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Abstract: This paper deals with a research focused on utilization of microparticle and short-fiber filler
based on cotton post-harvest line residues in an area of polymeric composites. Two different fractions
of the biological filler (FCR—reinforced cotton filler) of 20 and 100 µm and the filler with short fibers
of a length of 700 µm were used in the research. The aim of the research was to evaluate mechanical
characteristics of composites and adhesive bonds for the purpose of gaining new pieces of knowledge
which will be applicable in the area of material engineering and assessing application possibilities
of residues coming into being from agricultural products processing. Mechanical properties of the
composite material produced by a vacuum infusion and tested at temperatures 20, 40, and 60 ◦C and
adhesive bonds which were exposed to a low-cyclic loading, i.e., 1000 cycles at 30% to 70% from
reference value of the maximum strength, were evaluated. Composite systems with the FCR adjusted
in 5% water solution of NaOH showed higher strength values on average compared to untreated FCR.
Unsuitable size of the FCR led to a deterioration of the strength. The filler in the form of 700 FCR
microfibers showed itself in a positive way to composite materials, and the particle in the form of
20 FCR did the same to adhesive bonds. Results of adhesive bond cyclic tests at higher stress values
(70%) demonstrated viscoelastic behavior of the adhesive layer.

Keywords: adhesive bonds; biofiller; chemical treatment; cyclic loading; epoxy resin; mechanical
properties; SEM

1. Introduction

Renewable resources are suitable for a substitution of synthetic materials/fillers [1,2]. The utilization
of the biological-based filler is a trend in an area of material engineering. Waste production, to which
secondary products can also be classified, is a global topic—a number of secondary materials is

Polymers 2019, 11, 1106; doi:10.3390/polym11071106 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-3460-4254
https://orcid.org/0000-0001-5849-1955
https://orcid.org/0000-0003-4731-5969
https://orcid.org/0000-0003-2872-3844
http://dx.doi.org/10.3390/polym11071106
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/11/7/1106?type=check_update&version=2


Polymers 2019, 11, 1106 2 of 24

burned or otherwise liquidated without the possibility of alternative handling. The utilization of all
emerging materials during agricultural crops processing can increase the economic efficiency of the
whole process and decrease the negative impact to the environment [3–6]. This fact is presented by
many prestigious workplaces which deal with the applicability of natural commodities in material
engineering at the present [5,7–16]. Microparticles of hard organic materials (bamboo powder, powders
from fruit stones, fillers from post-harvest line in the Czech Republic, etc.) and vegetable fibers (fibers
of sisal, banana tree, jute, flax, hemp) are used which can substitute synthetic materials in many
cases [1,2,17–23]. The substitution of synthetic fillers with natural-based materials has occurred in the
area of the composite materials recently [1,2,17–23].

Natural resources benefit greatly from the potential of biological structures, which have been
imitated in a number of synthetic material applications; just the structure of natural/vegetable fibers is
an example [13]. Natural reinforcement utilization leads to a decrease of the mass and the costs of
single components and to an optimization of mechanical properties [3–5].

The meaningful utilization of secondary materials/waste, such as material utilization, is an
economic and environmental alternative to other handling possibilities or a disposal [8,14]. It is
necessary to evaluate arising materials in a complex way in terms of applicability. However, many
important parameters have not been described in the area of the material engineering at the present. Just
experimental programs extend the competitiveness of biological materials with respect to environmental
as well as economic aspects. Composites with a biological material reinforcement are the subject of
research in many branches, and they have achieved huge development in recent years [9,10,24–27].

Composites containing biological reinforcement belong among a prospective group of composite
materials which define the direction of future development in many aspects [11,13,14,16,28].

An essential change of mechanical properties can be reached by adding an optimum volume
of the filler into the matrix [29–31]. Environmental protection and waste recycling have become
one of the main topics of the scientific and industrial community in recent years [32]. They have
gradually substituted conventional materials [3]. A low mass, easy production, good physical–chemical
properties or corrosion resistance, etc. are the advantages of composite materials [33,34]. They are used
in different production areas thanks to these properties, namely in the automotive and air industry, in
the production of sport equipment, in seafaring and transport, etc. above all [35].

Cotton has been the most extended textile fiber in the world at the present and it finds its highest
application in the textile industry [7]. However, the cotton plant can be also used in the application
called phytoremediation when pollutants are removed from the environment, e.g., at soil polluted by
hard metals such as a lead, etc. [36].

The waste, i.e., post-harvest residues, comes into being from cotton production. It consists of
cotton stems and cotton plant roots above all. Lignocellulose is the main component of these stems.
These residues are burned in most cases, but they can find their utilization as a recyclate [37]. However,
post-harvest residues show potential in the energy industry as a source of energy. They can be used, e.g.,
for the production of bioethanol [38] and methane [39] or as activated carbon [40]. Briquette production
is another interesting energy utilization of cotton plant post-harvest residues [41,42]. Much of the
waste create cotton textile fibers from clothing. Ten millions tons of this waste come into being each
year in Europe and America, and there is a great effort to increase the recycling rate and utilization in
other applications, e.g., in composites [43,44].

Chemical treatment is required in biological materials, which leads to improvement of mechanical
properties and, namely, adhesive strength in the composite system. The chemical treatment of coconut
fibers by alkali solution is an example [45,46].

