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ABSTRACT

eQuilibrator (equilibrator.weizmann.ac.il) is a
database of biochemical equilibrium constants
and Gibbs free energies, originally designed as a
web-based interface. While the website now counts
around 1,000 distinct monthly users, its design could
not accommodate larger compound databases and it
lacked a scalable Application Programming Interface
(API) for integration into other tools developed by
the systems biology community. Here, we report
on the recent updates to the database as well as
the addition of a new Python-based interface to
eQuilibrator that adds many new features such as
a 100-fold larger compound database, the ability to
add novel compounds, improvements in speed and
memory use, and correction for Mg2+ ion concen-
trations. Moreover, the new interface can compute
the covariance matrix of the uncertainty between
estimates, for which we show the advantages and
describe the application in metabolic modelling.
We foresee that these improvements will make
thermodynamic modelling more accessible and
facilitate the integration of eQuilibrator into other
software platforms.

INTRODUCTION

The field of thermodynamics started in the midst of the
industrial revolution as an effort to improve mechanical
engines (1). The phenomenal success of the theory to de-
scribe the relationships between energy, heat, and work and

to provide accurate predictions of what is feasible, inspired
countless other scientific endeavors, including molecular
dynamics and even economics (2–4). Curiously, until re-
cently, thermodynamic reasoning was relatively underuti-
lized in metabolic modelling. We have identified four ma-
jor reasons for this. The knowledge gap––equilibrium con-
stants for most biochemical reactions have not been mea-
sured. The computation gap––thermodynamic constraints
tend to make metabolic models more complicated. For ex-
ample, Flux Balance Analysis (FBA) with thermodynamic
constraints turns from a standard Linear Problem to an
NP-complete Mixed-Integer one (MILP) (5,6). The moti-
vation gap––it is not clear to everyone that using thermody-
namics in models is actually necessary or even useful. The
accessibility gap––adding thermodynamics to an existing
model is laborious. It involves tasks such as: mapping iden-
tifiers, adjusting the �G′◦ values to the aqueous conditions,
and annotating charged molecules correctly––to name but
a few.

One of the major breakthroughs in bridging the knowl-
edge gap was suggested by Lydersen et al. (7), who adapted
the group contribution method (which can computation-
ally predict molecular Gibbs energies) to organic chem-
istry. Decades later, Joback et al. (8) and Mavrovouniotis
et al. (9) eventually implemented this idea for the context of
biochemical reactions. This data-driven approach decom-
poses a compound into a list of predefined chemical groups,
each of which is assumed to contribute a fixed amount to
the compounds’ Gibbs energy of formation. These group
contributions are estimated by regression against measure-
ments of reaction Gibbs energies, thus enabling estimation
of thermodynamic potentials for the majority of reactions
in central carbon metabolism (10).
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In the last decade, several improvements to the accuracy
and coverage of this method have been proposed and im-
plemented (11–14). Nevertheless, some estimates cannot be
performed using group contributions since certain molecu-
lar structures still do not have any experimental data and
therefore reactions in which they appear are outside the
scope of the methods. Furthermore, some structures seem
to violate the assumption of independence between groups
and tend to greatly increase the error of the estimates. In the
end, although increasing accuracy by improving the method
itself or by gathering more experimentally-derived equilib-
rium constants is still definitely worthwhile, one could argue
that the current state-of-the-art has reached a sufficient level
for many applications.

Similarly, the complexity gap has changed from a hard
barrier to a minor inconvenience. Increasingly faster com-
puters and powerful MILP solvers (such as IBM CPLEX
and Gurobi which offer free academic licenses) made it pos-
sible to solve large problems using personal computers, a
task which was inconceivable only a decade ago.

