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ABSTRACT
The impact of SARS-Cov-2 and COviD-19 disease susceptibility varies depending on the age 
and health status of an individual. Currently, there are more than 140 COviD-19 vaccines 
under development. However, the challenge will be to induce an effective immune response 
in the elderly population. Analysis of B cell epitopes indicates the minor role of the stalk 
domain of spike protein in viral neutralization due to low surface accessibility. Nevertheless, 
the accumulation of mutations in the receptor-binding domain (RBD) might reduce the 
vaccine efficacy in all age groups. we also propose the concept of chimeric vaccines based 
on the co-expression of SARS-Cov-2 spike and influenza hemagglutinin (HA) and matrix 
protein 1 (M1) proteins to generate chimeric virus-like particles (vLP). This review discusses 
the possible approaches by which influenza-specific memory repertoire developed during 
the lifetime of the elderly populations can converge to mount an effective immune response 
against the SARS-Cov-2 spike protein with the possibilities of designing single vaccines for 
COviD-19 and influenza.

Highlights

• Immunosenescence aggravates COVID-19 
symptoms in elderly individuals.

• Low immunogenicity of SARS-CoV-2 vaccines 
in elderly population.

• Tapping the memory T and B cell repertoire in 
elderly can enhance vaccine efficiency.

• Chimeric vaccines can mount effective immune 
response against COVID-19 in elderly.

• Chimeric vaccines co-express SARS-CoV-2 
spike and influenza HA and M1 proteins.

Introduction

The appearance of novel coronavirus known as 
SARS-CoV-2 is accountable for the disease called 
COVID-19 which caused more than 2 million global 
deaths. Coronaviruses are widespread family of viruses 
existing in numerous species of animals, including cam-
els, cattle, cats, bats, and birds. Zoonotic transmission 
of coronaviruses seldom transpires in the human pop-
ulation. The previous human to human transmission 
of coronaviruses occurred in 2003 and 2014 with 
SARS-CoV and the middle-eastern and the respiratory 

syndrome coronavirus (MERS-CoV), respectively. 
Current literature describes two types of the coronavi-
ruses alphacoronaviruses (229E and NL63) and 
betacoronaviruses (OC43 and HKU1) that circulates in 
human causing common flu [1]. The pathogenic strains 
that infect human are SARS-CoV-1, MERS-CoV and 
SARS-CoV-2, all of which belong to betacoronaviruses 
[2]. SARS-CoV-2 has 29.9 kb single stranded positive 
sense RNA genome that encodes 29 viral genes. Around 
16 of these elements codes for nonstructural proteins 
that are copied as pair of large polyproteins (Orf1a 
and Orf1b) that are further processed into different 
polypeptides via viral proteases. Other elements codes 
for several viral proteins that forms variety of accessory 
and structural components including the spike (S), 
envelope (E), membrane (M) and nucelocapsid (N) 
proteins. The interaction between the SARS-CoV-2 
spike protein and the angiotensin-converting enzyme 
2 (ACE2) receptor on host cell membrane helps the 
virus to penetrate the cell [3]. The trimeric S protein 
comprises of two subunits, S1 and S2, which mediates 
receptor binding and membrane fusion [4,5]. Hence 
the spike protein has been emphasized and used as a 
prime candidate for vaccine development globally [6,7].
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Development of vaccine is time consuming and 
challenging especially for the mutating RNA viruses. 
However, the mutation rate of SARS-CoV-2 is lower 
than other single stranded RNA viruses like influenza 
or HIV [8]. RNA viruses have the tendency to lose 
infectivity after acquiring mutation but few 
quasi-species retain infectivity and others become 
highly infective. These highly infective species bypass 
the existing immunity to establish themselves in the 
circulation as a new variant. The repeated viral muta-
tion is well observed during flu season caused by 
influenza viruses. Every year new flu vaccine is devel-
oped based on the previous year’s epidemiological 
data. SARS-CoV-2 rapid multiplication and infectivity 
allows the virus to acquire mutations such as D164G, 
A222V, L18F, P681H and N501Y mutations in the 
Spike (S) proteins, P323L in the NSP12 protein and 
R203K, G204R and A220V in the nucleocapsid pro-
teins [9]. Current epidemiological studies have iden-
tified new variants in UK (B.1.1.7), South Africa 
(B.1.351) and Brazil (P.1) and all three have now been 
detected in the USA [10]. Current vaccines under use 
can neutralize emerging strains but to what extent 
they can protect elderly population remains a major 
concern.

Earlier reports by CDC indicated that older adults 
(≥ 65 years) comprising 9% of the global population 
accounted for more than 80% of COVID-19 related 
mortality [11]. This emphasizes the severity and vul-
nerability of the elderly individuals to SARS-CoV-2 
infection. The SARS-CoV-2 infection can overwhelm-
ingly excite the immune system in the elderly patients 
thereby leading to acute respiratory distress syndrome 
(ARDS) which is a natural outcome of immunopatho-
logical episodes and remains a critical reason for 
mortality [12]. The weakened immune system of older 
adults is characterized by steady decline of innate and 
adaptive immune responses poses a major challenge 
for developing a vaccine that will effectively work for 
people of all ages [13–15]. The bottleneck to devel-
oping such vaccines is the limited knowledge about 
the correlates of vaccine-induced protection in older 
adults. Previous studies have reported various phys-
iological and immunological changes in the human 
body with aging [16,17]. Therefore, vaccination does 
not always ensure protection to an older individual 
due to their inherent loss of immune functions and 
heightened susceptibility to infectious diseases. Thus, 
we must consider additional safeguards while design-
ing a vaccine for these groups. In this review, we 
emphasize on the elderly population (≥ 65 years age) 
and their immune correlation against vaccination 
based on previous and current studies. We further 

discuss the innovative approaches of hybrid vaccines 
containing influenza and SARS-CoV-2 motifs to over-
come the suboptimal immune response during vac-
cination in elderly population.