Composites with cellulose-based filler, such as just cotton, have been widely applied. They are
used thanks to their low production costs above all. The improvement of the mechanical properties
above all, e.g., tensile strength, flexural strength or material fatigue, is the purpose of these fillers’
utilization [3,43,47,48]. An interesting use of cellulose fibers is, e.g., at cement production, which is
reinforced with these fibers for a purpose of the improvement of its mechanical properties [3]. E.g., fibers



Polymers 2019, 11, 1106 3 of 24

of bamboo, sisal, jute, coconut, jatropha, etc. are used [26]. Further, composites with a geopolymer
matrix, so called geocomposites, are applied. An aluminosilicate inorganic polymer created by
polymerization of aluminosilicate by alkali solutions is called geopolymer [26,27,49]. Cotton fibers
were used as the filler into the geopolymer composite in a weight concentration from 0.3% to 1% in
one research to find if its mechanical properties were improved [26]. Additionally, dust was used for
research on composites. Waste fibers from cotton and wool were frozen in liquid nitrogen and milled
at different time intervals [50]. The size of dust particles depends on the milling time, and their size
ranged around 60 µm [50]. The size of some particles even ranged around 20 µm [50]. The filler into
composites in the form of jatropha dust was used in research on abrasive wear of these materials and a
two-component epoxy resin was used as a matrix [10,51].

Adhesive bonding technology, i.e., the creation of structural adhesive bonds, represents a significant
type of technology of diverse materials bonding, e.g., in the automotive industry, in the production of
sport equipment or in the agricultural production, at present.

It follows from the results of various authors that the mechanical properties of particle composites
and adhesive bonds with the hybrid adhesive layer (the adhesive containing the filler, namely, biological)
depend on a suitable choice of filler, on an interphase between the matrix and the filler, and on the size
of used particles and their concentration. All essential factors have to be taken into account at adhesive
bonds production [52,53].

The cyclic loading essentially influences the service life of the adhesive bonds [54,55]. This loading,
viz. material cyclic fatigue, is the most destructive form of mechanical loading in the result. It is an
irreversible process which also comes into being at relatively small loading forces [54]. The cyclic
loading of the adhesive bonds represents the most frequent cause of degradation of these materials in
practice [55]. The adhesive bond strength is influenced not only by the used filler, but also by a transfer
of the stress between single particles and the matrix, i.e., if the particles are well wetted with the
matrix, then the stress between the matrix and the particles is transferred efficiently, which significantly
increases the adhesive bond strength [25,52,53].

The aim of the research was to evaluate the mechanical characteristics of composites and adhesive
bonds for the purpose of gaining new pieces of knowledge which will be applicable in the material
engineering area, and to assess the application possibility of residues coming into being from agricultural
products processing. The mechanical properties of a composite material produced by vacuum infusion
and adhesive bonds were evaluated regarding interfacial interaction through SEM analysis.

The assessment of renewable resources on the basis of cotton post-harvest line residues was
performed within the research, i.e., with a focus on waste biomass processing (secondary commodities
in a form of fibers, fruit residues, pulp, etc. coming into being during agricultural products processing),
namely in terms of its applicability in the area of composite systems.

2. Materials and Methods

2.1. Reinforced Cotton Filler (FCR)

The cotton post-harvest line residues come from machine harvesting in the southeast and west part
of Turkey, in the Aydin area. However, machine harvesting is cheaper but of lower quality regarding
basic product production, i.e., cotton. Used residues containing not only the plant but also the rest of
cotton pod are visible in Figure 1A, from which a predominant portion of stems is evident. Cotton plant
leaves were removed before harvesting. Figure 1B,C presents the surface of a predominant part of the
plant, i.e., the stem.

A by-product of the cotton post-harvest line was dried for 24 h at a temperature of 105 ± 5 ◦C.
Subsequently, this input material was multistage-grinded in an industrial grinder. This grinded
material was sorted by means of a sieve analysis, i.e., a fractionation was performed in a device Haver
EML digital plus. These fractions were used as the reinforced cotton filler (FCR) in composite materials.
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Two different fractions of biological FCR on the basis of cotton post-harvest line microparticles
20 µm (Figure 2A) and 100 µm (Figure 2B) and FCR with short fibers of a length of 700 µm (Figure 2C)
were used within the research.
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Figure 2. SEM images of reinforced cotton filler (FCR): (A): FCR based on cotton post-harvest line
microparticles 20 µm (MAG 3.61 kx), (B): FCR based on cotton post-harvest line microparticles 100 µm
(MAG 800 x), (C): FCR with short fibers of length 700 µm (MAG 382 x).

It is obvious from the results of the length/diameter ratio of tested FCR 700 that they are short-fiber
composite systems, i.e., the ratio between the length and the diameter of fibers is smaller than 100.
The length/diameter ratio of FCR 700 fibers was 6.09—thus, considerably smaller than 100. It is an
anisotropic filler having a similar effect as the particle filler (FCR 20 and 100) thanks to this ratio [56].
The tested composite materials belong to a group with discontinuous reinforcement.

Short-fiber and particle composites are used in applications where it is not possible to exactly
define in advance the stress acting or this stress is probably the same in all directions [13]. Further,
short-fiber composites are applied in situations where there are requirements for easy workability and
good mechanical properties [57,58].

The particles size was determined by means of an optical analysis with use of Gwyddion program
and images from electron microscopy (SEM). The results of this analysis are stated in Table 1. The results
of FCR measuring are summarized in histograms—Figures 3–5. The results presented in Table 1 and
in Figures 3–5 were measured. The measured numbers indicate the length (or the longer axis) of the
particles. Tests with FCR without treatment and with chemical treatment in 5% water solution of
NaOH for 12 h were performed within the research.
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Table 1. Measuring of used FCR.

Indication Filler Type Arithmetic Mean (µm) Mode (µm) Median (µm)

FCR 20 Particle 30 21 25
FCR 100 Particle 153 93 123
FCR 700 Short fibres 535 711 509
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2.2. Resin—Matrix (MHC)

The structural epoxy resin LH 288 with a hardener H 282 of the company Havel Composites
(MHC) was the matrix [59,60]. The ratio of resin LH 288 to the hardener H 282 was 100:23. This resin
is a two-component epoxy resin with a low viscosity suitable for laminating technologies, including
vacuum infusion. The hardener H 282 is liquid low viscosity hardener for epoxy resins. The hardener
is based on cyclic diamine. The properties of the resin and the hardener according to the producer are
stated in Table 2. The resin enables good wetting and saturation with the filler.

