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Abstract
This	paper	considers	the	statistical	analysis	of	entomological	count	data	from	field	
experiments	with	genetically	modified	(GM)	plants.	Such	trials	are	carried	out	to	as-
sess	environmental	safety.	Potential	effects	on	nontarget	organisms	(NTOs),	as	indi-
cators	of	biodiversity,	are	investigated.	The	European	Food	Safety	Authority	(EFSA)	
gives	broad	guidance	on	the	environmental	risk	assessment	(ERA)	of	GM	plants.	Field	
experiments	must	contain	suitable	comparator	crops	as	a	benchmark	for	the	assess-
ment	of	designated	endpoints.	In	this	paper,	a	detailed	protocol	is	proposed	to	per-
form	data	analysis	for	the	purpose	of	assessing	environmental	safety.	The	protocol	
includes	the	specification	of	a	 list	of	endpoints	and	their	hierarchical	relations,	the	
specification	of	intended	levels	of	data	analysis,	and	the	specification	of	provisional	
limits	of	concern	to	decide	on	the	need	for	further	investigation.	The	protocol	em-
phasizes	 a	 graphical	 representation	 of	 estimates	 and	 confidence	 intervals	 for	 the	
ratio	of	mean	abundances	for	the	GM	plant	and	its	comparator	crop.	Interpretation	
relies	mainly	on	equivalence	testing	in	which	confidence	intervals	are	compared	with	
the	 limits	of	concern.	The	proposed	methodology	 is	 illustrated	with	entomological	
count	data	resulting	from	multiyear,	multilocation	field	trials.	A	cisgenically	modified	
potato	 line	 (with	enhanced	 resistance	 to	 late	blight	disease)	was	 compared	 to	 the	
original	conventional	potato	variety	in	the	Netherlands	and	Ireland	in	two	successive	
years	(2013,	2014).	It	is	shown	that	the	protocol	encompasses	alternative	schemes	
for	 safety	 assessment	 resulting	 from	 different	 research	 questions	 and/or	 expert	
choices.	Graphical	displays	of	equivalence	testing	at	several	hierarchical	 levels	and	
their	 interpretation	 are	 presented	 for	 one	 of	 these	 schemes.	 The	 proposed	 ap-
proaches	should	be	of	help	in	the	ERA	of	GM	or	other	novel	plants.
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1  | INTRODUC TION

Genetically	 modified	 (GM)	 crops	 must	 undergo	 an	 environmental	
risk	assessment	(ERA)	as	part	of	a	procedure	to	decide	whether	they	
can	be	admitted	to	the	European	market.	Perry	et	al.	(2009)	and	the	
EFSA	Guidance	on	the	ERA	of	GM	plants	(EFSA,	2010b)	give	broad	
guidance	on	 the	design	of	 field	 experiments	 and	 subsequent	data	
analysis	to	assess	potential	environmental	impacts.	In	field	studies,	
one	of	 the	main	 questions	 is	whether	 the	GM	organism	 (GMO)	 is	
substantially	 equivalent	 to	 a	 comparator	 (CMP)	 when	 considering	
biodiversity	as	represented	by	assemblages	of	nontarget	organisms	
(NTOs)	 linked	 to	 the	 receiving	 agro‐ecosystem.	 This	 comparative	
assessment	 is	 usually	 based	 on	 a	 large	 number	 of	 taxa	 (individual	
species	or	guilds,	Arpaia,	2010).	The	outcome	of	the	risk	assessment	
is	therefore	not	straightforward,	and	attempts	to	summarize	results	
may	lead	to	misleading	conclusions	(Devos,	Schrijver,	Clercq,	Kiss,	&	
Romeis,	2012).

The	ERA	Guidance	document	(EFSA,	2010b)	identified	the	impact	
on	NTOs	as	one	of	the	areas	of	concern	and	requires	the	application	
of	appropriate	statistical	procedures.	However,	the	document	does	
not	give	specific	examples	and	solutions	for	practical	problems	in	real	
case	 studies.	For	example,	 the	Guidance	states	 that	 “it	 is	essential	
to	specify	for	each	variable	studied	a	minimum	effect	size	which	is	
considered	 to	 potentially	 have	 a	 relevant	 impact	 on	 the	 receiving	
environment(s),”	but	does	not	indicate	how	to	do	this	for	low‐abun-
dance	species	with	highly	variable	counts.	There	is	also	no	guidance	
whether	counts	should	be	added	over	different	time	points	in	a	sea-
son	or	analyzed	separately.	As	another	example,	the	Guidance	states	
that	the	“main	analysis	shall	address	all	field	trials	simultaneously	and	
shall	be	based	on	the	full	dataset	from	all	sites.”	However,	this	disre-
gards	the	common	problem	that	experimental	procedures	and	even	
identified	species	are	likely	to	be	different	for	different	experiments.	
The	EU‐funded	research	project	AMIGA—Assessing	and	Monitoring	
Impacts	of	Genetically	modified	plants	on	Agro‐ecosystems	(Arpaia	
et	 al.,	 2014)—has	 performed	 research	 to	 apply	 the	 general	 EFSA	
Guidance	to	specific	examples	involving	maize	and	potato	field	trials.	
Detailed	proposals	on	how	to	conduct	an	ERA	following	the	general	
guidance	in	specific	cases	are	reported	in	this	paper.

The	practical	possibilities	for	conducting	ERA‐related	field	trials	
are	diverse	across	the	multiple	biogeographical	regions	or	receiving	
environments	in	Europe	(Arpaia	et	al.,	2014).	As	a	consequence,	the	
identified	taxa	are	typically	different	between	field	trials,	for	exam-
ple,	because	some	taxa	are	restricted	to	certain	regions,	or	because	
identification	 of	 arthropods	 depends	 on	 the	 specialized	 expertise	
that	 is	 available	 locally.	 It	may	 therefore	 be	 preferable	 to	 analyze	
NTO	 abundances	 in	 terms	 of	 functional	 categories	 or	 guilds,	 but	
without	 losing	 attention	 for	 important	 individual	 indicator	 taxa	 at	
specific	locations.	A	hierarchical	analysis	to	deal	with	such	issues	is	
therefore	needed.	A	proposal	 for	 a	 framework	 for	hierarchical	 as-
sessment	is	given	in	this	paper.

A	 statistical	 analysis	 of	 comparative	 field	 trials	 comes	 in	 two	
flavors:	 difference	 testing	 and	 equivalence	 testing.	Most	 research	

intends	 to	 find	 differences	 between	 treatments	 or	 groups,	 and	
the	 null	 hypothesis	 of	 the	 usual	 statistical	 tests	 states	 that	 group	
means	are	equal.	Rejecting	 this	null	hypothesis	 is	 then	considered	
a	proof	for	the	existence	of	differences.	In	contrast,	safety	assess-
ments	have	the	 intention	to	show	the	absence	of	relevant	effects.	
Therefore,	we	propose	to	employ	equivalence	testing	which	aims	at	
rejecting	 the	null	 hypothesis	 that	 the	difference	between	 the	GM	
plant	and	its	comparator	exceeds	a	limit	of	concern	(LOC).	Rejection	
of	 this	 nonequivalence	 hypothesis	 implies	 that	 the	 difference	 is	
smaller	than	the	LOC,	and	this	can	be	considered	as	a	proof	of	safety	
(Bross,	 1985;	 Hothorn	 &	Oberdoerfer,	 2006;	Millard,	 1987;	 Perry	
et	al.,	2009).	The	advantages	of	using	the	equivalence	concept	for	
safety	 assessment	 have	 been	 described	 before	 (e.g.,	 Perry	 et	 al.,	
2009;	van	der	Voet,	Perry,	Amzal,	&	Paoletti,	2011;	Meyners,	2012;	
Kang	&	Vahl,	 2014;	Goedhart,	Voet,	Baldacchino,	&	Arpaia,	 2014;	
Vahl	&	Kang,	2016).	A	crucial	argument	in	favor	of	equivalence	test-
ing	is	that	the	onus	to	do	high‐quality,	well‐replicated	experiments	
with	sufficient	statistical	power	 is	placed	on	to	those	who	wish	to	
demonstrate	the	safety	of	GMOs	(Perry	et	al.,	2009).	A	flexible	sys-
tem	to	set	limits	of	concern	is	proposed	in	this	paper.	It	addresses	a	
commonly	encountered	problem	in	entomological	surveys,	which	is	
the	occurrence	of	 taxa	with	many	zero	catches	 (per	plot)	and	per-
haps	only	a	few	specimens	overall.	We	also	advise	on	the	statistical	
model	to	analyze	count	data.

In	the	remainder	of	this	introductory	section,	we	address	in	more	
detail	two	general	issues:	Section	1.1	deals	with	the	explicit	research	
questions	in	relation	to	the	hierarchical	nature	of	the	entomological	
data	and	Section	1.2	with	the	need	to	specify	limits	of	concern	for	
the	chosen	endpoints.	In	Section	2,	we	present	the	theory	and	mo-
tivation	 for	 a	 proposal	 for	 a	 statistical	 analysis	methodology.	 This	
proposal	is	illustrated	with	a	practical	example	in	Section	3.	Finally,	
in	Section	4	the	proposed	methodology	is	discussed	in	the	context	
of	ERA.

1.1 | Research questions and a 
hierarchy of endpoints

When	 designing	 an	 experiment,	 it	 is	 essential	 to	 have	 a	 clear	 de-
scription	of	the	research	questions	at	hand	and	the	proposed	meth-
odology	 to	 answer	 these	questions.	 For	 an	operational	 procedure	
concerning	NTOs	in	a	GM	crop	field	trial,	it	is	necessary	to	specify	
a	 list	of	endpoints	 that	will	be	measured.	Here,	 “endpoint”	 can	be	
understood	at	several	levels.	For	example,	the	endpoint	“Carabidae”	
may	refer	to	the	total	of	pitfall	trap	catches	of	carabid	beetles	per	
plot	over	the	field	season	in	an	intended	single‐environment	experi-
ment,	but	it	may	also	refer	to	the	catch	per	plot	at	one	specific	sam-
pling	time	in	spring	(a	more	refined	level)	or	the	average	catch	per	
plot	over	multiple	environments	(a	more	integrated	level).	In	general,	
it	will	be	possible	to	arrange	these	levels	hierarchically,	as	shown	for	
a	simplified	example	in	Figure	1.