Immunosenescence and aging aggravates 
COVID-19 disease

Multifaceted alterations in immune system are the 
hallmark of the aging process. Immunosenescence is 
defined as gradual decrease in immune function with 
age leading to augmented susceptibility to infectious 
diseases [18]. Studies have reported a systemic inflam-
matory state with aging, known as ‘inflammaging’ 
leading to a chronic low-grade inflammation in the 
lung of elderly people. The respiratory system under-
goes a set of functional and structural changes with 
age. The progressive decline in lung functions includ-
ing anatomical changes of the thoracic cage leading 
reduction in chest wall compliance, decreased strength 
of respiratory muscle affecting airway clearance are 
observed with aging [19,20]. Uncontrolled inflamma-
tion may impair lung, heart and kidney functions due 
to impeded resolution and presence of frailty in the 
older individuals [21]. Older individual has dysregu-
lated innate immune cells lacking efficient phagocy-
tosis and egress mechanism from the site of infection 
which further increases proinflammatory response by 
engaging with pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular patterns 
(DAMPs) resulting in further tissue damage [22,23]. 
Innate immune response is primarily responsible for 
initial inflammations leading to the accumulation of 
phagocytes (neutrophils and macrophages) at the site 
of infection. The phagocytes clear-up the virus infected 
cells and dead or apoptotic cells damaged due to viral 
multiplication [24,25]. Alveolar macrophages (Aφs) 
provide the first line defense against respiratory patho-
gen and plays a pivotal role maintaining tissue homeo-
stasis [26]. In a resting state, Aφs binds to the alveolar 
type II epithelium and expresses regulatory ligands 
(CD200 and TGFβ) and anti-inflammatory cytokines, 
such as IL10 and TGF β [27,28]. Upon sensing any 
danger signals or insult, Aφs undergo molecular repro-
gramming to regulate a complex interaction between 
suppressive and activating signals [29,30]. Neutrophils 
from aged animals also show a similar reduced ability 
to mount an innate immune response like formation 
of neutrophil extracellular traps (NETs) [31,32]. Lower 
expression of Atg5 in aged mice leads to reduced 
autophagy mediated NET formation [33]. Innate 
immune responses promote adaptive immunity by 
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stimulating the antigen presenting cells (APCs) to 
capture and present antigen and by producing cyto-
kines, chemokines and co stimulatory molecules that 
is required for optimum T helper cell response at the 
secondary lymphoid organs [34]. Antibodies and 
CD4+ T cells are essential to neutralize virus particles 
by opsonization and killing of virus infected cells by 
cytotoxic T cells [35,36]. Aging significantly influences 
thymic involution with a gradual declination of the 
structural integrity of the thymus in aged people 
resulting in a steady decrease in the T cell production 
[37]. Older individuals have reduced number of naïve 
T helper cell populations and distorted lymph node 
architecture critical to retain naïve cells which promote 
germinal center reaction after activation by APCs to 
produce affinity matured and class switched antibodies 
(Figure 1A) [38,39].

Outcome of any infectious disease depends on both 
the arm of the immune responses. Aging leads to 
gradual changes in every aspect of host immunity 
affecting both the innate and adaptive immune arm 

resulting in heightened inflammatory response or cyto-
kines storms during robust viral replication and cell 
damage that defines the disease pathophysiology of 
COVID-19 [40,41]. Recent clinical studies have 
reported significant upregulation in proinflammatory 
cytokines (TNF-α, IL-1β, IL-6, IL-8, G-CSF and 
GM-CSF) and chemokines such as MCP1, IP10 and 
MIP1α in severely affected COVID-19 individuals 
[42–44]. Cytokines storms are characteristics for many 
viral diseases like SARS, MERS and H5N1 infection 
including the current COVID-19, providing them an 
inflammatory disease signature [45,46]. High 
SARS-CoV-2 replication in the type 2 pneumocytes 
causes it to differentiate from a quiescent state to a 
highly proliferating inflammatory state resulting in an 
impairment of suppressing signals [47].

Severely affected SARS-CoV-2 patients of all ages 
have very low number of T regulatory (Tregs) cells 
[48]. Patients severely suffering from COVID-19 were 
reported to have an uncontrolled inflammation asso-
ciated with pneumonia, myocarditis and microvascular 

Figure 1. factors influencing CovID-19 outcomes in the elderly population. A. Immunosenescence mediated changes in innate 
and adaptive immune response might affect the CovID19 disease outcome. the immunosenescence is characterized by thymic 
involution, modified t and B cell responses due to alteration in the naïve/memory lymphocyte population, and heightened 
serum levels of Igg and Iga with a lower level of Igm and IgD, and a weak response to newly encountered pathogens/antigens 
such as sars-Cov2 or influenza or after vaccination which may lead to severe disease outcome specially within the elderly 
population. B. Both the humoral (mediated by sars-Cov-2 specific neutralizing antibodies) and cellular immune response 
(mediated by CD8 + t cells that kills virus infected cells) are indispensable for effective CovID-19 immune response. Diverse 
memory t and B cells in elderly individual might act as a reservoir that can be tapped to raise a strong adaptive immune 
response against sars-Cov-2 by tweaking novel vaccine design.
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thrombosis, and cytokine storms which can be effec-
tively dealt with increased Tregs [49]. Several clinical 
studies with SARS-CoV-2 patients have reported the 
presence of proinflammatory cytokines including IL6, 
IL8 and IL12, IFN γ and IL-2 [50,51]. ACE2, the key 
receptor of SARS-CoV-2, is reported to be downreg-
ulated after SARS-CoV-2 infection, thereby leading to 
ARDS and cardiac injury due to increase accumulation 
of angiotensin II [52,53].

