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Abstract
This paper considers the statistical analysis of entomological count data from field 
experiments with genetically modified (GM) plants. Such trials are carried out to as-
sess environmental safety. Potential effects on nontarget organisms (NTOs), as indi-
cators of biodiversity, are investigated. The European Food Safety Authority (EFSA) 
gives broad guidance on the environmental risk assessment (ERA) of GM plants. Field 
experiments must contain suitable comparator crops as a benchmark for the assess-
ment of designated endpoints. In this paper, a detailed protocol is proposed to per-
form data analysis for the purpose of assessing environmental safety. The protocol 
includes the specification of a list of endpoints and their hierarchical relations, the 
specification of intended levels of data analysis, and the specification of provisional 
limits of concern to decide on the need for further investigation. The protocol em-
phasizes a graphical representation of estimates and confidence intervals for the 
ratio of mean abundances for the GM plant and its comparator crop. Interpretation 
relies mainly on equivalence testing in which confidence intervals are compared with 
the limits of concern. The proposed methodology is illustrated with entomological 
count data resulting from multiyear, multilocation field trials. A cisgenically modified 
potato line (with enhanced resistance to late blight disease) was compared to the 
original conventional potato variety in the Netherlands and Ireland in two successive 
years (2013, 2014). It is shown that the protocol encompasses alternative schemes 
for safety assessment resulting from different research questions and/or expert 
choices. Graphical displays of equivalence testing at several hierarchical levels and 
their interpretation are presented for one of these schemes. The proposed ap-
proaches should be of help in the ERA of GM or other novel plants.
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1  | INTRODUC TION

Genetically modified (GM) crops must undergo an environmental 
risk assessment (ERA) as part of a procedure to decide whether they 
can be admitted to the European market. Perry et al. (2009) and the 
EFSA Guidance on the ERA of GM plants (EFSA, 2010b) give broad 
guidance on the design of field experiments and subsequent data 
analysis to assess potential environmental impacts. In field studies, 
one of the main questions is whether the GM organism (GMO) is 
substantially equivalent to a comparator (CMP) when considering 
biodiversity as represented by assemblages of nontarget organisms 
(NTOs) linked to the receiving agro‐ecosystem. This comparative 
assessment is usually based on a large number of taxa (individual 
species or guilds, Arpaia, 2010). The outcome of the risk assessment 
is therefore not straightforward, and attempts to summarize results 
may lead to misleading conclusions (Devos, Schrijver, Clercq, Kiss, & 
Romeis, 2012).

The ERA Guidance document (EFSA, 2010b) identified the impact 
on NTOs as one of the areas of concern and requires the application 
of appropriate statistical procedures. However, the document does 
not give specific examples and solutions for practical problems in real 
case studies. For example, the Guidance states that “it is essential 
to specify for each variable studied a minimum effect size which is 
considered to potentially have a relevant impact on the receiving 
environment(s),” but does not indicate how to do this for low‐abun-
dance species with highly variable counts. There is also no guidance 
whether counts should be added over different time points in a sea-
son or analyzed separately. As another example, the Guidance states 
that the “main analysis shall address all field trials simultaneously and 
shall be based on the full dataset from all sites.” However, this disre-
gards the common problem that experimental procedures and even 
identified species are likely to be different for different experiments. 
The EU‐funded research project AMIGA—Assessing and Monitoring 
Impacts of Genetically modified plants on Agro‐ecosystems (Arpaia 
et al., 2014)—has performed research to apply the general EFSA 
Guidance to specific examples involving maize and potato field trials. 
Detailed proposals on how to conduct an ERA following the general 
guidance in specific cases are reported in this paper.

The practical possibilities for conducting ERA‐related field trials 
are diverse across the multiple biogeographical regions or receiving 
environments in Europe (Arpaia et al., 2014). As a consequence, the 
identified taxa are typically different between field trials, for exam-
ple, because some taxa are restricted to certain regions, or because 
identification of arthropods depends on the specialized expertise 
that is available locally. It may therefore be preferable to analyze 
NTO abundances in terms of functional categories or guilds, but 
without losing attention for important individual indicator taxa at 
specific locations. A hierarchical analysis to deal with such issues is 
therefore needed. A proposal for a framework for hierarchical as-
sessment is given in this paper.

A statistical analysis of comparative field trials comes in two 
flavors: difference testing and equivalence testing. Most research 

intends to find differences between treatments or groups, and 
the null hypothesis of the usual statistical tests states that group 
means are equal. Rejecting this null hypothesis is then considered 
a proof for the existence of differences. In contrast, safety assess-
ments have the intention to show the absence of relevant effects. 
Therefore, we propose to employ equivalence testing which aims at 
rejecting the null hypothesis that the difference between the GM 
plant and its comparator exceeds a limit of concern (LOC). Rejection 
of this nonequivalence hypothesis implies that the difference is 
smaller than the LOC, and this can be considered as a proof of safety 
(Bross, 1985; Hothorn & Oberdoerfer, 2006; Millard, 1987; Perry 
et al., 2009). The advantages of using the equivalence concept for 
safety assessment have been described before (e.g., Perry et al., 
2009; van der Voet, Perry, Amzal, & Paoletti, 2011; Meyners, 2012; 
Kang & Vahl, 2014; Goedhart, Voet, Baldacchino, & Arpaia, 2014; 
Vahl & Kang, 2016). A crucial argument in favor of equivalence test-
ing is that the onus to do high‐quality, well‐replicated experiments 
with sufficient statistical power is placed on to those who wish to 
demonstrate the safety of GMOs (Perry et al., 2009). A flexible sys-
tem to set limits of concern is proposed in this paper. It addresses a 
commonly encountered problem in entomological surveys, which is 
the occurrence of taxa with many zero catches (per plot) and per-
haps only a few specimens overall. We also advise on the statistical 
model to analyze count data.

In the remainder of this introductory section, we address in more 
detail two general issues: Section 1.1 deals with the explicit research 
questions in relation to the hierarchical nature of the entomological 
data and Section 1.2 with the need to specify limits of concern for 
the chosen endpoints. In Section 2, we present the theory and mo-
tivation for a proposal for a statistical analysis methodology. This 
proposal is illustrated with a practical example in Section 3. Finally, 
in Section 4 the proposed methodology is discussed in the context 
of ERA.

1.1 | Research questions and a 
hierarchy of endpoints

When designing an experiment, it is essential to have a clear de-
scription of the research questions at hand and the proposed meth-
odology to answer these questions. For an operational procedure 
concerning NTOs in a GM crop field trial, it is necessary to specify 
a list of endpoints that will be measured. Here, “endpoint” can be 
understood at several levels. For example, the endpoint “Carabidae” 
may refer to the total of pitfall trap catches of carabid beetles per 
plot over the field season in an intended single‐environment experi-
ment, but it may also refer to the catch per plot at one specific sam-
pling time in spring (a more refined level) or the average catch per 
plot over multiple environments (a more integrated level). In general, 
it will be possible to arrange these levels hierarchically, as shown for 
a simplified example in Figure 1.

