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Purpose: To develop a machine learning tool capable of differentiating eyes of subjects with normal
cognition from those with mild cognitive impairment (MCI) using OCT and OCT angiography (OCTA).

Design: Evaluation of a diagnostic technology.
Participants: Subjects with normal cognition were compared to subjects with MCI.
Methods: A multimodal convolutional neural network (CNN) was built to predict likelihood of MCI from

ganglion cell-inner plexiform layer (GC-IPL) thickness maps, OCTA images, and quantitative data including
patient characteristics.

Main Outcome Measures: Area under the receiver operating characteristic curve (AUC) and summaries of
the confusion matrix (sensitivity and specificity) were used as performance metrics for the prediction outputs of
the CNN.

Results: Images from 236 eyes of 129 cognitively normal subjects and 154 eyes of 80 MCI subjects were
used for training, validating, and testing the CNN. When applied to the independent test set using inputs including
GC-IPL thickness maps, OCTA images, and quantitative OCT and OCTA data, the AUC value for the CNN was
0.809 (95% confidence interval [CI]: 0.681e0.937). This model achieved a sensitivity of 79% and specificity of
83%. The AUC value for GC-IPL thickness maps alone was 0.681 (95% CI: 0.529e0.832), for OCTA images alone
was 0.625 (95% CI: 0.466e0.784) and for both GC-IPL maps and OCTA images was 0.693 (95% CI:
0.543e0.843). Models using quantitative data alone were also tested, with a model using quantitative data
derived from images, 0.960 (95% CI: 0.902e1.00), outperforming a model using demographic data alone, 0.580
(95% CI: 0.417e0.742).

Conclusions: This novel CNN was able to identify an MCI diagnosis using an independent test set comprised
of OCT and OCTA images and quantitative data. The GC-IPL thickness maps provided more useful decision
support than the OCTA images. The addition of quantitative data inputs also provided significant decision support
to the CNN to identify individuals with MCI. Quantitative imaging metrics provided superior decision support than
demographic data.
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an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Mild cognitive impairment (MCI), often considered the
clinical precursor to Alzheimer’s disease (AD), is an inter-
mediate state where cognitive impairment is present, but the
ability to perform activities of daily living is preserved.1 Mild
cognitive impairment can be further classified into amnestic
and nonamnestic types, with amnestic MCI referring to a
state where memory is affected more significantly than
other domains of cognitive function (e.g., executive,
language, or visuospatial).2,3 Most individuals diagnosed
with MCI progress to AD1; however, patients with
amnestic MCI are more likely to progress to AD than
individuals with nonamnestic disease.4 Some estimates
indicate amnestic patients with MCI may progress to AD at
ª 2023 by the American Academy of Ophthalmology
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rates of approximately 20% per year.5 Thus, early
identification of MCI is important for effective intervention,
particularly as new therapies become available. Given the
existing unmet need of accurately establishing an MCI
diagnosis, especially in those who will progress to AD, in
the setting of an aging worldwide population, reliable
biomarkers that are also noninvasive and widely available
are needed to support the clinical diagnosis of MCI.

Currently, a definitive diagnosis of AD is made through
brain tissue histopathology at autopsy; however, ante-
mortem testing modalities, including neuroimaging with
brain positron emission tomography or magnetic resonance
imaging (MRI),6 cerebrospinal fluid sampling, and serologic
1https://doi.org/10.1016/j.xops.2023.100355
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testing,7 are becoming surrogate diagnostic tools. The
expense, invasiveness, and sensitivity of these diagnostic
tools have limited their widespread use in clinical
practice.6,7 By comparison, retinal imaging is noninvasive,
has a low recurring cost, and is widely available.8,9 Prior
studies have indicated that structural changes in the
neurosensory retina and its microvasculature can be
identifiable in patients with AD using OCT8,10e19 and
OCT angiography (OCTA).11,16,17,19e22 Similarly in pa-
tients with MCI, such findings on OCT, including changes
in retinal nerve fiber layer (RNFL) thickness8,19,23e25 and
ganglion celleinner plexiform layer (GC-IPL) thick-
ness,12,14,19 have been demonstrated, with less pronounced
thinning of the RNFL and GC-IPL than in individuals
with AD. Retinal microvascular abnormalities demonstrable
via OCTA imaging, particularly decreased vessel density
(VD) in the parafoveal superficial capillary plexus (SCP),26

have also been demonstrated in patients with MCI.
Additionally, studies have documented a clinical
correlation between OCT retinal thickness parameters and
cognitive testing such as Mini Mental State Examination
(MMSE) scores in patients with MCI.27 Similarly, OCTA
VD and perfusion density (PD) parameters have been
correlated with MMSE scores in patients with AD17 and
MCI.19 Our prior work using traditional statistical analyses
did not demonstrate significant differences between
cognitively normal persons and those with MCI, except
for temporal RNFL thickness; however, that MCI cohort
was relatively small.19

