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Aims The metabolic pathways leading to the formation of prasugrel and clopidogrel active metabolites differ. We hypoth-
esized that decreased CYP2C19 activity affects the pharmacokinetic and pharmacodynamic response to clopidogrel
but not prasugrel.

Methods
and results

Ninety-eight patients with coronary artery disease (CAD) taking either clopidogrel 600 mg loading dose (LD)/75 mg
maintenance dose (MD) or prasugrel 60 mg LD/10 mg MD were genotyped for variation in six CYP genes. Based on
CYP genotype, patients were segregated into two groups: normal function (extensive) metabolizers (EM) and
reduced function metabolizers (RM). Plasma active metabolite concentrations were measured at 30 min, 1, 2, 4,
and 6 h post-LD and during the MD period on Day 2, Day 14, and Day 29 at 30 min, 1, 2, and 4 h. Vasodilator-
stimulated phosphoprotein (VASP) and VerifyNowTM P2Y12 were measured predose, 2, and 24+4 h post-LD
and predose during the MD period on Day 14+ 3 and Day 29+3. For clopidogrel, active metabolite exposure
was significantly lower (P ¼ 0.0015) and VASP platelet reactivity index (PRI, %) and VerifyNowTM P2Y12 reaction
unit (PRU) values were significantly higher (P , 0.05) in the CYP2C19 RM compared with the EM group. For prasu-
grel, there was no statistically significant difference in active metabolite exposure or pharmacodynamic response
between CYP2C19 EM and RM. Variation in the other five genes demonstrated no statistically significant differences
in pharmacokinetic or pharmacodynamic responses.

Conclusion Variation in the gene encoding CYP2C19 in patients with stable CAD contributes to reduced exposure to clopido-
grel’s active metabolite and a corresponding reduction in P2Y12 inhibition, but has no significant influence on the
response to prasugrel.
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Introduction
The standard treatment for patients with acute coronary syn-
drome includes a combination of dual-antiplatelet therapy,
aspirin, and a thienopyridine, which has proven to be efficacious
in reducing the rate of recurrent cardiac events including stent
thrombosis.1,2 Clopidogrel, the most commonly prescribed thieno-
pyridine, and prasugrel, currently under clinical development, are
both orally administered prodrugs that, after absorption, must
be converted to an active metabolite.3 The active meta-
bolites inhibit platelet aggregation via antagonism of the P2Y12

receptor.4 – 6

Recently, we reported greater and faster P2Y12 receptor-
mediated platelet inhibition with prasugrel loading dose (LD)
60 mg, maintenance dose (MD) 10 mg compared with clopidogrel
600 mg LD, 75 mg MD owing to a more efficient generation of pra-
sugrel’s active metabolite in aspirin-treated patients with stable cor-
onary disease.7 Consistent with the literature, more patients had
high residual platelet reactivity following clopidogrel administration
than following prasugrel administration.8 Platelet inhibition is closely
related to levels of active metabolite formation, and a poor pharma-
codynamic response to clopidogrel is most likely primarily caused by
differences in absorption or metabolism, or both.9,10

The metabolic pathways for clopidogrel and prasugrel have some
key differences. Approximately 85% of a clopidogrel dose is hydro-
lysed by esterases to an inactive metabolite, which cannot be con-
verted to the active metabolite. The remaining clopidogrel is
available to be converted to the active metabolite in a process
requiring two sequential cytochrome P450 (CYP)-dependent
steps with contribution from CYP3A4/5, CYP2C9, CYP1A2 in one
step, and CYP2B6 and CYP2C19 in both steps.11– 13 In essence, the
esterase pathway competes with the CYP pathway for prodrug,
and anything that slows the formation of the active metabolite
may ‘shunt’ prodrug to the esterase pathway. Prasugrel, on the
other hand, is hydrolysed by esterases into an intermediate precur-
sor of the active metabolite. This intermediate is then oxidized to
the active metabolite in a single CYP-dependent step by any
one of the four CYP enzymes (with major contributions from
CYP3A4/5 and CYP2B6 and minor contributions from CYP2C19 and
CYP2C9).14 Formation of the prasugrel active metabolite may thus
be mediated by any of the four CYP enzymes, and based on previous
studies, they appear to compensate for each other.15