“Environment”	here	can	denote	another	site	or	another	year,	or	
both.	The	 logical	 tree	 also	 shows	 further	 integration	of	 endpoints	
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into	a	larger	“Arthropods”	category.	Risk	assessors	should	establish	
at	which	level	they	pose	their	research	question.	For	example,

•	 Is	there	a	potential	concern	if	the	GM	crop	would	affect	the	cara-
bids	in	August	in	one	specific	environment,	or

•	 Is	it	sufficient	to	consider	the	total	count	of	carabids	over	a	year	
for	this	environment,	or

•	 Is	it	sufficient	to	consider	the	average	carabid	counts	over	multi-
ple	environments,	or

•	 Can	the	research	question	be	framed	in	terms	of	counts	for	func-
tional	groups,	like	predators	and	herbivores,	or	even	all	arthropods?

In	the	data	analysis,	we	can	distinguish	three	parts:

1.	 preprocessing	 of	 the	 data,	 for	 example,	 logarithmic	 transfor-
mations,	 but	 also	 integration	 steps	 such	 as	 summing	 pitfall	
trap	 catches	 over	 all	 time	 points	 in	 the	 field	 season;

2.	 the	 intended	method	 of	 statistical	 analysis	 (SA)	 to	 estimate	 ef-
fects,	that	is,	the	differences	between	crop	genotypes,	from	the	
data,	as	will	be	further	discussed	in	Section	2	and	Section	2.5;

3.	 the	intended	method	of	equivalence	analysis	(EA)	to	integrate	es-
timated	effects	or	concerns	to	higher	levels	in	the	hierarchy.

Figure	2	gives	two	examples	of	the	structure	of	an	intended	data	
analysis	for	a	single	field	experiment	designed	to	compare	a	new	gen-
otype	 to	 a	 comparator	 variety	or	 genotype.	 Suppose	 that	 there	 are	
counts	for	ten	arthropod	taxa	and	that	data	will	be	collected	at	seven	
time	points	during	the	field	season.	A	possible	choice,	as	in	hierarchy	A,	
may	be	not	to	study	the	endpoints	at	the	time	points	level,	but	only	at	
the	level	of	the	season	total	counts.	This	is	especially	practical	for	rare	
taxa.	Summing	is	indicated	by	the	“Sum”	preprocessing	step;	the	under-
lining	of	“time	point”	is	meant	to	indicate	that	in	this	step	some	kind	of	
summary	over	timepoints	is	made.	After	this,	the	data	will	be	analyzed	
in	a	statistical	analysis	(SA	step)	to	provide	estimates	and	confidence	

F I G U R E  1  Simplified	example	of	a	
hierarchy	of	endpoints	in	which	the	two	
endpoints	Carabidae	and	Collembola	are	
sampled	in	different	environments	at	
different	points	in	time	during	the	season.	
Env:	Environment

Arthropods

Carabidae

Carabidae, Env 1

Carabidae 
Env 1, June

Carabidae 
Env 1, July

Carabidae 
Env 1, August

Carabidae, Env 2

Carabidae 
Env 2, June

Carabidae 
Env 2, July

Carabidae 
Env 2, August

Collembola

Collembola, Env 1

Collembola 
Env 1, June

Collembola 
Env 1, July

Collembola 
Env 1, August

Collembola, Env 2

Collembola 
Env 2, June

Collembola 
Env 2, July

Collembola 
Env 2, August

...

F I G U R E  2  Two	simple	examples	(a	and	b)	of	alternative	logical	trees	for	analysis	of	arthropod	count	data	in	a	single‐environment	NTO	
study	of	a	GM	crop	compared	to	a	comparator	variety.	EAall:	equivalence	analysis	requiring	all	concern	quotients	to	be	within	limits;	SA:	
statistical	analysis;	Sum:	summation	of	data

Data per 

(a) (b)

taxon per �mepoint, 10 taxa, 7 �me-points, e.g.,
• Carabidae, 13 June
• Collembola, 27 August

Data per taxon, e.g.,
• Carabidae
• Collembola

Effect per taxon, e.g.
• Carabidae
• Collembola

Equivalence NTO Arthropods single-environment

Sum

SA

EAall

Data per taxon per �mepoint, 10 taxa, 7 �me-points, e.g.,
• Carabidae, 13 June
• Collembola, 27 August

Effects per taxon per �mepoint, e.g.,
• Carabidae, 13 June
• Collembola, 27 August

Equivalence per taxon, e.g.
• Carabidae
• Collembola

Equivalence NTO Arthropods single-environment

SA

EAall

EAall
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intervals	for	the	ten	effects	(differences	between	the	tested	genotype	
and	its	comparator).	The	statistical	analysis	would	normally	involve	an	
ANOVA	type	of	analysis.	Underlining	of	“Data”	indicates	that	Data	are	
summarized	to	give	estimated	effects.	After	this	step,	each	of	the	ef-
fects	can	be	judged	for	equivalence.	In	the	final	step,	denoted	by	EAall,	
the	equivalence	for	the	individual	taxa	is	combined	in	an	overall	NTO	
equivalence	assessment.	The	subscript	“all”	in	EAall	denotes	that	each	
individual	endpoint	should	meet	its	equivalence	criterion	and	“taxon”	
is	therefore	underlined.

Hierarchy	B	 in	Figure	2	presents	an	alternative.	Here,	the	data	
are	 analyzed	 at	 the	 time	 points	 level,	 and	 application	 of	 EAall	 in	
two	steps	now	requires	that	the	observed	effects	at	all	time	points	
should	 fulfill	 the	 equivalence	 criteria.	Note	 that	 the	 counts	 in	 the	
statistical	analysis	in	B	will	be	much	lower	as	compared	to	hierarchy	
A,	and	therefore,	it	will	be	more	difficult	to	have	sufficient	power	for	
all	10	×	7	=	70	endpoints.	In	fact,	scheme	B	may	not	be	practical	at	
all,	when	it	is	expected	that	some	species	are	not	present	(expected	
counts	zero)	during	parts	of	the	field	season.	In	principle,	the	scheme	
could	be	adapted	by	specifying	for	each	taxon	the	relevant	time	in-
tervals	during	 the	season.	The	first	EAall	 step	 in	hierarchy	B	could	
be	replaced	by	a	less	strict	requirement	that	each	taxon	should	only	
on	average	meet	the	equivalence	limits	during	the	growing	season.	
An	EAav	(av	for	average)	equivalence	analysis	will	be	more	precisely	
defined	in	Section	2.4.

The	key	message	of	this	simple	example	is	that	alternative	logical	
hierarchies	for	the	analysis	are	possible	and	that	these	choices	can	
have	a	big	impact	on	the	number	of	required	replications	and	thus	on	
the	cost‐benefit	reasoning	relevant	for	the	planning	of	field	studies.	
Hierarchy	B,	for	example,	will	require	more	replications	than	hierar-
chy	A	because	it	is	required	that	equivalence	is	met	for	every	time‐
point	rather	than	for	the	sum	across	time	points.	Further	details	of	
the	data	analysis	methods	are	discussed	in	relation	to	the	proposed	
statistical	analysis	protocol	(Sections	2.1	and	2.5).

1.2 | Limits of concern

The	limit	of	concern	(LoC)	is	a	trigger	value	for	effect	sizes	in	field	
experiments.	Endpoints	with	effect	sizes	outside	these	limits	should	
be	scrutinized	and	might	need	further	investigation.	Notably,	there	
is	no	assumption	that	exceeding	a	LoC	would	necessarily	indicate	a	
harm	to	the	environment.	The	term	used	in	EFSA	(2010b)	is	LoC,	but	
it	is	also	known	as	the	equivalence	limit.	If	the	confidence	intervals	
for	the	estimated	effects	are	within	LoCs,	this	is	considered	a	proof	
of	equivalence	(EFSA,	2010b)	or	proof	of	safety	(Millard,	1987;	Perry	
et	 al.,	 2009).	The	most	 common	approach,	which	we	will	 also	 fol-
low	in	this	paper,	is	two	one‐sided	tests	(TOST)	approach,	where	a	
two‐sided	90%	confidence	 interval	 is	compared	to	both	 lower	and	
upper	limits	to	establish	equivalence	with	95%	confidence	(Perry	et	
al.,	2009;	Schuirmann,	1987).

LoCs	for	count	data	are	typically	defined	for	ratios	of	mean	counts	
such	as	a	twofold	increase.	It	is	not	easy	to	set	upper	or	lower	limits	for	
these	ratios.	The	LoC	should	preferably	be	based	on	ecological	exper-
tise	and,	according	to	EFSA	(2010b),	“can	be	defined	by	e.g.,	literature	

data,	modelling,	existing	knowledge	and	policy	goals.”	 In	absence	of	
quantitative	data	for	individual	taxa,	in	this	study	basic	LoCs	were	ten-
tatively	set	to	0.5	(i.e.,	50%	decrease)	and	2	(i.e.,	100%	increase).

A	main	problem	with	count	data	is	the	inherent	increased	vari-
ability	at	lower	abundances	resulting	in	less	precise	estimates	of	ef-
fect	sizes	(see,	e.g.,	van	der	Voet	&	Goedhart,	2015)	and	in	a	limited	
power,	as	compared	to	more	abundant	species,	for	rejecting	the	null	
hypothesis	of	no	difference	or	the	nonequivalence	null	hypothesis	
(e.g.,	 Legendre	&	 Legendre,	 1998;	 Perry,	 Rothery,	 Clark,	Heard,	&	
Hawes,	2003;	van	der	Voet	&	Goedhart,	2015).	This	has	often	 led	
researchers	 to	 omit	 low‐abundance	 data	 from	 their	 analyses	 (e.g.,	
Prasifka	 et	 al.,	 2008).	 Rare	 taxa	 are	 generally	 perceived	 to	 be	 of	
minor	concern	for	ecological	functions	that	can	also	be	performed	
by	more	abundant	 taxa	 (Lyons,	Brigham,	Traut,	&	Schwartz,	2005;	
Rosenfeld,	 2002).	 Therefore,	 rare	 taxa	 are	 generally	omitted	 from	
the	analysis,	but	this	raises	the	question	of	what	criteria	should	be	
used	 for	omitting	a	 taxon.	We	 therefore	propose	 to	use	a	 flexible	
system	of	setting	limits	of	concern,	with	less	strict	limits	of	concern	
for	rare	taxa,	to	account	for	the	large	statistical	uncertainty	of	low	
counts.	More	variation	at	low	abundances	is	just	a	statistical	prop-
erty	and	should	therefore	not	be	seen	by	ecologists	as	a	reason	for	
concern	in	itself.	Thus,	a	flexible	system	of	assigning	LoCs	for	taxa	
with	low	abundance	may	be	used	to	reflect	the	biological	ranges	of	
no	concern.	The	system	we	propose	in	Section	2.2	employs	a	thresh-
old	abundance	value	below	which	scaling	of	the	LoCs	is	applied.

