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Abstract. Antimicrobial resistance (AMR) represents a growing 
public health problem worldwide. Infections with such bacteria 
lead to longer hospitalization times, higher healthcare costs and 
greater morbidity and mortality. Thus, there is a greater need for 
rapid detection methods in order to limit their spread. The ESKAPE 
pathogens (Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, 
Pseudomonas aeruginosa and Enterobacter spp.) are a series of 
epidemiologically‑important microorganisms of great concern 
due to their high levels of resistance. This review aimed to update 
the background information on the ESKAPE pathogens as well 
as to provide a summary of the numerous phenotypic and molec‑
ular methods used to detect their AMR mechanisms. While 
they are usually linked to hospital acquired infections, AMR is 
also spreading in the veterinary and the environmental sectors. 
Yet, the epidemiological loop closes with patients which, when 
infected with such pathogens, often lack therapeutic options. 
Thus, it was aimed to give the article a One Health perspective.
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1. Introduction

Antimicrobial resistance (AMR) is one of the greatest 
threats to the progress achieved in medicine in the last 
century. Its increase in the last decades raises concern 
about the treatment of regular infections in what the 
World Health Organization is calling a ‘post‑antibiotic’ 
era (1). The ESKAPE pathogens (Enterococcus faecium 
(E. faecium),  Staphylococcus aureus  (S. aureus), 
Klebsiella pneumoniae,  Acinetobacter baumannii, 
Pseudomonas aeruginosa and Enterobacter spp.) are 
a series of bacteria capable of acquiring high levels of 
resistance and which are responsible for difficult‑to‑treat 
infections or for which, no treatment is currently avail‑
able. When the acronym was first used to describe their 
dangerous potential more than a decade ago, the ESKAPE 
pathogens were mainly present in hospital settings (2). At 
present, the problem is far more extensive as bacteria cannot 
be contained, spreading in the community but also, in the 
veterinary sector and the environment (3‑5). Rapid detec‑
tion methods for AMR are crucial in limiting the spread of 
these strains and in the initiation of the optimal treatment. 
The aim of the present review was to briefly summarize 
the AMR mechanisms in these important pathogens and 
describe the main phenotypic and genotypic methods 
currently used in diagnosis.
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2. Methods

A non‑systematic review was performed using PubMed 
and Google Scholar databases. Key words relevant to each 
heading were used (‘vancomycin‑resistant Enterococcus 
spp.’, ‘vancomycin resistance’, ‘methicillin‑resistant 
Staphylococcus aureus’,  ‘Klebsiella pneumoniae’, 
‘Acinetobacter baumannii’, ‘Pseudomonas aeruginosa’, 
‘Enterobacter cloacae’, ‘Enterobacter spp.’, ‘carbapenem 
resistance’, ‘carbapenemase’, ‘extended spectrum β‑lactamase’, 
‘ESKAPE’, ‘colistin resistance’). Articles written in English, 
published in the last decade, and based on relevance were 
selected. Conventional inclusion and exclusion criteria were 
not used.

3. AMR mechanisms

E. faecium. Although they are a part of the normal flora of both 
humans and animals, enterococci are able to cause a range of 
infections such as urinary tract infections, intra‑abdominal, 
pelvic or soft tissue infections, and bacteremia or endocar‑
ditis, particularly in immunocompromised patients (6). As 
they normally live in the gastrointestinal tract of mammals, 
they may also be found in water, soil and food. The majority 
of infections are caused by two species of enterococci, 
Enterococcus faecalis and E. faecium. Both species have a 
natural low level resistance to aminoglycosides, cephalospo‑
rins and macrolides (7). Their spread in the hospital settings 
and their association with healthcare‑associated infections in 
recent years is caused both by the acquisition of new resistance 
mechanisms and the ability to produce biofilm (7). 

However, the greatest concern regarding treatment is in 
E. faecium as it has a higher intrinsic resistance and the ability 
to acquire resistance mechanisms towards last resort antibi‑
otics. Its intrinsic low level resistance towards β‑lactams is 
mediated by the production of a low‑affinity penicillin‑binding 
protein (PBP5) but may also rarely be caused by the produc‑
tion of β‑lactamases (8,9). PBP5 is usually hyper‑produced, 
giving rise to moderate or even high‑level resistance towards 
cephalosporins as well as ampicillin. Nevertheless, in the 
case of Enterococcus faecalis ampicillin remains active (9). 
E. faecium also produces a chromosomal AAC(6')‑I enzyme 
that does not allow synergism between aminoglycosides 
(except gentamicin, amikacin and streptomycin) and penicil‑
lins or glycopeptides (10).

One successful clone that emerged in the hospital setting 
was revealed by multilocus sequence typing and was desig‑
nated CC17. The isolated strains were resistant to ampicillin 
and quinolones and contained a series of antibiotic resistance 
and virulence genes specific to the hospital environment (11).

Glycopeptides are antibiotics used to treat infections caused 
by resistant strains or in case of patient allergies. The most 
frequently encountered mechanism of glycopeptide resistance 
in enterococci is the reduced binding of glycopeptides to their 
target due to a VanA or a VanB ligase that replaces the terminal 
D‑Ala in the peptidoglycan with D‑Lac. Numerous other Van 
variants have been described (VanC1/C2/C3, VanD, VanE, 
VanG, VanL, VanM, VanN) but with a lower prevalence (12).