The differences in metabolism suggest that factors which reduce
the activity of a CYP enzyme might lead to decreased formation of
clopidogrel’s active metabolite but would not affect the formation
of prasugrel’s active metabolite. This hypothesis is supported by
the observation that co-administration of ketoconazole, a potent
CYP3A4/5 inhibitor, did not affect the overall exposure to prasu-
grel’s active metabolite or the associated pharmacodynamic
response, whereas co-administration of ketoconazole with clopi-
dogrel resulted in decreased exposure to clopidogrel’s active
metabolite and the associated pharmacodynamic response.15

Emerging data suggest that variation in the genes encoding CYP
enzymes associated with decreased CYP enzyme activity are
associated with an altered pharmacodynamic and, in healthy volun-
teers, pharmacokinetic response to clopidogrel but not prasu-
grel.10,16 – 20 Therefore, we assessed the hypothesis that variation

in the function of individual CYP enzymes, especially CYP2C19,
would affect generation of the active metabolite and the corre-
sponding pharmacodynamic response under LD/MD conditions
in aspirin-treated patients with coronary artery disease (CAD).

Methods

Subjects and study design
The present study was a prespecified part of a randomized, double-
blind, double-dummy, two-arm parallel-group study comparing platelet
inhibition of prasugrel 60 mg LD/10 mg MD vs. clopidogrel 600 mg LD/
75 mg MD conducted in adult male and female patients with stable
CAD.7 Subjects were not required to participate in the genetic
sample collection to participate in the main study. Therefore, only sub-
jects who signed a specific informed consent document for genotyping
were included in these analyses (98 of 110 patients in the primary
study). Medications capable of inhibiting CYP enzyme function21

were taken by 17 out of 98 patients (Table 1). The genotyping and
associated clinical data were anonymized using a one-way,
state-of-the-art encryption algorithm. The study was performed
according to ethical principles based on the Declaration of Helsinki
and was approved by local ethical review boards.

Genetic methodology
DNA isolation and genotyping
DNA was isolated from peripheral blood samples anticoagulated with
ethylenediaminetetraacetic acid using the Gentra Puregene DNA Iso-
lation Kit (Qiagen, Hilden, Germany). Genotyping was performed
with the Affymetrix Targeted Human Drug Metabolizing Enzyme and
Transporter (DMET) 1.0 Assay (Affymetrix, Santa Clara, CA, USA).22

47 genetic variants were measured by the DMET 1.0 Assay, comprising
53 alleles for the six CYP genes analysed (2C19, 2B6, 2C9, 3A5, 3A4,
1A2). One additional allele, not available on the chip, was measured
by polymerase chain reaction (PCR)/restriction fragment length
polymorphism data (RFLP): CYP2C19*17.23 A total of 48 genetic
variants comprising 54 alleles (Table 2) was therefore obtained by
combining DMET 1.0 and PCR/RFLP data.

Classification based on predicted metabolic phenotype
To assess the effect of CYP genetic variation on the generation of
prasugrel and clopidogrel active metabolite and subsequent pharma-
codynamic response, individual variants of six CYP genes known
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Table 1 Concomitant medication capable of inhibiting
CYP P450 enzyme function

CYP
inhibited

Drug Prasugrel
(n)

Clopidogrel
(n)

2C19 Esomeprazole 1 1

2C19 Lansoprazole 1 1

2C19 Omeprazole 3 6

2C19 Pantoprazole 0 1

2C9 Amiodarone 1 1

3A4/5 Clarithromycin 1 0

3A4/5 Verapamil 0 1

CYP, cytochrome P450; n, number of patients.
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to be involved in the metabolism of the two drugs were classified a
priori according to their predicted metabolic phenotypes (normal,
increased, or reduced enzymatic function). This classification was
defined according to literature-based predictions24,25 using the
established common consensus or ‘star allele’ nomenclature (http://
www.cypalleles.ki.se).