2  | METHODS

2.1 | Methods of statistical analysis

In	field	studies	for	ERA	of	GMOs	typically	counts	of	various	taxa	are	
observed,	sometimes	supplemented	with	continuous	non‐negative	
data	and/or	percentage	data.	Variability	of	insect	abundance	should	
measure	proportional	changes	according	to	most	ecologists	(Gaston	
&	McArdle,	1994).	Observed	counts	are	generally	log‐transformed,	
typically	after	the	addition	of	one	to	avoid	taking	the	 logarithm	of	
zero,	to	achieve	homogeneity	of	variance	and	some	degree	of	inde-
pendence	 from	 the	mean	 abundance,	 at	 least	 for	 high	 abundance	
data,	after	which	statistical	methods	based	on	the	normal	distribu-
tion,	such	as	analysis	of	variance,	are	used.	Alternatively,	the	squared	
root	transform	of	counts	is	taken.	However,	such	data	transforma-
tions	hamper	the	use	of	equivalence	tests	because	it	is	not	immedi-
ately	clear	how	a	confidence	interval	for	the	difference	between	the	
GMO	and	the	CMP	for	the	transformed	data	should	be	back‐trans-
formed	to	the	ratio	scale.	One	approach	 is	to	calculate	a	so‐called	
generalized	 confidence	 interval	 for	 the	 ratio	 (Krishnamoorthy	 &	
Mathew,	2003),	and	this	approach	is	outlined	in	Goedhart	and	van	
der	Voet	 (2014).	 In	 other	 fields	 of	 ecological	 research,	 counts	 are	
statistically	 analyzed	 by	 log‐linear	 models	 which	 rely	 on	 distribu-
tions	specific	for	count	data	such	as	the	Poisson,	the	overdispersed	
Poisson	 (or	 quasi‐Poisson),	 and	 the	 negative	 binomial	 distribution	
(McCullagh	&	Nelder,	1989).	Log‐linear	models	for	ecological	count	
data	have	been	advocated	for	many	years,	see,	for	example,	Sileshi	
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(2006),	Ver	Hoef	and	Boveng	(2006),	O'Hara	and	Kotze	(2010),	Szöcs	
and	Schäfer	(2015),	and	Warton	(2018).	Such	models	provide	a	direct	
estimate	 of	 the	 log‐ratio	 of	 the	means	 of	 the	GMO	and	 the	CMP	
making	equivalence	 testing	 straightforward.	 In	 a	 simulation	 study,	
Goedhart	 and	 van	 der	 Voet	 (2014)	 found	 that	 the	 transformation	
approach	has	good	properties	when	it	comes	to	difference	testing	
but	 that	 generalized	 confidence	 intervals	 for	 the	 true	 ratio	 of	 the	
mean	of	the	GMO	and	the	CMP	have	poor	coverage	probabilities.	
The	coverage	probability	of	the	log‐linear	model	employing	the	over-
dispersed	Poisson	distribution	 is	generally	 satisfactory	even	when	
data	 are	 simulated	 according	 to	 other	 count	 distributions.	 Based	
on	 these	 simulations,	 statistical	 analysis	 according	 to	 the	 overd-
ispersed	 Poisson	 model	 is	 recommended	 for	 equivalence	 testing	
based	on	count	data.	Szöcs	and	Schäfer	(2015)	also	suggest	to	use	
the	overdispersed	Poisson	model	for	count	data	in	one‐way	factorial	
experiments.

2.2 | Adapted limits of concern for count 
data of nonabundant taxa

A	flexible	system	of	assigning	LoCs	for	taxa	with	low	abundance	is	
proposed	to	reflect	the	ranges	of	no	concern.	Below	a	chosen	limit	
abundance	value,	for	example, μ0	=	10,	it	is	proposed	to	apply	a	scal-
ing	to	the	LoCs	for	taxa.	The	scaling	factor	is	

√
�0∕m,	to	be	applied	

to	the	logarithms	of	the	LoCs,	in	which	m	is	the	combined	mean	of	
the	GMO	and	CMP.	This	implies	that	limits	of	concern	become	wider	
for	 lower	abundances,	corresponding	 to	 less	concern	at	 these	 low	
levels.	Note	that	equivalently	the	scaled	LoC	equals	the	LoC	raised	
to	the	power	

√
�0∕m.	For	example,	with	basic	LoCs	at	0.5	and	2	and	

a	threshold	of	μ0	=	10,	the	adapted	LoCs	are	0.38	and	2.7	for	taxa	
with	an	abundance	of	5	per	plot,	and	0.11	and	9.0	for	taxa	with	an	
abundance	of	1	per	plot.	The	use	of	

√
1∕m	in	the	scaling	factor	for	

the	logarithms	of	the	LoCs	can	be	motivated	by	statistical	large	sam-
ple	theory	for	the	Poisson	distribution.	Suppose	we	have	two	sam-
ples	each	of	 size	n	 from	a	Poisson	distribution	with	means	μ1	 and	
μ2	respectively.	The	maximum‐likelihood	estimator	for	the	log‐ratio	
Δ= log

(
�1∕�2

)
	is	given	by	log(Xm/Ym)	in	which	Xm	and	Ym	are	the	re-

spective	 sample	 means.	 Suppose	 that	 𝜇1=𝜇2=𝜇<𝜇0.	 The	 large	
sample	variance	of	log(Xm/Ym)	then	equals	2/(nμ).	Consequently,	the	
asymptotic	standard	error	on	 the	 log‐ratio	scale	 is	proportional	 to	√
1∕�	and	the	length	of	the	confidence	interval	is	thus	also	propor-

tional	to	
√
1∕�.	It	is	then	natural	to	use	

√
1∕m	as	a	scaling	factor	for	

the	logarithm	of	the	LoCs	for	means	smaller	than	μ0	=	10.	In	a	simula-
tion	study	(Supporting	Information	Appendix	S1),	it	was	shown	that	
the	power	of	the	equivalence	test	for	the	two‐sample	case	with	the	
proposed	adaptive	 limits	of	 concern	 is	 approximately	 constant	 for	
𝜇<𝜇0.

When	no	single	specimen	is	found	for	the	GMO	and/or	the	CMP,	
the	resulting	estimate	for	the	ratio	 is	zero,	 infinite,	or	not	defined.	
Pragmatically,	 the	 ratio	was	 then	calculated	with	 the	zero	average	
replaced	by	the	lowest	possible	value,	which	is	one	over	the	number	
of	replications.	This	ratio	(without	a	confidence	interval)	is	only	dis-
played	in	case	it	falls	outside	the	equivalence	region.

2.3 | Confidence intervals versus tests, 
graphical summaries

Often	the	final	aim	of	an	NTO	study	is	implicitly	framed	as	testing	
hypotheses	 about	unintended	differences.	This	 is	 then	presented	
as,	for	example,	tables	of	means	with	indications	of	nonsignificant	
differences	 (e.g.,	Al‐Deeb	&	Wilde,	 2003;	Duan,	Head,	 Jensen,	&	
Reed,	2004).	However,	this	way	of	presentation	obscures	the	mag-
nitude	of	the	observed	differences,	the	precision	of	these	estimates	
and	 the	 criteria	 (limits	 of	 concern)	 against	 which	 the	 differences	
should	be	 interpreted.	More	 insight	 is	provided	by	presenting	the	
results	as	confidence	 intervals	 for	 the	 true	effects,	 together	with	
the	LoCs.

Confidence	 intervals	for	effects	and	LoCs	can	be	displayed	for	
multiple	endpoints	together	in	a	single	graph.	A	background	coloring	
may	be	applied	to	the	area	within	the	LoCs	to	indicate	its	meaning	
as	equivalence	area;	that	is,	the	observed	data	do	not	indicate	con-
cern	under	the	specified	criteria.	On	the	other	hand,	no	background	
coloring	is	applied	to	the	area	outside	the	LoCs,	because	in	the	pro-
posed	system	the	LoCs	act	as	a	trigger	for	further	consideration,	but	
values	outside	the	LoCs	do	not	necessarily	indicate	the	presence	of	
environmental	harm.

A	more	general	way	of	plotting	allows	a	simultaneous	display	of	
endpoints	measured	at	potentially	very	different	scales.	For	this,	the	
effect	estimates	and	the	corresponding	confidence	limits	are	scaled.	
The	 scaled	 dimensionless	measure	 is	 called	 the	 LoC‐scaled	 differ-
ence	 (LoCSDIF)	or,	as	 it	has	been	 termed	 in	 related	work	 (van	der	
Voet,	Goedhart,	&	Schmidt,	2017),	the	equivalence	limit	scaled	dif-
ference	(ELSD).	For	count	data,	if	Q	is	the	estimated	ratio	for	GMO	
versus	CMP,	and	if	lower	and	upper	LoCs	are	also	expressed	as	ratios	
LoClow	 and	LoCupp	 (which	are	assumed	to	be	 respectively	below	1	
and	above	1,	e.g.,	0.5	and	2),	the	LoCSDIF	is	defined	as	follows

For	one‐sided	problems,	that	is,	when	there	is	only	one	LoC,	only	
the	single	expression	with	the	specified	LoC	is	used	for	all	values	of	
Q.

The	LoCSDIF	scale	makes	a	distinction	between	 increases	and	
decreases	 in	 abundance	 (positive	and	negative	effects).	 For	 an	ef-
fective	integration	of	concerns	about	both	increases	and	decreases,	
we	can	also	define	the	concern	quotient	CQ,	which	is	a	non‐negative	
score	that	expresses	absence	of	concern	for	values	up	to	1:

For	one‐sided	tests,	again	only	the	expression	with	the	relevant	
limit	of	concern	is	used	and	values	smaller	than	0,	which	express	no	
concern,	are	replaced	by	0.