Previous use of antibiotics appears to increase the coloniza‑
tion rates with enterococci which may lead to ensuing clinical 

infection (13). Gastro‑intestinal colonization of patients leads 
to the dissemination in the hospital setting and the formation 
of ecological niches (14).

Staphylococcus aureus (S. aureus). Staphylococci are 
gram‑positive bacteria that naturally colonize the skin of 
humans and other mammals. S. aureus is the predominant 
human pathogen from this genus, causing a wide range of 
infections, although 30% of the human population are healthy 
carriers (15). Although the wild‑type staphylococcal strains 
are susceptible to all β‑lactams with the exception of mono‑
bactams, their ability to easily acquire resistance genes has 
transformed them into veritable MDR pathogens. The first 
strains resistant to penicillin G appeared as a defense and 
evolutionary mechanism a short time after it started to be used 
by patients. In a similar way, the first methicillin‑resistant 
S. aureus (MRSA) strains appeared after penicillinase‑resistant 
penicillins such as methicillin, oxacillin or cloxacillin were 
introduced in clinical practice. At present, MRSA causes high 
levels of morbidity and mortality worldwide (16). Luckily, 
unlike enterococcal strains, MRSA can still be successfully 
treated with glycopeptides in most cases, as resistance remains 
exceptional (17).

Regarding its resistance mechanisms, while in the 1940s 
infections could easily be treated with penicillin, at present 
>90% of all staphylococcal strains produce penicillinases (18). 
The four enzymatic variants of β‑lactamases (A, B, C and D) 
in S. aureus have a narrow spectrum, hydrolyzing penicillins 
such as penicillin G, ampicillin, ticarcillin or piperacillin (19). 
These enzymes belong to the Ambler class A and are encoded 
by the blaZ gene which is located on a plasmid (20). 

However, the main mechanism of β‑lactam resistance is 
the production of a PBP with modified structure. S. aureus 
naturally presents four types of PBPs, numbered from 1 to 4, 
which are vital for bacterial survival (19). β‑Lactams have a 
high affinity towards them with a pronounced bactericidal 
effect. In the presence of a mecA or mecC gene, the strains 
produce a PBP with low affinity towards β‑lactams, called 
PBP2a or PBP2. Both mecA and mecC are part of a staphylo‑
coccal cassette chromosome (SCC), a mobile genetic element 
integrated in its chromosome. The SCC contains a mec operon 
and the ccr (cassette chromosome recombinase) gene. This 
complex encodes the site‑specific recombinases that allow 
SCCmec mobility (20). There is a great variety of both the 
mec operon and the ccr gene (ccrA, ccrB, ccrC). The horizontal 
transfer of the complex leads to the global clonal dissemina‑
tion of different MRSA strains. At present there are thirteen 
different types of SSCmec described in the literature (21). 
Certain of them are responsible only for β‑lactam resistance 
while others also contain certain other resistance genes either 
on plasmids or transposons.

Klebsiella pneumoniae and Enterobacter spp. Both 
Klebsiella pneumoniae and Enterobacter spp. are members 
of the Enterobacterales family and are gram‑negative 
bacilli capable of inducing great levels of morbidity and 
mortality (22,23). Due to their high efficacy and safety profile, 
β‑lactams are the primary antibiotics used to treat infections 
caused by enterobacteria. However, as observed with penicillin 
and subsequently with oxacillin and S. aureus in the 1950s', 
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resistance towards different members of the β‑lactam family 
was a step‑by‑step process (24). The first concern arose 
regarding third generation cephalosporin resistance when 
the first extended‑spectrum β‑lactamases (ESBLs) started to 
spread at a global scale. Infections caused by ESBLs has led 
to high rates of carbapenem consumption which has continued 
to increase the microbiologic pressure in different ecological 
systems all over the world. At present, the most concerning 
type of resistance is carbapenem resistance which may occur 
through multiple mechanisms. Carbapenemase‑production is 
the most encountered type of carbapenem‑resistance mecha‑
nism due to its potential for the rapid spread worldwide as 
carbapenemases are encoded by mobile genetic elements 
(plasmids, transposons and integrons). Carbapenemases 
are enzymes which open the β‑lactam ring, therefore 
inactivating carbapenems. There are two main general clas‑
sification systems being used to characterize carbapenemases 
at present, the Ambler and the Jacoby‑Bush classification. 
The Ambler classification divides enzymes into four classes, 
A‑D, based on the amino acid sequence of the enzymes. In 
order to hydrolyze their substrate (β‑lactams), classes A, C 
and D use a serine residue while class B uses divalent zinc 
ions (25). The Jacoby‑Bush classification attempts to corre‑
late the substrate and inhibitor profiles with the phenotype 
of clinical isolates (26). The most commonly encountered 
enzymes in Enterobacterales are Klebsiella pneumoniae 
carbapenemase (KPC) and imipenemase (IMI) from Ambler 
class A, New‑Delhi metallo‑β‑lactamase (NDM), Verona inte‑
gron‑borne metallo‑β‑lactamase (VIM) and IMP from Ambler 
class B and different oxacillinases, particularly OXA‑48 
from Ambler class D. Their epidemiology varies worldwide 
depending on the geographical location and between different 
ecological niches (e.g. different hospital settings) (27,28). 