The combination of two alleles comprises a genotype and the various
genotypes (for example, CYP2C19*1A/*1A) for each of the six CYP
genes were placed in one of the following categories: extensive metabo-
lizer (EM), defined as two alleles conferring normal or near-normal
activity and reduced metabolizer (RM), defined by at least one reduced-
function allele. In the case of CYP2C19, individuals with no alleles confer-
ring decreased activity and at least one allele known to enhance activity
(CYP2C19*17) were grouped with the EMs. Individuals with an allele
conferring decreased activity and a CYP2C19*17 were categorized as
unknown. For CYP3A5, individuals with only one allele conferring
decreased activity have been found to have near-normal activity24,25

and were therefore categorized as EMs. CYP3A5 RMs were defined as
having two reduced function alleles. Table 3 contains a summary of
observed genotypes and their corresponding functional categories (pre-
dicted phenotypes) used for analyses.

Assessment of the active metabolites
Plasma concentrations of the prasugrel active metabolite (R-138727)
and clopidogrel active metabolite (R-130964) were analysed in
samples obtained at 30 min, 1, 2, 4, and 6 h post-LD and during the
MD period on Day 2, Day 14, and Day 29 at 30 min, 1, 2, and 4 h
post-MD as previously described.7

Pharmacodynamic assessment of platelet activity
Blood samples were collected into one-tenth volume of 3.2% trisodium
citrate from the patients at baseline, 2, and 24 h post-LD and at Day
14+ 3 and Day 29+ 3, both before that day’s MD. The vasodilator-
stimulated phosphoprotein (VASP) assay, a measure of P2Y12 function,
was performed using a commercially available method according to
the manufacturer’s specifications (Biocytex Platelet VASP kit, Marseille,
FR) as previously described.7 The platelet reactivity index (PRI, %) was
calculated from the corrected mean fluorescence intensity (cMFI) fol-
lowing incubation of the platelets with either prostaglandin E1 alone
or prostaglandin E1 þ ADP as follows:

PRI % ¼ [(cMFI(PGE1) 2 cMFI(PGE1þ ADP))/cMFI(PGE1)] � 100%

The VerifyNowTM P2Y12 assay (VN-P2Y12, Accumetrics, San Diego, CA,
USA) is a whole-blood, point-of-care, light transmission-based optical
detection assay that measures platelet-induced aggregation in a single-
use disposable cartridge containing fibrinogen-coated beads.26 Results
from the device are reported as P2Y12 reaction units (PRU) on a continu-
ous scale from 0 upward. The VN-P2Y12 assay was performed on Day 1
at baseline (predose), 2, and 24+4 h post-LD and predose during the
MD period on Day 14+3 and Day 29+3.

Statistical analyses
The primary a priori hypothesis, to evaluate the effect of genetic vari-
ation in CYP2C19 on exposure to active metabolite and subsequent
platelet aggregation pharmacodynamic responses following treatment
with prasugrel or clopidogrel, was investigated. Initially, a linear
model testing for interaction between genetic group (EM, RM) and
the exposure to active metabolite, the mean log AUC021 was
employed. The log transformation for area under curve (AUC) was
used for data normalization. As the interaction model does not
specify which drug treatment or genetic group is responsible for the
significant effect, if a significant interaction was observed, further com-
parisons of genetic effect in each of the treatment groups would be
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Table 2 Cytochrome P450 genes