A	hypothetical	example	of	plots	on	the	ratio	scale	(Q),	the	LoC‐
scaled	difference	scale	(LoCSDIF),	and	the	concern	quotient	scale	

LoCSDIF=

⎧
⎪⎨⎪⎩

log (Q)

− log (LoClow)
ifQ<1

log (Q)

log (LoCupp)
ifQ≥1

CQ=max

[
log (Q)

log (LoClow)
,

log (Q)

log (LoCupp)

]
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(CQ)	are	shown	in	Figure	3,	with	unequal	limits	of	concern	for	three	
taxa.	In	plot	(a),	the	hypothetical	Taxon	A	and	Taxon	B	are	seen	to	
be	significantly	different	from	zero	because	their	intervals	do	not	
overlap	the	vertical	equality	line	at	a	ratio	of	1.	But	the	fourfold	de-
crease	for	Taxon	B	is	not	considered	a	concern,	whereas	the	four-
fold	increase	for	Taxon	A,	colored	red,	is	a	concern.	In	a	similar	way,	
the	 threefold	 increase	 for	 Taxon	 C	 is	 not	 considered	 a	 concern.	
The	ordering	of	concerns	is	easier	seen	in	plots	(b)	and	(c)	for	the	
LoCSDIF	and	CQ	scale.	Note	that	for	Taxon	C	scaling	on	the	right	
is	done	with	the	upper	LoC	which	 is	16,	while	scaling	on	the	 left	
employs	the	lower	LoC	which	is	0.5.	Real	examples	of	plots	show-
ing	both	types	of	graphical	representation	are	given	in	Section	3.2.

2.4 | Summarizing over different dimensions

In	 the	design	phase	of	 the	 experiment,	 the	proposed	protocol	 re-
quires	preparation	of	a	hierarchical	tree	of	endpoints	(Section	1.1).	
In	this	section,	the	general	approach	for	the	analysis	of	equivalence	
when	following	this	tree	is	outlined.	For	an	illustration,	see	Section	3.

A	typical	ERA	study	will	account	for	biogeographical	variation	by	
counting	many	taxa	at	multiple	sites	during	multiple	years.	The	data	
selected	for	analysis	may	therefore	have	different	taxa	for	different	
space–time	combinations.	 In	general,	 there	are	multiple	ways	how	
data	can	be	integrated	over	different	sites,	different	years,	and	dif-
ferent	taxa	to	obtain	an	overall	conclusion	for	the	safety	assessment	
(see	Figure	4).

As	can	be	seen	in	Figure	4,	there	are	six	possible	ways	to	sum-
marize	conclusions	given	by	the	sequences:	(time,	space,	taxa),	(time,	
taxa,	space),	(space,	time,	taxa),	(space,	taxa,	time),	(taxa,	time,	space),	
and	(taxa,	space,	time).

For	 each	 integration	 step,	 there	 are	 in	 principle	 three	method	
types	for	summarizing:

Method	 type	 1:	 Preprocessing	 of	 the	 data,	 for	 example,	 summing	
counts	over	taxa,	summing	counts	over	time,	or	the	calculation	of	
a	biodiversity	index	to	summarize	over	taxa;

Method	type	2:	Joint	data	analysis	resulting	in	estimates	of	effects—
this	is	applicable	for	summarizing	over	time	or	over	space,	but	only	
when	the	same	taxa	are	addressed;

Method	type	3:	Multicriteria	decision	analysis	(MCDA)	applied	to	es-
timates	of	effects	which	is	applicable	for	all	forms	of	summarizing.

These	 three	method	 types	 are	 ordered	 in	 the	 sense	 that,	 for	
example,	Method	 type	2	can	only	be	 followed	by	Method	 type	2	
or	3	 in	the	next	 integration	step.	We	further	distinguish	between	
various	forms	of	data	analysis.	 In	the	hierarchies	A	and	B	given	in	
Figure	 2,	 the	 statistical	 analysis	 (SA)	 estimates	 effects	 from	 data	
without	 further	 integration:	 In	 hierarchy	 A,	 data	 per	 taxon	 were	
summarized	 to	an	effect	per	 taxon,	while	 in	hierarchy	B	data	per	
time	points	were	summarized	to	an	effect	per	time	points	per	taxon.	
In	hierarchy	B,	however,	the	statistical	analysis	could	also,	in	one	go,	
summarize	over	time	points	giving	a	single	effect	per	taxon.	Such	
an	analysis	will	be	termed	a	statistical	hierarchical	analysis	 (SHA),	
because	it	estimates	effects	for	a	higher	level	in	the	hierarchy.

Individually	estimated	effects,	for	example,	for	several	taxa,	can	be	
combined	in	a	single	effect	and	a	corresponding	confidence	interval	by	
means	of	a	statistical	meta‐analysis	(SMA).	This	provides	an	objective	
way	of	combining	information	from	separate	effects,	while	taking	into	
account	the	different	standard	errors	for	the	individual	effects,	see,	for	
example,	Hardy	and	Thompson	(1996).	There	are	basically	two	versions	
of	meta‐analysis.	The	“fixed”	version	assumes	that	estimated	effects	
have	a	common	mean	and	 individually	known	variances.	The	overall	
effect	 is	 then	 simply	 the	weighted	average	of	 the	 individual	 effects,	
in	which	 the	 individual	variances	are	used	as	weights.	The	 “random”	
version	on	 the	other	hand	allows	 for	heterogeneity	of	 the	 individual	
effects	by	introducing	a	between	individuals	component	of	variance.	
Residual	maximum	likelihood	(REML)	can	then	be	used	to	estimate	the	

F I G U R E  3  Graphical	representation	of	a	comparative	analysis	for	hypothetical	taxa	A,	B,	and	C.	Point	estimates	and	90%	confidence	
intervals	for	the	ratio	of	the	GMO	versus	the	CMP	(panel	a)	along	with	hypothetical	limits	of	concern	(red	lines).	Panel	b	shows	the	same	
interval	as	LoC‐scaled	differences.	Panel	c	shows	the	same	interval	as	Concern	Quotients.	Points	outside	the	LoCs	are	colored	red,	and	
points	inside	the	LoCs	for	statistically	significant	differences	are	colored	blue

F I G U R E  4  Possible	routes	for	integration	over	space,	time,	and	
taxa	in	environmental	risk	assessment



     |  2869van der vOeT eT al.

overall	effect	and	to	provide	a	confidence	interval	for	the	overall	effect.	
In	ERA,	we	may	expect	heterogeneous	effects	for	individual	taxa,	and	
therefore,	we	applied	REML	to	 the	estimated	 log‐ratio	effects.	Note	
that	a	meta‐analysis	implicitly	assumes	statistical	independence	of	the	
individual	effects.	This	might	be	an	unrealistic	assumption	when	com-
bining	information	for	different	taxa	within	the	same	experiment.	Also	
note	that	SMA	implicitly	assumes	that	negative	effects,	 for	example,	
for	a	taxon,	can	be	compensated	by	positive	effects	for	another	taxon.

In	the	equivalence	analysis	(EA),	a	statistical	proof	of	equivalence	
is	established	if	the	confidence	interval	does	not	exceed	any	limit	of	
concern.	According	to	the	terminology	of	EFSA	(2010a),	equivalence	
is	more	likely	than	not	if	the	estimated	effect	(point	estimate)	falls	
between	the	lower	and	upper	limits.

In	summarizing	different	equivalence	analyses,	the	simplest	but	
most	stringent	option	for	a	proof	of	safety	is	to	require	that	all	con-
fidence	 intervals	 are	within	 their	 LoCs	 (EAall,interval).	An	alternative	
and	less	stringent	option,	related	to	the	notion	of	“equivalence	more	
likely	than	not,”	 is	to	require	that	all	point	estimates	of	the	effects	
are	within	 their	LoCs	 (EAall,point).	Other	options	are	based	on	aver-
aging	 point	 estimates	 on	 the	 LoCSDIF	 or	 CQ	 scale,	 and	 compare	

this	average	to	the	scaled	limits	of	concern,	which	are	−1	and	1	for	
LoCsDIF,	or	1	for	CQ	(EAav,LoCSDIF or EAav,CQ).

Table	1	summarizes	the	different	possible	steps	in	building	a	hierar-
chy	for	the	analysis	of	observed	data.	Note	that	summarizing	by	means	
of	SHA,	SMA,	or	EAav	implies	that	we	are	interested	in	an	average	ef-
fect.	In	contrast,	EAall	considers	all	individual	effects	on	their	own.

2.5 | A protocol for the statistical equivalence 
analysis of NTO effects

In	this	section,	we	present	a	protocol	for	the	statistical	analysis	of	
data	 from	 ERA	 field	 trials.	 In	 principle,	 the	methods	 of	 statistical	
analysis	should	have	been	decided	at	the	planning	stage	of	the	ex-
periment,	but	it	may	be	needed	to	update	the	methods	based	on	the	
context	or	unexpected	findings.

2.5.1 | General

1.	 When	 the	 experiment	 was	 designed,	 a	 list of NTO endpoints 
should	 have	 been	 prepared.	 This	 will	 typically	 be	 organized	 in	

Element Explanation

Method	type	1:	Data	preprocessing

SUM Summing	the	data.	For	example,	summing	counts	of	a	taxon	over	different	points	
in	time,	or	summing	counts	of	taxa	within	the	same	functional	group	to	give	a	
single	count	for	the	functional	group

INDEX Calculation	of	a	diversity	index,	for	example,	the	Shannon–Wiener	or	Simpson	
index	(Lazebnik	et	al.,	2017)

Method	type	2:	Statistical	analysis

SA Statistical	Analysis	of	data	resulting	in	estimated	effects	at	the	same	level	of	the	
hierarchy,	that	is,	without	integration	of	other	levels	in	the	hierarchy.	For	
example,	estimation	of	the	effect	for	a	single	taxon	per	time	points.

SHA Statistical	hierarchical	analysis	of	data	resulting	in	estimated	effects	at	a	higher	
level	of	the	hierarchy,	that	is,	including	integration	of	other	levels	in	the	
hierarchy.	For	example,	estimation	of	the	effect	for	a	single	taxon	summarized	
over	time	points.

SMA Statistical	meta‐analysis	which	combines	individual	effects	into	a	single	
combined	effect.	For	example,	combining	effects	for	taxa	within	the	same	
functional	group	to	give	a	single	effect	for	the	functional	group,	or	combining	
effect	for	individual	environments	to	give	a	single	effect	across	environments.

