lodging percentage. The ear height was significantly decreased and the SPAD
(soil and plant analysis development) and canopy light transmittance were increased after spraying
ethephon; then, the internode dry weight per unit length was increased and the stalk rind penetration
strength and bending performance were enhanced so as to significantly reduce the lodging percentage
and increase the grain yield. The correlation analysis further showed that lodging percentage was
significantly negatively correlated with stem diameter, area and number of vascular bundles and
stalk bending performance, but there were no strong relationships with grain yield. This suggested
that the synergistic improvement in stalk lodging resistance and grain yield was not contradictory.
Under the experiment conditions, the effect of spraying ethephon was most significant when the
planting density was 90,000 plants ha−1. At the time, the lodging percentage and grain yield were
12.2% and 11,137.5 kg ha−1, which were decreased by 44.6% and increased by 8.0% compared with
the control treatment. Scientific chemical regulation could significantly improve the stalk lodging
resistance and grain yield of densely planted summer maize.

Keywords: planting density; ethephon; summer maize; stalk lodging resistance; grain yield

1. Introduction

Lodging is a common problem in maize production. It is mainly divided into root
lodging and stalk lodging, which seriously affect the yield, quality and mechanized har-
vesting quality. During the grain filling stage of maize, the ear weight increases gradually,
and the center of gravity increases accordingly [1]. At the same time, the stalk moisture
gradually decreases, which reduces the expansion pressure of the cells, reduces the cell
volume and increases the gap between the cells, resulting in a decrease in stalk strength [2].
Therefore, stalk lodging usually occurs during the grain filling stage, which destroys the
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crop canopy structure, weakens the leaves’ photosynthesis, affects the material transport
between organs and results in final yield reductions of 45–48% [3–5]. Additionally, it
reduces the accumulation of nutrients in grains, thus reducing the commodity quality [6].
Lodging also causes harvest obstacles and increases harvest costs [7], restricting the compre-
hensive utilization and industrialization development of maize. Therefore, more research
is necessary to improve maize stalk lodging resistance.

Stem morphological characteristics, chemical components, anatomical structures and
mechanical properties all affect the stalk strength, thus affecting the stalk lodging resistance.
Usually, the more flexible stems have longer, thicker and conical internodes [8]. A high
proportion of cell sclerenchyma was beneficial to plant lodging resistance [9]. Vascular
bundles had a supporting effect on stems, but there were different understandings about
the relationship between the number and area of vascular bundles and stalk strength
in previous studies. Ren et al. [10] showed that the number of vascular bundles was
significantly positively correlated with lodging resistance. Jiang et al. [11] showed that
the increase in the number of vascular bundles was not conducive to lodging resistance,
and the areas of vascular bundles and phloem were significantly positively correlated with
stalk strength. Some people thought that hybrids with the area of smaller vascular bundles
had stronger lodging resistance [12]. In previous studies, the content and composition
of structural carbohydrates were important in lodging resistance, the accumulation of
cellulose and lignin could increase stalk strength and lignin H subunits played a key role
in strengthening the maize stalk [13]. Stalk bending strength was strongly associated
with stalk lodging across multiple environments, and it was an excellent phenotype for
predicting lodging [14].

Increasing planting density is an effective way to increase yield [15–17], but, once
the planting density exceeds the optimal density, the maize yield will decrease [18]. In
previous studies, high planting density increased leaf area index (LAI), effectively expanded
group source and sink, improved group photosynthesis efficiency and increased crop
productivity [19–21]. However, other studies showed that the ventilation and canopy light
transmittance of the dense planting density maize group were reduced and individual
competition was intensified, thereby accelerating leaf senescence and reducing dry matter
accumulation [22–25]. At the same time, the plant height and gravity center height were
increased, the stem was thin and weak and the root system was poorly developed, which
would increase the probability of lodging and have a negative impact on the harvested
yield [26,27].

Plant growth regulators play an important role in modulating diverse processes
throughout plant growth and development. Ethephon and its compounding agents are
widely used in densely planted maize to prevent lodging and increase yield [28]. Ethephon
could regulate plant hormone biosynthesis and related signal transductions, thus inhibiting
internode elongation, resulting in decreased plant height, ear height and gravity center
height and increased dry weight per unit internode and increased stalk strength [29,30].
In previous studies, after ethephon application, stalk rind penetration strength, bending
strength, lignin content and the key enzymes activities in lignin synthesis were signifi-
cantly increased, which was beneficial to enhance stalk lodging resistance and increase the
yield [31]. However, some studies showed that spraying ethephon in environments where
lodging did not occur led to a reduction in maize yield [32,33].

Lodging resistance is an important condition for high yield, stable yield and mecha-
nized production of densely planted maize. Increasing the planting density is an important
way to increase the yield, but blindly increasing planting density increases the lodging risk
and reduces the grain yield. Ethephon has been widely applied to reduce the lodging risk
in maize production. However, there is little information on how ethephon regulates crop
canopy structure and stalk dry matter accumulation to improve stalk strength. How to
combine the two cultivation measures of increasing planting density and spraying ethep-
hon to achieve the goal of synergistic improvement in yield and lodging resistance is the
focus of future research. Compared with a previous study [34], we paid more attention to
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field agronomic traits, such as LAI, soil and plant analysis development (SPAD) and canopy
light transmittance. Additionally, we used a new indicator named maximum bending
strength in the field to reflect stalk strength. The focus of this study was to explore the
possibility of achieving synergistic improvement in stalk lodging resistance and grain yield
by spraying ethephon under dense planting density so as to provide a scientific basis for
improving the efficiency and competitiveness of the maize industry.