CYP450
gene

Star alleles

2C19 *1A, *2A, *3, *4, *5A, *6, *7, *8, *9, *10, *12, *13,
*14, *17a

2B6 *1A, *1C, *6, *8, *9, *11, *12, *13, *14, *1

2C9 *1A, *2A, *3A, *4, *5, *6, *8, *9, *10, *11A, *12

3A5 *1A, *3A, *3B, *3D, *3F, *6, *8, *9, *10

3A4 *1A, *17, *18

1A2 *1A, *1C, *1D, *1E, *1K, *1L, *7

aCYP2C19*17 allele measured by conventional polymerase chain reaction followed
by restriction fragment length polymorphism analysis. All remaining alleles
genotyped by the Affymetrix Targeted human drug-metabolizing enzymes and
transporters (DMET) 1.0 Assay (Affymetrix, Santa Clara, CA, USA).
CYP450, cytochrome P450.
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Table 3 Genotyping results

Gene Predicted phenotype Observed genotypes Prasugrel, n (%) Clopidogrel, n (%)

CYP1A2 EM *1A/*1A, *1A/*1D, *1A/*1E, *1D/*1D, *1D/*1E 49 (96) 45 (96)
RM *1C/*1D 0 (0) 1 (2)

CYP2C19 EM *17/*17, *1A/*17, *1A/*1A 35 (69) 37 (79)
RM *1A/*2A, *1A/*8, *2A/*2A 15 (29) 9 (19)
Uncertain functional status *2A/*17 1 (2) 1 (2)

CYP2B6 EM *1A/*1A, *1A/*1C, *1C/*1C 29 (57) 29 (62)
RM *1A/*9, *1C/*9, *9/*9 21 (41) 17 (36)

CYP2C9 EM *1A/*1A, *1A/*2A, *1A/*12 41 (80) 40 (85)
RM *1A/*3A, *2A/*2A, *2A/*3A 9 (18) 7 (15)

CYP3A4 EM *1A/*1A 51 (100) 47 (100)

CYP3A5 EM *1A/*1A, *1A/*3A 4 (8) 11 (23)
RM *3A/*3A 46 (90) 35 (74)

n, Number of subjects; CYP, cytochrome P450; EM, extensive metabolizer; RM, reduced metabolizer.
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undertaken. For the pharmacokinetic analyses, the mean log
(AUC021) of the EM was compared with that of the RM within
each treatment group by estimating two contrasts (prasugrel-EM vs.
prasugrel-RM and clopidogrel-EM vs. clopidogrel-RM) using a linear
model with body weight as a covariate. The statistical significance
was assessed via a two-sided test at the 0.05 a level. Prasugrel-EM
was also compared with clopidogrel-EM in a similar manner. Analysis
was not performed on AUC02 1 at MD since pharmacokinetic par-
ameters were derived from a population-based model that included
a component to account for differences between LD and MD.27 For
the pharmacodynamic analyses, the mean of the EM group was com-
pared with that of the RM group within each treatment group, and
for each pharmacodynamic endpoint [VerifyNowTM (PRU) and VASP
(PRI)], by estimating two contrasts (prasugrel-EM vs. prasugrel-RM
and clopidogrel-EM vs. clopidogrel-RM) using a similar linear model
as in the pharmacokinetic analyses with baseline pharmacodynamic
values and body weight as covariates.

Subsequent analyses investigated the contribution of CYP2B6,
CYP2C9, CYP1A2, and CYP3A5 to pharmacokinetic and pharmacody-
namic responses to either of the thienopyridines. As in the CYP2C19
analysis, the contrasts between EMs and RMs for each gene and
within each treatment arm (prasugrel or clopidogrel) were estimated
using a linear model with body weight as a covariate.

Results

Patients
Of the 110 patients, 98 participating in the main study consented
to genetic testing, 51 in the prasugrel group, and 47 in the clopido-
grel group. This genetic subpopulation of patients had similar
demographic and clinical characteristics to the overall study popu-
lation (Table 4).7

Genotyping results
The overall genotyping success rate was 98.8% with ,1.2% geno-
types unable to be called (Table 3). CYP2C19, CYP2C9, and CYP3A4
had a 100% genotyping success rate with all alleles determined for
all patients for these genes.