“Environment” here can denote another site or another year, or 
both. The logical tree also shows further integration of endpoints 
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into a larger “Arthropods” category. Risk assessors should establish 
at which level they pose their research question. For example,

•	 Is there a potential concern if the GM crop would affect the cara-
bids in August in one specific environment, or

•	 Is it sufficient to consider the total count of carabids over a year 
for this environment, or

•	 Is it sufficient to consider the average carabid counts over multi-
ple environments, or

•	 Can the research question be framed in terms of counts for func-
tional groups, like predators and herbivores, or even all arthropods?

In the data analysis, we can distinguish three parts:

1.	 preprocessing of the data, for example, logarithmic transfor-
mations, but also integration steps such as summing pitfall 
trap catches over all time points in the field season;

2.	 the intended method of statistical analysis (SA) to estimate ef-
fects, that is, the differences between crop genotypes, from the 
data, as will be further discussed in Section 2 and Section 2.5;

3.	 the intended method of equivalence analysis (EA) to integrate es-
timated effects or concerns to higher levels in the hierarchy.

Figure 2 gives two examples of the structure of an intended data 
analysis for a single field experiment designed to compare a new gen-
otype to a comparator variety or genotype. Suppose that there are 
counts for ten arthropod taxa and that data will be collected at seven 
time points during the field season. A possible choice, as in hierarchy A, 
may be not to study the endpoints at the time points level, but only at 
the level of the season total counts. This is especially practical for rare 
taxa. Summing is indicated by the “Sum” preprocessing step; the under-
lining of “time point” is meant to indicate that in this step some kind of 
summary over timepoints is made. After this, the data will be analyzed 
in a statistical analysis (SA step) to provide estimates and confidence 

F I G U R E  1  Simplified example of a 
hierarchy of endpoints in which the two 
endpoints Carabidae and Collembola are 
sampled in different environments at 
different points in time during the season. 
Env: Environment

Arthropods

Carabidae

Carabidae, Env 1

Carabidae 
Env 1, June

Carabidae 
Env 1, July

Carabidae 
Env 1, August

Carabidae, Env 2

Carabidae 
Env 2, June

Carabidae 
Env 2, July

Carabidae 
Env 2, August

Collembola

Collembola, Env 1

Collembola 
Env 1, June

Collembola 
Env 1, July

Collembola 
Env 1, August

Collembola, Env 2

Collembola 
Env 2, June

Collembola 
Env 2, July

Collembola 
Env 2, August

...

F I G U R E  2  Two simple examples (a and b) of alternative logical trees for analysis of arthropod count data in a single‐environment NTO 
study of a GM crop compared to a comparator variety. EAall: equivalence analysis requiring all concern quotients to be within limits; SA: 
statistical analysis; Sum: summation of data

Data per 

(a) (b)

taxon per �mepoint, 10 taxa, 7 �me-points, e.g.,
• Carabidae, 13 June
• Collembola, 27 August

Data per taxon, e.g.,
• Carabidae
• Collembola

Effect per taxon, e.g.
• Carabidae
• Collembola

Equivalence NTO Arthropods single-environment

Sum

SA

EAall

Data per taxon per �mepoint, 10 taxa, 7 �me-points, e.g.,
• Carabidae, 13 June
• Collembola, 27 August

Effects per taxon per �mepoint, e.g.,
• Carabidae, 13 June
• Collembola, 27 August

Equivalence per taxon, e.g.
• Carabidae
• Collembola

Equivalence NTO Arthropods single-environment

SA

EAall

EAall
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intervals for the ten effects (differences between the tested genotype 
and its comparator). The statistical analysis would normally involve an 
ANOVA type of analysis. Underlining of “Data” indicates that Data are 
summarized to give estimated effects. After this step, each of the ef-
fects can be judged for equivalence. In the final step, denoted by EAall, 
the equivalence for the individual taxa is combined in an overall NTO 
equivalence assessment. The subscript “all” in EAall denotes that each 
individual endpoint should meet its equivalence criterion and “taxon” 
is therefore underlined.

Hierarchy B in Figure 2 presents an alternative. Here, the data 
are analyzed at the time points level, and application of EAall in 
two steps now requires that the observed effects at all time points 
should fulfill the equivalence criteria. Note that the counts in the 
statistical analysis in B will be much lower as compared to hierarchy 
A, and therefore, it will be more difficult to have sufficient power for 
all 10 × 7 = 70 endpoints. In fact, scheme B may not be practical at 
all, when it is expected that some species are not present (expected 
counts zero) during parts of the field season. In principle, the scheme 
could be adapted by specifying for each taxon the relevant time in-
tervals during the season. The first EAall step in hierarchy B could 
be replaced by a less strict requirement that each taxon should only 
on average meet the equivalence limits during the growing season. 
An EAav (av for average) equivalence analysis will be more precisely 
defined in Section 2.4.

The key message of this simple example is that alternative logical 
hierarchies for the analysis are possible and that these choices can 
have a big impact on the number of required replications and thus on 
the cost‐benefit reasoning relevant for the planning of field studies. 
Hierarchy B, for example, will require more replications than hierar-
chy A because it is required that equivalence is met for every time‐
point rather than for the sum across time points. Further details of 
the data analysis methods are discussed in relation to the proposed 
statistical analysis protocol (Sections 2.1 and 2.5).

1.2 | Limits of concern

The limit of concern (LoC) is a trigger value for effect sizes in field 
experiments. Endpoints with effect sizes outside these limits should 
be scrutinized and might need further investigation. Notably, there 
is no assumption that exceeding a LoC would necessarily indicate a 
harm to the environment. The term used in EFSA (2010b) is LoC, but 
it is also known as the equivalence limit. If the confidence intervals 
for the estimated effects are within LoCs, this is considered a proof 
of equivalence (EFSA, 2010b) or proof of safety (Millard, 1987; Perry 
et al., 2009). The most common approach, which we will also fol-
low in this paper, is two one‐sided tests (TOST) approach, where a 
two‐sided 90% confidence interval is compared to both lower and 
upper limits to establish equivalence with 95% confidence (Perry et 
al., 2009; Schuirmann, 1987).

LoCs for count data are typically defined for ratios of mean counts 
such as a twofold increase. It is not easy to set upper or lower limits for 
these ratios. The LoC should preferably be based on ecological exper-
tise and, according to EFSA (2010b), “can be defined by e.g., literature 

data, modelling, existing knowledge and policy goals.” In absence of 
quantitative data for individual taxa, in this study basic LoCs were ten-
tatively set to 0.5 (i.e., 50% decrease) and 2 (i.e., 100% increase).

A main problem with count data is the inherent increased vari-
ability at lower abundances resulting in less precise estimates of ef-
fect sizes (see, e.g., van der Voet & Goedhart, 2015) and in a limited 
power, as compared to more abundant species, for rejecting the null 
hypothesis of no difference or the nonequivalence null hypothesis 
(e.g., Legendre & Legendre, 1998; Perry, Rothery, Clark, Heard, & 
Hawes, 2003; van der Voet & Goedhart, 2015). This has often led 
researchers to omit low‐abundance data from their analyses (e.g., 
Prasifka et al., 2008). Rare taxa are generally perceived to be of 
minor concern for ecological functions that can also be performed 
by more abundant taxa (Lyons, Brigham, Traut, & Schwartz, 2005; 
Rosenfeld, 2002). Therefore, rare taxa are generally omitted from 
the analysis, but this raises the question of what criteria should be 
used for omitting a taxon. We therefore propose to use a flexible 
system of setting limits of concern, with less strict limits of concern 
for rare taxa, to account for the large statistical uncertainty of low 
counts. More variation at low abundances is just a statistical prop-
erty and should therefore not be seen by ecologists as a reason for 
concern in itself. Thus, a flexible system of assigning LoCs for taxa 
with low abundance may be used to reflect the biological ranges of 
no concern. The system we propose in Section 2.2 employs a thresh-
old abundance value below which scaling of the LoCs is applied.