COVID-19 vaccination and immune response 
within the elderly population (≤65 years)

All the COVID-19 vaccines are designed to induce an 
effective antiviral response and the efficacy is analyzed 
by measuring the neutralizing antibody titer against 
the spike protein or receptors binding domain of spike 
[54]. The total number of CD4+ and CD8+ T cells 
were dramatically reduced in COVID-19 patients, 
especially among elderly and ICU patients. Moreover, 
T cells in these individuals shows high expression of 
PD-1 and Tim-3 expression compared to healthy con-
trols, an indicative of T cell exhaustion [55]. A recent 
study compared T cell memory response in COVID-19 
recovered patients (28 with mild disease and 14 with 
severe disease) and indicated that mild cases have 
higher proportions of SARS-CoV-2 specific CD8+ T 
cells whereas individual with severe COVID-19 have 
more SARS-CoV-2 specific antibody titer compared 
to mild case [48]. These finding suggest that humoral 
immune responses alone were unable to protect an 
individual from severity of the disease. Earlier study 
by Wang et al, have found that H7N9 infected influ-
enza patients discharged within 2–3 weeks have early 
prominent H7N9-specific CD8+ T cell responses, 
while individuals with prolonged hospital stays have 
late recruitment of CD8+ or CD4+ T cells and anti-
bodies simultaneously [56]. These studies suggest that 
recovery phases of acute viral infection are dependent 
on effective CD8+ T cell response. All these observa-
tions suggest an optimum T cell response is indis-
pensable for the resolution of COVID-19 disease 
which may be lacking in elderly population and pro-
vide rationalization for vulnerability toward severe 
SARS-CoV-2 infection (Figure 1B). The use of spike 
as a vaccine candidate can be effective to induce effec-
tive CD8+ T cell responses, as new findings also sug-
gest that during natural infection a significant number 
of CD8+ T cell responses were observed with spike 
derived peptide pool during ex vivo challenge 
[48,56,57].

Inovio pharmaceuticals had developed INO-4800, 
a novel DNA based vaccine candidate which is 

administered directly into the skin of the recipient 
through Cellectra 2000 [58,59]. As soon as the genetic 
sequence of the novel corona virus was published [60], 
Inovio constructed a DNA based vaccine without fur-
ther delay utilizing their proprietary DNA medicine 
platform technology. It successfully prompted antigen 
specific robust T cell mediated immune response and 
neutralizing antibody production that effectively 
blocked the binding affinity of the spike protein to 
ACE2 receptor. Phase 1 clinical trial with INO-4800 
exhibited excellent safety and tolerability and remained 
immunogenic in 100% (38/38) of the vaccinated indi-
viduals by evoking either or both humoral or cellular 
immune responses [59]. Currently a study with pop-
ulations 51 years and older is underway (NCT04336410).

The mRNA vaccines are similar to DNA vaccines 
off late gaining much required attention due to their 
robust immunogenicity, easy production scale up, and 
the development of lipid nanoparticles for efficient 
delivery [61]. With this new technology viral antigen 
can be delivered as mRNA sequence within lipid 
nanoparticles (LNP) instead of viral protein molecules 
[62–64]. The antigen is then expressed in the recipient 
cells of the vaccinated individual to mount humoral 
and cell mediated immune responses (Figure 2). There 
are several mRNA vaccines that are under develop-
ment or in trials for COVID-19 (Table 1).

Moderna in collaboration with the National 
Institute of Allergy and Infectious Diseases (NIAID) 
have developed a LNP encapsulated mRNA vaccine 
named mRNA-1273 that encodes full-length perfusion 
stabilized spike protein [65]. The perfusion form 
encompasses a transmembrane anchor and an unal-
tered S1-S2 cleavage site. The substitution mutation 
of two proline residues in the S2 region stabilizes the 
newly designed protein [66]. The genetic similarity 
of the MERS-CoV and SARS-CoV-2 lead to the devel-
opment of a single synthetic viral RNA molecule as 
a vaccine candidate making it safer for human use. 
The phase 1 and phase 2 clinical trials were carried 
out to evaluate the safety, reactogenicity, and immu-
nogenicity of the vaccine in human. Antigen-specific 
neutralizing antibody developed in a Rhesus macaque 
model also enhanced protection in the lung without 
any symptoms of pathological changes [67]. The par-
ticipants in this trial were between the age group of 
18–70 years. Vaccine trials have found mild adverse 
events of fatigue, chills, headache, and pain at the 
site of the injection area were observed. This study 
also reported the presence of neutralizing antibodies 
in the serum with strong CD4+ mediated T cell 
responses. The phase III trial had 25.3% population 
with 65 years and older age. The vaccine evoked 
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elevated local and systemic adverse reactions com-
pared to those in the placebo group during phase III 
trial, usually enduring a few days. The reactogenicity 
were commonly mild to moderate and generally less 
frequent in older adults (≥65 years) as compared to 
younger participants [68].