The frequencies of predicted metabolic phenotypes were similar
to the published Caucasian frequencies (Table 4; see http://
www.cypalleles.ki.se). The frequency of RM was sufficient to com-
plete the analyses for CYP3A5, CYP2C19, CYP2C9, and CYP2B6.
However, the observed frequency of RM for CYP3A4 and
CYP1A2 was too low to support the statistical analyses with no
RM patients for CYP3A4 and only one RM patient observed for
CYP1A2.

Relationship between pharmacokinetics
and CYP2C19
CYP2C19 EM/RM and PK interaction was evaluated first using linear
model and was found statistically significant. In prasugrel-treated
patients, there was no relationship between exposure to its
active metabolite and CYP2C19-predicted metabolizer status (P ¼
0.6361). Conversely, in clopidogrel-treated patients, a statistically
significant lower total plasma exposure (AUC) of clopidogrel
active metabolite was observed in RMs compared to those with
CYP2C19 EM status (P ¼ 0.0015; Figures 1 and 2). Exposure for
prasugrel active metabolite was higher for the prasugrel EM
group compared with the clopidogrel EM group (P ¼ 0.000).
That is, the active metabolite exposure following the prasugrel
60 mg LD was higher than after the clopidogrel 600 mg LD even
when the comparison was limited to patients with normal
CYP2C19 activity as predicted by genotype.
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Table 4 Demographics and baseline characteristics

Prasugrel Clopidogrel

TABR genetic subgroup
(n 5 51)

TABR entire study
(n 5 55)

TABR genetic subgroup
(n 5 47)

TABR entire study
(n 5 55)

Age (mean+ SD) 62.6+6.1 62.0+6.1 65.0+5.7 64.0+6.2

Body weight
(mean+ SD)

88.4+12.8 87.3+13.5 85.6+11.9 84.3+11.7

Gender, n (%)

Female 7 (14) 7 2 (4) 2

Male 44 (86) 48 45 (96) 53

Smoking status, n (%)

No 43 (84) 46 43 (91) 50

Yes 8 (16) 9 4 (9) 5

Diabetes, n (%)

No 40 (78) 44 (80) 39 (83) 46 (84)

Yes 11 (22) 11 (20) 8 (17) 9 (16)

Ethnicity, n (%)

Caucasian 51 (100) 55 (100) 47 (100) 55 (100)

n, number of patients; SD, standard deviation. Body weight is measured in kilograms, age is measured years. TABR Genetic Subgroup: those patients in TABR who provided a
sample for genetics.
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Relationship between pharmacodynamic
response and CYP2C19
In clopidogrel-treated patients, patients with CYP2C19 RM geno-
types exhibited a reduced pharmacodynamic response, as
measured by VASP, compared with those with CYP2C19 EM geno-
types (Figure 3A). Similar results were seen with the point-of-care
device VerifyNowTM P2Y12 (Figure 3B). This difference was not
seen for either the VASP assay or the VerifyNowTM P2Y12 device
in CYP2C19 EM and RM in patients treated with prasugrel.

Relationship between pharmacokinetics/
pharmacodynamics and other analysed
CYP P450 genes
For CYP2C9, CYP2B6, and CYP3A5, there was no statistically signifi-
cant effect of genotype on the exposure to active metabolite
exposure for either drug (Figure 2). Accordingly, as expected,
given the strong relationship between levels of active metabolite
and degree of P2Y12 inhibition, analyses on their pharmacodynamic
responses illustrated no statistically significant effect on PRI
measured by VASP assay (Figure 2) or VerifyNowTM P2Y12 device.

Discussion
The results of this study support the hypothesis that a decrease in
CYP2C19 function reduces the formation of clopidogrel’s active
metabolite, resulting in less inhibition of platelet function. In con-
trast, decreased CYP2C19 function does not appear to affect the
exposure to prasugrel’s active metabolite or the resulting inhibition
of platelet function. These findings in a cohort of aspirin-treated
patients with CAD confirm the previously described observations
in healthy subjects.10,12 Of note, this genetic effect was even
evident following the higher, 600 mg clopidogrel LD and persisted

throughout the 75 mg MD phase. These results demonstrate, in a
patient cohort, that genetic variation resulting in decreased CYP
function partly accounts for poor pharmacodynamic response to
clopidogrel and lower exposure to clopidogrel active metabolite.
Our findings confirm the critical link between exposure to active
metabolite and subsequent platelet response in a patient
population. Our data also agree well with results reported by
others where the CYP2C19*2 allele was associated with a higher
on-clopidogrel platelet reactivity which in turn has been linked
to worsened clinical outcome after coronary stenting.16,19,28,29

The effect of variation in CYP2C19 on responsiveness to clopido-
grel complicates the prescribing of thienopyridines.