The motivation gap is harder to overcome due to a
chicken-and-egg problem. Since other technical issues de-
layed the application of thermodynamic models, it was dif-
ficult to demonstrate the usefulness of these models and
therefore convince the scientific community that they are
worth investing in. Nevertheless, several methods that take
advantage of thermodynamic data already exist. Some ex-
ploit thermodynamic principles to constrain reaction direc-
tionality and metabolite concentrations (5,15,16). Others
use thermodynamic driving forces as a proxy for pathway ef-
ficiency (17,18). More recently, probabilistic methods com-
bining thermodynamic parameters have been suggested for
parameter estimation (19) and flux sampling (20). These al-
gorithms have the potential to improve the flux predictions
produced by flux analysis (21–23), and assist in the design
of new metabolic pathways (18). However, one of the tough-
est barriers computational approaches need to overcome is
gaining the trust of experimental biologists, and it appears
that a few cracks are forming already. For instance, thermo-
dynamic driving forces were used to show how glycolysis is
passively regulated (24), and predictions based on thermo-
dynamic enzyme efficiency (25) have proven to fit quite well
with experimental data from Z. mobilis (26).

It seems that the time has come to address the acces-
sibility gap. In recent years, a plethora of software tools
have facilitated the reconstruction, validation, and analy-
sis of genome-scale metabolic models and made them a
community standard which is applied in thousands of sci-
entific projects every year (27). In 2012, we launched the
first version of the eQuilibrator website, which aimed to
broaden access to thermodynamic parameters and ther-
modynamic reasoning about metabolism (28). eQuilibrator
provides a simple search-focused interface for quickly find-
ing the Gibbs energy change of a biochemical reaction, and
is now used by ∼1000 distinct users every month. How-
ever, eQuilibrator was designed to be used for single reac-
tions. Therefore, it is inefficient at querying lists of reactions
and does not account for correlations between multiple es-
timates. In this paper, we present a new Python package
which is aimed at both novice and expert programmers that
want to add thermodynamic parameters to their models.

RESULTS

The Python package equilibrator-api, which is freely
available on the Python Package Index and on conda-forge,
significantly lowers the barrier to thermodynamic mod-
elling in multiple use-cases. In fact, some of the thermo-
dynamic analyses mentioned in the previous section have
used an early version of this package to obtain the neces-
sary thermodynamic constants. For example, a recent study
(22) tested the hypothesis that an upper limit exists on the
total Gibbs energy dissipation rate of cellular metabolism
using estimates generated by equilibrator-api. Since
this analysis required standard Gibbs energy estimates for
thousands of reactions, this would have been untractable us-
ing the web interface. Genome-scale metabolic models with
annotated metabolites, that use any of the standard chem-
ical identifiers contained in MetaNetX, can make use of
dedicated functions that provide a mapping to eQuilibra-
tor compounds with thermodynamic information. These
compounds can then be used by constraint-based and sam-
pling frameworks, such as multiTFA (6) and Probabilistic
Thermodynamic Analysis (PTA) (20). In the case of spe-
cific pathway models, such as ones designed for metabolic
engineering and contain novel reactions, our framework
provides additional tools for assessing the feasibility of the
pathway (17,18).

Furthermore, since the launch of eQuilibrator in 2012
(28) we added a list of new features: a hundred times
larger compound database, the ability to locally add new
compounds to the database, calculating the full covari-
ance matrix for the uncertainty between estimates, support
for multi-compartment reactions, changing magnesium ion
concentrations, tools for analysing whole pathways, and
general improvements in speed and memory use. Moreover,
we now base all estimates on the component contribution
method (13), which required developing a way to calculate
component contribution estimates for new reactions on-
the-fly. The basis for these calculations is provided in the
supplementary section S1. Please note, that some of these
features are not yet accessible through the online version of
eQuilibrator, namely the larger database, adding new com-
pounds, the covariance matrix, and multi-compartment re-
actions.

Below, we expand on some of these new features, and the
benefits they provide to our users.