New combinations of β‑lactams with β‑lactam‑inhibitors 
(ceftazidime‑avibactam, ceftolozan‑tazobactam and 
meropenem‑varbobactam) show great promise in the treatment 
of carbapenem‑resistant Enterobacterales (CRE). Although 
their use has yet to be spread worldwide, resistance has already 
started to be reported (29,30). 

In infections that may no longer be treated with β‑lactams, 
last resort antibiotics from other classes are starting to be used 
such as colistin or tigecycline (31‑33). Unfortunately, resistance 
to these classes has been reported as well. The mcr gene which 
encodes colistin resistance is of great interest as it could also 
be transferred between bacteria, similar to carbapenemase 
genes, very often resulting in pan‑resistant strains which are 
difficult, if not impossible, to treat (34).

Depending on the local epidemiology, the antibiotics usage 
profile and on the type of infection, fluoroquinolones or amino‑
glycosides may or may not remain active. In strains which 
exhibit multidrug resistance efflux pumps, multiple classes of 
antibiotics are actively being removed from the bacterial cells, 
leaving limited therapeutic options (34).

Acinetobacter baumannii and Pseudomonas aeruginosa. 
The mechanisms of resistance in non‑fermenters are similar 
to the ones described in Enterobacterales with a few differ‑
ences. Both microorganisms have high intrinsic resistance to 
antibiotics caused by their natural impermeability and over‑
production of AmpC enzymes. They can also easily acquire 

other resistance mechanisms, particularly in the hospital 
environment (35).

In Acinetobacter baumannii the main mechanism of 
β‑lactam resistance is the production of β‑lactamases. All 
Acinetobacter baumannii strains produce chromosomally 
encoded AmpC cephalosporinases which confer resistance to 
extended‑spectrum cephalosporins. Carbapenem resistance is 
mainly caused by the production of class D enzymes different 
than OXA‑48, such as OXA‑23‑like, OXA‑24/40‑like, 
OXA‑58‑like or OXA‑143. Of note, the presence of naturally 
occurring chromosomal OXA‑51 (and its variants), coupled 
with the presence of ISAba1 promoter has been shown to 
lead to carbapenem resistance. Changes in outer membrane 
proteins (OMPs), multidrug efflux pumps and alterations in the 
affinity or expression of penicillin‑binding proteins may also 
be responsible for carbapenem resistance (36). 

In Pseudomonas aeruginosa, carbapenem resistance 
is mostly mediated by OprD loss, which primarily confers 
imipenem resistance. When present, carbapenemase produc‑
tion of class B enzymes such as VIM, IMP or NDM is the 
most frequently encountered (37). Overproduction of efflux 
systems such as MexAB‑OprM and MexXY‑OprM have also 
been described (38).

4. Phenotypic and genotypic detection of AMR in 
gram‑positive bacteria

Phenotypic methods. Since the main mechanisms of β‑lactam 
resistance in both S. aureus and E. faecium is the modifica‑
tion of the target, there are few phenotypic detection methods 
available. The interpretation of the disk diffusion antibiogram 
is an inexpensive and accurate method to detect β‑lactam 
resistance in gram‑positive bacteria. Glycopeptide resistance 
is rare in S. aureus and it is determined by the minimum 
inhibitory concentration (MIC) value (39,40). In E. faecium, 
genotypic methods may be more useful as they provide a 
rapid response, particularly since they may be used directly on 
clinical samples (41).

Enterococcus spp. There are several phenotypic methods 
used to detect antibiotic resistance in enterococci such as disk 
diffusion, broth microdilution and the breakpoint agar method 
particularly for vanA strains. VanB‑mediated resistance is 
often harder to detect phenotypically and other methods must 
be used in such cases. All strains must be correctly identified, 
ideally by the means of MALDI‑TOF. An incorrect identifica‑
tion may lead to confusing results and reporting (for instance 
E. gallinarum and E. casseliflavus may be confused with 
E. faecium due to a positive arabinose test). In settings where 
MALDI‑TOF is not available, the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) recommends 
the use of the methyl‑α‑D‑glucopyranoside (MGP) test or a 
motility test in order to differentiate these species (42).

Regarding E. faecium, EUCAST recommends that 
ampicillin‑resistant strains should be reported resistant to all 
β‑lactams, including carbapenems (43). In a similar manner, 
ampicillin resistance in all enterococci is a predictor of 
amoxicillin and piperacillin resistance as well. As ampicillin 
resistance in Enterococcus faecalis is rare, EUCAST recom‑
mends that it be confirmed using MICs (43).
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Perhaps the most important molecules used in the treatment 
of ampicillin‑resistant enterococcal strains are glycopeptides. 
Vancomycin and teicoplanin may be tested using the disk 
diffusion method in enterococci. Susceptibility to vancomycin 
is defined by a sharp‑edged zone of inhibition with a diameter 
of over 12 mm, in the absence of colonies in the inhibition 
zone or a MIC <4 mg/l. Although the incubation time for 
enterococcal antibiograms is 24 h, vanB‑positive strains 
that present low level resistance to vancomycin, may need a 
prolonged, 48 h incubation time (43). Usually, vanA‑producing 
strains are both vancomycin and teicoplanin‑resistant, whereas 
vanB‑producing strains usually remain susceptible to teico‑
planin (10). Semi‑automated methods such as VITEK2 have 
not exhibited superiority compared with the disk diffusion 
method for the detection of vanB‑producing enterococci (44).