Method	type	3:	Equivalence	analysis	(multicriteria	decision	analysis)

EAall Equivalence	analysis	of	estimated	effects	in	which	all	estimated	effects	should	
meet	the	equivalence	criterion.	This	step	can	be	present	several	times,	for	
example	when	moving	from	(a)	equivalence	per	functional	group	per	year	per	
site	to	(b)	equivalence	per	year	per	site	to	(c)	equivalence	per	site	to	(d)	overall	
equivalence.	This	step	can	be	applied	using	confidence	intervals	(EAall,interval)	for	
a	statistical	proof	of	safety	or	using	point	estimates	(EAall,point)	for	an	assess-
ment	whether	equivalence	is	more	likely	than	not

EAav Equivalence	analysis	of	estimated	effects	in	which	the	average	of	estimated	
effects	should	meet	the	equivalence	criterion,	where	effects	are	first	rescaled	
to	the	LoCSDIF	scale	(ELav,LoCSDIF)	or	the	CQ	scale	(EAav,CQ).	This	step	can	also	
be	present	several	times

Note.	An	element	can	only	be	followed	by	an	element	which	has	an	equal	or	higher	numbered	method	
type.

TA B L E  1  Elements	of	the	hierarchy	for	
data	analysis	and	integration	of	
equivalence
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a	 hierarchy,	 see,	 for	 example,	 Figure	 1.	 This	 list	 may	 include	
taxa	 which	 may	 or	 may	 not	 be	 present	 under	 the	 conditions	
of	 the	 experiment.	 If	 necessary,	 update	 the	 list	 with	 any	 un-
expected	 findings.	 Motivate	 any	 change	 to	 the	 initial	 list	 of	
endpoints	 and	 its	 hierarchy	 at	 the	 end	 of	 the	 experiment,	 but	
before	 the	 statistical	 analysis.

2.	 Already	at	 the	design	 stage,	 a	 logical tree for the analysis shows 
should	have	been	prepared,	specifying	how	data	will	be	preproc-
essed	(data preprocessing steps,	Method	type	1),	how	effects will 
be	estimated	from	the	data	by	statistical	analysis	(statistical analy-
sis steps,	Method	type	2),	and	how	conclusions	on	equivalence will 
follow	from	the	set	of	estimated	effects	and	the	limits	of	concern	
which	should	also	be	specified	at	the	design	stage	of	the	experi-
ment	(equivalence analysis steps,	Method	type	3).	The	branches	of	
the	trees	may	have	different	schemes	for	the	subtrees;	for	exam-
ple,	Carabidae	may	be	summed	over	different	point	in	time	while	
for	Collembola	a	statistical	analysis	is	envisaged	for	each	individ-
ual	point	in	time.	In	general,	many	different	trees	will	be	possible;	
therefore,	 the	chosen	 tree	 should	be	motivated.	 In	 the	analysis	
stage,	check	and	if	necessary	update	the	logical	tree	for	the	analy-
sis	of	all	observed	endpoints.	Motivate	any	change.
a	 For	 count	data,	 a	 typical	way	of	preprocessing	 the	data	 is	 to	

sum	 over	 primary	 levels,	 for	 example,	 over	 individual	 time	
points	to	obtain	year	totals,	or	over	individual	taxa	to	obtain	
totals	for	functional	groups.

b	 Indicate	the	nature of the statistical analysis steps	in	the	logical	
tree	as	being	a	statistical	analysis	(SA,	where	the	effects	are	
calculated	at	 the	same	 level	as	 the	data),	a	statistical	hierar-
chical	 analysis	 (SHA,	where	 the	 data	 are	 at	 a	 lower	 level	 of	
integration	 than	 the	estimated	effects)	or	a	statistical	meta‐
analysis	 (SMA,	where	effect	estimates	of	a	previous	analysis	
are	integrated	to	a	higher	level).	More	guidance	is	provided	in	
Section	2.5.2	(SA)	and	Section	2.5.3	(SHA	and	SMA).

c	 Indicate	the	nature of the equivalence analysis integration steps 
in	 the	 logical	 tree	as	 requiring	equivalence	 conclusion	 to	be	
valid	for	all	members	 (EAall)	or	as	allowing	members	to	com-
pensate	for	each	other	by	averaging	of	LoC‐scaled	differences	
or	concern	quotients	(EAav).

3.	 Present	 the	 results	of	 the	statistical	analyses	by	graphical	 sum-
maries	of	estimated	effects	and,	if	deemed	useful,	of	LoC‐scaled	
differences	or	concern	quotients	CQ	(Section	2.5.4).

2.5.2 | Statistical analysis of single endpoints

The	 basic	 approach	 is	 to	 calculate	 estimates	 and	 90%	 confidence	
intervals	 for	 effects	 (GMO	 vs.	 CMP	 differences,	 expressed	 on	 an	
appropriate	scale),	 and	 then	compare	 these	 to	 the	 (possibly	provi-
sional)	 limits	of	concern	which	were	specified	during	the	design	of	
the	experiment.

1.	 The	 method	 of	 statistical	 analysis	 depends	 on	 the	 type	 of	 end-
point.	 For	 continuous	 endpoints	 with	 necessarily	 positive	 values,	
it	 is	 recommended	 to	perform	an	analysis	on	 the	 log‐transformed	

data.	For	discrete	endpoints	such	as	count	data	and	fraction	data,	
it	 is	 recommended	 to	 perform	 an	 analysis	 on	 the	 original	 scale	
using	 an	 appropriate	 statistical	 distribution	 and	 link	 function.

2.	 Analyze	the	transformed	data	by	linear	models:	ANOVA	if	the	de-
sign	is	balanced,	or	by	regression	or	a	mixed	model	(REML	in	case	
there	are	additional	random	effects)	if	it	is	not.

3.	 Analyze	the	count	data	by	generalized	linear	models	(GLM)	or	by	
generalized	linear	mixed	models	(GLMM)	in	case	there	are	addi-
tional	random	effects	 in	the	model.	Allow	for	overdispersion	in	
counts	whenever	necessary.

4.	 Check	whether	statistical	assumptions	are	reasonable,	for	exam-
ple,	as	follows:
a	 Outliers:	check	data	points	with	large	standardized	residuals.	
Compare	analyses	with	and	without	such	data	points.

b	 Check	a	normal	probability	plot	of	the	standardized	residuals	
for	large	deviations	from	linearity.

c	A	plot	of	standardized	residuals	versus	fitted	values	can	be	used	
to	check	if	there	is	heteroscedasticity.

5.	 If	statistical	assumptions	are	not	met,	then	an	ad	hoc	strategy	
will	have	to	be	followed.	For	example,	another	variance	func-
tion	might	be	more	appropriate	or	nonparametric	tests	may	be	
used.	This	protocol	further	assumes	that	the	model	fits	suffi-
ciently	well.

6.	 Extract	 the	 estimated	 difference	 between	 the	 GMO	 and	 CMP	
from	 the	 statistical	model,	 for	 example,	 the	 log‐ratio	 for	 count	
data,	and	calculate	a	two‐sided	90%	interval.	Display	the	confi-
dence	interval	in	a	graph	along	with	the	LoCs.	For	visual	display,	it	
is	recommended	to	calculate	and	display	both	confidence	limits,	
even	if	there	is	only	one	LoC.

2.5.3 | Statistical analysis integrating 
multiple endpoints

1.	 The	 use	 of	 SHA	 or	 SMA	 is	 only	 logical	 if	 LoCs	 are	 defined	
for	 the	 integrated	 output	 or	 if	 LoCs	 are	 equal	 for	 all	 individual	
endpoints.

2.	 Integration	 over	 multiple	 endpoints	 may	 be	 automatically	 per-
formed	 in	 a	 statistical	 hierarchical	 analysis	 (SHA)	model	 as	 de-
scribed	in	Section	2.5.2.	Perform	a	statistical	meta‐analysis	(SMA)	
if	requested	by	the	logical	tree	for	analysis.	For	this,	consider	the	
estimated	 effects	with	 their	 standard	 errors	 (at	 an	 appropriate	
scale,	e.g.,	the	log	scale)	as	input	for	the	meta‐analysis.

3.	 From	the	analysis,	construct	an	estimate	and	a	90%	confidence	
interval	for	the	overall	effect.

2.5.4 | Graphical representation of effects

1.	 For	 each	 endpoint,	 plot point estimates and 90% confidence 
intervals of estimated effects,	 together	with	 lines	for	the	equality	
ratio	 1	 and	 for	 the	 LoCs.	 In	most	 cases,	 plots	 on	 a	 logarithmic	
scale	 are	 advised.	 The	 90%	 limits	 of	 the	 interval	 represent	 a	
5%	significance	 level	for	equivalence	testing	 in	a	two	one‐sided	
tests	 (TOST)	 approach.
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2.	 Visualize	possible	groupings	in	the	hierarchy	which	are	of	interest	
as	specified	in	the	logical	tree	for	analysis.

3.	 Compare	the	intervals	to	the	LoCs	to	obtain	conclusions regarding 
equivalence	of	the	GMO	and	the	CMP.	Use	different	symbols	or	
colors	for	confidence	intervals	that	do	not	fall	within	the	LoCs.

4.	 If	of	interest,	compare	the	intervals	to	zero	to	obtain	conclusions	
regarding	the	statistical significance of the difference	between	the	
GMO	 and	 the	 CMP.	Note	 that	 this	 implicitly	 employs	 a	 signifi-
cance	level	of	10%	for	a	two‐sided	difference	test.	Use	different	
symbols	or	colors	for	significant	differences.

5.	 Optionally,	 confidence	 intervals	 can	 be	 displayed	 on	 the	 LoC‐
scaled	difference	(LoCsDIF)	scale	or	on	the	concern	quotient	(CQ)	
scale.	This	possibly	allows	an	easier	comparison	in	case	limits	of	
concern	are	not	the	same	for	various	endpoints.