Recently, machine learning models have been developed
to provide neurologists adjunctive measures to establish
clinical diagnoses of AD and MCI. Models using brain
MRI28,29 or combinations of MRI and positron emission
tomography images30,31 have demonstrated the ability to
successfully differentiate individuals with normal
cognition from those with AD, as well as from individuals
with MCI. One model has also demonstrated the ability to
predict which patients with MCI will progress to AD
using analysis of baseline MRIs.32 Recently, machine
learning models using ophthalmic images have
demonstrated promise for differentiation of AD and
control subjects. Tian et al33 developed a model using
fundus photos with a focus on the retinal vasculature to
differentiate AD and control subjects. Our group has
previously shared a potential diagnostic support machine
learning tool for AD,34 which utilized easily obtainable
OCT and OCTA imaging inputs along with clinical data
instead of relying on more invasive and costly brain MRI
and positron emission tomography image inputs. In the
present study, we sought to create a convolutional neural
network (CNN) algorithm capable of differentiating
patients with MCI from those with normal cognition.

Methods

The images obtained for CNN input were from an ongoing clinical
trial (Clinicaltrials.gov, NCT03233646) approved by Duke Uni-
versity Health System’s institutional review board. This study
followed the tenets of the Declaration of Helsinki. Written
informed consent was obtained for each study subject.
2

Participants

A detailed description of patient eligibility and selection criteria
has been previously published.19 In brief, patients were excluded if
they had dementia, diabetes mellitus, uncontrolled hypertension,
demyelinating disorders, high myopia or hyperopia, glaucoma,
age-related macular degeneration, other vitreoretinal pathology,
history of ocular surgery apart from cataract surgery, and corrected
ETDRS visual acuity < 20/40 at the time of image acquisition.
Patients were screened for vitreoretinal or optic nerve pathology on
review of ultra-widefield scanning laser ophthalmoscopy color
fundus images (Optos, California).

Eligible subjects with MCI and normal cognition were selected
based on clinical diagnoses, as outlined in our prior published
work.34 Subjects with MCI were diagnosed based on clinical
history, cognitive testing, and any available neuroimaging by an
expert neurologist (A.L.) with specialization in memory
disorders. All diagnoses were made in accordance with National
Institute on Aging and Alzheimer’s Association guidelines.35

Cognitively normal control subjects were adults � 50 years old
who volunteered from the local community or who were
participants in the Duke Alzheimer’s Disease Research Center’s
registry for cognitively normal community subjects.

In order to account for age as a potential confounding variable
between the MCI and control groups, stochastic age-matching for
the test dataset was employed before each model run; 80% of the
MCI eyes in the test dataset were randomly selected, and, for each
MCI eye, the control eye with the nearest age was also added to the
age-matched test dataset. After age-matching selection, a t test was
conducted to ensure that the age differences between these MCI
and control groups were statistically insignificant (a ¼ 0.05) before
the age-matched dataset was used in testing. This age-matching
procedure was repeated 10 times for each model, and the results
were reported in aggregate. This procedure resulted in a balanced
test dataset with no significant differences in age between the MCI
and control groups.

Imaging

All subjects underwent undilated imaging using the Zeiss Cirrus
HD-5000 Spectral-Domain OCT with AngioPlex OCTA (Carl
Zeiss Meditec, Version 11.0.0.29946).19 Color maps depicting GC-
IPL thickness were generated after from the macular cube 512 �
128 scan with automated segmentation using the Zeiss OCT soft-
ware. OCTA en face 3- � 3-mm and 6- � 6-mm images centered
on the fovea were also acquired. OCTA images herein refer to the
SCP en face 6- � 6-mm images. Images were manually assessed
by experienced study staff, and poor quality images were excluded
based on low signal strength (< 7/10), shadow artifact, segmen-
tation and motion artifacts, and poor centration.34