The breakpoint agar tests can accurately detect both vanA‑ 
and vanB‑positive strains. The test is performed by applying 
10 µl of a 0.5 McFarland inoculum on a Brain Heart Infusion 
agar plate supplemented with 6 mg/l vancomycin. Any growth 
is considered a positive test (44).

Vancomycin‑variable enterococci (VVE) are vanco‑
mycin‑susceptible enterococci that contain the vanA gene 
that have the ability to revert to a vancomycin‑resistant 
phenotype upon exposure to vancomycin (45). Low‑MIC 
vancomycin‑resistant enterococci (VRE) are used to describe 
vanB strains with low expression that have MICs below the 
clinical breakpoint but which could become phenotypically 
resistant in case of prolonged exposure to vancomycin (46). 
Usually, VVE and low‑MIC VRE strains can only be deter‑
mined by molecular methods. 

S. aureus. The majority of staphylococci produce a peni‑
cillinase that confers resistance towards penicillin G, 
phenoxymethylpenicillin, aminopenicillins, carboxypenicil‑
lins and ureidopenicillins. The in vitro marker used to detect 
its presence is a zone diameter of <26 mm when a disk of 
penicillin G of one unit is placed on the disk diffusion plate. In 
the absence of cefoxitin resistance, these strains maintain their 
susceptibility towards isoxazolyl‑penicillins such as oxacillin 
or cloxacillin, certain cephalosporins and carbapenems (10,43).

A cefoxitin disk of 30 µg that has an inhibition diameter 
of <22 mm or a cefoxitin MIC of over 4 mg/l could be used as 
in vitro markers for MRSA strains (10,43). These strains are 
reported to be resistant to all β‑lactams with the exception of 
ceftaroline and ceftobiprole which were particularly designed 
to treat MRSA strains (47).

A quick slide agglutination test could be performed to 
detect the presence of PBP2a (the product of the mecA gene) 
which leads to low affinity to β‑lactam antibiotics (48).

Last resort antibiotics used to treat MRSA infections are 
glycopeptides and oxazolidinones. Due to their poor diffu‑
sion into agar plates, glycopeptides cannot be tested using the 
disk diffusion method and must therefore be tested using the 
MIC. A MIC of >2 mg/l is considered the clinical breakpoint 
for vancomycin non‑susceptibility. Vancomycin‑resistant 
S. aureus is defined by a MIC of >8 mg/l but few strains have 
been reported worldwide (49). However, other variants of 
vancomycin non‑susceptibility have been described such as 
hVISA (heteroresistant vancomycin‑intermediate S. aureus) 
and VISA (vancomycin‑intermediate S. aureus) (50).

hVISA contains vancomycin‑susceptible strains as well 
as a small population of bacteria with a MIC of >2 mg/l 
while VISA strains have MICs of 4‑8 mg/l. These types of 
resistance cannot be determined using broth microdilutions 
and are generally difficult to detect, particularly hVISA. 
However, a number of screening tests as well as a confirma‑
tory method have been developed. The macro gradient E‑test 
could be used as a screening method but it cannot distinguish 
between different variants of vancomycin non‑susceptibility. 
The test uses a higher inoculum (2 McFarland) and a different 
media (Broth Hearth Infusion, BHI) than the standard E‑test, 
a teicoplanin value of >12 mg/l being considered positive. 
The Glycopeptide Resistance Detection Gradient test uses 
vancomycin‑teicoplanin double‑sided gradient test strips 
on Mueller‑Hinton agar supplemented with 5% sheep blood 
and a 0.5 McFarland inoculum. A result of >8 mg/l for either 
vancomycin or teicoplanin is considered positive. The use 
of BHI screening agar plates containing 4 µg/ml vanco‑
mycin and 16 g/l casein with 0.5 and 2 McFarland inocula 
is another potentially useful option (51). Mueller‑Hinton 
agar plates supplemented with 5 mg/l of teicoplanin may be 
used as a screening method as well by spot‑plating 10 µl of a 
2 McFarland bacterial inoculum. Growth of colonies at 48 h is 
suggestive of glycopeptide non‑susceptibility. 

All screening tests must be confirmed by a test called PAP 
which analyses the population profile of the isolate on agar 
plates that contain a range of vancomycin concentrations (52).

Genotypic methods
E. faecium. For the accurate identification and species differ‑
entiation of enterococci, the superoxide dismutase gene, sodA, 
is a potential target (53).

As glycopeptide resistance is important to be determined 
rapidly in order to stop its spread, genotypic methods target 
the most frequently encountered genes responsible, vanA 
and vanB. At present, both genes can be detected directly from 
clinical samples, with high accuracy (54). 

Recently, as whole genome sequencing (WGS) is increas‑
ingly being used, it may provide therapy guidance for 
enterococcal infections as well (55).