2. Results
2.1. Effects of Spraying Ethephon on Plant Height, Ear Height and Gravity Center Height of
Summer Maize

The plant height, ear height and gravity center height of Xundan20 (XD20) were
significantly increased as planting density increased (Figure 1). Compared with those of
low control density treatment (LCK), the plant height, ear height and gravity center height
of medium control density treatment (MCK) and high density control treatment (HCK)
were increased by 2.7%, 4.7%, 3.9%, 4.7%, 10.5% and 8.0%, respectively. The plant height,
ear height and gravity center height of XD20 were significantly decreased after spraying
ethephon (Figure 1). The plant height, ear height and gravity center height under ME
were 3.7%, 12.9% and 10.1% lower than those under MCK, respectively; and those under
HE were 5.2%, 14.3% and 10.2% lower than those under HCK, respectively. The results
obtained from 2020 to 2021 exhibited similar basic trends.
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Figure 1. Effects of spraying ethephon on plant height, ear height and gravity center height of
summer maize. LCK, MCK, ME, HCK and HE were the treatments of low density control, medium
density control, medium density sprayed with ethephon, high density control and high density
sprayed with ethephon, respectively. Different lowercase letters in the figure indicated significant
difference at 5% level.

2.2. Effects of Spraying Ethephon on Leaf Area Index (LAI) and Soil and Plant Analysis
Development (SPAD) of Summer Maize

With the increase in planting density, the LAI of XD20 was significantly increased, and
the SPAD was significantly decreased (Table 1). Compared with those of LCK, the LAI of
MCK was increased by 26.7%, and the SPAD of MCK was decreased by 3.5%; the LAI of
HCK was increased by 48.8%, and the SPAD of HCK was decreased by 6.7%. After spraying
ethephon, the LAI of XD20 was significantly decreased, and the SPAD was significantly
increased (Table 1). Compared with those of MCK, the LAI of medium density sprayed
with ethephon treatment (ME) was decreased by 5.8%, and the SPAD of ME was increased
by 2.3%; compared with those of HCK, the LAI of high density sprayed with ethephon
treatment (HE) was decreased by 14.2%, and the SPAD of HE was increased by 3.7%. The
results obtained from 2020 to 2021 exhibited similar basic trends.
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Table 1. Effects of spraying ethephon on LAI and SPAD of summer maize.

Treatment
LAI SPAD

2020 2021 2020 2021

LCK 4.2 d 4.4 d 60.4 a 58.6 a

MCK 5.3 c 5.7 b 58.9 b 56.0 b

ME 5.3 c 5.0 cd 59.1 b 58.4 a

HCK 6.4 a 6.4 a 56.5 c 54.6 c

HE 5.7 b 5.3 bc 58.6 b 56.5 b

ANOVA
Year (Y) ns **

Density (D) ** **
Ethephon (E) ** **

Y × D ns ns
Y × E * *
D × E * ns

Y × D × E ns **
LCK, MCK, ME, HCK and HE were the treatments of low density control, medium density control, medium
density sprayed with ethephon, high density control and high density sprayed with ethephon, respectively.
Different lowercase letters in the table indicated significant difference at 5% level. ns, no significance. *, significant
at 0.05 probability level. **, significant at 0.01 probability level.

2.3. Effects of Spraying Ethephon on Canopy Light Transmittance of Summer Maize

The canopy light transmittances of XD20 were significantly decreased of the ear layer
and bottom layer as planting density increased (Figure 2). Compared with that of LCK,
the canopy light transmittances of the ear layer and bottom layer of MCK and HCK were
decreased by 33.8%, 33.3%, 48.9% and 61.7%, respectively. The canopy light transmittances
of XD20 were significantly increased of the ear layer and bottom layer after spraying
ethephon (Figure 2). The ear and bottom layers under ME were 31.1% and 23.9% higher
than those under MCK, respectively; and those under HE were 26.8% and 72.9% higher
than those under HCK, respectively. The results obtained from 2020 to 2021 exhibited
similar basic trends.
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Figure 2. Effects of spraying ethephon on canopy light transmission of summer maize. LCK, MCK,
ME, HCK and HE were the treatments of low density control, medium density control, medium
density sprayed with ethephon, high density control and high density sprayed with ethephon,
respectively. Different lowercase letters in the figure indicated significant difference at 5% level.

2.4. Effects of Spraying Ethephon on Stalk Traits of Summer Maize
2.4.1. Internode Length

The basal internode (the internode near the ground) length of XD20 was significantly
increased as planting density increased (Table 2). Compared with that of LCK, the basal
third internode (the third internode counted from bottom to top above the ground) lengths
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of MCK and HCK were increased by 13.0% and 24.8%, respectively. The basal internode
length of XD20 was significantly decreased after spraying ethephon (Table 2). The basal
third internode lengths under ME and HE were 14.0% and 20.2% lower than those under
MCK and HCK, respectively. The results obtained from 2020 to 2021 showed that the basal
internode lengths exhibited similar basic trends.