Table 2. Properties of resin/hardener—technical sheet according to producer [59,60].

Resin Property Resin Hardener

Epoxy mass equivalent (g·mol−1) 180–196 41
Epoxy index (mol·1000g−1) 0.51–0.56 -

Flash-point >150 -
Viscosity (mPa·s−1 at 25 ◦C) 500–900 4-15

Density (g·cm−3) 1.12–1.16 0.91–0.94

2.3. Composite Material

A preparation of composite boards was performed by vacuum-assisted resin transfer molding
(VARTM). Removal of air before the resin enters is the most important operation of vacuum infusion.
Vacuum infusion is an action when the vacuum is used for distribution of the resin through layers of
FCR. FCR is laid dry into hollow molds of dimensions 200 × 300 × 4 mm (Figure 6A). Other auxiliary
materials covered with the vacuum foil are put on FCR. The resin is sucked in by means of a tubing
system and gelcoats. Gelcoats are modified resins which are applied in the liquid state on molds and are
used to secure high-quality surface treatments of the composite material visible surface. The vacuum
infusion belongs among technologies suitable for composite materials production. The production
process through vacuum infusion consists of following technological operations: preparation of the
molds, preparation of FCR, gelcoat, putting auxiliary materials into the molds, vacuum foil installation,
vacuum check, and production itself. The composite board was prepared with 40 wt.% of FCR.
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FCR without chemical treatment and with alkali treatment in 5% solution of NaOH for 12 h was used
for the research.Polymers 2019, 11, x FOR PEER REVIEW 8 of 27 
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A vacuum pump was used for the vacuum process. It drains air from closed molds and creates a
vacuum (Figure 6B). The vacuum 0.8 to 1 bar was developed for the vacuum infusion. Minimum porosity
and good distribution of the matrix are advantages of this technology. Variants of the composite
board production are stated in Table 3. Test samples for the tensile strength test were produced from
these composite boards by means of machining CNC AWJ CT 0806 (computerized numerical control,
abrasive water jet technology, Figure 6C). These samples corresponded to the standard ČSN EN ISO
3167 [61]. It was not possible to produce the composite board from FCR 20 by means of vacuum
infusion technology. The very small size of FCR20 did not enable penetration of the resin through
the layer of filler placed in the mold. The FCR20 behaved as the filtration equipment, eliminating
penetration of the matrix (resin).

Table 3. Indication of two-component epoxy adhesive modification at production of composite material.

Composite Material Indication Characteristics

MHC Matrix Havel Composite, no filler

MHC–FCR100 Matrix Havel Composite, reinforced cotton filler of particle size
100 µm (modus)

MHC–FCR700 Matrix Havel Composite—reinforced cotton filler of short fibre length
700 µm (modus)

MHC–FCR100 (5% NaOH) Matrix Havel Composite—reinforced cotton filler of particle size 100 µm
(modus) chemically treated in 5% water solution of NaOH for time 12 h.

MHC–FCR700 (5% NaOH) Matrix Havel Composite—reinforced cotton filler of short fibre length 700 µm
(modus) chemically treated in 5% water solution of NaOH for time 12 h
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AWJ with abrasive grains (garnet MESH 80), traverse speed 250 mm·min−1, nozzle diameter
0.8 mm, and working pressure 380 MPa was used for the research. The CNC working parameters were
chosen in accordance with the research results on machining of the composite materials, which prevent
a delamination of the matrix and the reinforcement [62,63]. Samples were tested on the universal tensile
strength testing machine LABTest 5.50ST (a sensing unit AST type KAF 50 kN, evaluating software
Test&Motion) equipped with a thermal chamber. The speed of crossbeam motion was 0.6 mm·min−1.
The setting of the tensile test characteristics was performed in accordance with the standard ČSN
EN ISO 527-1 [64]. Testing was performed at a laboratory temperature of 22 ± 2 ◦C and at increased
temperatures 40 ◦C and 60 ◦C (see Figure 6D). The test samples were left for 10 min before the testing
process itself to equalize the temperatures of the environment and the tested material.

2.4. Bonds Reinforced with Composite Layer of Adhesive

Composite adhesive bonds with 60% of the matrix and 40% of the FCR were the subject of the
performed experiments. Already only FCR chemically treated in 5% water solution of NaOH was
used within the experiments. The adhesive bonds were prepared in accordance with the standard
ČSN EN 1465 [65], i.e., laboratory tests were performed using the standardized test specimens.
The structural carbon steel S235J0 was the adhesive bonded material from which test samples of
dimensions 100 ± 0.25 × 25 ± 0.25 × 1.6 ± 0.1 mm (Figure 7) determined for the adhesive bonding were
cut. Variants of the adhesive bonds production are stated in Table 4. The lapped length of the adhesive
layer was 12.5 ± 0.25 mm.
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Table 4. Indication of two-component epoxy adhesive modification at structural adhesive
bonds production.

Adhesive bonds Indication Characteristics

AB–MHC Adhesive bond–Matrix Havel Composite, no filler

AB–MHC–FCR20 (5% NaOH)
Adhesive bond–Matrix Havel Composite—reinforced cotton filler of

particle size 20 µm (modus) chemically treated in 5% solution of NaOH
for time 12 h

AB–MHC–FCR100 (5% NaOH)
Adhesive bond–Matrix Havel Composite—reinforced cotton filler of

particle size 100 µm (modus) chemically treated in 5% solution of NaOH
for time 12 h

AB–MHC–FCR700 (5% NaOH)
Adhesive bond–Matrix Havel Composite—reinforced cotton filler of

short fiber length 700 µm (modus) chemically treated in 5% solution of
NaOH for time 12 h
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The adhesive layer thickness was different. It was 108 ± 8 µm at the adhesive bond AB–MHC,
113 ± 11 µm at AB–MHC–FCR20 (5%NaOH), 198 ± 13 µm at AB–MHC–FCR100 (5%NaOH),
and 209 ± 16 µm at AB–MHC–FCR700 (5%NaOH).