S. aureus. MRSA strains contain either mecA or mecC (56). 
VRSA strains posess the vanA gene which is mediated by 
the Tn1546 transposon acquired from glycopeptide‑resistant 
enterococci (57). WGS was useful in epidemiological 
studies, particularly in the guiding efforts to control MRSA 
transmission (58).

5. Phenotypic and genotypic detection of AMR in Entero‑
bacterales

Phenotypic methods. In addition to the interpretative reading 
of the antibiogram, at present there are a few phenotypic tests 
available which can detect ESBLs, carbapenemase production 
or colistin resistance in a timely manner.

Carbapenemase production. Although phenotypic methods 
are not able to differentiate between different types of 
specific carbapenemases, they may detect the presence of a 
carbapenem‑hydrolyzing enzyme in a given bacteria which 
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represents an advantage as compared with the majority of 
genotypic methods where detection is based on already known 
components. The fact that they are inexpensive compared with 
the genotypic methods is another advantage, since they could 
be more readily available in clinical laboratories with limited 
resources. Certain phenotypic tests which include the use of 
carbapenemase inhibitors may indicate a certain Ambler class 
and guide the management of the patient.

The last EUCAST recommendation regarding carbapen‑
emase production confirmation is from 2017. The initial 
screening starts from the disk diffusion antibiogram. A 
meropenem diameter of <28 mm is considered the best 
compromise between sensitivity and specificity in detecting 
carbapenemase producers. Although ertapenem is the 
carbapenem most susceptible to hydrolysis, it may give false 
positive results in ESBL and AmpC producers (59‑63). Several 
schemes of interpretative screening were also developed such 
as the use of ticarcillin‑clavulanate, temocillin and imipenem 
(recommended by the French Society of Microbiology, 
CA‑SFM) or the use of faropenem‑temocillin (64‑66). 
However, they are limited by the individual subjectivity in 
reading and in regions with a high burden of antibiotic resis‑
tance; they may not offer additional information.

Cloxacillin is used to inhibit the class C β‑lactamase, 
AmpC. Inclusion of cloxacillin in the growth medium or 
its addition to the carbapenem disk allows the monitoring 
of synergy and establishes a non‑carbapenemase‑resistant 
mechanism (67).

A test that is still used in microbiology laboratories but is 
no longer recommended by the EUCAST nor by the Clinical 
and Laboratory Standards Institute (CLSI) is the Modified 
Hodge Test. The test consists of plating a susceptible strain of 
Escherichia coli (E. coli) (ATCC 25922) on Mueller‑Hinton 
agar. A meropenem disk is then added on the center of the 
plate, while strains which are to be evaluated are streaked 
linearly from the disk to the edges of the plate. A clover‑
leaf‑like indentation caused by the growth of the indicator 
strain towards the disk is considered to be a positive result 
(the strain is considered to produce a carbapenemase). The 
main disadvantages of the test are that results may be suscep‑
tible to interpretation and false‑positive (for ESBL and AmpC 
producers) as well as false‑negative (for NDM‑producing 
strains) results have been observed (68). Although easy to 
perform, due to the lack of sensitivity and specificity as well 
as the fact that other phenotypic methods are currently avail‑
able it is anticipated that the Modified Hodge Test may soon 
be replaced in the clinical microbiology laboratories in the 
near future.

In case of carbapenem resistance, the use of carbapenemase 
inhibitors [phenyl boronic acid (PBA) for class A, dipicolinic 
acid (DPA) for class B] which could be used in combina‑
tion with a carbapenem disc, may indicate the presence of a 
carbapenemase and the Ambler class. Temocillin may be used 
as a marker for OXA‑48 production (69).

All the colorimetric tests (Carba NP and its derivates 
including Rapidec Carba NP, Rapid Carb Blue Screen, β Carba 
test and GoldNano Carb) have the same principle of carbapen‑
emase detection. Each test consists of incubating imipenem 
with the strain of interest and a pH indicator such as red phenol 
or bromothymol blue. Imipenem hydrolysis is detected by the 

change of colour (from red or blue to yellow) caused by the pH 
drop (70‑73). 

In 2005, Kim et al proposed a new method termed the 
Carbapenem Inactivation Method. This test consists of 
incubating one loop of the strain of interest with a disk of 
meropenem in 400 µl of distilled water for 2 h, the recovered 
disk being afterwards placed on Mueller‑Hinton plated with a 
highly susceptible strain of E. coli. In principle, the meropenem 
in the disk will be inactivated by a carbapenemase‑producing 
strain, allowing the unhindered growth of the E. coli, while 
a carbapenem‑resistant strain by other mechanisms, would 
have no effect on the meropenem therefore inhibiting the 
highly susceptible strain. The interpretation can made after at 
least 6 h, while for certain strains an overnight incubation is 
required for improved results (74,75).

The CIM test inspired a series of similar tests in the 
hope of raising the sensitivity and specificity of the method 
as well as having a more rapid result. A CLSI team modified 
the protocol by incubating the strains for 4 h in tryptic soy 
broth, a zone diameter of <15 mm being evaluated as a positive 
result. The test is termed mCIM and it is currently recom‑
mended by the CLSI. The mCIM was adapted as well by using 
sodium mercaptoacetate for an improved metallo‑β‑lactamase 
detection (76).