Table 2. Effects of spraying ethephon on internode length (cm) of summer maize.

Year Treatment 2nd 3rd 4th 5th 6th

2020 LCK 7.5 bc 10.3 c 13.4 c 15.5 d 17.4 cd

MCK 8.2 b 11.6 b 14.2 b 16.7 b 18.4 b

ME 6.9 c 10.0 c 12.9 c 15.5 d 16.7 d

HCK 9.4 a 12.8 a 15.4 a 18.0 a 19.5 a

HE 7.8 b 10.4 c 13.0 c 16.0 c 17.7 bc

2021 LCK 5.9 b 9.2 c 12.0 c 14.0 c 15.4 cd

MCK 6.3 b 10.4 b 13.5 b 15.3 b 16.5 b

ME 5.8 b 8.9 c 11.9 c 13.8 c 14.9 d

HCK 7.4 a 11.5 a 14.5 a 16.1 a 17.9 a

HE 6.2 b 9.0 c 12.0 c 13.9 c 15.7 b

ANOVA
Year (Y) ** ** ** ** **

Density (D) ** ** ** ** **
Ethephon (E) ** ** ** ** **

Y × D ns ns ns ns ns
Y × E ns ns ns ns ns
D × E ns ** ** ** ns

Y × D × E ns ns ns ns ns
LCK, MCK, ME, HCK and HE were the treatments of low density control, medium density control, medium density
sprayed with ethephon, high density control and high density sprayed with ethephon, respectively. Different
lowercase letters in the table indicated significant difference at 5% level. ns, no significance. **, significant at
0.01 probability level.

2.4.2. Stem Diameter

The basal stem diameter of XD20 was significantly decreased as planting density
increased (Table 3). Compared with that of LCK, the basal third stem diameters of MCK
and HCK were increased by 4.4% and 10.7%, respectively. The basal stem diameter of
XD20 was significantly increased after spraying ethephon (Table 3). The basal third stem
diameters under ME and HE were 5.3% and 11.0% higher than those under MCK and
HCK, respectively. The results obtained from 2020 to 2021 showed that the basal internode
lengths exhibited similar basic trends.

2.4.3. Internode Dry Weight per Unit Length

The basal third internode dry weight per unit length of XD20 was significantly de-
creased as planting density increased (Figure 3). Compared with that of LCK, the basal
third internode dry weights per unit length of MCK and HCK were decreased by 19.7%
and 29.5%, respectively. The basal third internode dry weight per unit length of XD20
significantly increased after spraying ethephon (Figure 3). The basal third internode dry
weights per unit length under ME and HE were 19.6% and 32.3% higher than those under
MCK and HCK, respectively. The results obtained from 2020 to 2021 exhibited similar
basic trends.
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Table 3. Effects of spraying ethephon on stem diameter (mm) of summer maize.

Year Treatment 2nd 3rd 4th 5th 6th

2020 LCK 24.8 a 23.3 a 22.1 a 20.9 a 20.2 a

MCK 23.1 c 22.0 b 20.9 b 20.3 a 19.3 b

ME 24.8 a 23.4 a 22.1 a 20.8 a 20.3 a

HCK 22.1 d 21.0 c 19.9 c 19.3 b 18.5 c

HE 24.0 b 23.1 a 22.1 a 20.7 a 19.7 ab

2021 LCK 25.0 a 23.0 ab 22.1 a 21.4 a 20.4 a

MCK 23.7 bc 22.3 b 21.1 b 20.4 c 19.6 b

ME 24.8 ab 23.2 a 22.2 a 21.2 a 20.7 a

HCK 22.8 c 20.4 c 19.8 c 19.6 d 18.5 c

HE 24.3 ab 22.8 ab 21.9 ab 20.9 b 20.1 ab

ANOVA
Year (Y) ns ns ns ns ns

Density (D) ** ** ** ** **
Ethephon (E) ** ** ** ** **

Y × D ns ns ns ns ns
Y × E ns ns ns ns ns
D × E ns ** * * ns

Y × D × E ns ns ns ns ns
LCK, MCK, ME, HCK and HE were the treatments of low density control, medium density control, medium
density sprayed with ethephon, high density control and high density sprayed with ethephon, respectively.
Different lowercase letters in the table indicated significant difference at 5% level. ns, no significance. *, significant
at 0.05 probability level. **, significant at 0.01 probability level.
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Figure 3. Effects of spraying ethephon on dry weight per unit length of the basal third internode. LCK,
MCK, ME, HCK and HE were the treatments of low density control, medium density control, medium
density sprayed with ethephon, high density control and high density sprayed with ethephon,
respectively. Different lowercase letters in the figure indicated significant difference at 5% level.