Quantitative Data

The CNNs described herein incorporated quantitative (structured)
data including patient characteristics of age, sex, ETDRS visual
acuity converted to the logarithm of the minimal angle of reso-
lution, and years of education, as well as quantitative OCT and
OCTA parameters. Quantitative data not derived from images,
such as age, sex, corrected visual acuity, and years of education,
referred to in the Results as “Demographic,” was excluded from
some analyses as noted. Briefly, quantitative OCT parameters
included subfoveal choroidal thickness, central subfield thick-
ness, average GC-IPL thickness, and average RNFL thickness;
3- � 3-mm OCTA quantitative parameters included area of the
foveal avascular zone, foveal avascular zone circularity index,
SCP PD in the 3-mm ETDRS circle and 3-mm ring,19 and SCP

http://Clinicaltrials.gov


Figure 1. Illustration of the structure of the convolutional neural network for differentiation of subjects with mild cognitive impairment from cognitively
normal controls. The convolutional neural network uses a convolutional encoder for the image inputs (OCT angiography [OCTA] superficial capillary
plexus 6 � 6 mm en face images and ganglion cell-inner plexiform layer [GC-IPL] thickness maps), image modality specific feature transformations (fOCTA

and fGC-IPL), prediction heads for all modalities (FCOCTA, FCGC-IPL and FCother) whose outputs are aggregated using averages and then processed through a
sigmoid activation function to yield a model score.
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VD in the 3-mm circle and 3-mm ring; 6- � 6-mm OCTA
quantitative parameters included PD and VD in the 6-mm circle,
6-mm outer ring, and 6-mm inner ring.34 All parameters were
calculated by the Zeiss software apart from subfoveal choroidal
thickness, which was manually measured by 2 graders as a
linear measurement from the hyper-reflective line of the outer
border of the retinal pigment epithelium perpendicularly to the
hyper-reflective sclerochoroidal junction on the enhanced depth
imaging foveal scan (captured using the HD 21 line raster pro-
tocol), with discrepancies adjudicated by a third grader.

Model Development

The model was trained to receive inputs of GC-IPL thickness color
maps, OCTA SCP 6 � 6 mm en face images, and quantitative data
as outlined above to produce a probability score that would suggest
whether a patient carried a clinical diagnosis of MCI. The model
illustrated in Figure 1 consists of shared convolutional encoder for
the image inputs (GC-IPL and OCTA), image modality specific
feature transformations (fOCTA and fGC-IPL), prediction heads for
all modalities (FCOCTA, FCGC-IPL, and FCother) whose outputs get
aggregated using simple averages and then processed through a
sigmoid activation function to produce a total model output. The
Table 1. Demographic Data

Total Eyes Sex (Male) Age (Y

MCI
N 154 69 Mean 72.5
% 39.5 44.8 SD 7.1

Controls
N 236 71 Mean 68.6
% 60.5 30.1 SD 7.7
P valuey 0.018y < 0.00

logMAR ¼ logarithm of the minimum angle of resolution; MCI ¼ mild cogniti
deviation; VA ¼ visual acuity.
*MMSE scores were not included in the convolutional neural network.
yCalculated using Fisher exact test.
zCalculated using Wilcoxon rank sum test.
xP value based on generalized estimating equations analysis of difference betwe
adjusted for age and sex.
model is similar in structure to that previously introduced to
differentiate AD subjects from controls,34 both of which
leveraged transfer learning from a ResNet1836 convolutional
encoder trained with ImageNet data. The feature transformations
are specified as single fully connected layers. The model also
employs 2 separate dropout layers, 1 for quantitative features and
1 for image features, to reduce overfitting to the training dataset.
The model was trained for 100 epochs using the adaptive
moment estimation optimizer37 with a weight decay of 0.01 and
using the binary cross entropy loss function. As a quantitative
estimate of performance, we considered the receiver operating
characteristic, the area under the receiver operating characteristic
curve (AUC), and summaries of the confusion matrix, namely,
accuracy, sensitivity, and specificity. In order to convert the
model scores into a dichotomous decision (MCI vs. control), we
thresholded the model scores with the label set to optimize the
Youden index.38 Given the complexity of the model relative to
the size of the data used for training, we considered simplified
versions in which only 1 or both imaging modalities or
quantitative data only were used as inputs, which we contrasted
with the full model that also leveraged quantitative data
described above. DeLong tests were used to compare the
for MCI and Controls

rs) Yrs of Education logMAR VA MMSE Score*

15.6 0.14 25.3
2.3 0.10 4.3

17.2 0.11 29.2
2.3 0.10 1.2

1z < 0.001z 0.044x < 0.001x

ve impairment; MMSE ¼ Mini Mental State Examination; SD ¼ standard

en means accounting for the correlation between eyes of the same subject,
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Table 2. Quantitative OCT Angiography Summary Data