The frequency of CYP2C19 RM genotypes shows wide inter-ethnic
variation, ranging from 20–30% in Caucasians to 35–45% in
African-Americans and 50–65% in East Asians. The most common
defective allele, CYP2C19*2, accounts for 75–85% of the CYP2C19
alleles responsible for RMs in Caucasians and East Asians.30 The
ethnic variation in CYP2C19*2 is likely one of the causes for inter-
ethnic differences in the pharmacokinetics of several widely pre-
scribed drugs that are substrates for CYP2C19 and also suggests that
the response to clopidogrel may vary by ethnicity.18

In the present trial, the results were potentially confounded by
the nearly 20% of patients (17 of 98) who were taking medications
known to inhibit CYP function (14 of these patients were taking
CYP2C19 inhibitors such as omeprazole and lansoprazole). In a
post hoc analysis, patients receiving medication purported to be
CYP2C19 inhibitors were grouped together with the CYP2C19
RM genetic group. The difference in pharmacokinetic and pharma-
codynamic response to clopidogrel between the modified EM and
RM groups was even more apparent (data not shown). For prasu-
grel, no such trend was observed when patients receiving potential
CYP2C19-inhibitor drugs were grouped with the CYP2C19 RM
group. In addition to inhibition of CYP2C19, another possible
mechanism for drug-interaction with proton pump inhibitors
(PPI) is alteration in gastric pH, which could affect thienopyridine
absorption. In a recent cross-over study, increasing gastric pH
with lansoprazole did not decrease the level of platelet inhibition
after a prasugrel 60 mg LD, while in contrast in the same subjects
lansoprazole did tend to dampen the antiplatelet response
observed with a clopidogrel 300 mg LD.9

Both clopidogrel- and prasugrel-active metabolites show similar
antiplatelet activity and exposure–pharmacodynamic relation-
ships.27,31 We have previously reported a strong correlation
between plasma concentrations of active metabolite and platelet
inhibition for both prasugrel and clopidogrel up to saturation
levels of the P2Y12 receptor.7 Addition of clopidogrel active
metabolite ex vivo resulted in maximal platelet inhibition, even in
subjects previously classified as clopidogrel poor responders.7

Although polymorphisms of the P2Y12 receptor have been associ-
ated with different degrees of platelet aggregation in healthy volun-
teers, the P2Y12 H2 haplotype has not been proven to modulate
clopidogrel response in patients with CAD.29,32 – 34 In addition, as
the P2Y12 receptor is the target for both prasugrel and clopidogrel
and the active metabolite of prasugrel and clopidogrel have been
shown to be nearly equipotent in vitro, P2Y12 receptor variants
would likely have similar effects on the response to both
drugs.35 Together, these data strongly suggest that a poor

Figure 1 Comparison of prasugrel 60 mg and clopidogrel
600 mg loading dose exposure of active metabolite by CYP2C19
genetic classification. Box represents median, 25th, and 75th
percentiles and whiskers represent the most extreme values
within 1.5 times inter-quartile range of the box. AUC, area
under the concentration–time curve; EM, extensive metabolizer;
RM, reduced metabolizer.
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Figure 2 Ratio RM/EM or difference (EM 2 RM) for pharmacokinetics and pharmacodynamic responses for CYP2C19, CYP2B6, CYP2C9, and
CYP3A5. Mean and 95% confidence interval for ratio (AUC at LD) or difference (VASP–PRI at 24 h post-LD and MD Day 14 and Day 29) is
derived from a linear model and is plotted for each CYP gene. AUC, area under the concentration–time curve; EM, extensive metabolizer; LD,
loading dose; MD, maintenance dose; RM, reduced metabolizer; VASP, vasodilator-stimulated phosphoprotein; PRI, platelet reactivity index.