The main disadvantage of the CIM and mCIM is the 
24‑h period of incubation. This was addressed by a version 
of the CIM which could provide results in <3 h, called rapid 
CIM (rCIM). A total of two 10‑µl loopfulls of the strain 
of interest are incubated with two disks of meropenem for 
30 min in 1 ml of distilled water. Following centrifugation, 
the supernatant is placed over a 0.5 McFarland inoculum of 
a highly susceptible E. coli strain and re‑incubated for 2 h. 
Production of carbapenemases is confirmed by a growth of 
>0.5 McFarland (77). The rCIM was tested with carbapen‑
emase inhibitors as well, exhibiting favorable results but 
further studies are required to confirm its utility on different 
types of carbapenemases (78).

zCIM is a newly described method which consists of the 
incubation of the strain of interest in distilled water with 
added ZnSO4 and a meropenem disk. The test revealed high 
sensitivity and specificity and it is recommended to be used in 
combination with immunochromatographic tests (79).

Immunochromatographic tests such as the RESIST‑4 (Coris 
BioConcept) or the CARBA‑5 (NG Biotech) are rapid, easy to 
perform and have demonstrated high‑performances (79).

With MALDI‑TΟF‑MS technology becoming increas‑
ingly available in the clinical microbiology laboratory, a 
carbapenem‑degradation test was proposed for the evalua‑
tion of carbapenemase activity. This technique was further 
evaluated for direct use from blood culture bottles and other 
biological fluids (80,81).

Colistin resistance. The CLSI and EUCAST both recommend 
the MIC determined by broth microdilutions as a reference 
method for testing colistin resistance in Enterobacterales. 
MICs should be performed in cation‑adjusted Mueller‑Hinton 
broth (MHB) with sulfate salts of polymyxins, without addi‑
tives such as polysorbate 80 and without treated polystyrene 
trays. Unfortunately, at present, not all microbiology labora‑
tories are able to implement this method and continue to use 
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the disk and gradient diffusion methods despite the high error 
rates reported (82).

Certain laboratories use semi‑automated systems for MIC 
determination such as the MicroScan WalkAway (Beckman 
Coulter, Inc.), Vitek 2 (BioMérieux SA) or BD Phoenix™ 
(Becton Dickinson; BD Biosciences) (83).

Other tests that use modified versions of the broth 
microdilution method include the addition of ethylenediami‑
netetraacetic acid (EDTA) and dipicolinic acid (DPA) which 
were tested for mcr‑1 to mcr‑5 detection. Neither method was 
comparable as accuracy with the standard method but DPA 
inhibition may be useful for E. coli strains (84).

As colistin resistance is rising, a number of phenotypic 
tests besides antibiotic susceptibility testing are being devel‑
oped for its rapid detection.

The newly described Colistin Broth Disk Elusion Test is 
a potential alternative to broth microdillution as it requires 
few materials (MHB and colistin disks) (85). The test consists 
of incubating 1, 2 and 4 disks of colistin (10 µg) in 10 ml of 
cation‑adjusted Mueller‑Hinton which corresponds to the final 
concentrations of 1, 2 and 4 µg/ml, as well as a growth control 
tube in which no colistin is added. Following a 30‑min incuba‑
tion period in which colistin diffuses into the media, 50 µl of a 
0.5 McFarland suspension of the bacteria are added. Following 
another 16 to 20 h of incubation, the results are read by using 
the recommended MIC breakpoints.

Rapid polymyxin NP is a test similar to Carba NP that 
can detect the bacterial growth based on the pH modification 
caused by glucose metabolism in the presence of a specific 
concentration of colistin (3.75 µg/ml/well). The test may be 
interpreted in 2 h with a reported sensitivity and specificity of 
upwards of 95% (86).

Similar to the method used for carbapenemase detection, 
MALDI‑TOF can be used for the detection of lipid A modifi‑
cations caused by polymyxin resistance in <15 min (87). 

Recently, a lateral flow immunoassay has been devel‑
oped and tested for the rapid detection of MCR‑1‑producing 
Enterobacteriaceae (88).

Genotypic methods
Carbapenemase production. While there are a number of 
available methods for the molecular detection of carbapen‑
emase genes, WGS provides the most important information.

Certain genotypic methods are very expensive and require 
highly trained personnel for data interpretation while others 
are particularly designed to be easy to use directly from 
clinical samples. Usually, these benchtop systems are able to 
detect the five most common carbapenemase genes described 
(blaKPC, blaNDM, blaIMP, blaVIM and blaOXA‑48) (89,90).

Other commercial kits target a larger number of genes, 
to minor carbapenemases, ESBL (CTX‑M) and even colistin 
resistance (91,92).

Colistin resistance. Colistin resistance can be either chromo‑
somally encoded (by alterations in the pmrA, pmrB, phoP, 
phoQ, mgrB and crrB genes) or plasmid‑mediated (encoded by 
the mcr‑1 to mcr‑8 genes) (93,94). These genes may be detected 
using real‑time PCR, loop‑mediated isothermal amplification 
(LAMP), microarray techniques or WGS, usually in National 
Reference Centers (95‑98). However, this may not be the 

optimal method for detecting colistin‑resistance as numerous 
gene modifications are yet to be described.