FAZ
Area
(mm2)

FAZ
Circle

PD 3-mm
Circle

PD 3-mm
Ring

VD 3-mm
Circle

(mm/mm2)

VD 3-mm
Ring

(mm/mm2)
PD 6-mm
Circle

PD 6-mm
Inner ring

PD 6-mm
Outer ring

VD 6-mm
Circle

(mm/mm2)

VD 6-mm
Inner
Ring

(mm/mm2)

VD 6-mm
Outer
Ring

(mm/mm2)

MCI (N ¼ 154)
Mean 0.23 0.62 0.36 0.30 19.90 20.98 0.43 0.42 0.45 17.68 17.63 17.97
SD 0.10 0.13 0.03 0.10 1.72 1.69 0.03 0.04 0.03 1.32 1.62 1.34

Controls (N ¼ 236)
Mean 0.25 0.66 0.36 0.39 20.15 21.24 0.44 0.43 0.45 17.91 17.90 18.24
SD 0.12 0.08 0.03 0.03 1.56 1.53 0.03 0.03 0.02 1.00 1.35 0.96
P value* 0.133 0.063 0.661 <0.001 0.548 0.509 0.575 0.500 0.411 0.772 0.662 0.433

FAZ ¼ foveal avascular zone; MCI ¼ mild cognitive impairment; PD ¼ perfusion density; SD ¼ standard deviation; VD ¼ vessel density.
*P value based on generalized estimating equations analysis of difference between means accounting for the correlation between eyes of the same subject,
adjusted for age and sex.

Ophthalmology Science Volume 4, Number 1, February 2024
performance metrics for each set of inputs, using the input
combination of GC-IPL maps, OCTA images, and image-based
quantitative data as the reference value.
Results

Two hundred thirty-six eyes of 129 control subjects and 154
eyes of 80 MCI subjects were used for development and
testing of the model. One hundred fifty-two (64%) control
eyes were used for training, 24 (10%) were used for vali-
dation, and 60 (25%) were used for testing. One hundred
four (68%) MCI eyes were used for training, 20 (13%) were
used for validation, and 30 (19%) were used for testing.
There was no patient overlap between the training, valida-
tion, and test groups, and patients were randomly assigned
to each group. When model evaluation was performed on
the test groups, individual eyes were randomly sampled so
that the difference in ages between the MCI and control
groups was not statistically significant, as previously out-
lined herein. Performance characteristics are reported as the
median performance of 10 runs of the model.

Demographic information, visual acuity data, and MMSE
scores appear in Table 1. Tables 2 and 3 summarize the
quantitative OCTA and OCT data, respectively.
Table 3. Quantitative O

Mean GC-IPL
Thickness (mm)

Mean RNFL
Thickness (mm)

MCI (N ¼ 154)
Mean 75.84 89.24
SD 8.62 9.62

Controls (N ¼ 221)
Mean 77.40 89.87
SD 7.31 10.18
P valuey 0.778 0.731

GC-IPL ¼ ganglion cell-inner plexiform layer; MCI ¼ mild cognitive impairm
yP value based on generalized estimating equations analysis of difference betwe
adjusted for age and sex.
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Table 4 demonstrates AUC values for 4 different CNNs.
Each used the structure outlined in Figure 1, but with
various input combinations as outlined. The GC-IPL
thickness maps as a single input outperformed OCTA im-
ages. The best-performing model used all available inputs,
including GC-IPL maps, OCTA images, and quantitative
data. We report an AUC value of 0.809 (95% confidence
interval: 0.681e0.937) for this input combination. To
ensure consistency of this result, we reassigned eyes
randomly to the training, validation, and testing groups in
10 variations and ran the CNN for each grouping, resulting
in a mean AUC of 0.828 and standard deviation of 0.035.
Thus, our reported AUC of 0.809 represents a conservative
(37th percentile) description of CNN performance.