2.4.4. Stem Anatomical Structure

With the increase in planting density, the thickness of sclerenchyma and lignified
parenchyma and the area and number of vascular bundles of XD20 were significantly
decreased (Figure 4, Table 4). Compared with those of LCK, the thickness of sclerenchyma,
the thickness of lignified parenchyma, the area of small vascular bundles, the area of large
vascular bundles, the number of small vascular bundles and the number of large vascular
bundles of MCK were decreased by 13.7%, 8.6%, 8.5%, 4.9%, 14.0% and 19.9%, respectively.
Additionally, those of HCK were decreased by 30.5%, 20.1%, 20.1%, 19.5%, 24.8% and
37.4%, respectively. After spraying ethephon, the thickness of sclerenchyma and lignified
parenchyma of XD20 were significantly increased, the number of vascular bundles was
significantly increased and the area of small vascular bundles was significantly increased.
The thickness of sclerenchyma, the thickness of lignified parenchyma, the area of small
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vascular bundles, the area of large vascular bundles and the number of small vascular
bundles under ME were 16.5%, 5.4%, 9.4%, 5.1% and 6.3% higher than those under MCK,
respectively; and those under HE were 43.4%, 19.0%, 18.2%, 24.3% and 23.5% higher than
those under HCK, respectively. Compared with the equal density control treatment, the
number of large vascular bundles was significantly increased in 2020, but there was no
significant difference in 2021. The experimental results of the two years were different.

2.4.5. Stalk Rind Penetration Strength

The stalk rind penetration strength of XD20 significantly decreased as planting density
increased (Figure 5). Compared with that of LCK, the basal third internode rind penetration
strengths of MCK and HCK were decreased by 10.8% and 16.7%, respectively. The stalk
rind penetration strength of XD20 was significantly increased after spraying ethephon
(Figure 5). The basal third internode rind penetration strengths under ME and HE were
10.7% and 16.0% higher than those under MCK and HCK, respectively. The results obtained
from 2020 to 2021 showed that the basal internode lengths exhibited similar basic trends.
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Figure 4. Effects of spraying ethephon on anatomical structure of the basal third internode. (a–e),
respectively, showed the microstructure at LCK, MCK, ME, HCK and HE in 2020; (f–j), respectively,
showed the microstructure at LCK, MCK, ME, HCK and HE in 2021. Scale bar = 1000 µm.
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Table 4. Effects of spraying ethephon on anatomical structure of the basal third internode.

Year Treatment

Tissue Thickness The Area of Vascular Bundles
(mm2)

The Number of Vascular
Bundles (No.)

Sclerenchyma
(µm)

Lignified
Parenchyma (mm)

Small Vascular
Bundles

Big
Vascular
Bundles

Small Vascular
Bundles

Big
Vascular
Bundles

2020 LCK 52.7 a 1.67 a 0.17 a 0.20 a 426 a 199 a

MCK 45.3 b 1.56 a 0.16 b 0.19 b 365 c 156 c

ME 52.6 a 1.63 a 0.17 a 0.20 a 404 b 177 b

HCK 34.2 c 1.36 b 0.13 c 0.16 c 318 d 123 d

HE 52.4 a 1.57 a 0.16 b 0.20 ab 401 b 185 ab

2021 LCK 62.0 a 1.98 a 0.18 a 0.21 a 374 a 175 a

MCK 53.7 b 1.77 b 0.16 b 0.20 a 323 c 143 b

ME 62.8 a 1.88 a 0.18 a 0.21 a 329 c 137 b

HCK 45.9 c 1.55 c 0.15 c 0.17 b 283 d 111 c

HE 61.3 a 1.90 a 0.17 a 0.21 a 342 b 106 c

ANOVA
Year (Y) ** ** ** ** ** **

Density (D) ** ** ** ** ** **
Ethephon (E) ** ** ** ** ** **

Y × D ns ns * ns ns **
Y × E ns ns ns ns ** **
D × E ** ** ** ** ** ns

Y × D × E ns ns ns ns ns **

LCK, MCK, ME, HCK and HE were the treatments of low density control, medium density control, medium
density sprayed with ethephon, high density control and high density sprayed with ethephon, respectively.
Different lowercase letters in the table indicated significant difference at 5% level. ns, no significance. *, significant
at 0.05 probability level. **, significant at 0.01 probability level.
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Figure 5. Effects of spraying ethephon on stalk rind penetration strength of summer maize. LCK,
MCK, ME, HCK and HE were the treatments of low density control, medium density control, medium
density sprayed with ethephon, high density control and high density sprayed with ethephon,
respectively. Different lowercase letters in the figure indicated significant difference at 5% level.

2.4.6. Maximum Bending Strength in the Field

The maximum bending strength in the field of XD20 was significantly decreased as
planting density increased (Figure 6). Compared with that of LCK, the maximum bending
strengths in the field of MCK and HCK were decreased by 19.9% and 39.7%, respectively.
The maximum bending strength in the field of XD20 was significantly increased after
spraying ethephon (Figure 6). The maximum bending strengths in the field under ME
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and HE were 21.2% and 58.5% higher than those under MCK and HCK, respectively. The
results obtained from 2020 to 2021 exhibited similar basic trends.
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Figure 6. Effects of spraying ethephon on maximum bending strength in the field of summer
maize. LCK, MCK, ME, HCK and HE were the treatments of low density control, medium density
control, medium density sprayed with ethephon, high density control and high density sprayed with
ethephon, respectively. Different lowercase letters in the figure indicated significant difference at
5% level.