In USA, the BNT162 mRNA vaccine developed by 
BioNTech and Pfizer, encodes an optimized 

SARS-CoV-2 receptor-binding domain (RBD) antigen 
which is currently used for vaccination [69]. A 
prime-boost regimen strategy was explored with this 
vaccine and reported to be well tolerated during the 
early-stage human trial and elicited dose-dependent 
immunogenicity [70]. During December 2020, moni-
toring by the Vaccine Adverse Event Reporting System 
identified 21 cases of anaphylaxis (which is a severe, 

Figure 2. overview of mrna vaccines mediated immune responses. the mrna incorporated in the lipid nanoparticles are 
delivered to host cells by intramuscular injection. Inside the cells, mrna is translated into antigenic proteins which is subse-
quently processed into peptides by the proteasomal degradation or endosomal lysis and represented by mHC molecules on the 
plasma membrane to mount an immune response. there are some variations within mrna vaccine architecture based on mrna 
molecules either consisting of the only the target antigen (conventional mrna vaccines) or target antigen along with replication 
machinery (self-amplifying or trans-amplifying mrna vaccines) to amplify the mrna molecules further after entering the host 
cells for a longer and higher amount antigen expression.

Table 1. major CovID-19 vaccines available or under development.
Company/Institute vaccine name Backbone target antigen age Clinical status (trial no.)

Inovio 
Pharmaceuticals

Ino-4800 Dna-based sars-Cov-2 spike 
protein

≥19 to ≤64 Phase 2/3 (nCt04447781)

Codagenix/serum 
Institute of India

CDX-005 Deoptimized live 
attenuated virus

whole virus particle no information Preclinical/Phase 1 trial

moderna/nIaID mrna-1273 mrna stabilized spike 
protein

≥18  Phase1/2 /3 completed and under 
emergency use (nCt04470427)

Biontech and Pfizer Bnt162 mrna spike protein ≥18 to ≤55; 
56 to ≤85

Phase1/2 /3 completed and under 
emergency use (nCt04380701)

novavax nvX-Cov2373 Protein subunit full length s trimers/ 
nanoparticle + 
matrix m

≥ 18 to 59 
≥ 18 to 84 

Phase 2 (nCt04533399, nCt04368988). 
Phase 3 under trial

astraZeneca Chadox1 
nCov-19(aZD1222)

non-replicating 
chimpanzee 
adenovirus

spike protein ≥18 to ≤55 
≥18

In use (nCt04324606, nCt04516746)

Bharat Biotech Covaxin (BBv152B) Inactivated sars-Cov-2 
virus with 
6 µg-algel-ImDg

a whole virion ≥18 Phase III completed (nCt0464181)
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life-threatening allergic reaction that occurs rarely after 
vaccination) following administration of a reported 
1,893,360 primary doses of the Pfizer-BioNTech 
COVID-19 vaccine (11.1 cases per million doses); 71% 
of these appeared within 15 minutes of vaccination. 
Recent reports of 23 elderly patients death in Norway 
after having regular doses of Pfizer/BioNTech mRNA 
vaccines created panic in certain parts of the world 
about their safety and tolerability [71]. The higher 
dose of conventional mRNA vaccine can induce an 
adverse side effect in the vulnerable frail group. Health 
authorities are investigating the reason behind such 
deaths in the elderly population [71]. Both Moderna 
and Pfizer/BioNTech vaccines require two doses and 
the reactogenicity is typically higher after the 
booster dose.

Novavax investigated their proposed vaccine, 
NVX-CoV2373, full length S subunit protein, with or 
without Matrix-MTM as an adjuvant. The anti-Spike 
IgG antibody was found to be present in the all-vaccine 
recipient right after the single dose and the presence 
of the adjuvant further augmented the polyfunctional 
CD4 + T cell responses [72]. In this study participants 
were between 18 to 59 years of age were divided in 
to multiple groups to carry out the immunogenicity 
of the vaccine. The phase 3 trial aimed in enrolling 
30,000 people in the United States and Mexico with 
two cohorts: individuals 18 through 64 years old and 
those ≥ 65 years older, with a goal of enrolling at least 
25% of all volunteers who are.

Live attenuated vaccines are produced by creating 
a genetically weakened variant of the virus that rep-
licates to a constrained extent, causing no or mild 
disease but induces immune responses comparable to 
that induced by natural infection [73]. Codagenix, 
Inc. in collaboration with Serum Institute of India 
had developed CDX-005, an engineered live attenu-
ated virus with the help of codon deoptimization 
software platform [74]. Although the amino acid 
sequence of the constructed mutated whole virus par-
ticle is structurally identical to the wild type 
SARS-CoV2, it is unable to replicate in the host. The 
newly designed nonpathogenic attenuated virus 
reported to generate strong humoral and T cell medi-
ated immune responses in the preclinical studies with 
mice and guinea pigs and with non-human primates.

The ChAdOx1 nCoV-19 vaccine developed by the 
University of Oxford in collaboration with AstraZeneca 
and the Serum Institute of India, expresses a full-length, 
wild-type version of the Spike protein. The ChAdOx1 
nCoV-19 vaccines are typically based on a modified 
adenovirus that has been engineered to express the 
Spike protein and has been disabled from replication 

in vivo by the deletion of parts of its genome. During 
safety and immunogenicity study with ChAdOx1 
nCoV-19 the local and systemic reactions including 
pain, feeling feverish, colds, muscle ache, headache, 
and malaise were more frequent in the ChAdOx1 
nCoV-19 groups which were lessened by the use of 
prophylactic paracetamol [75]. A recent study was 
conducted from four ongoing blinded, randomized, 
controlled trials done across the UK, Brazil, and South 
Africa. In this trial, in Britain, the registered popula-
tion was predominantly white and, in younger age 
groups, incorporated more female participants due to 
the focus on recruitment of health-care workers 
whereas in Brazil, there was a larger proportion of 
nonwhite ethnicities. Study participants aged 18 years 
and older were randomly assigned to ChAdOx1 
nCoV-19 vaccine or control. Overall vaccine efficacy 
across both groups was around 70·4% [76]. The phase 
1/2 trial proposes two-dose regime where the booster 
dose induces a strong T cell response and anti-spike 
neutralizing antibody production and the vaccine is 
currently under phase 3 trial [77]. Recently many 
European countries halted the use of AstraZeneca’s 
vaccine in March 2021 following the report of symp-
toms that led to at least 15 deaths. However, vacci-
nation was resumed on European Medicines Agency 
(EMA) recommendation stating the benefits of vaccine 
outweighs its risks [78].