Covariance matrix

One of the advantages provided by the new system is the
ability to compute the covariance matrix for the uncertainty
of multiple estimates (a feature currently supported only in
the Python package). In some cases, standard transformed
formation (�fG′◦) or reaction (�rG′◦) energy estimates have
large uncertainties when taken individually. However, un-
certainties might be highly correlated, e.g., when reactions
share a common compound or compounds share a common
chemical group. Ignoring these correlations usually over-
estimates the uncertainty and may violate the first law of
thermodynamics (13). In contrast to per-reaction and per-
compound uncertainties, the covariance matrix describes
the joint uncertainty precisely.
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The general formula for the standard Gibbs energy of a
set of reactions, given their mean μ and covariance � is

�r G ′◦ = μ + �1/2m , (1)

where �1/2 is a square root of �. m can either be a standard
multivariate normal random variable in case of random
sampling applications or an optimization variable bounded
within a desired confidence level for constraint-based ap-
proaches. Importantly, this formulation ensures that the
computed Gibbs energies are consistent with the first law
of thermodynamics, relieving the need for computation-
ally more challenging constraints such as Gibbs energy bal-
ance (22) (see supplementary section S2 for more details).

This formulation of the uncertainty has already been
available in a development version of eQuilibrator for some
time and was successfully applied in both statistical and
constraint-based contexts: In PTA (20) it is used to detect
thermodynamic inaccuracies in metabolic models, to pre-
dict occurrences of substrate channeling, as well as to es-
timate metabolite concentrations and reaction fluxes with
a sampling algorithm. Moreover, multiTFA (6) shows that
accounting for covariance reduces the ranges of reaction en-
ergies also in constraint-based models.

Expanding the scope of compounds

A frequent request from eQuilibrator users was adding
compounds that are not present in the KEGG database
(29). We therefore modified eQuilibrator to use MetaNetX
(30), a database that aggregates chemicals that are rele-
vant for metabolic models from multiple online databases,
including KEGG (29), ChEBI (31), BiGG(32), Mod-
elSEED(33), Swiss Lipids(34) (see Figure 1). This expanded
the repertoire from ∼10 000 to ∼1 000 000 compounds
which can be accessed using identifiers from various names-
paces. As a result, eQuilibrator can now be used with
metabolic models from different sources (e.g., SEED or
BiGG models) directly, without the need to map all com-
pounds to KEGG identifiers in advance.

The eQuilibrator website was originally designed to pro-
vide pre-calculated Gibbs energy values for a large database
of biochemical reactions. Advanced users often want to cal-
culate �G values for molecules and reactions not found
in the database (even after the expansion to MetaNetX).
For example, metabolic pathway engineering often utilizes
promiscuous enzymes to generate novel reactions, produc-
ing pathways with compounds not found in MetaNetX (35–
39).

Previously, this would have required users to add their
compounds to the database and rerun the component-
contribution method – a considerable effort. To re-
duce the amount of time it takes to estimate �G values
of reactions with novel compounds we have extended the
equilibrator-assets package, which is responsible
for generating the compound database, to enable users to
directly add new entries to a local version of the compound
database (i.e. a local cache as depicted in Figure 1). The new
compounds can be specified using the IUPAC International
Chemical Identifier (InChI) or the Simplified Molecular In-
put Line Entry System (SMILES). These compounds can

then be used directly with the equilibrator-api pack-
age, allowing for seamless integration of new compounds
in thermodynamic analyses (40). See the documentation at
https://equilibrator.readthedocs.io for more details.

Multi-compartment reactions

The standard calculation for reaction Gibbs energies as-
sumes that all reactants are in the same aqueous compart-
ment, with a constant pH, pMg, ionic strength and tem-
perature (41). However, most genome-scale metabolic mod-
els describe more than one compartment, usually separated
by a lipid membrane, and contain many transport reac-
tions that span compartments with different aqueous condi-
tions. Furthermore, the membrane between each two com-
partments can be associated with an electrostatic potential
�� (in units of volts) which affects the thermodynamics
of charged ions travelling between them. When a reaction
involves transport of metabolite species between compart-
ments with different hydrogen ion activity or electric poten-
tial, we add the following term to its �rG′◦:

− NH · RT ln
(
10�pH) − Q · F�� (2)

where R is the gas constant, T is the temperature, F is Fara-
day’s constant (the total electric charge of one mole of elec-
trons –96.5 kC mol−1), �pH is the difference in pH between
initial and final compartment, NH is the net number of hy-
drogen ions transported from initial to final compartment,
and Q is the stoichiometric coefficient of the transported
charges (41,42). Note that RTln (10�pH) is the energy dif-
ference between the compartments specifically for protons
(due to their concentration gradient), and F�� is the en-
ergy difference relevant to all charges (including protons).