The adhesive bonded surface of the steel parts was mechanically treated–grit blasted by Garnet
MESH 80 and subsequently chemically treated in acetone bath because of degreasing and removing
small abrasive particles which could stick to the surface. Roughness parameters were measured with
a portable profilometer Mitutoyo Surftest 301. A limit wavelength of the cut-off was set as 0.8 mm.
The surface roughness parameters at the grit blasted adhesive bonded material, i.e., structural carbon
steel S235J0, were Ra = 1.65 ± 0.18 µm, Rz 10.02 ± 0.65 µm.

Adhesive bonds were hardened for 72 ± 5 hours at a laboratory temperature of 22 ± 2 ◦C.
The adhesive bonds were fixed with a weight of 750 g. The testing process was performed on universal
strength testing machine LABTest 5.50ST (sensing unit AST type KAF 50 kN, evaluating software
Test&Motion) at the laboratory temperature. Fracture surface was evaluated in accordance with EN
ISO 10365.

The methodology of adhesive bonds testing at determining the strength and elongation at break
at shear tensile loading of single lapped adhesive bonds includes determining a reference value of
average maximum force at a static tensile test in accordance with the standard ČSN EN 1465 from
10 adhesive bonds by the test speed 0.6 mm·min−1 (the reference value was determined from test
samples without added filler AB–MHC). Cyclic loading (quasi-static test) of 1000 cycles was conducted
with a test speed of 6 mm·min−1 between the 5% value, i.e., a bottom limit from the determined
reference value of the tensile static test, and 30, 50, and 70%, i.e., an upper limit from the determined
reference value; the stamina on the bottom and upper limit was determined to be 0.5 s. The static
tensile test was performed after finishing 1000 cycles with the speed of 0.6 mm·min−1 until total failure
of the adhesive bond.

2.5. Evaluation

The evaluation of measured data was performed by means of the program STATISTICA, by
ANOVA F-test, i.e., a hypothesis H0 presents a statistically insignificant difference among measured
data (p > 0.05) and a hypothesis H1 presents a refusal of the hypothesis H0, i.e., there is the statistically
significant difference among measured data (p < 0.05).

The adhesive bond layer, the interaction of the adhesive layer/adherent (the adhesive bond cut),
and the fracture surface were tested by means of the scanning electron microscope TESCAN MIRA
3 GMX SE detector (SEM). The accelerating voltage was 5 to 15 kV, and the working distance was
ca. 15 mm. The samples were sputtered with gold by means of the equipment Quorum Q150R
ES—sputtering deposition rate using Gold.

3. Results and Discussion

Composite boards from microparticles of a particle size of 153 ± 107 µm indicated as FCR 100
and from short fibers of 535 ± 370 µm length indicated as FCR 700 were made by VARTM. It was not
possible to make a homogeneous composite board containing the microparticle filler of size 30 ± 20 µm
indicated as FCR 20 by vacuum infusion. It did not come to a uniform stratification of FCR 20 at the
production. Microparticles worked as filtration equipment, which did not allow MHC to pass. On the
contrary, when increasing the power of the vacuum pump, FCR 20 were removed from the mold space.

The test samples made with AWJ technology from the composite boards (Figure 3) were also
tested at regarding the increased temperature factor.

The mechanical properties of MHC and composite systems were characterized by means of
tensile strength (Figure 8), the elongation at break (Figure 9), and the modulus of elasticity (Figure 10).
The unfilled resin MHC reached a tensile strength if 34 ± 2 MPa at the laboratory temperature.
The tensile strength decreased with increasing temperature. The tensile strength fall was 7.8% at the
tested temperature 40 ◦C and up by 26.8% at the temperature of 60 ◦C.
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The tensile strength was decreased from 1.4% to 31.3% against MHC at the tested temperature of
20 ◦C by adding FCR 100 and FCR 700 with chemical treatment in 5% water solution of NaOH and
also without it. These results correspond to the results of other authors dealing with filling composite
materials with the particle filler [14,66]. The results of these authors state the tensile strength decreased
depending on the filler size [14,66]. This fall was smaller at the composite materials MHC–FCR100
(5% NaOH) and MHC–FCR700 (5% NaOH), namely from 1.4 to 9.8%. The least significant decrease
was at the filler in the form of the short fibers FCR 700 treated in 5% water solution of NaOH.

Composite materials exposed to increased temperatures of 40 and 60 ◦C showed similar behavior
when the tensile strength decrease was up by 45% (MHC–FCR700, 60 ◦C) against MHC at the
20 ◦C temperature.

The chemical treatment of FCR in the solution of NaOH had a positive effect on the tensile strength.
The negative fall of the tensile strength against the pure adhesive MHC was reduced by the chemical
treatment of FCR. The positive effect was at all variants of the experiment, and it moved from 9.1%
to 55.1%. More significant improvement occurred at the composite materials filled with short fibers
FCR 700 chemically treated in the solution of NaOH, i.e., MHC–FCR700 (5% NaOH). The alkali acting
increases the surface structure, which is distinctly visible. It is caused by a removal of natural and
artificial impurities from the filler surface [67]. The abovementioned leads to the improvement of
the interphase, i.e., of the filler and the matrix [45]. The reason was that the surface microdissolving
process increased adhesion among cotton fibers [68].

A difference between FCR without chemical treatment (Figure 11A,C) and with alkali treatment
on the FCR surface (Figure 11B,D) is visible from the results of SEM analysis presented in Figure 11.
Using alkali treatment in 5% water solution of NaOH for 12 h removed a huge amount of undesirable
surface layers from FCR, which was certified by SEM analysis, presented in Figure 11. The tensile
strength of the composite systems was increased owing to the performed alkali treatment, which caused
an improvement of the interphase between MHC and FCR. Molecules of the matrix might penetrate
slightly into the surface of the porous filler. The NaOH treatment improved the wettability of the filler
surface by the matrix molecules.