Figure 2 demonstrates model scores for each eye in the
MCI and control test sets evaluated by the best-performing
model. Figure 3 is the receiver operating characteristic
curve for the best-performing model on the test set. The
values in Figure 3 were used to calculate a Youden index
threshold value of 0.095, as displayed in Figure 2. This
Youden threshold was used as the decision point for
determining sensitivity and specificity. Our best-performing
model achieved sensitivity of 79% and specificity of 83%.
More specifically, Figure 4 shows the confusion matrix,
demonstrating how each eye in the test set was classified
CT Summary Data

Subfoveal Choroidal
Thickness (mm)

Central Subfield
Thickness* (mm)

256.49 263.99
76.49 36.93

276.95 266.48
92.39 24.56
0.332 0.345

ent; RNFL ¼ retinal nerve fiber layer; SD ¼ standard deviation.
en means accounting for the correlation between eyes of the same subject,



Table 4. Predictive Capabilities of Each Convolutional Neural Network

GC-IPL Thickness OCTA
Quant Data

(Image-Based)
Quant Data

(Demographic) AUC on Test Set [95% CI]* P Valuey

Quantitative data X 0.580 [0.417, 0.742] 0.0543
OCTA X 0.625 [0.466, 0.784] 0.0458
GC-IPL X 0.681 [0.529, 0.832] 0.0881
OCTA and GC-IPL X X 0.693 [0.543, 0.843] 0.0852
Quantitative data X 0.960 [0.902, 1.00] 0.0120
GC-IPL, OCTA, and quant data X X X 0.809 [0.681, 0.937] N/A

AUC ¼ area under the receiver operating characteristic curve; CI ¼ confidence interval; GC-IPL ¼ ganglion cell-inner plexiform layer; OCTA ¼ OCT
angiography; quant ¼ quantitative.
AUC on validation and test set figures describe the performance of each model on predicting the probability of mild cognitive impairment diagnosis for each
individual eye in the independent sets. An “X” indicates that the input(s) were included in the model described in that row.
*Confidence intervals obtained using the DeLong method.
yP values for DeLong tests comparing the performance of the model for each set of inputs to the input set (GC-IPL, OCTA, and image-based quantitative
data [excludes demographic data]).
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(either as MCI or as control) by the model using the threshold
value selected via the Youden index.
Discussion

The CNN model developed herein is the first to use retinal
OCT and OCTA images to differentiate subjects with MCI
from individuals with normal cognition. Our best perform-
ing model using images, including GC-IPL thickness color
maps and OCTA SCP 6 � 6 mm en face images, as well as
quantitative data (including only data derived from the OCT
and OCTA images), achieved an AUC of 0.809 when
applied to an independent test set. This performance quality
Figure 2. Box and whisker plot of model predictions for the best-performin
angiography 6 � 6 mm en face images, and quantitative data inputs for the cogn
test dataset. The control median is 0.063 (interquartile range: 0.034e0.088) an
line represents the Youden index optimized threshold value. Model scores above
control. Orange lines present the median model score values for the MCI and co
outside of the ([Q1-1.5 IQR], [Q3þ1.5 IQR]) margin.
was similar to the performance demonstrated in our previ-
ously developed CNN for differentiation of control and AD
subjects.34

Both OCTA images and GC-IPL maps were selected as
image inputs for this model since these images were found
to be useful modalities in our prior machine learning work
that distinguished individuals with AD from control subjects
with normal cognition.34 As demonstrated in Table 4, GC-
IPL thickness maps were the most useful image input
evaluated in our MCI model, in alignment with our prior
work.34 Of note, the performance of OCTA image inputs
alone in distinguishing MCI subjects was similar to the
observed performance of these images in our previously
published model that identified individuals with AD.
g model using ganglion cell-inner plexiform layer thickness maps, OCT
itively normal control and mild cognitive impairment (MCI) groups in the
d MCI median is 0.115 (interquartile range: 0.100e0.178). The red dotted
this red line are classified as MCI, while model scores below are classified as
ntrol patients in the test dataset. Circles represent outliers, defined as scores
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Figure 3. Receiver operating characteristic curve for model scores for each
eye in the test set (blue line) using the ganglion cell-inner plexiform layer
(GCL) thickness maps, OCT angiography (OCTA) 6 � 6 mm en face
images, and quantitative data model. Area under the receiver operating
characteristic curve (AUC) values for the validation and test sets along
with sensitivity and specificity values for the test set are reported. The
diagonal dotted line represents the performance of a completely random
classifier (1/2 probability assigned to either classification). An ROC curve
above the dotted diagonal line represents better classification performance
compared to random chance.