In prior versions of eQuilibrator, adjusting the standard
Gibbs energy of multi-compartment biochemical reactions,
such as ones facilitated by membrane transporters, had to
be performed as a post-processing step. For example, the
vonBertalanffy extension in the COBRA toolbox (43) per-
forms such additional calculations as part of its pipeline. In
eQuilibrator 3.0, we add functions to facilitate the adjust-
ments required for multi-compartment reactions as part of
our Python package. See supplementary section S3 for an
example.

Adjusting estimates to different pMg values

Since ions are abundant in the cytosol and can bind metabo-
lites to varying degrees, ion concentrations have a large ef-
fect on biochemical thermodynamics (41). The concentra-
tion of protons (H+), commonly expressed as the pH, is the
most dramatic example of this phenomenon. However, this
is not the only case. Magnesium ions (Mg2 +) bind to many
common biochemical moieties, especially phosphate, and
have been shown to play a significant role in the thermo-
dynamics of glycolysis (44). For example, the dissociation
constants for ATP and ADP are low enough for them to be
in their complex forms Mg · ATP2 − and Mg · ADP− at a
physiological intracellular pMg of 3 (which is defined sim-
ilarly to pH, i.e. it corresponds to a concentration of 10−3

M––or 1 mM––of Mg2 +).

https://equilibrator.readthedocs.io
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Figure 1. The design of the eQuilibrator 3.0 suite. At the core, the equilibrator-cache Python package defines and manages the database of all
compounds, denoted equilibrator/cache. All compound identifiers and names come from MetaNetX, which aggregates several popular compound repos-
itories. The component-contribution package is responsible for handling training data, group decomposition, Legendre transforms (for pH, pMg
and ionic strength adjustments), and the final estimation of Gibbs energies for new compounds and reactions. Some scripts required for rebuilding the
database and adding new compounds to a local database are stored in equilibrator-assets. All data relevant for running the eQuilibrator packages
is stored in Zenodo and is freely available. This includes the experimental Keq data used to train the component contribution method, which comes mainly
from NIST TECR database (46). The equilibrator-api package exposes nearly all functions relevant for users with sufficient programming skills,
and is required for running eQuilibrator in batch mode (e.g. on an entire metabolic model). Some advanced features (namely pathway profiling using
Max–min Driving Force analysis (17) or Enzyme Cost Minimization (47)) are available through a separate package called equilibrator-pahtway.
For non-programmers, the web interface provides quick and easy access to eQuilibrator estimates, but is only designed to deal with a single reaction at a
time.

Every compound can be seen as an ensemble of pseu-
doisomers, molecules only differing in protonation or mag-
nesium binding state. In a biochemical context, where all
compounds are assumed to be in a buffered aqueous en-
vironment, we do not distinguish between pseudoisomers
and refer to the entire ensemble as a metabolite. Note that
this assumption does not hold for transport reactions across
membranes, which may selectively transport only specific
pseudoisomers. For single compartment reactions it is thus
convenient to discuss the standard transformed Gibbs en-
ergy of formation �fG′◦ which groups together all pseudoi-
somers into one formation energy. It can be obtained using
a Boltzmann-weighted mixture of its constituent pseudoi-
somers:

� f G ′◦ = −RT ln
∑

j

e−� f G ′◦( j )/(RT). (3)

The standard transformed Gibbs energies of formation
�fG′◦(j) for each pseudoisomer j at given biochemical con-
ditions can be calculated using the Legendre transformation

� f G ′◦( j ) = � f G◦( j ) + �H( j ) + �Mg( j ), (4)

where

�H( j ) ≡ −NH( j )[� f G◦(H+) + RT ln(10−pH)]

�Mg( j ) ≡ −NMg( j )[� f G◦(Mg2+) + RT ln(10−pMg)].