3  | C A SE STUDY: NONTARGET 
ORGANISMS IN POTATO FIELD TRIAL S

Field	trials	with	potato	were	performed	in	Ireland	and	the	Netherlands	
in	 2013	 and	 2014	 (Kessel	 et	 al.,	 2018;	 Lazebnik,	 Dicke,	 Braak,	 &	
Loon,	2017)	and	are	summarized	in	Table	2.	The	main	purpose	was	
to	compare	a	cisgenically	modified	late	blight	resistant	potato	line,	
called	 A15‐13	 (GMO),	 with	 its	 conventional	 comparator	 cultivar	
Désirée	 (CMP).	Another	 conventional	 variety,	SarpoMira,	was	also	
included	in	the	trial.	Both	conventional	varieties	and	the	cisgenic	po-
tato	genotype	were	subjected	to	three	late	blight	control	strategies:	
(a)	Weekly	spraying	with	fungicides	which	is	common	practice	in	the	
Netherlands	and	Ireland,	(b)	no	spraying,	and	(c)	spraying	according	
to	an	advanced	level	of	integrated	pest	management	(IPM2.0,	Kessel	
et	al.,	2018).	In	the	sequel,	Genotype	denotes	the	three	genotypes,	
Spraying	denotes	the	late	blight	control	strategy,	and	Treatment de-
notes	the	nine	combinations	of	Genotype	and	Spraying.	The	main	in-
terest	for	safety	assessment	was	the	comparison	of	the	GMO	with	
the	IPM2.0	control	strategy	with	the	CMP	when	weekly	spaying	is	
applied.	Completely	randomized	block	designs	were	employed,	and	
a	separate	 randomization	was	carried	out	 for	each	of	 the	 four	ex-
periments.	The	number	of	replications	was	six	in	Ireland	and	seven	in	
the	Netherlands.	For	the	purpose	of	assessing	unintended	effects	on	
NTOs,	pitfall	traps	were	placed	in	every	plot	for	one	week	and	emp-
tied	three	times	during	each	trial,	with	about	four	weeks	between	
two	trapping	sessions.	The	scope	of	the	assessment	was	restricted	
to	arthropods.	Arthropods	were	identified	and	counted	in	each	pit-
fall	 trap.	Taxa	were	grouped	 into	 six	 functional	 groups:	Predators,	
Detritivores,	Parasitoids,	Fungivores,	Herbivores,	Hyperparasitoids,	
and	a	seventh	group	“Unknown”	for	remaining	taxa.	Statistical	cal-
culations	were	performed	with	GenStat	(VSN	International,	2017).

3.1 | Hierarchies to analyze NTOs in the four 
potato trials

Figure	5	shows	three	examples	of	hierarchies	for	analyzing	the	NTO	
data.	 Details	 of	 the	 steps	 depicted	 in	 Figure	 5	 and	 their	 implicit	

assumptions	 are	 detailed	 below.	 For	 hierarchy	 A	 in	 Figure	 5,	 the	
steps	were	as	follows:
A.1	 SUM:	The	first	step	in	hierarchy	A	is	to	sum	the	count	data	for	

each	individual	taxon	over	the	three	time	points	which	results	
in	a	single	count	for	every	taxon	for	each	plot	per	site	per	year.	
This	was	done	because	not	enough	power	was	expected	at	sin-
gle	time	points	especially	for	the	less	abundant	taxa.	Summing	
disregards	interactions	with	time	points	within	experiments.

A.2	 SA:	Counts	of	single	taxa	within	experiments	are	statistically	
analyzed	to	give	effects	for	each	taxon	per	site	per	year.	This	
enables	us	to	inspect	the	effect	for	every	single	taxon	per	site	
per	year.	This	is	useful	when	decisions	regarding	individual	taxa	
need	to	be	made	for	different	experimental	conditions.

A.3	 SMA:	Effects	for	taxa	within	the	same	functional	group	are	
combined	 per	 site	 per	 year	 using	 a	meta‐analysis.	 This	 as-
sumes	that	a	negative	effect	for	a	taxon	can	be	compensated	
by	a	positive	effect	for	another	taxon	within	the	same	func-
tional	group.	Effects	with	large	standard	errors,	for	example,	
due	 to	 low	 abundances,	 have	 a	 lower	 weight	 in	 the	meta‐
analysis.	This	implies	that	the	overall	effect	is	dominated	by	
effects	 with	 small	 standard	 errors	 and	 these	 are	 generally	
taxa	with	high	abundances.

A.4 EAall:	The	combined	effects	for	the	functional	groups	are	first	
evaluated	for	each	combination	of	sites	and	years,	both	using	
confidence	intervals	for	a	proof	of	safety	approach	and	using	
the	point	estimates	to	establish	whether	equivalence	is	more	
likely	 than	 not.	 This	 would	 give	 a	 single	 result	 for	 each	 site	
for	each	year,	which	could	be	used	for	site‐	and	year‐specific	
decisions.

A.5	 EAall:	These	combined	CQs	are	 then	assessed	over	years	 for	
each	site.

A.6 EAall:	And	finally,	the	CQs	for	sites	are	combined	into	a	single	
judgment.

TA B L E  2  Experiments	comparing	three	potato	genotypes	in	two	
countries	and	2	years,	showing	the	number	of	plots	(replicates,	
blocks)	for	each	of	the	nine	Treatments	(combinations	of	Genotype	
and	Spraying)

Number of plots (blocks) Ireland Netherlands

Genotype Spraying 2013 2014 2013 2014

A15‐13	(GMO) Weekly 6 6 7 7

A15‐13	(GMO) No	spraying 6 6 7 7

A15‐13	(GMO) IPM2.0 6 6 7 7

Désirée	(CMP) Weekly 6 6 7 7

Désirée	(CMP) No	spraying 6 6 7 7

Désirée	(CMP) IPM2.0 6 6 7 7

SarpoMira Weekly 6 6 7 7

SarpoMira No	spraying 6 6 7 7

SarpoMira IPM2.0 6 6 7 7

Note.	The	comparison	of	main	interest	for	safety	assessment	is	shown	in	
the	two	rows	with	a	gray	background.
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For	hierarchy	B,	in	Figure	5,	the	steps	are	as	follows:

B.1	 SHA:	This	is	identical	to	step	A1	described	above.
B.2	 SUM:	The	taxa	are	further	summed	to	form	counts	for	functional	

groups.	This	implicitly	assumes	that	individuals	of	different	spe-
cies	within	the	same	functional	group	are	equally	valuable.	It	also	
presumes	that	there	is	no	interest	in	individual	taxa.

B.3	 SHA:	 A	 statistical	 hierarchical	 analysis	 is	 performed	 to	 esti-
mate	the	effect	for	each	functional	group	while	averaging	over	
years	 and	 sites	 (e.g.,	 summarizing	 results	 at	 European	 scale).	
This	 implicitly	 assumes	 that	 there	 is	 only	 interest	 in	 a	 cross‐
environment	 estimate	 of	 effects	 and	 that	 negative	 effects	 in	
one	 environment	 can	 be	 compensated	 by	 positive	 effects	 in	

another	environment.	It	also	assumes	that	decisions	based	on	
just	a	single	experiment	(possibly	involving	national	decisions)	
are	not	of	interest.

B.4	 EAall:	 The	effects	 obtained	 in	 the	previous	 step	 are	 assessed	
over	functional	groups

For	hierarchy	C,	in	Figure	5,	the	steps	are	as	follows:

C.1	 SHA:	A	statistical	hierarchical	analysis	is	performed	to	estimate	
the	 effect	 for	 each	 taxon	 while	 averaging	 over	 time	 points,	
years,	 and	sites.	This	 implicitly	assumes	 there	 is	only	 interest	
in	 a	 cross‐environment	 estimate	of	 effects	 and	 that	 negative	
effects	 in	 one	 environment	 can	 be	 compensated	 by	 positive	

F I G U R E  5  Examples	of	logical	trees	for	the	analysis	of	NTO	data	for	potato	field	trials	in	Ireland	and	the	Netherlands	in	2013	and	2014.	
EAall:	equivalence	analysis	requiring	all	effects	(confidence	intervals	or	point	estimates	in	two	variants	of	the	procedure)	to	be	within	their	
limits;	SA:	statistical	analysis;	SHA:	statistical	hierarchical	analysis;	SMA:	statistical	meta‐analysis;	Sum:	summation	of	data

(a)

(b)

(c)
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effects	 in	another	environment.	 It	 also	assumes	 that	national	
decisions	are	not	of	interest.

C.2	 SMA:	 effects	 for	 taxa	 within	 the	 same	 functional	 group	 are	
combined.	This	assumes	that	a	negative	effect	for	a	taxon	can	
be	compensated	by	a	positive	effect	for	another	taxon	within	
the	same	functional	group.	Effects	with	large	standard	errors,	
for	example,	due	to	low	abundances,	have	a	lower	weight	in	the	
meta‐analysis.	This	implies	that	the	overall	effect	is	dominated	
by	effects	with	small	 standard	errors	and	 these	are	generally	
taxa	with	high	abundances.

C.3	 EAall:	 The	 effects	 obtained	 in	 the	previous	 step	 are	 assessed	
over	functional	groups.

Still	other	hierarchies	are	possible,	such	as	the	approach	based	on	
first	summarizing	over	taxa	by	calculating	diversity	indices,	which	has	
been	described	for	this	specific	case	study	in	Lazebnik	et	al.	(2017).

3.2 | Safety assessment for NTOs in the 
potato trials

The	 analysis	 according	 to	 hierarchy	 A	 provides	 the	 most	 detail	
and	is	presented	below.	In	step	A1,	the	counts	for	each	taxon	are	
summed	over	 the	 time	points.	Data	 from	two	pitfall	 traps	 in	 the	
Irish	trial	in	2013	were	missing	at	the	second	time	points.	To	ena-
ble	summing	over	time	points,	these	missing	counts	were	imputed	
using	the	log‐linear	model	“Block + Treatment”	for	the	time	points	
in	question.	The	same	was	done	for	a	single	missing	pitfall	at	the	
second	time	points	in	the	Dutch	trial	in	2014.	For	the	Dutch	2013	
trial,	13	out	of	63	traps	were	missing	for	the	first	and	third	time	
points.	Therefore,	for	this	trial	the	first	and	third	time	points	were	
discarded.

