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Abstract

in neonatal mouse hearts but is limited in adult mouse hearts.
The regeneration capacity of cardiomyocytes (CMs) is retained
Myocardial infarction (MI) in adult hearts usually leads to the loss of large amounts of cardiac tissue, and then accelerates the
process of cardiac remodeling and heart failure. Therefore, it is necessary to explore the potential mechanisms of CM regeneration in
the neonates and develop potential therapies aimed at promoting CM regeneration and cardiac repair in adults. Currently, studies
indicate that a number of mechanisms are involved in neonatal endogenous myocardial regeneration, including cell cycle regulators,
transcription factors, non-coding RNA, signaling pathways, acute inflammation, hypoxia, protein kinases, and others.
Understanding the mechanisms of regeneration in neonatal CMs after MI provides theoretical support for the studies related
to the promotion of heart repair after MI in adult mammals. However, several difficulties in the study of CM regeneration still need
to be overcome. This article reviews the potential mechanisms of endogenous CM regeneration in neonatal mouse hearts and
discusses possible therapeutic targets and future research directions.
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Introduction relatively low and the mechanism is not completely clear.[6]
On the contrary, a large number of studies have shown that

Ischemic heart disease (IHD) remains a leading cause
of morbidity and mortality worldwide, killing about
7.4 million people every year.[1] Myocardial infarction
(MI), as the most serious manifestation of IHD, usually
leads to the loss of large amounts of cardiac tissue, which
will then be replaced by fibrous scar tissue. Consequently,
the formation of fibrous scar in patients with MI will
inevitably lead to myocardial remodeling, cardiac dys-
function, and eventual heart failure.[2] Therefore, reducing
fibrous scar area and promoting myocardial regeneration
is of great significance to reverse or delay the disease course
after MI. To date, there are three main potential strategies
of cardiomyocyte (CM) replacement in mammals, includ-
ing transplantation of stem and progenitor cells, trans-
differentiation of resident cardiac fibroblasts, and
reactivation of endogenous regeneration mechanisms of
CMs.[3] The first two approaches are characterized by
significant limitations and significant defects. This reality
tells us that it is wrong to achieve cardiac regeneration
through the transdifferentiation of bone marrow cells or
putative adult resident cardiac progenitors.[4] In terms of
fibroblasts, although direct reprogramming of cardiac
fibroblasts into CMs might be a new method of cardiac
regeneration,[5] the current reprogramming efficiency is
Access this article online

Quick Response Code: Website:
www.cmj.org

DOI:
10.1097/CM9.0000000000000693

716
CM regeneration after MI really occurred in neonatal
mice,[7-9] so proliferation of pre-existing CMs remains a
hopeful strategy of myocardial regeneration after MI.

Senyo et al[10] found that adult mammalian CMs did not
actively join themitotic events, and CMsmaintained a very
low capacity to self-divide and proliferate. The annual self-
renewal rate of human CMs was about 1% in adolescence
to 0.45% in old age,[11] which is hardly enough to
replenish for the loss of CMs afterMI in adult mammals. In
contrast, neonatal mice within 7 days after birth have the
ability of complete cardiac regeneration, hence myocardial
injury including MI can induce CM proliferation and
complete recovery of cardiac function and structure within
one month. The regeneration ability, however, is rapidly
lost on the postpartum on the 7th day.[12] Like neonatal
mice, neonatal humans may also have this intrinsic ability
to replenish damaged myocardium and fully recover
cardiac function after myocardial injury.[13] With the
establishment of the MI model of neonatal mice through
apical resection, and ligating left anterior descending
coronary artery,[14] further studies can explore the genetic
and cytological mechanisms of cardiac regeneration. Thus,
this article reviews the research progress of endogenous
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regeneration, and discusses future research directions as
well as some potential therapeutic targets on promoting

cell cycle regulators, which play an important role in
cardiac regeneration. Therefore, cell cycle regulation may
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CM regeneration after MI.