The first term––�fG◦(j)––is the chemical standard Gibbs
energy of formation of the pseudoisomer. The second
term––�H(j)––describes the contribution of protons to the
Gibbs energy as a function of the pH. NH(j) is the number
of protons associated to this pseudoisomer, and �fG◦(H+)
is the standard formation energy of a proton, defined to be 0
in this framework (41). Similarly, the effect of the concentra-
tion of Mg2 + ions (quantified as pMg) can be taken into ac-
count by adding the term �Mg(j). Similar to the case of pro-
tons, NMg(j) is the number of Magnesium ions associated to
this pseudoisomer, and �fG◦(Mg2 +) is the standard forma-
tion energy of Magnesium ions, equal to −455.3 kJ/mol.

Affinity to Mg2 + varies between compounds and pseu-
doisomers. The presence of certain chemical moieties, such
as phosphate groups, tends to increase the binding affin-
ity (45), while increasing the protonation state tends to de-
crease the affinity. Unfortunately, the availability of affinity
constants for Mg2 + is much lower than for H+. In eQuili-
brator, we used �fG′◦(j) for magnesium-bound pseudoiso-
mers collected by Vojinović and von Stockar (44) and affini-
ties predicted by Du et al. (14). For all other pseudoisomers,
we assumed that their affinity is weak and has negligible ef-
fect on thermodynamics.

After populating the database with magnesium-
bound pseudoisomers, we computed the root mean
square error (RMSE) for all reactions from the NIST
TECR database (46). When taking magnesium into
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account, the RMSE improved slightly from 2.99 to
2.93.

In the online version of eQuilibrator, pMg can be ad-
justed in the same way as pH and ionic strength, by entering
the value in the proper text field. Similarly, the Python pack-
age contains a new p mg variable that can be set directly,
along with p h and ionic strength, as explained in the
documentation at https://equilibrator.readthedocs.io.

Upgrades to the eQuilibrator website

Compared to its original version (28), the eQuilibrator
website has undergone several major updates. As men-
tioned earlier, the backend method for estimating reac-
tion Gibbs energies was changed to component contribu-
tion (13). This method provides a consistent set of reac-
tion energies, without compromising the accuracy of re-
actions and compounds with direct experimental data.
More recently, we added the ability to adjust the pMg as
well as an option to plot �G′ as a function of pMg. A
more comprehensive list of changes can be found on the
website itself at https://equilibrator.weizmann.ac.il/static/
classic rxns/updates.html.

Besides improvements to the core search function, the
website now offers tools for pathway analysis based on two
methods: Max-min Driving Force (MDF) (17) and Enzyme
Cost Minimization (47). Both these methods aim to pro-
vide a quantitative scoring system that can be used to rank
natural or engineered metabolic pathways – either to as-
sist in the design process for metabolic engineers, or for un-
derstanding the design principles that govern the evolution
of metabolic pathways. MDF is a purely thermodynamic-
based approach that assumes driving forces are maximized
within the constraints imposed by metabolite concentra-
tion bounds and the necessary coupling between adjacent
reactions. ECM uses a convex optimization approach to
find the optimal distribution of enzyme and metabolite con-
centrations, where the pathway flux is maximized. Both al-
gorithms are also available in the Python package named
equilibrator-pathway.

Complete code refactoring

In order to extend the eQuilibrator framework to new
uses-cases (such as those described above) a complete code
refactoring was required––creating separate packages for
each distinct function. The original code was designed
exclusively for a single workflow: starting with analysing
the chemical structures (group decompositions), reverse-
transforming the measured equilibrium constants to chem-
ical Gibbs energies (48), solving the linear regression prob-
lems to find the group contribution energies, and using
the solutions to estimate formation energies for all com-
pounds in the KEGG database. This long procedure was
not useful for users who only wanted to applycomponent-
contribution on a list of their own reactions.

Therefore, we have redesigned the entire component-
contribution package, moved it to a new Git reposi-
tory, and integrated it completely into a larger framework
denoted eQuilibrator 3.0 suite (see Figure 1). In addition,
we raised the coding standards, e.g. by running automated

tools for coverage, unit-testing, and documentation (avail-
able on equilibrator.readthedocs.io). We also facilitated the
installation of the packages by submitting them to the
Python Package Index (https://pypi.org) and conda-forge
(https://conda-forge.org).