3.2.1 | Estimation of the difference between 
GMO and CMP in the potato trials

In	step	A2,	each	taxon	was	statistically	analyzed	separately	for	each	
experiment.	The	analysis	accounted	for	differences	between	blocks	
and	resulted	in	an	estimate	of	the	log‐ratio	for	the	GMO	versus	CMP	
comparison.	In	principle,	the	interest	was	in	a	comparison	between	
two	of	the	nine	treatments,	namely	GMO	with	IPM2.0	versus	CMP	
with	weekly	spraying	(see	gray	rows	in	Table	2).	However,	when	there	
is	no	interaction	between	Genotype	and	the	Spraying	treatments,	the	
effective	level	of	replication	can	be	increased	by	a	factor	of	three	by	
investigating	the	difference	between	the	GMO	and	CMP	averaged	
over	the	three	control	strategies.	This	can	be	accomplished	by	fitting	
the	main	effects	model	“Block + Spraying + Genotype.”	 It	 is	custom-
ary	to	use	this	main	effects	model	in	case	the	interaction	is	not	sig-
nificant.	However,	 the	 interaction	between	Genotype	 and	Spraying 
has	four	degrees	of	freedom	and	also	involves	the	additional	variety	
SarpoMira	which	is	of	no	interest	for	the	main	comparison	between	
the	GMO	 and	CMP.	 So	 it	 is	 possible	 that	 an	 interaction	 between	
Spraying	and	the	GMO/CMP	is	swamped	by	complete	absence	of	an	
interaction	with	SarpoMira	or	the	other	way	around.	This	problem	

can	be	settled	by	excluding	the	additional	variety	from	significance	
testing	 of	 the	 interaction.	 The	 remaining	 interaction	 is	 then	 be-
tween	GMO/CMP	on	the	one	hand	and	Spraying	on	the	other	hand.	
Moreover,	 the	Spraying	 treatment	 “None”	 can	be	 fully	 responsible	
for	 the	remaining	 interaction	 in	which	case	we	would	 like	to	com-
pare	the	GMO	and	CMP	averaged	over	the	two	Spraying	treatments	
“IPM2.0”	and	“Weekly.”	These	considerations	were	formalized	in	the	
following	procedure:

1.	 Test	 for	 the	 interaction	between	GMO/CMP	and	Spraying	 (with	
three	 levels)	 which	 has	 two	 degrees	 of	 freedom.	 In	 case	 this	
interaction	 is	 not	 significant,	 compare	 the	 GMO	 and	 CMP	 av-
eraged	 over	 the	 three	 Spraying levels. Otherwise go to 2.

2.	 Test	for	the	interaction	between	GMO/CMP	and	the	Spraying lev-
els	Weekly	and	IPM2.0;	this	interaction	has	one	degree	of	free-
dom.	In	case	this	interaction	is	not	significant,	compare	the	GMO	
and	 CMP	 averaged	 over	 the	 two	 Spraying	 levels	 Weekly	 and	
IPM2.0.	Otherwise	go	to	3.

3.	 Fit	the	full	model	“Block + Treatment”	and	compare	GMO‐IPM2.0	
versus	CMP‐Weekly.

In	the	sequel,	the	GMO	and	CMP	treatments	will	refer	to	the	means	
averaged	over	three,	two,	or	one	level(s)	depending	on	the	outcome	of	
the	interaction	tests.

3.2.2 | Effects per taxon per site per year

When	either	the	GMO	or	the	CMP	treatment	has	a	zero	mean	count,	
the	log‐ratio,	that	is,	Δ	=	log(Q),	would	be	estimated	as	plus	or	minus	
infinity.	In	these	situations,	the	zero	mean	count	was	pragmatically	
replaced	by	the	smallest	positive	mean	possible,	that	is,	one	divided	
by	the	number	of	replicates.	In	most	cases,	the	zero	count	was	com-
bined	with	a	 low	count	for	the	other	genotype,	resulting	 in	a	ratio	
not	far	from	one.	In	these	cases,	a	confidence	interval	was	not	com-
puted,	and	in	the	proposed	graphical	summaries,	only	calculated	ra-
tios	outside	the	LoCs	were	signaled.

Limits	of	concern	were	tentatively	set	to	0.5	and	2	for	each	taxon,	
and	the	LoCs	were	adapted	such	that	the	logarithm	of	LoC	was	mul-
tiplied	by	

√
10∕m	whenever	the	combined	mean	m	of	the	GMO	and	

CMP	was	below	10.	The	confidence	interval	for	each	effect,	along	with	
the	associated	LoCs,	is	given	in	Figures	6‒9.	Note	that	a	confidence	
interval	for	each	functional	group	is	also	given;	this	is	for	the	sum	over	
the	taxa	within	each	group	which	was	part	of	the	analysis	according	
to	hierarchy	B.	Also	note	that	the	ordering	of	the	species	within	each	
functional	group	is	according	to	the	adapted	limit	of	concern	because	
this	is	visually	more	attractive.	This	has	the	drawback	that	the	order-
ing	in	the	figures	is	different.	There	are	two	abundant	species	with	an	
estimated	effect	which	is	outside	the	tentative	LoCs:	Poduromorpha	
in	 Ireland‐2013	 and	Mesostigmata	 in	 Ireland‐2014.	 Most	 intervals	
fall	completely	within	the	LoCs.	Supporting	Information	Appendix	S2	
displays	the	same	figures	on	the	LoCSDIF	and	CQ	scales.	Obviously,	
all	point	estimates	outside	the	limits	of	concern	in	Figures	6‒9	corre-
spond	to	concern	quotients	>1.
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F I G U R E  6  Arthropods	in	potato	trial	in	Ireland	2013.	90%	confidence	intervals	for	the	ratio	between	GMO	and	CMP	averaged	over	
control	strategies	if	possible.	Added	in	parentheses	are	the	number	of	control	strategies	over	which	is	averaged,	the	means	for	the	GMO	and	
CMP,	and	the	coefficient	of	variation	(cv).	Limits	of	concern	(red	lines)	equal	0.5	and	2,	and	log(LoC)	is	scaled	by	

√
10∕m	for	combined	means	

m	lower	than	10.	Points	outside	the	LoCs	are	colored	red,	and	points	inside	the	LoCs	for	statistically	significant	differences	are	colored	blue
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F I G U R E  7  Arthropods	in	potato	trial	in	Ireland	2014.	90%	confidence	intervals	for	the	ratio	between	GMO	and	CMP	averaged	over	
control	strategies	if	possible.	Added	in	parentheses	are	the	number	of	control	strategies	over	which	is	averaged,	the	means	for	the	GMO	and	
CMP,	and	the	coefficient	of	variation	(cv).	Limits	of	concern	(red	lines)	equal	0.5	and	2,	and	log(LoC)	is	scaled	by	

√
10∕m	for	combined	means	

m	lower	than	10.	Points	outside	the	LoCs	are	colored	red,	and	points	inside	the	LoCs	for	statistically	significant	differences	are	colored	blue
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F I G U R E  8  Arthropods	in	potato	trial	in	the	Netherlands	2013.	90%	confidence	intervals	for	the	ratio	between	GMO	and	CMP	averaged	
over	control	strategies	if	possible.	Added	in	parentheses	are	the	number	of	control	strategies	over	which	is	averaged,	the	means	for	the	
GMO	and	CMP,	and	the	coefficient	of	variation	(cv).	Limits	of	concern	(red	lines)	equal	0.5	and	2,	and	log(LoC)	is	scaled	by	

√
10∕m	for	

combined	means	m	lower	than	10.	Points	outside	the	LoCs	are	colored	red,	and	points	inside	the	LoCs	for	statistically	significant	differences	
are	colored	blue
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F I G U R E  9  Arthropods	in	potato	trial	in	the	Netherlands	2014.	90%	confidence	intervals	for	the	ratio	between	GMO	and	CMP	averaged	
over	control	strategies	if	possible.	Added	in	parentheses	are	the	number	of	control	strategies	over	which	is	averaged,	the	means	for	the	
GMO	and	CMP,	and	the	coefficient	of	variation	(cv).	Limits	of	concern	(red	lines)	equal	0.5	and	2,	and	log(LoC)	is	scaled	by	

√
10∕m	for	

combined	means	m	lower	than	10.	Points	outside	the	LoCs	are	colored	red,	and	points	inside	the	LoCs	for	statistically	significant	differences	
are	colored	blue
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3.2.3 | Integrated analysis

Step	 A3	 involves	 a	 meta‐analysis	 for	 each	 functional	 group	 for	
each	 site/year	 combination.	 This	 is	 not	 useful	 when	 there	 are	
only	a	few	taxa	within	a	functional	group.	The	meta‐analysis	was	
therefore	 only	 carried	 out	 for	 those	 functional	 groups	with	 four	
or	more	taxa.	In	case	the	functional	group	has	three	or	fewer	spe-
cies,	the	estimated	effect	for	the	sum	was	taken.	This	was	the	case	
for	 Hyperparasitoids	 and	 Fungivores	 in	 all	 four	 experiments	 and	
Herbivores	 in	 the	 Netherlands	 2013.	 Limits	 of	 concern	 for	 esti-
mated	overall	effect	 for	 the	meta‐analysis	were	again	 tentatively	
set	to	0.5	and	2	and	for	the	estimated	effect	for	the	sum	as	before.	
Confidence	 intervals	 are	 given	 in	 Figure	 10	 for	 the	 ratios	 and	 in	
Figure	 11	 for	 the	 LoCSDIF	 and	CQ	 scales.	 All	 ratio	 intervals	 are	
within	the	LoCs	except	for	the	Fungivores	 interval	for	the	trial	 in	
the	Netherlands	(NL)	in	2013.	Note	that	this	involves	very	few	in-
dividuals	(0.4	for	the	GMO	vs.	1.9	for	the	CMP)	and	also	note	that	
in	 the	NL‐2014	 trial	 the	 estimated	 effect	 for	 Fungivores	 has	 the	
opposite	sign.

In	 step	A4,	 an	equivalence	analysis	 (EAall)	 separately	per	 site	
and	 year	 reveals	 that	 equivalence	 is	 established	 for	 IR‐2013,	
IR‐2014,	 and	NL‐2014,	 but	 not	 for	 NL‐2013	 due	 to	 the	 outlying	

Fungivores.	Further	 integration	 in	step	A5	results	 in	equivalence	
for	Ireland	but	not	for	the	Netherlands,	and	in	step	A6	no	overall	
equivalence.	In	case	EAall	is	based	on	equivalence	more	likely	than	
not,	which	only	requires	that	the	estimated	effect	is	within	the	lim-
its	of	concern,	than	all	integration	steps	result	in	equivalence.	The	
concern	quotient	at	any	of	 the	steps	A4,	A5,	or	A6	 is	 calculated	
as	CQ	=	0.8	with	an	upper	confidence	limit	of	1.3	(Figure	11).	The	
final	result	of	the	assessment	is	that	the	full	data	set	of	entomo-
logical	counts	across	sites	and	years	has	thus	been	reduced	by	the	
proposed	method	to	just	one	functional	group	at	one	site	and	one	
year	(Fungivores,	with	reduced	counts	in	NL‐2013),	which	should	
be	 inspected	 for	 further	 interpretation.	We	 note	 again	 that	 this	
case	 is	not	 labeled	as	causing	any	harm,	but	only	as	a	trigger	for	
further	inspection.