The results of the mechanical tests were also certified by the research on the fracture surfaces
by means of SEM, which is visible from Figure 12. A global image of the fracture surface is obvious
from Figure 12A, which represents the fracture surface of the composite MHC–FCR700. It is obvious
from the figure that it comes down to tearing of FCR from MHC. A low wettability between FCR and
MHC decreasing the tensile strength of the composite system (see Figure 8) is evident from Figure 12C.
A good wettability of the surface between the matrix and the reinforcement is a basic presumption
for successful production of the composite materials [13]. The tensile strength was increased by the
chemical treatment of FCR in 5% water solution of NaOH (Figure 8). This result is supported by the
findings from the SEM analysis, Figure 12C,E,F. It is evident from Figure 12C,E,F that the adhesive
strength between FCR and MHC was higher than the cohesive strength of FCR. Destruction inside
the FCR layer is obvious in these figures. A more detailed view is in Figure 12E,F. The MHC based
on thermosetting polymer created a brittle fracture, which is evident from Figure 12C. It is visible
from Figure 12D that some parts of FCR are of a hollow profile, which could decrease the composite
strength. However, the results of Cheung et al. demonstrated that the hollow profile did not decrease
the mechanical properties, as was proven at chicken flight feather fibers [69].

The elongation at break was increasing due to increasing temperature at the destructive testing.
The most significant increase of the elongation at break occurred at the pure MHC. The elongation
at break was 3% at MHC at the laboratory temperature. Owing to the increased temperature,
the elongation at break was increased, namely to 165% at 40 ◦C and up to 226% at 60 ◦C. Adding FCR
led to the decrease of the elongation at break increase, both at the laboratory temperature of 20 ◦C
and at increased testing temperatures, i.e., 40 and 60 ◦C, which is evident from Figure 9. The alkali
treatment in NaOH had a positive effect, namely at the temperature 20 ◦C, when a mild increase of the
elongation at break to the pure MHC occurred at the composite material reinforced with the cotton
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filler in the form of short fibers, indicated as MHC–FCR700 (5% NaOH). This potential decreased with
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treated in 5% solution of NaOH for 12 h (MAG 2.00 kx). 

Figure 11. SEM images of FCR: (A): reinforced cotton filler of particle size indicated as FCR 100
(MAG 1.93 kx), (B): reinforced cotton filler of particle size indicated as FCR 100 chemically treated in
5% solution of NaOH for 12 h (MAG 2.71 kx), (C): reinforced cotton filler from short fibers indicated as
FCR 700 (MAG 1.30 kx), (D): reinforced cotton filler from short fibers indicated as FCR 700 chemically
treated in 5% solution of NaOH for 12 h (MAG 2.00 kx).

The elongation at break increase is in accordance with analogous results, e.g., with PP/coir fiber
composites treated in NaOH, where the increase of the elongation at break was also observed [70].

Often bad wettability by the matrix, which usually decreases the tensile strength, belongs
among the significant disadvantages of the natural filler utilization in the area of the polymeric
composites [17,71–73]. Chemical treatment in 5% water solution of NaOH minimalizes this negative
factor having an influence on the tensile strength.

The modulus of elasticity of tested materials is visible from Figure 10. It is obvious from the results
that the modulus of elasticity was increased by adding FCR, namely FCR100 and FCR700 without
chemical treatment. A significant decrease of the modulus of elasticity owing to the temperature at
the stress test is also obvious from the results [74]. When increasing the temperature at the polymeric
materials, the modulus of elasticity and the tensile strength decrease, and the elongation at break
increases [74].

The reinforcing optimization of MHC matrices with FCR fillers depends on the interphase
interaction, i.e., the stress transfer comes through the adhesion.

The results of the statistical testing are visible in Table 5. The statistical testing proved significant
differences in the tensile strength of the tested materials, i.e., MHC and composites depending on
the temperature change. The composite material MHC–FCR100 was the only exception at which
the statistically significant difference depending on the tested temperatures 20 ◦C, 40 ◦C, and 60 ◦C
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was not proven. The statistically significant difference at the elongation at break depending on the
temperature change (interval from 20 ◦C to 60 ◦C) at the destructive testing was proven at all variants
of the experiment, i.e., tested MHC materials and composites. There is no statistical difference between
40 ◦C and 60 ◦C for MHC–FCR100 (p = 0.8145) and MHC–FCR100 (5% NaOH), where p = 0.9137.Polymers 2019, 11, x FOR PEER REVIEW 14 of 27 
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Figure 12. SEM images of fracture surface—static tensile test of composite materials: (A): MHC–FCR700
20 ◦C (MAG 250 x), (B): MHC–FCR100 40 ◦C (MAG 1.06 kx), (C): MHC–FCR100 (5% NaOH) 20 ◦C (MAG
1.70 kx), (D): MHC–FCR700 (5% NaOH) 60 ◦C (MAG 1.23 kx), (E): MHC–FCR700 (5% NaOH) 40 ◦C
(MAG 1.00 kx), (F): destruction of FCR in composite MHC–FCR700 (5% NaOH) 40 ◦C (MAG 3.50 kx).

Table 5. Statistical evaluation of static tensile test according ANOVA F-test with stated parameter p in
significance level α 0.05 at change of tested temperature.

Tensile Test MHC MHC–FCR100 MHC–FCR700 MHC–FCR100
(5% NaOH)

MHC–FCR700
(5% NaOH)

Tensile strength (MPa) 0.0001 0.0584 0.0016 0.0003 0.0001
Elongation at break (%) 0.0000 0.0000 0.0000 0.0000 0.0000

Conclusions that adding filler into thermosetting epoxy-based matrix affects (improves) the
mechanical properties of the resulting composite were certified [30,31].