All these vaccines use various advanced technolo-
gies and are reported to mount a protective immune 
response by generating antigen specific neutralizing 
antibodies and an optimum T cell response. Most 
effective COVID-19 vaccine must induce an effective 
CD8+ T cell response with neutralizing antibody titer. 
However, current determinant of vaccine efficacy 
doesn’t provide enough importance to CD8+ T cell 
response. Also, it is not known how long vaccine 
induced neutralizing antibody titer will provide pro-
tection from infection or reinfection. Current 
COVID-19 vaccine development must include the 
capability to efficiently induce CD8+ T cell memory 
response that will provide an additional layer of pro-
tection to avoid severe consequences during future 
reinfection. Vaccines developed using the whole virus 
not only induced CD8+ T cell response against Spike 
but also for other viral proteins like M, Nucleoprotein 
ORF3a, ORF6 and ORF7a [57,79–81]. Therefore, 
spike-based vaccines lack diversified CD8+ T cell 
responses, limiting the breadth of immune response 
which may play important role during resolution phase 
of the infection. Thus, all the next gen mRNA-based 
vaccines have an inherent drawback of lower capacity 
to induce diverse immune response particularly within 
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elderly individuals with low antigens specific naïve 
CD4+ or CD8+ T cells [82]. Although the current 
phase 3 trial results of mRNA-1273 vaccine suggests 
that it is safe and effective at preventing symptomatic 
COVID-19 in adults but its efficacy within elderly 
population (≥ 65 years) remains matter of concern. 
Recently, BioNTech and Pfizer have also expanded this 
study to determine vaccine efficacy within the elderly 
group but the data is yet to be public (NCT04368728) 
[70]. Gradual mutations in spike protein will make 
the current vaccines no longer effective similar to flu 
vaccines. However live attenuated SARS-CoV-2 strains 
can overcome such challenges by mounting an effec-
tive CD8+ T cell response to various relatively con-
served proteins.

Lessons learned from earlier vaccination 
strategies for elderly population

New vaccines are being developed by modifying the 
antigen, the route of administration, higher dose 
administration and implementing adjuvants. 
Administering higher dose via parenteral route acti-
vates follicular DCs and subsequently antigen presen-
tation and B cell activation in the older population 
[83]. Majority of the commercialized licensed vaccines 
imparts reduced immunogenicity and lesser protective 
efficacy among elderly population due to evident 
decrease in naïve T cell population, distorted lymphoid 
architecture whereas polyfunctional CD8+ T cell 
remain unaffected with aging [84]. The commercially 
available widely used vaccines for elderly people espe-
cially in the developing countries have recommended 
guidelines for vaccination in elderly people against 
infections like influenza, pneumonia, herpes zoster, 
and tetanus (Table 2). Waning immune system gen-
erates a weaker immune response toward vaccination 
in elderly population and requires repeated boosters.

Adjuvants are recognized to enhance the potency 
and endurance of specific immune responses generated 
to the administered antigen. However, live attenuated 
bacteria or viruses do not always require any adjuvants 
due to their structural components or genetic material 
that can induce the host’s innate immune system. One 
such licensed attenuated vaccine, Zostavax, was 
reported to be 33% protective but can effectively 
reduce hospitalization suffering from herpes zoster 
and postherpetic neuralgia among the elderly [85], 
whereas TIV (trivalent inactivated influenza vaccine) 
contains two antigens from influenza A (H1N1, H3N2 
strain) and one from influenza B strain (Victoria or 
Yamagata) along with MF59, is an oil in water emul-
sion based adjuvant composed of squalene, tween 20 