4  | DISCUSSION

The	definition	of	appropriate	 limits	of	 concern	 for	ecological	end-
points	 is	 a	 fundamental	 requirement	 to	 evaluate	 equivalence	
between	treatments	during	ERA.	The	importance	of	setting	appro-
priate	limits	of	concern	has	been	recognized	by	EFSA	(EFSA,	2010b).	

F I G U R E  1 0  90%	confidence	interval	resulting	from	a	meta‐analysis	for	functional	groups	for	arthropods	data	in	potato	field	trials.	Meta‐
analysis	is	only	performed	for	those	functional	groups	with	four	or	more	taxa.	For	other	groups,	the	interval	for	the	sum	counts	is	given.	
Points	outside	the	LoCs	(red	lines)	are	colored	red,	and	points	inside	the	LoCs	for	statistically	significant	differences	are	colored	blue
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However,	 there	 is	 some	ambiguity	about	 the	 intended	meaning	of	
this	concept.	On	the	one	hand,	LoCs	are	defined	as	“the	minimum	
ecological	 effects	 that	 are	 deemed	 biologically	 relevant	 and	 that	
are	deemed	of	sufficient	magnitude	to	cause	harm”	 (EFSA,	2010b,	
Glossary,	p.	110).	On	the	other	hand,	it	is	stated,	in	the	general	sec-
tion	on	problem	formulation,	that:

…	for	each	measurement	endpoint,	the	level	of	envi-
ronmental	protection	to	be	preserved	 is	expressed	
through	the	setting	of	‘limits	of	concern’	which	may	
take	one	of	 two	 forms.	For	 studies	 in	 the	environ-
ment(s)	that	are	controlled	[...]	the	limits	of	concern	
will	 usually	 be	 trigger	 values	 which,	 if	 exceeded,	
will	either	 lead	to	conclusions	on	risks	or	the	need	
for	further	assessment	in	receiving	environment(s).	
For	 field	 studies,	 the	 limits	 of	 concern	will	 reflect	
more	 directly	 the	 minimum	 effect	 that	 is	 consid-
ered	 to	potentially	 lead	 to	harm	 [...].	 If	 these	 limits	
are	exceeded,	then	detailed	quantitative	modelling	
of	exposure	may	be	required	to	scale	up	effects	at	
the	field	 level	both	temporally	and	spatially	 (EFSA,	
2010b,	p.	15).

In	 this	 quote,	 two	 study	 types	 are	 identified:	 controlled	 studies	
(semifield	trials,	e.g.,	using	cages	in	the	field)	and	field	studies.	Despite	
some	difference	in	wording,	in	both	cases	LoC	is	functioning	as	a	trig-
ger	value	 for	 further	attention.	The	words	 “need	 for	 further	assess-
ment”	and	“potentially”	make	clear	that	exceeding	the	LoC	does	not	
necessarily	indicates	a	harm.

We	therefore	see,	even	in	one	important	document,	two	differ-
ent	definitions	of	LoC:

1.	 Toxicity	 limits,	 that	 is,	 context‐dependent	 concepts	 indicating	
limits	 of	 harm	 to	 the	 environment,	 for	 example,	 extinction	 of	
a	 population;	 and

2.	 Equivalence	limits,	that	is,	pragmatic	trigger	values	for	further	as-
sessment	after	data	analysis.

Toxicity	 limits	are	useful	concepts,	but	require	further	ecological	
or	toxicological	modeling	to	quantify,	which	often	will	be	very	difficult	
to	perform.	Equivalence	 limits	can	be	based	on	past	experience	and	
expert	opinion,	where	exceeding	 limits	 is	not	 indicating	harm	to	the	
environment.	In	the	current	paper,	we	have	used	limit	of	concern	(LoC)	
in	the	second	meaning.

The	LoC	values	0.5	and	2	used	in	this	paper	are	provisional,	and	
open	for	revision	where	additional	evidence	might	become	available.	

F I G U R E  11  Confidence	intervals	for	GMO	versus	CMP	differences	per	functional	group	expressed	as	LoC‐scaled	differences	(LoCSDIF,	
left)	and	as	Concern	Quotients	(CQ,	right).	The	green	areas	indicate	equivalence	or	no	concern.	Points	outside	[−1,+1]	(red	lines)	are	colored	
red,	and	points	inside	the	LoCs	for	statistically	significant	differences	are	colored	blue.
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Therefore,	all	results	which	depend	on	these	LoCs	(such	as	all	equiv-
alence	test	results)	should	be	seen	as	the	results	of	a	scenario	study	
using	 these	provisional	LoCs.	Alternative	 scenarios	can	be	consid-
ered	if	other	appropriate	LoC	values	would	be	proposed.	Note	that	
LoCs	could	in	principle	be	defined	separately	for	each	endpoint,	for	
example,	based	on	population	dynamics	data;	therefore,	the	choice	
of	the	same	LoCs	for	all	endpoints	should	not	be	read	as	a	general	
suggestion.

Smaller	counts	are	more	variable	by	their	very	nature	resulting	
in	less	frequent	rejection	of	the	nonequivalence	hypothesis,	that	is,	
less	frequent	establishment	of	equivalence.	Therefore,	we	propose	
to	scale	the	LoCs	for	mean	counts	smaller	than	a	threshold	value	μ0 
resulting	in	a	similar	power	to	reject	the	nonequivalence	hypothesis	
for	all	mean	counts	smaller	than	μ0.	Although	this	is	an	ad	hoc	pro-
cedure,	 it	does	prevent	triggering	further	research	 just	because	of	
statistical	properties	of	count	distributions	with	small	means.	In	the	
case	 study,	we	employed	μ0	=	10	without	 any	 justification.	A	pro-
spective	power	analysis,	for	example,	with	different	count	distribu-
tions,	 could	be	employed	 to	 support	other	values.	Goedhart	et	al.	
(2014)	provide	a	framework	for	such	a	power	analysis	by	means	of	a	
simulation	tool.

In	the	four	combinations	of	location	and	year,	the	observed	taxa	
were	 not	 all	 the	 same	 (Figures	 6‒9).	 For	 analyses	 integrated	 over	
time	and	space,	it	is	therefore	essential	to	group	the	data	at	the	func-
tional	group	level	first.

A	statistical	analysis	is	often	performed	on	only	part	of	the	data,	
for	example,	endpoint	by	endpoint,	and	results	in	estimated	effects,	
that	is,	differences	between	GMO	and	CMP	at	an	appropriate	scale	
(often	 the	 log	 scale),	 as	 in	 Figures	 6‒10.	 These	 effects,	 and	 their	
confidence	 limits,	 can	 be	 standardized	 by	 scaling	 to	 a	 no‐concern	
yardstick,	which	 represents	a	minimum	 limit	of	potential	biological	
relevance,	that	is,	the	limit	of	concern	(LoC).	The	resulting	LoCSDIF	
scale,	as	 in	Figure	11,	has	 the	 (visual)	advantage	 that	all	endpoints	
have	a	common	scale	and	 that	 for	all	 endpoints	equivalence	 is	es-
tablished	whenever	the	confidence	interval	fully	lies	in	the	interval	
(−1,1).	The	LoCSDIF	scale	can	be	further	integrated	in	the	Concern	
Quotient	CQ	scale,	which	does	not	differentiate	between	positive	
and	 negative	 differences.	 In	 the	 example	 analysis,	 the	 final	 result	
(Figure	11)	was	an	estimated	CQ	of	0.8,	with	an	upper	confidence	
limit	of	1.3	due	to	the	decreased	count	of	fungicides	 in	one	of	the	
four	trials	and	the	use	of	the	stringent	EAall	method.	Note	that	LoClow 
and	LoCupp	do	both	correspond	to	CQ	=	1,	that	is,	the	threshold	for	
concern.

For	 integration	over	 time,	 space	and/or	endpoints	 some	 form	
of	MCDA	are	commonly	needed.	 In	this	paper,	the	assessment	of	
equivalence	 was	 done	 by	 checking	 whether	 all	 point	 estimates	
or	 confidence	 intervals	 were	 inside	 their	 limits	 of	 concern	 (EAall 
method).	 This	 is	 a	 rather	 strict	 and	 simple	 assessment	 in	 which	
“bad”	 scores	 for	 an	 endpoint	 cannot	 be	 compensated	 by	 “good”	
scores	for	another	endpoint.	The	alternative	was	taking	the	aver-
age	 (EAav);	 that	 is,	 bad	 scores	 for	 one	 indicator	 can	 be	 compen-
sated	 by	 good	 scores	 for	 another.	More	 flexible	MCDA	methods	

do	 exist.	 For	 example,	 the	 balance	 of	 acceptability	model	 allows	
intermediate	approaches	between	EAall	and	EAav	by	specification	
of	 a	 compensability	 parameter	 (van	 der	 Voet	 et	 al.,	 2014).	 This	
could	perhaps	be	 linked	 in	 future	 research	 to	 the	ecological	con-
cept	of	functional	redundancy,	which	implies	that	lower	numbers	of	
a	particular	species	could	be	compensated,	at	least	partly,	by	higher	
numbers	of	another	species	in	the	same	functional	group	(Kang	et	
al.,	2015;	Rosenfeld,	2002).

The	EFSA	Guidance	Document	(EFSA,	2010b)	provides	guide-
lines	 for	 the	 environmental	 risk	 assessment	 of	 GMOs.	 In	 the	
AMIGA	project	(Arpaia	et	al.,	2014),	it	was	found	that	these	guide-
lines	were	frequently	not	specific	enough,	for	example,	regarding	
how	to	handle	data	from	very	different	experiments	for	nonabun-
dant	species.	This	paper	shows	that	a	more	specific	protocol	 for	
the	statistical	analysis	of	such	studies	is	feasible.	Such	a	protocol	
can	 support	 a	 transparent	 analysis	 of	 nontarget	 organisms’	 eco-
logical	data	in	order	to	evaluate	equivalence.	The	results	highlight	
the	 importance	of	setting	 limits	of	concern	as	equivalence	 limits	
for	safety	assessment.
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