2  | METHODS

2.1 | Methods of statistical analysis

In field studies for ERA of GMOs typically counts of various taxa are 
observed, sometimes supplemented with continuous non‐negative 
data and/or percentage data. Variability of insect abundance should 
measure proportional changes according to most ecologists (Gaston 
& McArdle, 1994). Observed counts are generally log‐transformed, 
typically after the addition of one to avoid taking the logarithm of 
zero, to achieve homogeneity of variance and some degree of inde-
pendence from the mean abundance, at least for high abundance 
data, after which statistical methods based on the normal distribu-
tion, such as analysis of variance, are used. Alternatively, the squared 
root transform of counts is taken. However, such data transforma-
tions hamper the use of equivalence tests because it is not immedi-
ately clear how a confidence interval for the difference between the 
GMO and the CMP for the transformed data should be back‐trans-
formed to the ratio scale. One approach is to calculate a so‐called 
generalized confidence interval for the ratio (Krishnamoorthy & 
Mathew, 2003), and this approach is outlined in Goedhart and van 
der Voet (2014). In other fields of ecological research, counts are 
statistically analyzed by log‐linear models which rely on distribu-
tions specific for count data such as the Poisson, the overdispersed 
Poisson (or quasi‐Poisson), and the negative binomial distribution 
(McCullagh & Nelder, 1989). Log‐linear models for ecological count 
data have been advocated for many years, see, for example, Sileshi 
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(2006), Ver Hoef and Boveng (2006), O'Hara and Kotze (2010), Szöcs 
and Schäfer (2015), and Warton (2018). Such models provide a direct 
estimate of the log‐ratio of the means of the GMO and the CMP 
making equivalence testing straightforward. In a simulation study, 
Goedhart and van der Voet (2014) found that the transformation 
approach has good properties when it comes to difference testing 
but that generalized confidence intervals for the true ratio of the 
mean of the GMO and the CMP have poor coverage probabilities. 
The coverage probability of the log‐linear model employing the over-
dispersed Poisson distribution is generally satisfactory even when 
data are simulated according to other count distributions. Based 
on these simulations, statistical analysis according to the overd-
ispersed Poisson model is recommended for equivalence testing 
based on count data. Szöcs and Schäfer (2015) also suggest to use 
the overdispersed Poisson model for count data in one‐way factorial 
experiments.

2.2 | Adapted limits of concern for count 
data of nonabundant taxa

A flexible system of assigning LoCs for taxa with low abundance is 
proposed to reflect the ranges of no concern. Below a chosen limit 
abundance value, for example, μ0 = 10, it is proposed to apply a scal-
ing to the LoCs for taxa. The scaling factor is 

√
�0∕m, to be applied 

to the logarithms of the LoCs, in which m is the combined mean of 
the GMO and CMP. This implies that limits of concern become wider 
for lower abundances, corresponding to less concern at these low 
levels. Note that equivalently the scaled LoC equals the LoC raised 
to the power 

√
�0∕m. For example, with basic LoCs at 0.5 and 2 and 

a threshold of μ0 = 10, the adapted LoCs are 0.38 and 2.7 for taxa 
with an abundance of 5 per plot, and 0.11 and 9.0 for taxa with an 
abundance of 1 per plot. The use of 

√
1∕m in the scaling factor for 

the logarithms of the LoCs can be motivated by statistical large sam-
ple theory for the Poisson distribution. Suppose we have two sam-
ples each of size n from a Poisson distribution with means μ1 and 
μ2 respectively. The maximum‐likelihood estimator for the log‐ratio 
Δ= log

(
�1∕�2

)
 is given by log(Xm/Ym) in which Xm and Ym are the re-

spective sample means. Suppose that 𝜇1=𝜇2=𝜇<𝜇0. The large 
sample variance of log(Xm/Ym) then equals 2/(nμ). Consequently, the 
asymptotic standard error on the log‐ratio scale is proportional to √
1∕� and the length of the confidence interval is thus also propor-

tional to 
√
1∕�. It is then natural to use 

√
1∕m as a scaling factor for 

the logarithm of the LoCs for means smaller than μ0 = 10. In a simula-
tion study (Supporting Information Appendix S1), it was shown that 
the power of the equivalence test for the two‐sample case with the 
proposed adaptive limits of concern is approximately constant for 
𝜇<𝜇0.

When no single specimen is found for the GMO and/or the CMP, 
the resulting estimate for the ratio is zero, infinite, or not defined. 
Pragmatically, the ratio was then calculated with the zero average 
replaced by the lowest possible value, which is one over the number 
of replications. This ratio (without a confidence interval) is only dis-
played in case it falls outside the equivalence region.

2.3 | Confidence intervals versus tests, 
graphical summaries

Often the final aim of an NTO study is implicitly framed as testing 
hypotheses about unintended differences. This is then presented 
as, for example, tables of means with indications of nonsignificant 
differences (e.g., Al‐Deeb & Wilde, 2003; Duan, Head, Jensen, & 
Reed, 2004). However, this way of presentation obscures the mag-
nitude of the observed differences, the precision of these estimates 
and the criteria (limits of concern) against which the differences 
should be interpreted. More insight is provided by presenting the 
results as confidence intervals for the true effects, together with 
the LoCs.

Confidence intervals for effects and LoCs can be displayed for 
multiple endpoints together in a single graph. A background coloring 
may be applied to the area within the LoCs to indicate its meaning 
as equivalence area; that is, the observed data do not indicate con-
cern under the specified criteria. On the other hand, no background 
coloring is applied to the area outside the LoCs, because in the pro-
posed system the LoCs act as a trigger for further consideration, but 
values outside the LoCs do not necessarily indicate the presence of 
environmental harm.

A more general way of plotting allows a simultaneous display of 
endpoints measured at potentially very different scales. For this, the 
effect estimates and the corresponding confidence limits are scaled. 
The scaled dimensionless measure is called the LoC‐scaled differ-
ence (LoCSDIF) or, as it has been termed in related work (van der 
Voet, Goedhart, & Schmidt, 2017), the equivalence limit scaled dif-
ference (ELSD). For count data, if Q is the estimated ratio for GMO 
versus CMP, and if lower and upper LoCs are also expressed as ratios 
LoClow and LoCupp (which are assumed to be respectively below 1 
and above 1, e.g., 0.5 and 2), the LoCSDIF is defined as follows

For one‐sided problems, that is, when there is only one LoC, only 
the single expression with the specified LoC is used for all values of 
Q.

The LoCSDIF scale makes a distinction between increases and 
decreases in abundance (positive and negative effects). For an ef-
fective integration of concerns about both increases and decreases, 
we can also define the concern quotient CQ, which is a non‐negative 
score that expresses absence of concern for values up to 1:

For one‐sided tests, again only the expression with the relevant 
limit of concern is used and values smaller than 0, which express no 
concern, are replaced by 0.