6. Pseudomonas aeruginosa and Acinetobacter baumannii

Phenotypic methods
Carbapenemase production. All the phenotypic methods 
described in the Enterobacterales section were also tested or 
adapted for non‑fermenters as well but usually rendering lower 
overall sensitivities and specificities. 

Phenotypic methods include growth‑based methods (such 
as the boronic acid synergy test, the E‑test metallo‑β‑lactamase 
strips, mCIM), colorimetric tests based on biochemical reac‑
tions (such as the Carba NP and its variants) or electrochemical 
tests (BYG test) (99).

The boronic acid synergy test consists of placing several 
antibiotics (imipenem, meropenem, ceftazidime) with or 
without the class B inhibitor boronic acid in two concentrations 
(300 and 600 µg) on a plate inoculated with a 0.5‑McFarland 
of the strain. A difference >5 mm between the zone diameters 
is considered the cutoff for resistant isolates (100).

The E‑test metallo‑β‑lactamase consists of double‑sided 
strips impregnated with a seven‑dilution range of imipenem 
or ceftazidime (4 to 256 µg/ml) and imipenem or ceftazidime 
(1 to 64 µg/ml) with added EDTA or 2‑mercaptopropionic acid 
(MPA) at a constant concentration (101). The test has exhibited 
high sensitivity and specificity for both Pseudomonas and 
Acinetobacter strains (102).

As the mCIM was reported to have a low sensitivity (45.1%) 
on non‑fermenters, the protocol was modified by using a 10‑µl 
loopful instead of a 1‑µl, in order to achieve improved results. 
The overall sensitivity and specificity of the test revealed 
its utility for testing Pseudomonas aeruginosa but not for 
Acinetobacter (103). 

The classic CIM test was reported to have a low 
sensitivity in detecting carbapenemase production in non‑
fermenters (104). For this reason, a new method termed 
CIMTris was described with an overall sensitivity of 97.6% 
and an overall specificity of 92.6% (105). The modified 
protocol consists of incubating the suspect strain in Tris‑HCl 
instead of distilled water for 2 h.

There are numerous studies which have compared the 
performances of the colorimetric tests (Carba NP and its deri‑
vates including Rapidec Carba NP, Rapid Carb Blue Screen, 
β Carba test and GoldNano Carb) used for Enterobacterales 
in non‑fermenters. Generally, the non‑fermenters exhibited 
lower performances which has led to the development of new 
derivates. A modified Carba NP where the lysis buffer was 
replaced with cetyl trimethyl ammonium bromide revealed 
100% sensitivity and specificity (106). Another change in 
the protocol of the Carba NP test (replacing the lysis buffer 
with NaCl) was especially created for the improved detection 
of carbapenemase production in Acinetobacter baumannii 
strains, termed CarbAcineto NP with a sensitivity of 
89‑95% (107). GoldNano Carb is a test that uses gold 
nanoparticles as a pH indicator of carbapenemase produc‑
tion. Similar to the other Carba NP variants, the low pH 
caused by imipenem hydrolysis leads to the aggregation of 
the gold nanoparticles, causing a color change from red to 
purple, blue or green (108). 
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The BYG Carba test is an electrochemical assay which 
detects the increase of conductivity of a polyaniline‑coated 
electrode, very sensitive to pH modifications and redox 
activity (109).

Regarding Acinetobacter baumannii, to date, the optimal 
method for carbapenemase detection is represented by assays 
involving MALDI‑TOF MS hydrolysis (110).

Colistin resistance. In addition to the already described 
Colistin Broth Disk Elusion Test which was validated for 
non‑fermenter testing as well, a resazurin reduction‑based 
assay was recently described for polymyxin resistance in 
Acinetobacter spp. and Pseudomonas spp. (111). The test is 
described to be performed in 4 h, exhibiting high sensitivity 
and specificity (100 and 92%, respectively).

Genotypic methods
Carbapenemase production. Both, Pseudomonas aeruginosa 
and Acinetobacter baumannii have a high genomic diver‑
sity. Besides the intrinsic AMR, there is an increase of 
carbapenem‑resistant strains. High‑risk clones are incrimi‑
nated in spreading resistance genes. In these two species the 
majority of acquired resistance genes exist as gene cassettes in 
integron, and they are also associated with various horizontally 
acquired resistance elements. In Acinetobacter baumannii the 
resistance elements are most often clustered in AMR islands 
and plasmid‑borne resistance genes (112).

The association between phenotypic antimicrobial suscep‑
tibility testing and whole genome sequencing was synthesized 
by the EUCAST Subcommittee (112). For Pseudomonas, in 
particular for meropenem and levofloxacin, the sensitivity and 
specificity were 91 and 94%, respectively, while for amikacin 
it was 60%. For Acinetobacter baumannii in strains with 
amikacin resistance, the presence of aphA6 and armA has 
been observed (112, 113).

Detection of AMR based on the presence of acquired and 
chromosomal resistance‑associated mutations may have a high 
sensitivity and specificity, but the main challenge remains in 
identifying the chromosomal alterations which lead to changes 
in the expression, particularly regarding the efflux pumps or 
outer membrane proteins (112).