and span 85. A cumulative effect of all of the com-
ponents of MF59 was reported to impart enhanced 
immunogenicity by activating the genes supporting 
trans-endothelial cell migration, favoring antigen 
uptake and its transportation to the lymph node 
[86,87]. Matrix-MTM and ASO3 are also reported to 
enhance the antigen uptake and favor the augmenta-
tion of Th1 and Th2 responses which will be benefi-
cial for elderly group as they have dysregulated T cell 
machinery [88]. ASO3 is an immuno-enhancing oil 
in water emulsion-based adjuvant, comprising of 
squalene, polysorbate 80 and α-tocopherol, used in 
the Influenza (H1N1/pdm2009) vaccine formulation 
[89]. It was reported to generate microneutralizing 
antibodies which can persist up to more than a year 
after immunization with a much lower dose of antigen 
whereas other non-adjuvanted vaccine required higher 
dose of antigen but showed a declination in antibody 
responses over this time [90]. Another liposome-based 
adjuvant, ASO1, comprises MPL (Lipid molecule 
named 3-O-desacyl-40-monophosphoryl lipid A 
obtained from Salmonella minnesota) and QS-21 (a 
lytic saponin fraction of QuilA) was used to enhance 
vaccine efficacy of a subunit zoster vaccine named 
Shingrix [78]. A significant increase in humoral as 
well as cellular immunity including cytotoxic T cell 
responses with a vaccine efficacy of more than 90% 
was observed compared to non-adjuvanted vaccine 
[91]. Influenza virosomes have also been used as an 
adjuvant and carrier system owing to its excellent 
antigen delivery mechanism to the target sites [92]. 
Structurally the modified virus is composed of unil-
amellar phospoholipid membrane incorporating surface 
hemagglutinin (HA) and neuraminidase (NA) antigen 
but lacks the viral inner core and genetic information 
making it replication deficient. Mimicking the natural 
infection, virosome adjuvanted influenza vaccine effec-
tively induced humoral antibody and cytotoxic T cell 
activity in elderly people [93,94]. Microparticles of 
β-d-[2  ->1] poly(fructo-furanosyl)α-d-glucose (delta 
inulin) proved to be safe and nontoxic adjuvant for 
human use. It skewed immune responses to the Th1 
or Th2 depending upon the type of antigen it is 
administered with, functioning as an amplifier. It is 
effectively used in Hepatitis B, influenza, and HIV 
[95–97]. The most extensively used adjuvant is 
Matrix-M, comprises cholesterol, phospholipids and 
saponin, augments humoral and cellular immune 
responses. Although, the mechanism underlying the 
potency of this adjuvant is not yet resolved but it 
creates a milieu of activated T and B lymphocytes, 
NK cells, neutrophils and monocytes at local lymph 
nodes [98,99]. Researchers had employed vector-based 
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vaccines with influenza nucleoprotein and matrix pro-
tein and reported to mount a robust immune response 
that compensates for annual influenza vaccination 
[100]. Non replicating viral vectors are also used to 
deliver potential vaccine candidate. Modified vaccinia 
Ankara viral vector containing five respiratory syn-
cytical virus (RSV) proteins were being tested in a 
clinical trial and reported to induce Th1 type cell 
mediated immune responses among older adults 
[101,102].

A 23 valent polysaccharide based pneumococcal 
vaccine, containing a T cell independent antigen, elic-
ites exclusively humoral immunity but fails to generate 

immunologic memory owing to its lack of direct rec-
ognition by T cells [103]. Nonetheless, chemical con-
jugation of polysaccharide to a carrier protein makes 
13 valent conjugate pneumococcal vaccine into a T 
cell dependent antigen which eventually generates high 
affinity matured antibody and immunological memory 
[104]. A prime-boost regimen with Prevnar13 followed 
by Pneumovac23 further augmented the immune 
responses among elderly. This prime-boost strategy 
resulted in improved serotype specific IgG responses 
[105]. Much deeper perceptive is required to develop 
potential vaccine candidate for the elderly people to 
boost their immune system.

Table 2. list of non-CovID-19 vaccines available for elderly population.
vaccine name formulation Immune response schedule refs

Pneumococcal 
polysaccharide 
vaccine 
(Pneumovac23)

t cell independent antigen response. It generates Igm dominated antibody 
response but lacks immunological 
memory.

suboptimal response of 
Pneumovac23 in the elder 
individual requires 
repeated booster.

[103]

Pneumococcal 
conjugate vaccine 
(Prevnar13)

Carrier protein conjugated with 
capsular polysaccharide.

t cell dependent response, 
opsanophagocytic antibody 
production.

a prime boost strategy by 
priming with Prevnar13 
and boosting with 
pneumovac23 is 
recommended in elderly.

[104]

shingles 
vaccine (Zostavax)

Comprising of at least 2000 Pfu of 
highly potent live attenuated 
varicella zoster virus (oka strain)

Induces t cell and antibody response 
with moderate efficacy.

Cellular immunity increases 
with booster dose which 
was given more than 
10 years after the first 
dose.

[130,131]

shingles 
subunit zoster 
vaccine (shingrix)

recombinant vaccine contains viral 
glycoprotein e along with aso1 
based liposomal adjuvant.

generates t cell and humoral 
response and induces robust 
memory response.

Cellular immunity increases 
with booster dose which 
was given more than 
10 years after the first 
dose.

[85,91]

Influenza 
trivalent inactivated 
influenza vaccine 
(tIv)

tIv contains antigens from two 
influenza a (H1n1 and H3n2) and 
one influenza B (victoria/
yamagata) strains and mf59 as 
adjuvant.

It efficaciously prevented 
hospitalizations due to flu and 
generates robust t cell response in 
elderly (≥ 65 years).

Due to antigenic drift, annual 
vaccination schedule was 
adapted.

[132,133]

Influenza (H1n1/
pdm2009)

Contains H1n1 antigen along with 
aso3 as adjuvant.

Provides higher antigen-sparing 
capacity. It generates higher HaI 
titer values compared to 
whole-virion vaccine.

two dose strategies were 
considered for older 
individuals.

[134]

Influenza vaccine 
(Inflexal-v)

virosomal influenza vaccine 
containing surface antigen Ha and 
neuraminidase (na).

mimics natural infection and reported 
to be efficacious especially in 
immune-compromised individuals.

licensed for people of all age 
groups and adapted 
annually.

[135]

Hepatitis vaccine 
(twinrix)

Contains combination of inactivated 
hepatitis a and B virus surface 
antigen.

It induced higher seropositive rates in 
people above 40 years compared 
to other monovalent vaccines.

three doses over a span of 
6 months.

[136]

recombinant hepatitis 
B vaccine 
(engerix-B)

Dna vaccine containing HBsag 
surface antigen of hepatitis B.

Confers protective efficacy for up to 
10 years and effectively 
immunogenic for diabetes mellitus 
patients.

three doses over a span of 
6 months.