A hypothetical example of plots on the ratio scale (Q), the LoC‐
scaled difference scale (LoCSDIF), and the concern quotient scale 

LoCSDIF=

⎧
⎪⎨⎪⎩

log (Q)

− log (LoClow)
ifQ<1

log (Q)

log (LoCupp)
ifQ≥1

CQ=max

[
log (Q)

log (LoClow)
,

log (Q)

log (LoCupp)

]
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(CQ) are shown in Figure 3, with unequal limits of concern for three 
taxa. In plot (a), the hypothetical Taxon A and Taxon B are seen to 
be significantly different from zero because their intervals do not 
overlap the vertical equality line at a ratio of 1. But the fourfold de-
crease for Taxon B is not considered a concern, whereas the four-
fold increase for Taxon A, colored red, is a concern. In a similar way, 
the threefold increase for Taxon C is not considered a concern. 
The ordering of concerns is easier seen in plots (b) and (c) for the 
LoCSDIF and CQ scale. Note that for Taxon C scaling on the right 
is done with the upper LoC which is 16, while scaling on the left 
employs the lower LoC which is 0.5. Real examples of plots show-
ing both types of graphical representation are given in Section 3.2.

2.4 | Summarizing over different dimensions

In the design phase of the experiment, the proposed protocol re-
quires preparation of a hierarchical tree of endpoints (Section 1.1). 
In this section, the general approach for the analysis of equivalence 
when following this tree is outlined. For an illustration, see Section 3.

A typical ERA study will account for biogeographical variation by 
counting many taxa at multiple sites during multiple years. The data 
selected for analysis may therefore have different taxa for different 
space–time combinations. In general, there are multiple ways how 
data can be integrated over different sites, different years, and dif-
ferent taxa to obtain an overall conclusion for the safety assessment 
(see Figure 4).

As can be seen in Figure 4, there are six possible ways to sum-
marize conclusions given by the sequences: (time, space, taxa), (time, 
taxa, space), (space, time, taxa), (space, taxa, time), (taxa, time, space), 
and (taxa, space, time).

For each integration step, there are in principle three method 
types for summarizing:

Method type 1: Preprocessing of the data, for example, summing 
counts over taxa, summing counts over time, or the calculation of 
a biodiversity index to summarize over taxa;

Method type 2: Joint data analysis resulting in estimates of effects—
this is applicable for summarizing over time or over space, but only 
when the same taxa are addressed;

Method type 3: Multicriteria decision analysis (MCDA) applied to es-
timates of effects which is applicable for all forms of summarizing.

These three method types are ordered in the sense that, for 
example, Method type 2 can only be followed by Method type 2 
or 3 in the next integration step. We further distinguish between 
various forms of data analysis. In the hierarchies A and B given in 
Figure 2, the statistical analysis (SA) estimates effects from data 
without further integration: In hierarchy A, data per taxon were 
summarized to an effect per taxon, while in hierarchy B data per 
time points were summarized to an effect per time points per taxon. 
In hierarchy B, however, the statistical analysis could also, in one go, 
summarize over time points giving a single effect per taxon. Such 
an analysis will be termed a statistical hierarchical analysis (SHA), 
because it estimates effects for a higher level in the hierarchy.

Individually estimated effects, for example, for several taxa, can be 
combined in a single effect and a corresponding confidence interval by 
means of a statistical meta‐analysis (SMA). This provides an objective 
way of combining information from separate effects, while taking into 
account the different standard errors for the individual effects, see, for 
example, Hardy and Thompson (1996). There are basically two versions 
of meta‐analysis. The “fixed” version assumes that estimated effects 
have a common mean and individually known variances. The overall 
effect is then simply the weighted average of the individual effects, 
in which the individual variances are used as weights. The “random” 
version on the other hand allows for heterogeneity of the individual 
effects by introducing a between individuals component of variance. 
Residual maximum likelihood (REML) can then be used to estimate the 

F I G U R E  3  Graphical representation of a comparative analysis for hypothetical taxa A, B, and C. Point estimates and 90% confidence 
intervals for the ratio of the GMO versus the CMP (panel a) along with hypothetical limits of concern (red lines). Panel b shows the same 
interval as LoC‐scaled differences. Panel c shows the same interval as Concern Quotients. Points outside the LoCs are colored red, and 
points inside the LoCs for statistically significant differences are colored blue

F I G U R E  4  Possible routes for integration over space, time, and 
taxa in environmental risk assessment
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overall effect and to provide a confidence interval for the overall effect. 
In ERA, we may expect heterogeneous effects for individual taxa, and 
therefore, we applied REML to the estimated log‐ratio effects. Note 
that a meta‐analysis implicitly assumes statistical independence of the 
individual effects. This might be an unrealistic assumption when com-
bining information for different taxa within the same experiment. Also 
note that SMA implicitly assumes that negative effects, for example, 
for a taxon, can be compensated by positive effects for another taxon.

In the equivalence analysis (EA), a statistical proof of equivalence 
is established if the confidence interval does not exceed any limit of 
concern. According to the terminology of EFSA (2010a), equivalence 
is more likely than not if the estimated effect (point estimate) falls 
between the lower and upper limits.

In summarizing different equivalence analyses, the simplest but 
most stringent option for a proof of safety is to require that all con-
fidence intervals are within their LoCs (EAall,interval). An alternative 
and less stringent option, related to the notion of “equivalence more 
likely than not,” is to require that all point estimates of the effects 
are within their LoCs (EAall,point). Other options are based on aver-
aging point estimates on the LoCSDIF or CQ scale, and compare 

this average to the scaled limits of concern, which are −1 and 1 for 
LoCsDIF, or 1 for CQ (EAav,LoCSDIF or EAav,CQ).

Table 1 summarizes the different possible steps in building a hierar-
chy for the analysis of observed data. Note that summarizing by means 
of SHA, SMA, or EAav implies that we are interested in an average ef-
fect. In contrast, EAall considers all individual effects on their own.

2.5 | A protocol for the statistical equivalence 
analysis of NTO effects

In this section, we present a protocol for the statistical analysis of 
data from ERA field trials. In principle, the methods of statistical 
analysis should have been decided at the planning stage of the ex-
periment, but it may be needed to update the methods based on the 
context or unexpected findings.

2.5.1 | General

1.	 When the experiment was designed, a list of NTO endpoints 
should have been prepared. This will typically be organized in 

Element Explanation

Method type 1: Data preprocessing

SUM Summing the data. For example, summing counts of a taxon over different points 
in time, or summing counts of taxa within the same functional group to give a 
single count for the functional group

INDEX Calculation of a diversity index, for example, the Shannon–Wiener or Simpson 
index (Lazebnik et al., 2017)

Method type 2: Statistical analysis

SA Statistical Analysis of data resulting in estimated effects at the same level of the 
hierarchy, that is, without integration of other levels in the hierarchy. For 
example, estimation of the effect for a single taxon per time points.

SHA Statistical hierarchical analysis of data resulting in estimated effects at a higher 
level of the hierarchy, that is, including integration of other levels in the 
hierarchy. For example, estimation of the effect for a single taxon summarized 
over time points.