Figure 3 Relationship between pharmacodynamic responses and CYP2C19 genetic classification measured by VASP assay (A) and
VerifyNowTM P2Y12 device (B). EM, extensive metabolizer; RM, reduced metabolizer; VASP, vasodilator-stimulated phosphoprotein; PRI, plate-
let reactivity index; PRU, P2Y12 reaction unit.
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pharmacodynamic response to clopidogrel is caused by ineffective
generation of the active metabolite rather than P2Y12 receptor
heterogeneity.7

For clopidogrel, only a fraction of the prodrug is converted to
the active metabolite in two sequential CYP-dependent steps.
For prasugrel, the prodrug is rapidly converted first to an inter-
mediate by esterases and then in one single CYP-dependent step
to the active metabolite. Consequently, variation in the function
of individual CYP-enzymes is not likely to affect the generation
of the prasugrel active metabolite since any of the several CYPs
can mediate the oxidation of the intermediate thiolactone metab-
olite.14 For clopidogrel on the other hand, with approximately 85%
of the prodrug converted to the inactive metabolite, even small
changes on CYP enzyme activity seem to influence formation of
its active metabolite.36

Changes in CYP enzyme activity are known to be related to
both genetic variants that result in decreased CYP function and
the use of concomitant CYP-inhibitory drugs. For example, as pre-
viously reported, patients randomized to clopidogrel and aspirin
co-administered with omeprazole, a drug capable of inhibiting
CYP2C19, had a significantly decreased platelet inhibitory effect,
and the risk of being classified as a poor responder was 4.31
times greater compared with patients treated only with clopido-
grel.37 These results are consistent with the recently presented
findings of the MedCo study in which patients taking both clopido-
grel and PPIs experienced a higher rate of cardiac events than
those taking clopidogrel alone.38

When examining other CYPs, no statistically significant associ-
ation was found between genetic variants and the response to thie-
nopyridines, clopidogrel, or prasugrel. The effect on clopidogrel’s
antiplatelet response by CYP3A substrates, such as lipophilic
statins, has been debated, and the results reported are contradic-
tory.39– 41 In a cross-over study on healthy subjects, ketoconazole,
a potent inhibitor of CYP3A4/3A5 and representing a ‘worst-case’
interaction for CYP3A substrates, was shown to decrease the
exposure to the active metabolite of clopidogrel but not prasu-
grel.15 As the clinical implication remains uncertain, further investi-
gation on interactions of lipophilic statins with thienopyridine
treatment is warranted. CYP2C9 loss-of-function genotypes have
been associated with decreased exposure to the active metabolite
for clopidogrel but not prasugrel; however, this observation was
not confirmed in this patient population.10

Study limitations
Some limitations in this study need to be addressed. Because of
sample size we did not observe sufficient numbers of patients
with decreased function polymorphisms for CYP3A4 and CYP1A2
to evaluate a possible relationship to decreased thienopyridine
response. Nonetheless, decreased function polymorphisms of
these CYPs are uncommon. CYP1A2 is not involved in prasugrel
metabolism. The CYP3A system is known to be involved in the
metabolism of both drugs, and inhibition has been demonstrated
to result in decreased exposure to clopidogrel.15 The role of indi-
vidual CYP3A genes in thienopyridine activation is complicated by
the known compensatory actions between CYP3A4 and CYP3A5.
Furthermore, the low frequency of variants in all ethnic subgroups
for CYP3A4 and the high degree of null variants in CYP3A5 do not

directly correlate with the level of clopidogrel unresponsiveness.
Thus, variants in these genes are unlikely to play a clinically mean-
ingful role in variable response to clopidogrel or prasugrel.
However, although variants with established functional effect
were measured, further investigation is warranted as not all var-
iants for CYP3A4 were tested in the current study.