Colistin resistance. The Micromax Assay for Acinetobacter is 
a test that can detect DNA fragmentation and cell wall damage 
in <4 h (114). However, it requires access to fluorescence 
microscopy which limits its use in the clinical microbiology 
laboratories.

7. Veterinary implications 

At present, the veterinary sector has a unified legislative 
framework in the European Union compared with the human 
sector. 

Concerning regulations, there are several European 
agencies, such as the European Food Safety Authority, or 
the European Medicines Agency, that have provided studies 
concerning the spread of AMR between animals and humans 
including the Antimicrobial Advice Ad Hoc Expert Group 
(AMEG), the Reduction of the Need for Antimicrobials in 
Food‑producing animals and Alternatives (RONAFA) or the 

Joint Interagency Antimicrobial Consumption and Resistance 
Analysis (JIACRA) studies. 

The AMEG provides a categorization of antimicrobials 
based on their potential for generating AMR in humans 
following use in animals. It also advises on the impact of the 
antimicrobial use in animals, by generating a risk profile. 
For instance, the AMEG concluded that glycylcycline should 
be restricted in animals as it was observed that resistance in 
humans emerged rapidly. In 2016, following the discovery of 
the mcr‑1 gene, the AMEG also advised for the reduction of 
colistin sales across the European Union (115).

The RONAFA report included measures to reduce the 
need to use antimicrobials in animal husbandry in the EU 
and the impacts on food safety while the JIACRA reports 
analyzed the potential relationship between the consumption 
of antimicrobials by humans and animals and the occurrence 
of AMR (116‑119).

The use of the glycopeptide, avoparcin, as a growth promoter 
in animals is considered to have contributed to the widespread 
of glycopeptide‑resistant enterococci, serving as a reservoir 
for the human food chain (120). The ‘The Danish Integrated 
AMR Monitoring and Research Programme’ (DANMAP) 
banned its use in 1995, with vancomycin resistance dropping 
significantly since then (121). In 1997, the use of avoparcin as 
a growth‑promoter was banned all over the European Union. 
Since 2006, no antimicrobial drug was allowed to be used for 
growth promotion, including antimicrobial drug classes not 
used in human medicine (122).

Animal contact (farm or companion animals) was identi‑
fied as a potential risk factor for carriage or infection with 
MRSA (100). One of the most notable cases was a commu‑
nity‑acquired MRSA strain transmitted to humans from pigs, 
which was reported in the Netherlands (123).

Concerning colistin resistance, the mcr‑1 gene was detected 
in chicken meat and other food products (124).

8. Environmental implications

At present, there is a lack in the current understanding of the 
issue and therefore a lack of a regulatory process regarding the 
surveillance and control of AMR in the environment. 

The use of manure of animal origin as soil fertilizers 
increases the abundance of antibiotic resistance genes and 
antibiotics in soil (125).

AMR genes were identified in the soil of 12 organic 
farms evaluated in Nebraska, most frequently for tetracy‑
cline and sulfonamide including tet(G), tet(Q), tet(S), tet(X) 
and tetA(P). The samples were collected from two different 
depths, but this did not influence the presence of identified 
AMR genes (126).

It is clear that unless the chain of excessive antimicrobial 
consumption is limited, the impact on the environment will 
continue to rise.

Until recently the presence of AMR genes in the air had not 
been appropriately evaluated, however, in one study the pres‑
ence of 30 gene subtypes was screened in particulate matter in 
19 cities and were identified more frequently in San Francisco, 
for example, than in Bandung; the most often encountered 
genes were blaTEM, which encodes for β‑lactamine resistance 
and qepA (a quinolone resistance gene) (127).
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Another study conducted during a severe smog event 
detected 205 airborne AMR genes most frequently encoding 
for tetracycline, β‑lactam and aminoglycoside resistance (128).

Regarding the AMR genes detected in drinking water 
sources, a study conducted in Canada identified genes such 
as ampC, tet(A), mecA, β‑lactamase genes, such as TEM‑type, 
OXA‑1 or CMY‑2‑type, and carbapenemase genes including 
OXA‑48, IMP, VIM, KPC NDM and GES (129).

In samples obtained from wastewater from hospitals from 
Rio Grande, New Mexico, in 58% of the samples at least one 
antibiotic was detected, most frequently ofloxacin, sulfa‑
methoxazole and trimethoprim (130).

9. Conclusions

The ensemble of ESKAPE pathogens are known for their 
capacity to evade the effects of antimicrobial therapy. While 
the mechanisms conferring resistance are varied, these patho‑
gens are uniform in the risk of causing difficult, hard‑to‑treat 
infections. This leads to the need for new and improved 
methods to detect AMR, to quickly assess therapeutic options. 
Genotypic methods may detect resistance directly from clin‑
ical samples, however, they are expensive and require specific 
infrastructure. Phenotypic methods may occasionally offer 
more general information, usable in the clinical environment. 
The veterinary sector is, in its own right, a source of antibiotic 
resistance, due to use of antimicrobials as growth agents. The 
environmental sector combines resistance from the clinical 
and veterinary sector through medical waste and the use of 
fertilizer. There is a need for improved antibiotic use in both 
the human and veterinary medical sectors as well as a need for 
constant surveillance of the AMR phenomenon.
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