It cannot be assumed that the adhesive bonds will keep a significant bearing capacity during
their whole service life [75,76]. Service life conditions usually comprise the cyclic stress, i.e., cyclic
fatigue. This cyclic fatigue causes damages to the adhesive bonds which are irreversible. This process
also influences structural adhesive bonds at relatively small loading values as a consequence of the
delamination of the adhesive layer and the adhesive bonded material, which influences the adhesive
bonds service life in a negative way [77]. Further, these small loading values, which repeat themselves
(the cyclic degradation), decrease the static strength and the fatigue service life of the adhesive
bonds [75]. Thus, the tests of the adhesive bonds cyclic loading, which belongs among the important
aspects of the practical application of the adhesive bonds, are essential from that reason [77–79].

The adhesive bond strength reference value adjustment necessary to determine the maximum
force for the quasi-static test proved the influence of adding FCR. It is obvious from Figure 13 that the
adhesive bond strength decreased with increasing size of FCR, namely up of 22% at AB–MHC–FCR700
(5% NaOH). A mild increase of the adhesive bond strength of 9.4% occurred at the adhesive bonded
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layer reinforced with FCR 20. A mild increase of the adhesive bond strength was proven with the use
of very small filler in the form of microparticles [80].
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It was certified based on the experiment results that the epoxy adhesives also keep their strength
at a higher volume of the filler [30,31].

A similar behavior of the adhesive bonds was also proven at the elongation at break (Figure 14).
The increase of the elongation at break of 56% occurred towards the adhesive bonds using the pure
adhesive (AB–MHC). The elongation at break decreased by 14% at the FCR 100 and by 36% at FCR 700.
The negative effect of the increasing size of the filler was proven again in the area of the adhesive bonds.
In terms of statistical testing, the difference in various variants of the adhesive bonds in respect of the
adhesive bond strength (p = 0.000) and adhesive bond elongation at break (p = 0.000) was proven.Polymers 2019, 11, x FOR PEER REVIEW 16 of 27 
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The fracture surface was adhesive and adhesive–cohesive at adhesive bonds. The results are
presented in Table 6, from which the difference between AB–MHC and AB–MHC with FCR is
not obvious.

Table 6. Fracture surface evaluation according to EN ISO 10365 (AF—adhesive failure, ACF—
adhesive–cohesive failure, CF—cohesive failure).

Adhesive Bond Characteristics of Adhesive Bond Test AF ACF CF

AB–MHC

Standard adhesive bond test 6 4 0
Quasi-static test from 5% to 30% (208–1246 N) 1 9 0
Quasi-static test from 5% to 50% (208–2076 N) 3 7 0
Quasi-static test from 5% to 70% (208–2906 N) 1 9 0

AB–MHC–FCR20
(5% NaOH)

Standard adhesive bond test 5 5 0
Quasi-static test from 5% to 30% (208–1246 N) 6 4 0
Quasi-static test from 5% to 50% (208–2076 N) 5 5 0
Quasi-static test from 5% to 70% (208–2906 N) 1 9 0

AB–MHC–FCR100
(5% NaOH)

Standard adhesive bond test 1 9 0
Quasi-static test from 5% to 30% (208–1246 N) 5 5 0
Quasi-static test from 5% to 50% (208–2076 N) 3 7 0
Quasi-static test from 5% to 70% (208–2906 N) 5 5 0

AB–MHC–FCR700
(5% NaOH)

Standard adhesive bond test 3 7 0
Quasi-static test from 5% to 30% (208–1246 N) 8 2 0
Quasi-static test from 5% to 50% (208–2076 N) 5 5 0
Quasi-static test from 5% to 70% (208–2906 N) 1 9 0

The results of quasi-static tests of adhesive bonds at 1000 cycles are visible in Figures 15 and 16
and Table 7. The deformation almost did not occur at the quasi-static tests at low values, i.e., the cyclic
tests in the interval from 5% to 30% at the loading force from 208 to 1246 N and from 5% to 50% at the
loading force from 208 to 2076 N; the adhesive layer did not change—it did not come to deformation.
The situation is different at the cyclic loading values in the interval from 5% to 70% at the loading
corresponding to the interval 208 to 2906 N. It comes to the significant viscoelastic behavior of the
adhesive layer, i.e., the creep, between the first and the last cycle; the deformation inside the adhesive
layer occurs. The viscoelastic behavior of the adhesive layer is obvious from Table 8, from which
increasing influence depending on increasing values of the loading force at the quasi-static test, i.e.,
30%, 50%, and 70%, is evident. This influence was certified not only at the testing itself but also at the
final deformation of the adhesive bond after the last cycle.

Table 7. Results of quasi-static test of adhesive bond.

Characteristics of
Adhesive Bond

(AB)
Quasi-Static Test Number of

Cycles

Number of Test
Samples (Number

of Finished
Cycles/Total

Number of Tests)

Relative
Deformation

after Finishing
1st Cycle

Relative
Deformation

after Last
Cycle

AB–MHC
from 5% to 30% (208–1246 N) 1000 ± 0 10/10 0.09% 0.09%
from 5% to 50% (208–2076 N) 1000 ± 0 10/10 0.12% 0.18%
from 5% to 70% (208–2906 N) 632.4 ± 268.9 3/10 0.43% 0.75%

AB–MHC–FCR20
(5% NaOH)

from 5% to 30% (208–1246 N) 1000 ± 0 10/10 0.02% 0.05%
from 5% to 50% (208–2076 N) 1000 ± 0 10/10 0.12% 0.20%
from 5% to 70% (208–2906 N) 800 ± 210 4/10 1.51% 1.96%

AB–MHC–FCR100
(5% NaOH)

from 5% to 30% (208–1246 N) 1000 ± 0 10/10 0.05% 0.06%
from 5% to 50% (208–2076 N) 1000 ± 0 10/10 0.15% 0.23%
from 5% to 70% (208–2906 N) 606 ± 353 4/10 0.81% 1.31%

AB–MHC–FCR700
(5% NaOH)

from 5% to 30% (208–1246 N) 1000 ± 0 10/10 0.06% 0.06%
from 5% to 50% (208–2076 N) 1000 ± 0 10/10 0.16% 0.25%
from 5% to 70% (208–2906 N) 155 ± 137 0/10 0.74% 1.29%
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Table 8. Statistical evaluation of adhesive bond at different low-cyclic fatigue values (from 5% to 70%
(208–2906 N), from 5% to 50% (208–2076 N) and from 5% to 30% (208–1246 N)), according to ANOVA
F-test with presented parameter p in significance level α 0.05.