2.5. Effects of Spraying Ethephon on Lodging Percentage of Summer Maize

The lodging percentage of XD20 was significantly increased as planting density in-
creased (Figure 7). Compared with that of LCK, the lodging percentages of MCK and HCK
were increased by 181.4% and 481.7%, respectively. The lodging percentage of XD20 was
significantly decreased after spraying ethephon (Figure 7). The lodging percentages under
ME and HE were 31.8% and 44. 6% lower than those under MCK and HCK, respectively.
The results obtained from 2020 to 2021 exhibited similar basic trends.
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Figure 7. Effects of spraying ethephon on lodging percentage of summer maize. LCK, MCK, ME,
HCK and HE were the treatments of low density control, medium density control, medium density
sprayed with ethephon, high density control and high density sprayed with ethephon, respectively.
Different lowercase letters in the figure indicated significant difference at 5% level.
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2.6. Effects of Spraying Ethephon on Grain Yield of Summer Maize

Compared with that of LCK, the grain yields of MCK and HCK were significantly
increased in XD20, and there was no significant difference in grain yield between MCK and
HCK (Table 5). With the increase in planting density, the ears per hectare, the kernels per
ear and 1000-grain weight of XD20 all showed a downward trend. After spraying ethephon,
the grain yields of ME and HE of XD20 were significantly increased compared with the
equal density control treatment, which were 3.6% and 8.0%, respectively (Table 5). After
spraying ethephon, the ears per hectare and 1000-grain weight in XD20 were increased and
decreased, respectively, and the kernels per ear showed different changes in two years.

Table 5. Effects of spraying ethephon on grain yield and yield components of summer maize.

Year Treatment Ears
(No. ha−1)

Kernels
per Ear

1000-Grain
Weight (g)

Grain Yield
(kg ha−1)

2020 LCK 50,556 d 598 a 315.4 a 9535.3 d

MCK 60,556 c 545 c 306.1 b 10,102.2 cd

ME 66,667 b 554 b 291.1 c 10,751.3 b

HCK 69,444 b 526 e 291.8 c 10,658.7 bc

HE 75,556 a 538 d 289.1 c 11,751.7 a

2021 LCK 56,667 e 601 a 253.5 a 8633.4 c

MCK 70,741 d 572 b 245.9 b 9950.1 b

ME 73,704 c 573 b 237.2 c 10,017.5 ab

HCK 77,593 b 546 c 234.8 d 9947.5 b

HE 88,148 a 528 c 226.1 e 10,523.2 a

ANOVA
Year (Y) ** ** ** **

Density (D) ** ** ** **
Ethephon (E) ** ns ** **

Y × D ns ** * ns
Y × E ns * ns *
D × E * ns ** ns

Y × D × E * ns ** ns
LCK, MCK, ME, HCK and HE were the treatments of low density control, medium density control, medium
density sprayed with ethephon, high density control and high density sprayed with ethephon, respectively.
Different lowercase letters in the table indicated significant difference at 5% level. ns, no significance. *, significant
at 0.05 probability level. **, significant at 0.01 probability level.

2.7. Correlation Analysis

Correlation analysis was carried out between the data of the basal third internode and
other measured indicators (Figure 8). The results showed that the lodging percentage was
significantly negatively correlated with the canopy light transmittances of the ear layer and
the bottom layer, and the correlation coefficients were −0.80 and −0.81, respectively. LAI,
SPAD and internode dry weight per unit length were also extremely significantly correlated
with lodging percentage, with correlation coefficients of 0.81, −0.83 and −0.74, respectively.
The characteristics of vascular bundles were significantly negatively correlated with the
lodging percentage. The correlation coefficients of the area of small vascular bundles,
the area of large vascular bundles, the number of small vascular bundles, the number of
large vascular bundles and the lodging percentage were −0.74, −0.72, −0.76 and −0.71,
respectively. Stem diameter and maximum bending strength in the field also significantly
affected stalk lodging resistance, and the correlation coefficients with lodging percentage
were −0.85 and −0.80. Grain yield was significantly positively correlated with LAI and
significantly negatively correlated with canopy light transmittance.
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Figure 8. Correlation analysis. LP, lodging percentage; GY, grain yield; PH, plant height; EH, ear
height; GCH, gravity center height; CLTE, canopy light transmittance of the ear layer; CLTB, canopy
light transmittance of the bottom layer; IL, internode length; SD, stalk diameter; DWUL, dry weight
per unit length; ST, sclerenchyma thickness; LPT, lignified parenchyma thickness; SVBA, the area of
small vascular bundles; BVBA, the area of big vascular bundles; SVBN, the number of small vascular
bundles; BVBN, the number of big vascular bundles; SRPS, stalk rind penetration strength; FMBS,
maximum bending strength in the field. *, significant at 0.05 probability level. **, significant at
0.01 probability level.

3. Discussion
3.1. Increasing Planting Density Significantly Reduced Stalk Lodging Resistance of Summer Maize

With the increase in planting density, the LAI increased and the plants shaded each
other, which significantly reduced the photosynthetically active radiation to the ear layer
and the bottom layer. The light spectral distribution within the canopy becomes depleted
of wavelengths between 400 and 700 nm, which are absorbed by chlorophyll, whereas flux
density in the far-red (>700 nm) remains high. The red:far-red ratio is decreased, which
induces the shade avoidance response [35,36], thus promoting internode elongation, reduc-
ing stem diameter and reducing the accumulation of carbohydrates in basal internodes,
resulting in a decrease in internode dry weight per unit length, significantly reducing
stalk mechanical strength. The results of stem anatomical structure showed that increasing
planting density decreased the sclerenchyma and lignified parenchyma thickness and
reduced the area and number of vascular bundles, thereby weakening the stalk mechanical
strength. Those changes would also lead to a decrease in stem flow, which negatively
affected grain yield [37]. Stalk rind penetration strength was significantly correlated with
stalk lodging resistance [38]. Additionally, stalk bending strength was determined by the
cumulative effect of stem metabolic and morphological properties, which could predict
81% of the variation in stalk strength [14,39]. The results of our experiment showed that
increasing the planting density significantly reduced the stalk rind penetration strength
and field maximum bending performance and increased the lodging percentage. Taken
together, increasing the planting density significantly decreased the stalk lodging resistance
of summer maize, thus increasing the lodging percentage.