SMA Statistical meta‐analysis which combines individual effects into a single 
combined effect. For example, combining effects for taxa within the same 
functional group to give a single effect for the functional group, or combining 
effect for individual environments to give a single effect across environments.

Method type 3: Equivalence analysis (multicriteria decision analysis)

EAall Equivalence analysis of estimated effects in which all estimated effects should 
meet the equivalence criterion. This step can be present several times, for 
example when moving from (a) equivalence per functional group per year per 
site to (b) equivalence per year per site to (c) equivalence per site to (d) overall 
equivalence. This step can be applied using confidence intervals (EAall,interval) for 
a statistical proof of safety or using point estimates (EAall,point) for an assess-
ment whether equivalence is more likely than not

EAav Equivalence analysis of estimated effects in which the average of estimated 
effects should meet the equivalence criterion, where effects are first rescaled 
to the LoCSDIF scale (ELav,LoCSDIF) or the CQ scale (EAav,CQ). This step can also 
be present several times

Note. An element can only be followed by an element which has an equal or higher numbered method 
type.

TA B L E  1  Elements of the hierarchy for 
data analysis and integration of 
equivalence
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a hierarchy, see, for example, Figure 1. This list may include 
taxa which may or may not be present under the conditions 
of the experiment. If necessary, update the list with any un-
expected findings. Motivate any change to the initial list of 
endpoints and its hierarchy at the end of the experiment, but 
before the statistical analysis.

2.	 Already at the design stage, a logical tree for the analysis shows 
should have been prepared, specifying how data will be preproc-
essed (data preprocessing steps, Method type 1), how effects will 
be estimated from the data by statistical analysis (statistical analy-
sis steps, Method type 2), and how conclusions on equivalence will 
follow from the set of estimated effects and the limits of concern 
which should also be specified at the design stage of the experi-
ment (equivalence analysis steps, Method type 3). The branches of 
the trees may have different schemes for the subtrees; for exam-
ple, Carabidae may be summed over different point in time while 
for Collembola a statistical analysis is envisaged for each individ-
ual point in time. In general, many different trees will be possible; 
therefore, the chosen tree should be motivated. In the analysis 
stage, check and if necessary update the logical tree for the analy-
sis of all observed endpoints. Motivate any change.
a	 For count data, a typical way of preprocessing the data is to 

sum over primary levels, for example, over individual time 
points to obtain year totals, or over individual taxa to obtain 
totals for functional groups.

b	 Indicate the nature of the statistical analysis steps in the logical 
tree as being a statistical analysis (SA, where the effects are 
calculated at the same level as the data), a statistical hierar-
chical analysis (SHA, where the data are at a lower level of 
integration than the estimated effects) or a statistical meta‐
analysis (SMA, where effect estimates of a previous analysis 
are integrated to a higher level). More guidance is provided in 
Section 2.5.2 (SA) and Section 2.5.3 (SHA and SMA).

c	 Indicate the nature of the equivalence analysis integration steps 
in the logical tree as requiring equivalence conclusion to be 
valid for all members (EAall) or as allowing members to com-
pensate for each other by averaging of LoC‐scaled differences 
or concern quotients (EAav).

3.	 Present the results of the statistical analyses by graphical sum-
maries of estimated effects and, if deemed useful, of LoC‐scaled 
differences or concern quotients CQ (Section 2.5.4).

2.5.2 | Statistical analysis of single endpoints

The basic approach is to calculate estimates and 90% confidence 
intervals for effects (GMO vs. CMP differences, expressed on an 
appropriate scale), and then compare these to the (possibly provi-
sional) limits of concern which were specified during the design of 
the experiment.

1.	 The method of statistical analysis depends on the type of end-
point. For continuous endpoints with necessarily positive values, 
it is recommended to perform an analysis on the log‐transformed 

data. For discrete endpoints such as count data and fraction data, 
it is recommended to perform an analysis on the original scale 
using an appropriate statistical distribution and link function.

2.	 Analyze the transformed data by linear models: ANOVA if the de-
sign is balanced, or by regression or a mixed model (REML in case 
there are additional random effects) if it is not.

3.	 Analyze the count data by generalized linear models (GLM) or by 
generalized linear mixed models (GLMM) in case there are addi-
tional random effects in the model. Allow for overdispersion in 
counts whenever necessary.

4.	 Check whether statistical assumptions are reasonable, for exam-
ple, as follows:
a	 Outliers: check data points with large standardized residuals. 
Compare analyses with and without such data points.

b	 Check a normal probability plot of the standardized residuals 
for large deviations from linearity.

c	A plot of standardized residuals versus fitted values can be used 
to check if there is heteroscedasticity.

5.	 If statistical assumptions are not met, then an ad hoc strategy 
will have to be followed. For example, another variance func-
tion might be more appropriate or nonparametric tests may be 
used. This protocol further assumes that the model fits suffi-
ciently well.

6.	 Extract the estimated difference between the GMO and CMP 
from the statistical model, for example, the log‐ratio for count 
data, and calculate a two‐sided 90% interval. Display the confi-
dence interval in a graph along with the LoCs. For visual display, it 
is recommended to calculate and display both confidence limits, 
even if there is only one LoC.

2.5.3 | Statistical analysis integrating 
multiple endpoints

1.	 The use of SHA or SMA is only logical if LoCs are defined 
for the integrated output or if LoCs are equal for all individual 
endpoints.

2.	 Integration over multiple endpoints may be automatically per-
formed in a statistical hierarchical analysis (SHA) model as de-
scribed in Section 2.5.2. Perform a statistical meta‐analysis (SMA) 
if requested by the logical tree for analysis. For this, consider the 
estimated effects with their standard errors (at an appropriate 
scale, e.g., the log scale) as input for the meta‐analysis.

3.	 From the analysis, construct an estimate and a 90% confidence 
interval for the overall effect.

2.5.4 | Graphical representation of effects

1.	 For each endpoint, plot point estimates and 90% confidence 
intervals of estimated effects, together with lines for the equality 
ratio 1 and for the LoCs. In most cases, plots on a logarithmic 
scale are advised. The 90% limits of the interval represent a 
5% significance level for equivalence testing in a two one‐sided 
tests (TOST) approach.
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2.	 Visualize possible groupings in the hierarchy which are of interest 
as specified in the logical tree for analysis.

3.	 Compare the intervals to the LoCs to obtain conclusions regarding 
equivalence of the GMO and the CMP. Use different symbols or 
colors for confidence intervals that do not fall within the LoCs.

4.	 If of interest, compare the intervals to zero to obtain conclusions 
regarding the statistical significance of the difference between the 
GMO and the CMP. Note that this implicitly employs a signifi-
cance level of 10% for a two‐sided difference test. Use different 
symbols or colors for significant differences.

5.	 Optionally, confidence intervals can be displayed on the LoC‐
scaled difference (LoCsDIF) scale or on the concern quotient (CQ) 
scale. This possibly allows an easier comparison in case limits of 
concern are not the same for various endpoints.