Testing of Adhesive Bonds at Shear
Tensile Stress AB–MHC AB–MHC–FCR20 AB–MHC–FCR100 AB–MHC–FCR700

Adhesive bond strength (MPa) 0.0001 0.0005 0.0010 0.0000
Elongation at break of adhesive bond (%) 0.0000 0.0005 0.0353 0.0000Polymers 2019, 11, x FOR PEER REVIEW 17 of 27 

 

 
Figure 15. Quasi-static test of adhesive bonds after 1000 cycles—adhesive bond strength. 

 

Figure 16. Quasi-static test of adhesive bonds after 1000 cycles—elongation at break of adhesive 
bonds. 

An exhibition of quasi-static curves for the adhesive bonds with layer indicated as AB–MHC–
FCR 20 is in Figures 17–20. It is possible to compare the low cyclic test from 5% to 30% (208–1246 N), 
5% to 50% (208–2076 N) and 5% to 70% (208–2906 N) of the adhesive bond AB–MHC–FCR 20. It is 
possible to compare the low cyclic test with the highest tested loading, i.e., from 5% to 70% (208–2906 
N) of the adhesive bond AB–MHC–FCR 20 from Figures 19 and 20. It is evident from Figures 17–19 
that the first 1000 cycles were performed, and then, immediately, the test was performed to break 
(without removing the sample from the machine between the last cycle and the test until 
break).Figure 19 presents the finishing of the 1000 cycles and Figure 20 the finishing of 343 cycles 
from the 1000. 

Figure 15. Quasi-static test of adhesive bonds after 1000 cycles—adhesive bond strength.

Polymers 2019, 11, x FOR PEER REVIEW 17 of 27 

 

 
Figure 15. Quasi-static test of adhesive bonds after 1000 cycles—adhesive bond strength. 

 

Figure 16. Quasi-static test of adhesive bonds after 1000 cycles—elongation at break of adhesive 
bonds. 

An exhibition of quasi-static curves for the adhesive bonds with layer indicated as AB–MHC–
FCR 20 is in Figures 17–20. It is possible to compare the low cyclic test from 5% to 30% (208–1246 N), 
5% to 50% (208–2076 N) and 5% to 70% (208–2906 N) of the adhesive bond AB–MHC–FCR 20. It is 
possible to compare the low cyclic test with the highest tested loading, i.e., from 5% to 70% (208–2906 
N) of the adhesive bond AB–MHC–FCR 20 from Figures 19 and 20. It is evident from Figures 17–19 
that the first 1000 cycles were performed, and then, immediately, the test was performed to break 
(without removing the sample from the machine between the last cycle and the test until 
break).Figure 19 presents the finishing of the 1000 cycles and Figure 20 the finishing of 343 cycles 
from the 1000. 

Figure 16. Quasi-static test of adhesive bonds after 1000 cycles—elongation at break of adhesive bonds.

Further, the influence of the FCR was shown as essential. The results of the quasi-static tests
proved that the FCR 20 is suitable. This filler withstood 800 cycles on average at the cyclic loading in
the interval from 5% to 70% at the loading corresponding to the interval 208 to 2906 N. It was the best
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result compared to adhesive bonds AB–MHC and AB–MHC–FCR 100 and 700. FCR 700 (short-fiber
adhesive layer) seemed to be the least suitable in terms of the cyclic loading resistance. An irregular
shape of short randomly oriented fibers is a reason of this effect. The resulting number of the cycles at
the single quasi-static tests is presented in Table 8.

All tested adhesive bonds exposed to the quasi-static tests, i.e., to the cyclic tests in the interval
from 5% to 30% at the loading force from 208 to 1246 N and from 5% to 50% at the loading force from
208 to 2076 N, withstood the upper limit of the tests, i.e., 1000 cycles. The situation is different at the
adhesive bonds exposed to the cyclic loading values in the interval from 5% to 70% at the loading
corresponding to the interval 208 to 2906 N. The number of finished cycles differed significantly. At the
adhesive bonds AB–MHC and AB–MHC–FCR 20 and 100, 3 to 4 adhesive bonds from the total series
10 pieces finished the tests. At the adhesive bond AB–MHC–FCR 700, the 1000th cycle was finished
at no adhesive bonds. The experiment results certified the presumption that repeated cyclic loading
of the adhesive bonds with higher values of the loading force could lead to premature failure of the
adhesive bond at a relatively small number of the cycles [75].

An exhibition of quasi-static curves for the adhesive bonds with layer indicated as AB–MHC–FCR
20 is in Figures 17–20. It is possible to compare the low cyclic test from 5% to 30% (208–1246 N), 5% to
50% (208–2076 N) and 5% to 70% (208–2906 N) of the adhesive bond AB–MHC–FCR 20. It is possible
to compare the low cyclic test with the highest tested loading, i.e., from 5% to 70% (208–2906 N) of the
adhesive bond AB–MHC–FCR 20 from Figures 19 and 20. It is evident from Figures 17–19 that the
first 1000 cycles were performed, and then, immediately, the test was performed to break (without
removing the sample from the machine between the last cycle and the test until break). Figure 19
presents the finishing of the 1000 cycles and Figure 20 the finishing of 343 cycles from the 1000.