Figure 4. Confusion matrix demonstrating the classification of each test
set eye by the ganglion cell-inner plexiform layer thickness maps, OCT
angiography 6 x 6 mm en face images, and quantitative data model.
MCI ¼ mild cognitive impairment.
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Traditional statistical analysis of only OCTA image
quantitative metrics to differentiate MCI from controls has
been significant in some, but not all, published
studies,26,39,40 suggesting that OCTA images alone as
model inputs may have utility in MCI diagnosis,
particularly if the images are obtained from individuals
with amnestic MCI as opposed to nonamnestic MCI.39

However, the findings in our present study and prior
work19 demonstrate that the utility of such OCTA images
as sole model inputs currently remains an open question
which may be, in part, attributed to variations in the MCI
population being studied.19,22,41 The addition of image-
based quantitative metrics to the images themselves as
model inputs has value (Table 4) and resulted in a marked
improvement in performance when compared to our
images-only model.

We hypothesize that the model’s reliance on quantitative
data suggests that we may require larger training sets to
achieve optimal performance with images alone. The size of
our training set limited the complexity of our model, since
employing a bigger (more expressive) neural network with
more or wider convolutional layers would risk overfitting. If
the neural network has too many parameters (neurons)
compared to the dataset it is training on, the neural network
6

will tend to overfit, i.e., ‘memorize’ the relatively small
dataset, limiting its ability to generalize to new (test) data.
CNNs are complex neural network architectures that require
large training datasets to fully extract features from images,
especially with subtle features such as the retinal thickness
and microvasculature changes between a control subject and
a subject with MCI. Using quantitative features extracted
from the image data as an additional input, utilizing a pre-
trained neural network as a foundation, and reducing the
pretrained neural network size were all measures taken to
circumvent the challenges posed by the subtle biomarker
differences and the dataset size constraints.

The CNN developed herein demonstrated a clear benefit
in performance from the use of quantitative OCT and OCTA
data inputs in differentiation of eyes of control and MCI
subjects. In developing this CNN, we used a dataset that
included subjects from our prior work19,41 where we found
no significant differences in OCTA parameters between the
control and MCI groups. Additionally, we also found no
differences in GC-IPL thickness parameters, despite the
apparent utility of thickness maps to the CNN model
(Table 4). The only quantitative OCT parameter
demonstrating a significant difference between control and
MCI groups in our prior work was temporal quadrant
RNFL thickness.19 Table 1 also demonstrates the
similarity of the quantitative OCT and OCTA imaging
parameters between the control and MCI groups. Thus,
this demonstrates the effectiveness of the CNN in
detecting signals differentiating the 2 datasets that may not
be apparent with traditional statistical methods, and this
may partially be attributed to the CNN’s ability to utilize
the entire available image rather than being limited to
certain regions, as is used for generating quantitative data
alone.
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Sharing our work thus far stimulates this burgeoning field
as we continue to recruit and image cognitively normal
subjects and MCI subjects to further improve performance of
this CNN. Our relatively smaller sample size was a study
limitation that contributed to the lack of an age-matched
control cohort. As a result, we employed an accepted sam-
pling technique for post hoc age-matching for our test dataset
outlined herein to limit any potential confounding effect of
age on the model’s performance. We purposefully excluded
patients with known ocular and systemic diseases such as
glaucoma, diabetes, and vitreoretinal pathology. Doing so
allowed us to provide a proof of concept and build a solid
starting point that would spark additional efforts in this space
around the world. Because we as a field are still exploring the
creation of a CNN for neurodegenerative diseases such as
MCI, there is value in using strictly-controlled, high-quality
images from individuals without these concomitant ocular
or systemic diseases (potential confounders) for early work,
and, then, with this foundation, we can begin to better un-
derstand how these other ocular and systemic conditions
contribute. Future work will incorporate individuals with
these and other ocular and systemic diseases that will
ultimately expand the generalizability of such a CNN to more
broadly differentiate those with MCI from those with normal
cognition. Additionally, given the initial success of this CNN
in the current pilot dataset, we will identify partner in-
stitutions with similar OCT and OCTA datasets that may
further enlarge and complement our dataset. By standardizing
imaging platforms and protocols with peer institutions, vali-
dation of our CNN with external datasets will be facilitated.
The incorporation of federated learning may also provide a
path forward to obviate associated challenges and concerns
regarding the sharing of protected health information
comprising image-based datasets with other institutions. A
longitudinal dataset from individuals who have progressed
from normal cognition to MCI to AD is a particularly
exciting area of future study. Of note, our most recent work
has demonstrated greater velocity of decline in OCTA PD
and VD in patients with MCI compared to cognitively normal
individuals that occur prior to significant MMSE changes.41

This provides further optimism around our primary goal:
development of a model that can predict MCI or
Alzheimer’s onset prior to the manifestation of clinical
symptoms.
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