3  | C A SE STUDY: NONTARGET 
ORGANISMS IN POTATO FIELD TRIAL S

Field trials with potato were performed in Ireland and the Netherlands 
in 2013 and 2014 (Kessel et al., 2018; Lazebnik, Dicke, Braak, & 
Loon, 2017) and are summarized in Table 2. The main purpose was 
to compare a cisgenically modified late blight resistant potato line, 
called A15‐13 (GMO), with its conventional comparator cultivar 
Désirée (CMP). Another conventional variety, SarpoMira, was also 
included in the trial. Both conventional varieties and the cisgenic po-
tato genotype were subjected to three late blight control strategies: 
(a) Weekly spraying with fungicides which is common practice in the 
Netherlands and Ireland, (b) no spraying, and (c) spraying according 
to an advanced level of integrated pest management (IPM2.0, Kessel 
et al., 2018). In the sequel, Genotype denotes the three genotypes, 
Spraying denotes the late blight control strategy, and Treatment de-
notes the nine combinations of Genotype and Spraying. The main in-
terest for safety assessment was the comparison of the GMO with 
the IPM2.0 control strategy with the CMP when weekly spaying is 
applied. Completely randomized block designs were employed, and 
a separate randomization was carried out for each of the four ex-
periments. The number of replications was six in Ireland and seven in 
the Netherlands. For the purpose of assessing unintended effects on 
NTOs, pitfall traps were placed in every plot for one week and emp-
tied three times during each trial, with about four weeks between 
two trapping sessions. The scope of the assessment was restricted 
to arthropods. Arthropods were identified and counted in each pit-
fall trap. Taxa were grouped into six functional groups: Predators, 
Detritivores, Parasitoids, Fungivores, Herbivores, Hyperparasitoids, 
and a seventh group “Unknown” for remaining taxa. Statistical cal-
culations were performed with GenStat (VSN International, 2017).

3.1 | Hierarchies to analyze NTOs in the four 
potato trials

Figure 5 shows three examples of hierarchies for analyzing the NTO 
data. Details of the steps depicted in Figure 5 and their implicit 

assumptions are detailed below. For hierarchy A in Figure 5, the 
steps were as follows:
A.1	 SUM: The first step in hierarchy A is to sum the count data for 

each individual taxon over the three time points which results 
in a single count for every taxon for each plot per site per year. 
This was done because not enough power was expected at sin-
gle time points especially for the less abundant taxa. Summing 
disregards interactions with time points within experiments.

A.2	 SA: Counts of single taxa within experiments are statistically 
analyzed to give effects for each taxon per site per year. This 
enables us to inspect the effect for every single taxon per site 
per year. This is useful when decisions regarding individual taxa 
need to be made for different experimental conditions.

A.3	 SMA: Effects for taxa within the same functional group are 
combined per site per year using a meta‐analysis. This as-
sumes that a negative effect for a taxon can be compensated 
by a positive effect for another taxon within the same func-
tional group. Effects with large standard errors, for example, 
due to low abundances, have a lower weight in the meta‐
analysis. This implies that the overall effect is dominated by 
effects with small standard errors and these are generally 
taxa with high abundances.

A.4	 EAall: The combined effects for the functional groups are first 
evaluated for each combination of sites and years, both using 
confidence intervals for a proof of safety approach and using 
the point estimates to establish whether equivalence is more 
likely than not. This would give a single result for each site 
for each year, which could be used for site‐ and year‐specific 
decisions.

A.5	 EAall: These combined CQs are then assessed over years for 
each site.

A.6	 EAall: And finally, the CQs for sites are combined into a single 
judgment.

TA B L E  2  Experiments comparing three potato genotypes in two 
countries and 2 years, showing the number of plots (replicates, 
blocks) for each of the nine Treatments (combinations of Genotype 
and Spraying)

Number of plots (blocks) Ireland Netherlands

Genotype Spraying 2013 2014 2013 2014

A15‐13 (GMO) Weekly 6 6 7 7

A15‐13 (GMO) No spraying 6 6 7 7

A15‐13 (GMO) IPM2.0 6 6 7 7

Désirée (CMP) Weekly 6 6 7 7

Désirée (CMP) No spraying 6 6 7 7

Désirée (CMP) IPM2.0 6 6 7 7

SarpoMira Weekly 6 6 7 7

SarpoMira No spraying 6 6 7 7

SarpoMira IPM2.0 6 6 7 7

Note. The comparison of main interest for safety assessment is shown in 
the two rows with a gray background.
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For hierarchy B, in Figure 5, the steps are as follows:

B.1	 SHA: This is identical to step A1 described above.
B.2	 SUM: The taxa are further summed to form counts for functional 

groups. This implicitly assumes that individuals of different spe-
cies within the same functional group are equally valuable. It also 
presumes that there is no interest in individual taxa.

B.3	 SHA: A statistical hierarchical analysis is performed to esti-
mate the effect for each functional group while averaging over 
years and sites (e.g., summarizing results at European scale). 
This implicitly assumes that there is only interest in a cross‐
environment estimate of effects and that negative effects in 
one environment can be compensated by positive effects in 

another environment. It also assumes that decisions based on 
just a single experiment (possibly involving national decisions) 
are not of interest.

B.4	 EAall: The effects obtained in the previous step are assessed 
over functional groups

For hierarchy C, in Figure 5, the steps are as follows:

C.1	 SHA: A statistical hierarchical analysis is performed to estimate 
the effect for each taxon while averaging over time points, 
years, and sites. This implicitly assumes there is only interest 
in a cross‐environment estimate of effects and that negative 
effects in one environment can be compensated by positive 

F I G U R E  5  Examples of logical trees for the analysis of NTO data for potato field trials in Ireland and the Netherlands in 2013 and 2014. 
EAall: equivalence analysis requiring all effects (confidence intervals or point estimates in two variants of the procedure) to be within their 
limits; SA: statistical analysis; SHA: statistical hierarchical analysis; SMA: statistical meta‐analysis; Sum: summation of data

(a)

(b)

(c)
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effects in another environment. It also assumes that national 
decisions are not of interest.

C.2	 SMA: effects for taxa within the same functional group are 
combined. This assumes that a negative effect for a taxon can 
be compensated by a positive effect for another taxon within 
the same functional group. Effects with large standard errors, 
for example, due to low abundances, have a lower weight in the 
meta‐analysis. This implies that the overall effect is dominated 
by effects with small standard errors and these are generally 
taxa with high abundances.

C.3	 EAall: The effects obtained in the previous step are assessed 
over functional groups.

Still other hierarchies are possible, such as the approach based on 
first summarizing over taxa by calculating diversity indices, which has 
been described for this specific case study in Lazebnik et al. (2017).

3.2 | Safety assessment for NTOs in the 
potato trials

The analysis according to hierarchy A provides the most detail 
and is presented below. In step A1, the counts for each taxon are 
summed over the time points. Data from two pitfall traps in the 
Irish trial in 2013 were missing at the second time points. To ena-
ble summing over time points, these missing counts were imputed 
using the log‐linear model “Block + Treatment” for the time points 
in question. The same was done for a single missing pitfall at the 
second time points in the Dutch trial in 2014. For the Dutch 2013 
trial, 13 out of 63 traps were missing for the first and third time 
points. Therefore, for this trial the first and third time points were 
discarded.