We grouped genotypes characterized as moderately reduced
and those with essentially no reported activity into a single
group, RM. Although essential for power, we therefore could
not assess whether there was a ‘gene dose–effect’ for either the
response to prasugrel or clopidogrel.18,20 A larger study population
would allow for further discrimination between those with moder-
ately reduced and those with ablated CYP2C19 function. In
addition, as subjects in this study were not followed long-term
to collect clinical outcome measures, it was not possible to estab-
lish a relationship between variation in the genes encoding CYP
enzymes and clinical outcome. However, the loss-of-function
CYP2C19*2 allele has been associated with high on-clopidogrel
platelet reactivity, a phenotype that has been linked to a poorer
clinical outcome.16,19,28 This observation has been re-inforced by
three recent publications reporting that reduced function
CYP2C19 genotypes were associated with an increased rate of clini-
cal events in patients with acute coronary syndrome.19,28,29

Despite the above stated limitations, this study represents, to
our knowledge, the most comprehensive genotyping assessment
ever completed on a patient population exposed to thienopyri-
dines. Thus, this is the first time a comprehensive assay, assessing
all the variation predicted to result in decreased function, in six
of the genes involved in the metabolism of thienopyridines has
been investigated. In addition to the uniqueness of the genotyping,
this is the first time that variation in genes encoding CYP enzymes
conferring reduced function has been directly linked to reduced
pharmacokinetic exposure and also to reduced pharmacodynamic
response in a patient population.

This study showed that variation in the gene encoding CYP2C19
contributes to reduced exposure to clopidogrel’s active metabolite
and a corresponding reduction in P2Y12 inhibition, but has no influ-
ence on the response to prasugrel. The usefulness of assessment of
this and other genetic polymorphisms for the selection of type and
dose of thienopyridine needs further evaluation in clinical outcome
trials.

Acknowledgements
The authors would like to thank Vivian Thieu for writing and
administrative assistance (Eli Lilly and Company) and Julie
Sherman for editorial assistance.

Funding
Daiichi Sankyo Company Limited and Eli Lilly and Company (to Drs
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A 31-year-old male physician
with no significant past medical
history presented to an internist
to establish routine care. He
was very active, and an occasional
fleeting palpitation was his only
cardio-pulmonary complaint. He
weighed 73 kg and was 193 cm
tall. The heart rate and blood
pressure were normal. Cardiac
auscultation revealed a moder-
ately loud, grade 3/6 systolic ejec-
tion murmur at the left sternal
border and accentuated but
physiologic splitting of the
second heart sound. The inten-
sity of the murmur decreased to
1/6 on deep inspiration and
increased to 4/6 on deep expira-
tion. The patient was noted to
have an absence of normal thor-
acic kyphosis (Panel A); this was
confirmed by lateral chest X-ray
(Panel B). The electrocardiogram
showed incomplete right bundle
branch block and a vertical QRS
axis. The echocardiogram was
normal except for an intense
colour Doppler mosaic pattern
in the right ventricular outflow
tract (RVOT) indicative of highly turbulent flow (Panel C, parasternal short-axis view). Continuous wave Doppler along the RVOT
with simultaneous respirogram revealed a paradoxical decrease both in signal density and systolic flow velocity at end inspiration
(Panel D, arrows).

Straight back syndrome is a ‘pseudo-heart disease’ that can mimic congenital abnormalities, especially atrial septal defect. It typically
occurs in young thin individuals who have a reduced sagittal diameter of the thoracic cage because of the absence of a normal thoracic
kyphosis. The often prominent murmur is caused by compression of the right ventricular outflow tract by the sternum and therefore is
reduced with deep inspiration. Accentuated but physiologic splitting of the second heart sound and incomplete right bundle branch
block in the electrocardiogram are common associated findings. A normal echocardiogram confirms the diagnosis, and reassurance
about the typically benign nature of this condition can be given.
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