The fracture surface of the adhesive bonds after finishing low-cyclic tests was of a combined type,
i.e., adhesive–cohesive (ACF) and of a pure adhesive type (AF). The influence of the quasi-static test is
not obvious from the results presented in Table 6. The exhibition of the adhesive–cohesive fracture
surface is presented in Figure 21. A brittle fracture inside the adhesive layer is evident from Figure 21B.
A destruction of the FCR 700, due to which the cohesive failure of the adhesive layer occurs, is evident
from Figure 21C.Polymers 2019, 11, x FOR PEER REVIEW 18 of 27 
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(5% NaOH)—1000 cycles.

An exhibition of the adhesive bonds cut is evident from Figure 22. Figures present the influence of
the interaction of the adhesive bonded material, the FCR, and the MHC. Figure 22A presents the global
view on the cut through the adhesive bond AB–MHC–FCR 20 (5% NaOH), which was not exposed to
the cyclic loading.

A good wettability of the adhesive layer and the adhesive bonded material is a basic success of
the adhesive bonding technology usage in practice [14,76,81]. Microscopic cracks inside the adhesive
layer caused by the cyclic loading or owing to the changes of the temperature can be eliminated by the
usage of the filler [76].
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Figure 21. SEM images of fracture surface of adhesive bond AB–MHC at low cyclic test from 5%
to 70%: (A): adhesive–cohesive fracture surface (MAG 200 x), (B): detailed view on interphase of
adhesive–cohesive fracture surface (MAG 1.70 kx), (C): detailed view on cohesive failure of interphase
MHC and FCR 700 (MAG 1.50 kx).

A good interaction between adhesive bonded layer consisted of FCR and MHC, and the adhesive
bonded material is visible in Figure 22A. A homogeneity of the FCR 700 is obvious from Figure 22B.
Smaller interaction between the adhesive bonded material and MHC with FCR owing to the cyclic
loading at the quasi-static test from 50% to 30% is also evident. This delamination leads to the initiation
of the adhesive–cohesive fracture surface. The delamination is visible in the right upper part of the
cut through the adhesive bond (Figure 22B). Similar delamination between the adhesive bonded
material and the adhesive layer is visible in Figure 22C. This delamination causes adhesive failure
of the adhesive bond. The small cracks are a consequence of the dynamic tests with higher loading
during testing, i.e., from 5% to 70% (208–2906 N) and in the cases of smaller loading values from 5% to
30% (208–1246 N) and 5% to 50% (208–2076 N) of finishing 1000 cycles.

The results of the statistical testing are visible in Table 8. The statistical testing proved significant
differences in the strength and the deformation of the adhesive bond among tested adhesive bonds,
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i.e., AB–MHC and adhesive bonds with composite layer MHC–FCR depending on the type of the
quasi-static test.

Generally, it can be said that the interest in composites filled with the biological reinforcing phase
in the form of particles and fibers is increasing [82]. The low price, easy availability, and renewability
of these fillers is the reason according to Danyadi and Renner and Ruggiero et al. [14,82].
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Figure 22. SEM images of cut through adhesive bond: (A): cut through adhesive bond AB–MHC–FCR20
(5% NaOH) without cyclic loading (MAG 1.70 kx), (B): cut through adhesive bond AB–MHC–FCR700
(5% NaOH) exposed to cyclic loading at quasi-static test from 5% to 30% (MAG 600 x), (C): cut
through adhesive bond AB–MHC–FCR700 exposed to cyclic loading at quasi-static test from 5% to 70%
(MAG 4.50 kx).

4. Conclusions

This paper evaluated the utilization possibilities of the microparticle and short-fiber filler based on
cotton post-harvest line residues in the area of the polymeric composite materials. The study builds on
the utilization of natural fillers in the area of composite materials. The results proved that the utilization
of Turkish cotton post-harvest line residues is possible in the area of the polymeric composite, and it
brings a possibility of effective material utilization of this minor agricultural commodity. This material
utilization provides another alternative of by-product utilization for farmers dealing with cotton
growing. The filler for the composite materials in the form of particles and short fibers can be quickly
and in a relatively effective way prepared from cotton growing residues. The potential use of these
composites is, namely, in the area of adhesive bonds filled with biological filler where it is not possible
to define exactly the stress type and its direction in advance.

Essential research conclusions:

• SEM analysis of the FCR based on cotton post-harvest line residues proved the influence of alkali
treatment in the water solution of NaOH on the surface structure of fibers, i.e., removal of surface
layers. Further, the positive influence of FCR alkali treatment on the wettability with MHC
was certified.

• Composite materials: The tensile strength and modulus of elasticity of the composite materials
decreased owing to adding FCR. The composite materials with FCR, whose surface was treated
in 5% water solution of NaOH, showed a smaller fall of the tensile strength towards MHC.
The chemical treatment of FCR in the solution of NaOH showed up in a positive way on the
tensile strength. The negative fall of the tensile strength against the pure adhesive MHC managed
to be reduced by the chemical treatment of FCR. The FCR 700, i.e., the short-fiber filler, was
the best in terms of the application of FCR in composite materials (compared to the particle
filler). This conclusion was also certified at increased tested temperatures of 40 ◦C and 60 ◦C.
Composite materials showed similar behavior also in terms of the tested elongation at break.
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• Adhesive bonds: The strength of the adhesive bond decreased with increasing size of FCR at
the adhesive bonds, except for the adhesive bonds with the adhesive layer reinforced with FCR
20, where a mild increase of the adhesive bond strength occurred. Results of the quasi-static
tests certified that the FCR 20 is suitable not only at the static test but also at the cyclic loading.
Viscoelastic properties of the adhesive (specifically creep) significantly showed themselves at the
cyclic loading values in the interval from 5% to 70% at the loading corresponding to the interval
of 208 to 2906 N, whereas these viscoelastic properties almost did not show themselves at low
values of the cyclic tests at the interval from 5% to 30% at the loading force from 208 to 1246 N
and from 5% to 50% at the loading force from 208 to 2076 N.
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