3.2.1 | Estimation of the difference between 
GMO and CMP in the potato trials

In step A2, each taxon was statistically analyzed separately for each 
experiment. The analysis accounted for differences between blocks 
and resulted in an estimate of the log‐ratio for the GMO versus CMP 
comparison. In principle, the interest was in a comparison between 
two of the nine treatments, namely GMO with IPM2.0 versus CMP 
with weekly spraying (see gray rows in Table 2). However, when there 
is no interaction between Genotype and the Spraying treatments, the 
effective level of replication can be increased by a factor of three by 
investigating the difference between the GMO and CMP averaged 
over the three control strategies. This can be accomplished by fitting 
the main effects model “Block + Spraying + Genotype.” It is custom-
ary to use this main effects model in case the interaction is not sig-
nificant. However, the interaction between Genotype and Spraying 
has four degrees of freedom and also involves the additional variety 
SarpoMira which is of no interest for the main comparison between 
the GMO and CMP. So it is possible that an interaction between 
Spraying and the GMO/CMP is swamped by complete absence of an 
interaction with SarpoMira or the other way around. This problem 

can be settled by excluding the additional variety from significance 
testing of the interaction. The remaining interaction is then be-
tween GMO/CMP on the one hand and Spraying on the other hand. 
Moreover, the Spraying treatment “None” can be fully responsible 
for the remaining interaction in which case we would like to com-
pare the GMO and CMP averaged over the two Spraying treatments 
“IPM2.0” and “Weekly.” These considerations were formalized in the 
following procedure:

1.	 Test for the interaction between GMO/CMP and Spraying (with 
three levels) which has two degrees of freedom. In case this 
interaction is not significant, compare the GMO and CMP av-
eraged over the three Spraying levels. Otherwise go to 2.

2.	 Test for the interaction between GMO/CMP and the Spraying lev-
els Weekly and IPM2.0; this interaction has one degree of free-
dom. In case this interaction is not significant, compare the GMO 
and CMP averaged over the two Spraying levels Weekly and 
IPM2.0. Otherwise go to 3.

3.	 Fit the full model “Block + Treatment” and compare GMO‐IPM2.0 
versus CMP‐Weekly.

In the sequel, the GMO and CMP treatments will refer to the means 
averaged over three, two, or one level(s) depending on the outcome of 
the interaction tests.

3.2.2 | Effects per taxon per site per year

When either the GMO or the CMP treatment has a zero mean count, 
the log‐ratio, that is, Δ = log(Q), would be estimated as plus or minus 
infinity. In these situations, the zero mean count was pragmatically 
replaced by the smallest positive mean possible, that is, one divided 
by the number of replicates. In most cases, the zero count was com-
bined with a low count for the other genotype, resulting in a ratio 
not far from one. In these cases, a confidence interval was not com-
puted, and in the proposed graphical summaries, only calculated ra-
tios outside the LoCs were signaled.

Limits of concern were tentatively set to 0.5 and 2 for each taxon, 
and the LoCs were adapted such that the logarithm of LoC was mul-
tiplied by 

√
10∕m whenever the combined mean m of the GMO and 

CMP was below 10. The confidence interval for each effect, along with 
the associated LoCs, is given in Figures 6‒9. Note that a confidence 
interval for each functional group is also given; this is for the sum over 
the taxa within each group which was part of the analysis according 
to hierarchy B. Also note that the ordering of the species within each 
functional group is according to the adapted limit of concern because 
this is visually more attractive. This has the drawback that the order-
ing in the figures is different. There are two abundant species with an 
estimated effect which is outside the tentative LoCs: Poduromorpha 
in Ireland‐2013 and Mesostigmata in Ireland‐2014. Most intervals 
fall completely within the LoCs. Supporting Information Appendix S2 
displays the same figures on the LoCSDIF and CQ scales. Obviously, 
all point estimates outside the limits of concern in Figures 6‒9 corre-
spond to concern quotients >1.
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F I G U R E  6  Arthropods in potato trial in Ireland 2013. 90% confidence intervals for the ratio between GMO and CMP averaged over 
control strategies if possible. Added in parentheses are the number of control strategies over which is averaged, the means for the GMO and 
CMP, and the coefficient of variation (cv). Limits of concern (red lines) equal 0.5 and 2, and log(LoC) is scaled by 

√
10∕m for combined means 

m lower than 10. Points outside the LoCs are colored red, and points inside the LoCs for statistically significant differences are colored blue
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F I G U R E  7  Arthropods in potato trial in Ireland 2014. 90% confidence intervals for the ratio between GMO and CMP averaged over 
control strategies if possible. Added in parentheses are the number of control strategies over which is averaged, the means for the GMO and 
CMP, and the coefficient of variation (cv). Limits of concern (red lines) equal 0.5 and 2, and log(LoC) is scaled by 

√
10∕m for combined means 

m lower than 10. Points outside the LoCs are colored red, and points inside the LoCs for statistically significant differences are colored blue
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F I G U R E  8  Arthropods in potato trial in the Netherlands 2013. 90% confidence intervals for the ratio between GMO and CMP averaged 
over control strategies if possible. Added in parentheses are the number of control strategies over which is averaged, the means for the 
GMO and CMP, and the coefficient of variation (cv). Limits of concern (red lines) equal 0.5 and 2, and log(LoC) is scaled by 

√
10∕m for 

combined means m lower than 10. Points outside the LoCs are colored red, and points inside the LoCs for statistically significant differences 
are colored blue
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F I G U R E  9  Arthropods in potato trial in the Netherlands 2014. 90% confidence intervals for the ratio between GMO and CMP averaged 
over control strategies if possible. Added in parentheses are the number of control strategies over which is averaged, the means for the 
GMO and CMP, and the coefficient of variation (cv). Limits of concern (red lines) equal 0.5 and 2, and log(LoC) is scaled by 

√
10∕m for 

combined means m lower than 10. Points outside the LoCs are colored red, and points inside the LoCs for statistically significant differences 
are colored blue
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3.2.3 | Integrated analysis

Step A3 involves a meta‐analysis for each functional group for 
each site/year combination. This is not useful when there are 
only a few taxa within a functional group. The meta‐analysis was 
therefore only carried out for those functional groups with four 
or more taxa. In case the functional group has three or fewer spe-
cies, the estimated effect for the sum was taken. This was the case 
for Hyperparasitoids and Fungivores in all four experiments and 
Herbivores in the Netherlands 2013. Limits of concern for esti-
mated overall effect for the meta‐analysis were again tentatively 
set to 0.5 and 2 and for the estimated effect for the sum as before. 
Confidence intervals are given in Figure 10 for the ratios and in 
Figure 11 for the LoCSDIF and CQ scales. All ratio intervals are 
within the LoCs except for the Fungivores interval for the trial in 
the Netherlands (NL) in 2013. Note that this involves very few in-
dividuals (0.4 for the GMO vs. 1.9 for the CMP) and also note that 
in the NL‐2014 trial the estimated effect for Fungivores has the 
opposite sign.