3.2. The Regulation of Spraying Ethephon on Stalk Lodging Resistance and Grain Yield of Densely
Planted Summer Maize

Spraying ethephon reduced LAI, improved canopy light transmittance and increased
leaf SPAD, thereby enhancing leaf photosynthetic capacity, conducive to stem dry matter



Plants 2022, 11, 2219 12 of 19

accumulation and stalk strength formation. Ethephon could promote the accumulation
of ethylene in stems, reduce the concentrations of auxin and gibberellin and increase
the expression of secondary cell wall genes [30]. As a result, the internode length was
reduced, the stem diameter was increased and the stalk strength was improved. The
correlation analysis showed that stalk rind penetration strength was significantly positively
correlated with sclerenchyma thickness and lignified parenchyma thickness. Additionally,
stem diameter, vascular bundle characteristics and maximum bending strength in the field
were significantly negatively correlated with lodging percentage. After spraying ethephon,
the sclerenchyma and lignified parenchyma thickness of the stem was thickened, thereby
significantly improving the rind penetration strength and bending strength. The number
of large vascular bundles showed differences within two years, which may be caused by
the wide genetic variation in vascular bundle characteristics [40]. In a previous study, the
effect of the number of vascular bundles on lodging was related to the elastic modulus of
vascular bundles [41], and the effect of vascular bundle system on stalk strength should be
compared and analyzed according to specific conditions [4]. The results of this experiment
showed that the lodging percentages of spraying ethephon under the two densities were
significantly reduced, and the maize stalk lodging resistances were significantly enhanced.

Yield is affected by various factors. The ideal planting density optimizes the relation-
ship between the number of ears per hectare, kernels per ear and 1000-grain weight so as
to play to the group advantage and improve the yield potential. The results of the current
experiment showed that canopy light transmittance was significantly negatively correlated
with grain yield across a range of planting densities (Table 5). However, under the condition
of high density, the decrease in canopy light transmittance does not mean the full utilization
of light, and the mutual shading of plants wastes more light resources. Spraying ethephon
increased canopy light transmittance and significantly increased light energy utilization,
thereby increasing the dry matter accumulation of the population and achieving a yield
increase. Therefore, the key to high grain yield was to make full use of light energy. The
grain yield was not significantly increased from 75,000 plants ha−1 to 90,000 plants ha−1,
which may be related to plant-to-plant competition and the increase in lodging percentage.
In a previous study, ethephon affected the grain filling characteristics, decreased the grain
storage capacity and activity and thus reduced the grain yield [42]. Compared with the
equal density control treatment, the grain yield increase with spraying ethephon treatment
under 75,000 plants ha−1 was significantly lower than that under 90,000 plants ha−1. which
might be related to the increase in ears per hectare under 75,000 plants ha−1 not being able
to significantly compensate for the negative effect of ethephon on ear development. In
this experiment, we found some differences in spike traits, such as spike length, among
treatments, but there was no significant difference in days to male flowering and days
to female flowering under field conditions among the different treatments, which was
consistent with other previous studies [43–45]. The different trend of kernels per ear in two
years may be caused by the higher ears per hectare in 2021 and the adaptive change in yield
components. The results of our experiment showed that spraying ethephon significantly
(p < 0.05) increased the number of ears per hectare in both years at both 75,000 plants ha−1

and 90,000 plants ha−1, and it significantly (p < 0.05) increased the grain yield at both
75,000 plants ha−1 and 90,000 plants ha−1 in 2020, and at 90,000 plants ha−1 in 2021.

3.3. The Possibility of Synergistic Improvement in Stalk Lodging Resistance and Grain Yield of
Densely Planted Summer Maize

In a previous study, researchers suggest that maize stalk structure requires more
tissue to support its own mass and external loads when the crop is subjected to wind and
rain, which reduces the potential biomass available for grain filling, reduces the harvest
index and increases the risk of lodging [46]. Yield loss due to stalk lodging can be up to
75% [47,48]. For every 1% increase in lodging percentage, the ear drop percentage increased
by 0.15%, significantly reducing the quality and speed of mechanized harvesting [49].
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Therefore, it is necessary to coordinately improve the stalk lodging resistance and grain
yield of densely planted maize.