[137]

respiratory syncytial 
virus vaccine (rsv 
f)

nanoparticles based vaccine contains 
recombinant f protein with 
aluminum phosphate and 
matrix-m1 as adjuvant.

Induces strong neutralizing antibody 
titers in elderly between 60 and 
80 years old compared to 
non-adjuvant vaccines.

Completed Phase-I and 
started Phase-II trial 
(nCt03026348). single and 
two dose regimen were 
compared.

[138]

multivalent 
vector-based rsv 
vaccine 
(mva-Bn-rsv)

Contains non-replicating modified 
vaccinia ankara viral vector f and 
g antigens from both a and B 
subtypes and two internal proteins 
n and m2.

Induces th1 type cell mediated 
immune responses in adults aged 
≥55 years that can persist up to 
6 months.

Completed Phase-II trial 
(nCt02873286); boosted 
annually.

[102]

lipid based vaccine 
platform Depovax 
(DPX-rsv[a]) vaccine

Contains the ectodomain of the small 
hydrophobic glycoprotein (sHe) of 
rsv subgroup a.

Highly immunogenic in healthy 
people between ages 50 and 
64 years; Igg responses persisted 
over a year.

Completed Phase-I trial 
(nCt02472548)

[139]
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In addition to the appropriate selection of adju-
vants and suitable modification of antigens, vaccine 
efficacy largely depends on several host factors. 
Considering the weaken immune system of the elderly 
people and several other co-morbid clinical condi-
tions, effective vaccination must overcome these hur-
dles successfully. An aged immune system harbors 
multitude of changes especially a steady decline in 
naïve CD4+ T cell number due to inability of lym-
phocyte generation in the primary lymphoid organ. 
Parallelly, alternation of secondary lymphoid structure 
and function results in altered T cell trafficking and 
a restricted T cell repertoire [16,106]. Depletion of 
naïve CD4+ T cells during vaccination in elderly peo-
ple significantly reduces the vaccine efficacy. The 
influenza specific memory T cells are directed toward 
conserved protein sequences across numerous influ-
enza strains available. Therefore, these memory T 
cells can successfully confer cross protection against 
numerous strains of influenza and strategically bestows 
an alternative approach to treat elderly people with 
an added advantage. Older individuals have encoun-
tered several influenza strains throughout their life 
span and unknowingly carries diverse influenza spe-
cific memory CD4+ T cell populations [107].

SARS-CoV-2 mutations and vaccine 
effectiveness

Researchers around the world are toiling to develop 
targeted vaccines against COVID-19 in record time. 
The spike glycoprotein present on the surface of the 
coronavirus that helps in receptor binding and mem-
brane fusion was proposed to be a potential vaccine 
candidate by various research groups [108]. The viral 
S protein consists of two subunits: S1 and S2. The S1 
domain contains the receptor-binding domain (RBD) 
crucial for the initial attachment of the virus to the 
host cell, and S2 prompted viral fusion with the host 
cells to initiate the infection [109,110]. Numerous 
studies have identified the probable B cell epitopes 
from the spike protein which often acquires point 
mutations [111–114]. Further studies also indicate that 
the variable region is more prone to point mutations 
than the stalk region [115,116]. So, the efficacy of the 
spike-based vaccines can be compromised by acquired 
mutations over time. Numerous naturally occurring 
spike variants like Q414E, N439K, G446V, K458N, 
I472V, A475V, T478I, V483I, F490L, H519P, D614G 
and Q321L have been reported to decrease the sen-
sitivity to neutralizing antibody and convalescent sera 
[117]. Most of these naturally occurring mutations 
found in RBD domain of variable region of spike 

protein. Our analysis of B cell epitopes and surface 
accessibility of spike protein, S1 region (S1: aa13 to 
aa685 and RBD: aa319 to aa514) and stalk domain 
(S2: aa686 to aa1273) shows that stalk directed B cells 
epitopes are less accessible (Figure 3). But accumula-
tion of RBD mutations may influence vaccine effec-
tiveness both in general as well as in the elderly 
populations. Consistent with our findings the RBD of 
spike is a target for 90% of the neutralizing 
SARS-CoV-2 immune sera indicating their immuno-
dominance and the less accessible stalk B cell epitopes 
probably plays minor role in viral neutralization [113]. 
The E484K a receptor-binding-domain mutation, and 
501V2 mutation N501Y was stated to be linked with 
escape mutant from neutralizing antibodies [118,119]. 
The current BNT162b2 vaccine elicited sera can neu-
tralize N501Y variants [120]. However, convalescent 
sera from COVID-19 individual were unable to neu-
tralize a novel bat coronavirus (W1V1–CoV) that is 
highly homologous to SARS-CoV-2 and uses ACE2 
receptor for host cell entry indicating their pandemic 
potential in the future [121,122]. Immune selection of 
ant igenic variants  seldom occurs within 
immune-compromised or elderly populations due to 
their inadequate immune response or sustained patho-
gen presence [123]. Altogether these findings indicate 
that humoral response against spike-based vaccines 
may reduce their efficacy with the emergence of new 
antigenic variants inadequate immune response within 
the elderly population may facilitate such antigenic 
variant selection.