Following this refactoring, Python users can easily in-
stall the equilibrator packages on their own computer us-
ing a simple command (with full support for Windows
OS, MacOS, and Linux). The improved documentation
and software stability facilitate this further, even for novice
programmers. Furthermore, proper versioning enables re-
searchers to easily trace back changes and reproduce their
results generated by older versions of the software.

DISCUSSION

The eQuilibrator 3.0 suite marks a major shift in the fo-
cus of our software which has so far been mainly geared
for single reaction searches or small biochemical networks
(pathways) and exposed via a web interface. Now, we reach
out to a larger audience, including modellers who want to
populate genome-scale metabolic networks with thermody-
namic parameters as well as metabolic engineers who want
to scan a large set of parameters for their designs. In ad-
dition, the software package can now be more easily inte-
grated into other Python-based frameworks and pipelines
such as COBRApy (49,50), MEMOTE (51), ModelSEED
(52) and CarveMe (53). Furthermore, in supplementary sec-
tion S1.4, we show how one can efficiently store a set of pre-
calculated matrices that can be used to calculate the final
estimates (including full uncertainty matrices). This can fa-
cilitate building compound databases for frameworks that
are not based on Python, or that rely on mathematical cal-
culations that are not yet supported within the eQuilibrator
codebase.

The major improvements that we introduce in this work
are: (i) an API supported by a refactored codebase that
is more suited to modelling applications and integration
into other software, (ii) improvements in speed and memory
use, (iii) correction for Mg2 + ions, (iv) multi-compartment
reactions, (v) access to the full covariance matrix for un-
certainty modelling, (vi) cross-databases identification of
molecules and reactions with a larger pool of compounds
(provided by MetaNetX) and the ability to add novel com-
pounds. We continue to support community-driven devel-
opment and open source standards, by publishing all the
code under the permissive MIT license and making it avail-
able on GitLab. All other raw data needed for the algo-
rithm is licensed under a Creative Commons 4.0 license, and
stored on www.zenodo.org.

We are open to suggestions for what could be added to
eQuilibrator in future via discussions in GitLab issues and
we welcome contributions from the community. For exam-
ple, new features already under consideration include tem-
perature adjustment based on separate entropy/enthalpy
estimates, a fully automated script for populating SBML
(Systems Biology Markup Language) models with thermo-
dynamic parameters (including multi-compartment reac-
tions), and integration with common platforms and use-
cases such as support for Thermodynamic-based Flux
Analysis (16) in COBRApy.

https://equilibrator.readthedocs.io
https://equilibrator.weizmann.ac.il/static/classic_rxns/updates.html
file:equilibrator.readthedocs.io
https://pypi.org
https://conda-forge.org
file:www.zenodo.org
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We believe that eQuilibrator 3.0 is a substantial step for-
ward in closing the accessibility gap and hope that together
with other recent advances (16,17,19,20,47) will bring forth
the golden age of thermodynamics in the field of metabolic
modelling.

DATA AVAILABILITY

The source code for all the Python packages men-
tioned in this manuscript can be found at https://
gitlab.com/equilibrator. All relevant data and models
are stored on Zenodo, and are linked to from the
repository (Training data - https://doi.org/10.5281/zenodo.
3978439; Compound database - https://doi.org/10.5281/
zenodo.4128542; Model parameters - https://doi.org/10.
5281/zenodo.4013788; Group definitions - https://doi.
org/10.5281/zenodo.4010929). The documentation can be
found at https://equilibrator.readthedocs.io.

The eQuilibrator suite depends on several open-source
packages, such as: OpenBabel (54), RDKit, NumPy, SciPy,
Pandas, Pint, and SQLAlchemy.

In addition, estimating acid-base dissociation constants
was done using Marvin Calculator, Calculator version
21.13.0, ChemAxon (www.chemaxon.com), under an aca-
demic license. Marvin Calculator is also required for adding
new compounds to a local database.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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