Effective utilization of solar radiation is the key method to coordinate stalk lodging
resistance and grain yield. Solar radiation was the basis of plant growth and development,
and 90% of the yield came from assimilates after the silking period [50]. In previous studies,
insufficient light during the grain filling stage would not only reduce photosynthesis and
affect grain development but also increased the transport of carbohydrates in the stem,
further reducing stalk strength [51]. After spraying ethephon, the internode length was
decreased, which was also thought to reduce the distance between source and sink, weaken
the storage capacity of the stem and alleviate the competition between stalk growth and
ear development, thus contributing to yield increase [32,52]. Taken together, adequate light
penetration into the crop canopy could prolong the leaf functional period, promote the
formation of stem strength in the early stage and slow down the senescence rate of plants
in the later stage. It also reduced the remobilization of the outward transport of material
storage in the stem so as to optimize the distribution of assimilates in the ear and stem,
synergistically improving stalk lodging resistance and grain yield [53,54].

Scientific chemical regulation is an important strategy to achieve synergistic improve-
ment in stalk lodging resistance and grain yield of densely planted maize. In other studies,
delaying application of ethephon avoided negative effects on floret initiation and develop-
ment of florets in the early stage of vegetative growth, and it improved yield by decreasing
stem competition with ears for assimilates, but the lodging prevention effect would de-
crease [32]. Huang et al. [55] showed that application of DHEAP (N,N-Diethyl-2-hexanoyl
oxygen radicals-ethyl amine (2-ethyl chloride) phosphonic acid salt) constructed compact
plant type, increased the average leaf inclination of leaves above ear position, improved the
net photosynthetic rate and key photosynthetic enzyme activities of ear leaves and achieved
high and stable yield. The results of this experiment showed that LAI and light transmit-
tance were significantly correlated with lodging percentage and grain yield. Spraying
ethephon decreased the LAI and increased the SPAD, which was beneficial for the efficient
use of solar radiation. Additionally, there was no significant negative correlation between
stalk lodging resistance and grain yield, so the synergistic improvement in them was not
contradictory. Planting density and spraying ethephon have obvious interaction effects on
various factors, and we can explore a reasonable combination of density and ethephon to
achieve the synergistic improvement in stalk lodging resistance and grain yield.

Other previous studies have shown that the effects of increasing density and spraying
ethephon on different maize hybrids were extensive and basically consistent [31,56–58]. We
used Xundan20, Denghai605 and Denghai618 in our previous study, and the regulations
of increasing density and spraying ethephon on stalk lodging resistance were consistent.
Increasing planting density and spraying ethephon had more obvious effects on Xundan20.
Therefore, we selected Xundan20 to explore how to synergistically improve stalk lodging
resistance and grain yield.

4. Materials and Methods
4.1. Materials

Xundan20 (XD20) is a medium maturing summer maize hybrid with the suitable
planting density of 60,000–67,500 plants ha−1 [59]. It has the characteristics of good
fecundity, fast filling and excellent quality [60]. It used to be the second maize hybrid
on planting area in China, but its lodging resistance and disease resistance decreased
significantly with the increase in planting density [59,60].

4.2. Experimental Design

The experiment was conducted at the experimental farm of Shandong Agricultural
University (17.16◦ E, 36.16◦ N) from 2020 to 2021 using XD20 as experimental material. The
region climate was a temperate monsoon climate, and Figure 9 shows the rainfall and mean
temperature during the experimental period. The rainfall and mean temperature during the
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experimental period were 823.3 mm and 22.8 ◦C in 2020, and 1402.7 mm and 23.0 ◦C in 2021.
The soil at the experimental site was classified as brown loam, and the contents of organic
matter, total nitrogen (N), available phosphorus (P) and available potassium kalium (K) in
the 0–20 cm soil layer were 12.01 g kg−1, 0.74 g kg−1, 41.06 mg kg−1 and 103.89 mg kg−1.
The experiment was arranged as a randomized complete block design. There were 3 plots
per treatment, the plots were 3 m × 15 m and there were 5 rows in a plot. A row spacing
of 60 cm was used for all planting densities, while plant spacings within rows were set at
27.8, 22.2 and 18.5 cm for 60,000, 75,000 and 90,000 plants ha−1, respectively. The densities
were set at three gradients of 60,000 plants ha−1, 75,000 plants ha−1 and 90,000 plants ha−1.
Ethephon (Anyang Quanfeng Biological Technology Co., Ltd., Anyang, China; 40% active
ingredient, used 180 mL per hectare and diluted 1500 times with water) was sprayed at
BBCH (BASF, Bayer, Ciba-Geigy and Hoechst) 17; the control (CK) was sprayed with water.
A total of 300 kg ha−1 N (urea, 46% N), 120 kg ha−1 P (superphosphate, 17% P2O5) and
240 kg ha−1 K (potassium chloride, 60% K2O) were applied, aiming at the yield level of
12,000 kg ha−1. Nitrogen fertilizer was split into two applications, 40% at BBCH 16 and
60% at BBCH 37. Total P and K doses were applied in a single application at BBCH 16. The
experiment was under the local agricultural management in order to ensure efficient water
and to avoid weeds, pests or diseases.
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Figure 9. Rainfall and mean temperature during the experimental period.

The plot area was 45 m2 and includes 207–405 plants, and we divided sampling areas
in each plot and marked sampling plants at BBCH 16. Therefore, our experiment ensures
consistency in density.

4.3. Measurement Items and Methods
4.3.1. Plant Height, Ear Height and Gravity Center Height

At the milking stage (R3), 6 representative plants were selected from each plot. The
lengths from the base to the highest position of the plant and the node bearing the ear of
the plant were considered the plant height and ear height. The gravity center height was
examined by placing the maize across an outstretched fulcrum and moving the stalk along
the fulcrum until the balance point was reached, and the distance between the base and the
center of gravity was gravity center height. Measurements were performed manually with
a tape.