In step A4, an equivalence analysis (EAall) separately per site 
and year reveals that equivalence is established for IR‐2013, 
IR‐2014, and NL‐2014, but not for NL‐2013 due to the outlying 

Fungivores. Further integration in step A5 results in equivalence 
for Ireland but not for the Netherlands, and in step A6 no overall 
equivalence. In case EAall is based on equivalence more likely than 
not, which only requires that the estimated effect is within the lim-
its of concern, than all integration steps result in equivalence. The 
concern quotient at any of the steps A4, A5, or A6 is calculated 
as CQ = 0.8 with an upper confidence limit of 1.3 (Figure 11). The 
final result of the assessment is that the full data set of entomo-
logical counts across sites and years has thus been reduced by the 
proposed method to just one functional group at one site and one 
year (Fungivores, with reduced counts in NL‐2013), which should 
be inspected for further interpretation. We note again that this 
case is not labeled as causing any harm, but only as a trigger for 
further inspection.

4  | DISCUSSION

The definition of appropriate limits of concern for ecological end-
points is a fundamental requirement to evaluate equivalence 
between treatments during ERA. The importance of setting appro-
priate limits of concern has been recognized by EFSA (EFSA, 2010b). 

F I G U R E  1 0  90% confidence interval resulting from a meta‐analysis for functional groups for arthropods data in potato field trials. Meta‐
analysis is only performed for those functional groups with four or more taxa. For other groups, the interval for the sum counts is given. 
Points outside the LoCs (red lines) are colored red, and points inside the LoCs for statistically significant differences are colored blue
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However, there is some ambiguity about the intended meaning of 
this concept. On the one hand, LoCs are defined as “the minimum 
ecological effects that are deemed biologically relevant and that 
are deemed of sufficient magnitude to cause harm” (EFSA, 2010b, 
Glossary, p. 110). On the other hand, it is stated, in the general sec-
tion on problem formulation, that:

… for each measurement endpoint, the level of envi-
ronmental protection to be preserved is expressed 
through the setting of ‘limits of concern’ which may 
take one of two forms. For studies in the environ-
ment(s) that are controlled [...] the limits of concern 
will usually be trigger values which, if exceeded, 
will either lead to conclusions on risks or the need 
for further assessment in receiving environment(s). 
For field studies, the limits of concern will reflect 
more directly the minimum effect that is consid-
ered to potentially lead to harm [...]. If these limits 
are exceeded, then detailed quantitative modelling 
of exposure may be required to scale up effects at 
the field level both temporally and spatially (EFSA, 
2010b, p. 15).

In this quote, two study types are identified: controlled studies 
(semifield trials, e.g., using cages in the field) and field studies. Despite 
some difference in wording, in both cases LoC is functioning as a trig-
ger value for further attention. The words “need for further assess-
ment” and “potentially” make clear that exceeding the LoC does not 
necessarily indicates a harm.

We therefore see, even in one important document, two differ-
ent definitions of LoC:

1.	 Toxicity limits, that is, context‐dependent concepts indicating 
limits of harm to the environment, for example, extinction of 
a population; and

2.	 Equivalence limits, that is, pragmatic trigger values for further as-
sessment after data analysis.

Toxicity limits are useful concepts, but require further ecological 
or toxicological modeling to quantify, which often will be very difficult 
to perform. Equivalence limits can be based on past experience and 
expert opinion, where exceeding limits is not indicating harm to the 
environment. In the current paper, we have used limit of concern (LoC) 
in the second meaning.

The LoC values 0.5 and 2 used in this paper are provisional, and 
open for revision where additional evidence might become available. 

F I G U R E  11  Confidence intervals for GMO versus CMP differences per functional group expressed as LoC‐scaled differences (LoCSDIF, 
left) and as Concern Quotients (CQ, right). The green areas indicate equivalence or no concern. Points outside [−1,+1] (red lines) are colored 
red, and points inside the LoCs for statistically significant differences are colored blue.
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Therefore, all results which depend on these LoCs (such as all equiv-
alence test results) should be seen as the results of a scenario study 
using these provisional LoCs. Alternative scenarios can be consid-
ered if other appropriate LoC values would be proposed. Note that 
LoCs could in principle be defined separately for each endpoint, for 
example, based on population dynamics data; therefore, the choice 
of the same LoCs for all endpoints should not be read as a general 
suggestion.

Smaller counts are more variable by their very nature resulting 
in less frequent rejection of the nonequivalence hypothesis, that is, 
less frequent establishment of equivalence. Therefore, we propose 
to scale the LoCs for mean counts smaller than a threshold value μ0 
resulting in a similar power to reject the nonequivalence hypothesis 
for all mean counts smaller than μ0. Although this is an ad hoc pro-
cedure, it does prevent triggering further research just because of 
statistical properties of count distributions with small means. In the 
case study, we employed μ0 = 10 without any justification. A pro-
spective power analysis, for example, with different count distribu-
tions, could be employed to support other values. Goedhart et al. 
(2014) provide a framework for such a power analysis by means of a 
simulation tool.

In the four combinations of location and year, the observed taxa 
were not all the same (Figures 6‒9). For analyses integrated over 
time and space, it is therefore essential to group the data at the func-
tional group level first.

A statistical analysis is often performed on only part of the data, 
for example, endpoint by endpoint, and results in estimated effects, 
that is, differences between GMO and CMP at an appropriate scale 
(often the log scale), as in Figures 6‒10. These effects, and their 
confidence limits, can be standardized by scaling to a no‐concern 
yardstick, which represents a minimum limit of potential biological 
relevance, that is, the limit of concern (LoC). The resulting LoCSDIF 
scale, as in Figure 11, has the (visual) advantage that all endpoints 
have a common scale and that for all endpoints equivalence is es-
tablished whenever the confidence interval fully lies in the interval 
(−1,1). The LoCSDIF scale can be further integrated in the Concern 
Quotient CQ scale, which does not differentiate between positive 
and negative differences. In the example analysis, the final result 
(Figure 11) was an estimated CQ of 0.8, with an upper confidence 
limit of 1.3 due to the decreased count of fungicides in one of the 
four trials and the use of the stringent EAall method. Note that LoClow 
and LoCupp do both correspond to CQ = 1, that is, the threshold for 
concern.

For integration over time, space and/or endpoints some form 
of MCDA are commonly needed. In this paper, the assessment of 
equivalence was done by checking whether all point estimates 
or confidence intervals were inside their limits of concern (EAall 
method). This is a rather strict and simple assessment in which 
“bad” scores for an endpoint cannot be compensated by “good” 
scores for another endpoint. The alternative was taking the aver-
age (EAav); that is, bad scores for one indicator can be compen-
sated by good scores for another. More flexible MCDA methods 

do exist. For example, the balance of acceptability model allows 
intermediate approaches between EAall and EAav by specification 
of a compensability parameter (van der Voet et al., 2014). This 
could perhaps be linked in future research to the ecological con-
cept of functional redundancy, which implies that lower numbers of 
a particular species could be compensated, at least partly, by higher 
numbers of another species in the same functional group (Kang et 
al., 2015; Rosenfeld, 2002).

The EFSA Guidance Document (EFSA, 2010b) provides guide-
lines for the environmental risk assessment of GMOs. In the 
AMIGA project (Arpaia et al., 2014), it was found that these guide-
lines were frequently not specific enough, for example, regarding 
how to handle data from very different experiments for nonabun-
dant species. This paper shows that a more specific protocol for 
the statistical analysis of such studies is feasible. Such a protocol 
can support a transparent analysis of nontarget organisms’ eco-
logical data in order to evaluate equivalence. The results highlight 
the importance of setting limits of concern as equivalence limits 
for safety assessment.
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