Strategies to induce SARS-CoV-2 specific 
immune response within elderly population

Researchers discovered constant regions of influenza 
virus trimeric HA especially in the stalk domain and 
utilized it to generate neutralizing antibodies which 
will impart universal protection against several influ-
enza strains [124–126]. Analyzing and identifying the 
conserved region of the spike protein of SARS-CoV-2 
can lead to generation of a hybrid or chimeric vaccine 
candidate harboring both the influenza and 
SARS-CoV-2 antigens part is possible. Our Vaxijen 
based prediction shows the presence of some B cell 
epitopes in the stalk region but due to their low sur-
face accessibility stalk region, unlike influenza HA 
stalk may not be an appropriate vaccine candidate 
(Figure 3). A hybrid/chimeric protein can be generated 
by combining the HA and spike protein as the for-
mation of the trimeric assembly largely depends on 
the residues present in the stalk region. The residues 
from the stalk region form numerous H-bond 
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interaction to form the trimeric assembly of the Spike 
protein and the residues from the variable region also 
gets stabilized by interacting with the stalk region 
(Figure 4A) [109,127]. The baculovirus insect cell 
expression system can be used to produce hybrid and/
or chimeric VLPs comprising the SARS-COV-2 spike 
protein, stalk region of HA and the influenza M1 
protein (Figure 4B) [128,129]. Chimeric protein with 
intact stalk region for the HA protein and the Spike 
variable or RBD domain will allow utilization of influ-
enza specific CD4+ T cell populations to mount an 
effective antibody response in germinal center reac-
tions. Each VLP will have both Spike, HA and M1 
capable of utilizing corresponding CD4+ T cells help 
during germinal center reaction with spike specific B 
cells subsequently promoting affinity maturation and 
class switching (Figure 4C). This influenza specific 
CD4+ T cells can interact with spike specific B cells 
when the same B cell clone portrays MHC II con-
taining influenza specific peptides for T cell help 
during germinal center reaction in the secondary 
lymph node. This may overcome the lack of spike 

Figure 4. structure and design of hybrid or chimeric vlP for sars-Cov-2 vaccination. (A) the trimeric assembly of sars-Cov-2 
spike protein and Influenza Ha. residues from stalk region represented in a cartoon format, differnt colors signifies three different 
chains. the residues from the variable region those are making H-bond with the stalk are labeled (representative from a single 
chain) whereas all the other residues shown as a ribbon diagramme. upper figure showing the H-bond interaction profile for 
a single chain stalk region (pink) within the trimeric assembly. (B) Influnza Hemagglutinin (Ha) and sars-Cov-2 spike contain 
head and stalk domain. matrix protein 1 (m1), either with chimeric spike (stalk from Ha with head from spike). (C) schematic 
diagram showing cooperation between influenza induced memory t cells and development of spike specific immune response.

Figure 3. Bubble plot analysis of the sars-Cov-2 spike protein. 
the plot shows the probable B cell epitopes from the variable 
(s1 domain: aa13 to aa685) and stalk region (s2 domain: aa686 
to aa1273) of the spike protein. the corresponding vaxijen 
score and the percentage of candidate vaccine probability 
shown in y and x axis, respectively. the size of each bubble 
signifies the respective surface accessibility. the B cell epitopes 
from the stalk s2 domain have less surface accessibility making 
it a poor vaccine candidate compared to the highly accessible 
B cell epitopes in the variable s1 domain and rBD.
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antigen specific naïve or matured CD4+ T cells pop-
ulation which lack in aged individual due to age 
related defects. This strategy was explored widely 
against polysaccharide vaccines, where polysaccharide 
is attached directly to a protein molecule to mount 
strong T cell dependent immune responses to produce 
high affinity and class switched antibodies. The repet-
itive antigenic structure present on the surface of the 
VLPs makes it easier to be recognized and prompted 
a strong induction of humoral and cell mediated 
immune responses.

This novel approach of designing of chimeric or 
hybrid vaccine will give additional protection against 
influenza viruses responsible for thousands of deaths 
every year during seasonal flu. Recently phase 1 clin-
ical trials were conducted with chimeric HA (consist-
ing of constant stalk region with variable head domain 
of different strain of influenza viruses) inducing 
broadly protective HA stalk directed antibodies in 
vaccinated individuals [125]. Natural head domain of 
HA replaced with spike head can induce spike specific 
antibodies as well as antibodies directed against the 
HA stalk. This will further boost influenza specific 
immunity within vaccinated individual.

Conclusions

The terrific brunt of SARS-CoV-2 infection and the 
scarcity of available effective treatments specially to 
cure elderly individuals require more rational approach. 
Multifactorial changes in developing an appropriate cell 
mediated immune responses in elderly individual is of 
paramount need for designing an efficacious vaccine. 
The vaccines from Moderna, Pfizer and AstraZeneca, 
which are under emergency use in the USA and Europe 
will protect an individual from COVID-19 but the 
durability within normal or elderly population is 
unknown. The disease manifestation of COVID-19 has 
similarities with seasonal flu caused by influenza 
viruses. The ultimate goal is to design a universal vac-
cine for influenza, SARS-CoV-2 or other coronaviruses. 
In this article we highlighted the design of vaccine 
molecule having multiple antigens from different 
viruses can complement each other to mount an effec-
tive immune response especially in the elderly popu-
lation with low naïve immune cell population. Stalk 
region of HA is relatively conserved and stalk directed 
antibodies can give protection to wide range of influ-
enza strains. Therefore, chimeric vaccines for both 
influenza and SARS-CoV-2 will be a significant boost 
to deal global challenges against seasonal or pandemic 
flu viruses. Researchers should move forward with the 
idea of making a single chimeric molecule as vaccine 

candidates for both influenza and SARS-CoV-2. The 
idea of making chimeric molecules can be incorporated 
with mRNA, DNA, and adenovirus-based vaccine deliv-
ery system. This will have a significant impact on 
worldwide vaccination drive and their economic impact 
in the future to save human lives.
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