4.3.2. LAI and SPAD

At the tasseling stage (VT), 6 representative plants were selected from each plot. The
leaf length and maximum leaf width of each leaf were measured with a tape, and leaf area
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index was calculated according to the formula. A portable chlorophyll meter (SPAD-502,
Minolta Camera Co., Ltd., Osaka, Japan) was used to determine the SPAD of ear leaf.

Single leaf area (cm2) = leaf length × leaf width × 0.75

Leaf area index = (leaf area per plant × number of plants)/plot area

4.3.3. Crop Canopy

At the VT stage, a canopy analysis system (Sunscan, Delta, UK) was used to measure
the light radiation characteristics within the canopy between rows. Photosynthetically
active radiation of ear layer (ear position) and bottom layer (10 cm above the ground) were
collected, respectively, to calculate the light transmittance.

Light transmittance (%) = photosynthetically active radiation at ear level or bottom layer/total solar
radiation intensity × 100

4.3.4. Internode Length and Stem Diameter

At the R3 stage, 6 representative plants were selected in each plot. The internode
lengths of the basal second, third, fourth, fifth and sixth internodes were measured with a
tape. The stem diameters of the basal second, third, fourth, fifth and sixth internodes were
measured with a digital Vernier caliper.

4.3.5. Internode Dry Weight per Unit Length

At the R3 stage, 3 representative plants were selected from each plot. The basal third
internode was placed into a paper bag, and the internodes were subjected to enzyme
deactivation at 105 ◦C for 30 min and then dried at 80 ◦C to a constant weight, which was
recorded as the dry weight. The internode dry weight per unit length (cm) was calculated
according to the basal third internode dry weight and internode length.

Internode dry weight per unit length (g cm−1) = internode dry weight/internode length

4.3.6. Stem Anatomical Structure

At the R3 stage, 3 representative plants were selected in each plot, and the middle
2 cm portion of the basal third internode was fixed with Carnot and stored in 70% ethanol.
Hand-slicing and saffron staining were used to observe and photograph the structure of
vascular bundles in the stem using a fluorescence microscope camera system (Ni-u, Nikon,
Japan). Sclerenchyma thickness, lignified parenchyma thickness, the number of vascular
bundles and the area of vascular bundles were measured using the measurement function
of that camera system. The number of vascular bundles per plant were calculated per unit
area. The number of vascular bundles on the 1/8 area of stem cross section was counted,
and then the total number of vascular bundles was calculated.

4.3.7. Stalk Rind Penetration Strength

At the R3 stage, 6 representative plants were selected in each plot. The rind penetration
strengths of the basal second, third, fourth, fifth and sixth internodes were determined with
a stalk strength tester (YYD-1, Zhejiang Top Cloud-Agri Technology Co., Ltd., Zhenjiang,
China). For these measurements, the internodes were horizontally positioned on the
supportive columns of the stalk strength tester, and the instrument probe was vertically
applied at the mid internode. Stalk rind penetration strength was expressed in Newtons (N).
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4.3.8. Maximum Bending Strength in the Field

At the R3 stage, 6 representative plants were selected in each plot. The field portable
lodging resistance tester (Laizhou Kaitian Instrument Co., Ltd., Laizhou, China) was fixed
at the position of ear, and the instrument was pulled to make the plant bend to one side.
The instrument automatically recorded the force on the plant when the stalk broke.

4.3.9. Lodging Percentage

The lodging percentage of each plot was investigated after maize lodging, and the
ratio of lodging (angle between stalk and ground < 30◦ or stalk broken) of each plot to the
total number of plants in the plot was the lodging percentage.

Lodging percentage (%) = number of lodging plants/total number of plants in the plot × 100

4.3.10. Grain Yield

The number of ears per hectare was determined using field trait surveys, and 30 ears
from the middle three rows of plants in each plot were harvested to determine the numbers
of grain rows per ear and kernel per row. The yield was calculated as follows.

Grain yield (kg ha−1) = ears (ears ha−1) × kernels per ear × grain weight (g) × 10−6/(1 − 14%)

where grain weight was calculated as the average grain weight based on the 1000-grain weight.

4.3.11. Data Analysis

Microsoft Excel 2019 and SPSS 26 software were used for statistics and analysis, and
SigmaPlot 14.0 and Origin 2021 software were used for graphing. One-way ANOVA and
Duncan’s method were used for analysis of variance and multiple comparisons (α = 0.05),
and Pearson’s method was used for correlation analysis of each index.

5. Conclusions

The stalk lodging resistance of XD20 was significantly decreased as planting density
increased. The canopy light transmittance, the quality of basal internodes and the lodging
resistance of the stem were improved after spraying ethephon. Under the experiment
conditions, the effect of spraying ethephon was the most significant when the planting
density was 90,000 plants ha−1. At the time, the lodging percentage and grain yield
were 12.2% and 11,137.5 kg ha−1, which were decreased by 44.6% and increased by 8.0%
compared with the control treatment. Scientific chemical regulation can improve the
lodging resistance of densely planted summer maize and achieve a high and stable yield.
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