Cell cycle regulators and cardiac regeneration
Cell cycle activity plays an important role in all cell types,
including DNA synthesis, G1/S phase, and effective
progression of G2/M phase.[15] Cell cycle in mammals
is accurately regulated by a complex set of proteins,
including cyclins, cyclin dependent kinases (CDKs),
CDK inhibitors (CDKIs), CDK activated kinases
(CAK), and retinoblastoma (Rb).[16] It has been reported
that cell cycle regulators can regulate CM proliferation
[Table 1].[17]

Initially, Poss et al[18] found that zebrafish heart can
completely regenerate after removing 20% of the ventricle,
and the expression of some cell cycle regulators, such as
polo-like kinase 1 (Plk1) and monopolar spindle 1 (Mps1),
are essential in the process. With further research, other
regulators have been found: cyclin A2, a cyclin that
promotes the G1/S and G2/M phase, which participates in
the CM proliferation.[19] Overexpression of cyclin A2 in
a-myosin heavy chain (a-MHC)-cyclin A2 transgenic mice
can improve the cardiac function, and induce DNA
synthesis and CM Mitosis after MI.[20] Furthermore, it
has been found that overexpression of cyclin D2 and cyclin
B,[21] positive regulators that respectively drive G1/S and
G2/M transition, can induce DNA synthesis and the
proliferation of mammalian CMs.[22] In addition, CKIs
influence the cell cycle by regulating cyclin-CDK com-
plexes. For example, knockout of p21, p27, and p57 genes
may induce active proliferation in resting adult CM
after MI.[23]

Recently, Mohamed et al[17] screened cell cycle regulators
expressed in fetal CMs by using the methods of intra-
myocardial injection and controlling adenoviruses to the
peri-infarct site of mice. They found that overexpression of
CDK1, CDK4, cyclin B1, and cyclin D1 could effectively
induce CM proliferation in adult mouse, rat, and human.
In conclusion, cell cycle may be the final process of CM
proliferation,[24] and some other mechanisms may highly
promote endogenous regeneration of CMs by regulating
Table 1: Cell cycle regulators associated with cardiomyocyte regenerat

Cell cycle regulators Research objects

Plk1/Mps1 Zebrafish The essential
Cyclin A2 Mouse/ swine A positive cyc

a
Cyclin D2 Mouse A positive re

DNA syn
Cyclin B Rat A positive

induces
CKIs Mouse Regulators t

r
Cyclin B1/ D1 Mouse/rat/human Positive regul

in pos

Plk1: Polo-like kinase 1; Mps1: Monopolar spindle 1; CM: Cardiomyocyte;
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serve as a therapeutic target after MI.

Transcription factors and myocardial regeneration
In recent years, it has been discovered that transcription
factors (TFs) may also play important roles in CM
proliferation after injury. Myeloid ecotropic viral integra-
tion site 1 (Meis1), a member of three-amino-acid loop
extension (TALE) homeodomain TFs, has been proven to
be associated with hemopoiesis and cardiac development
at the embryonic stage, and it may also play a negative role
in postpartum CM cell cycle arrest.[16] With the applica-
tion of cardiomyocyte-specific Meis1 knockout mice,
which were generated by crossing a-MHC-Cre mice
with Meis1f/f mice, Mahmoud et al[25] showed that the
deletion ofMeis1 in CMs of neonatal mice was sufficient to
extend the CM proliferation window after heart injury.
On the contrary, overexpression of Meis1 would inhibit
the CM proliferation in neonatal heart after MI.[25] It has
been demonstrated that Meis1 could promote transcrip-
tion of Ink4b-Arf-Ink4a and CDK interacting protein
(CIP)/kinase inhibitor protein (KIP) family (p21 and p57)
by interacting with the promoters of the two kinds of
synergistic CDK inhibitors.[26] In addition, the absence of
Meis1 may induce the up-regulation of some positive cell
cycle regulators such as CDKs, minichromosome mainte-
nance 3 (MCM3)[16] and the down-regulation of negative
regulators including CDKIs.[26]

In addition to Meis1, other TFs might also be associated
with the CM proliferation after MI in mice. As a
transcription factor, E2F could regulate the proliferation
and differentiation of CMs by forming a complex network
with pocket proteins in the cell cycle by injecting
adenovirus carrying E2F transcription factor 2 (E2F2)
into the left ventricular free wall and the interventricular
septum.[27] Ebelt et al[28] demonstrated that overexpres-
sion of E2F2 could induce robust expressions of cyclins
A/E and proliferation of CMs in adult mice. It has been
found that transcription factor T-box 20 (Tbx20)[29] may
also promote CM proliferation after MI in adult mice by
binding to genes of p21/Meis1 and then inhibiting its
expression. In summary, TFs affect the state of the CM cell
ion.

Observed effects References

cell cycle regulators in cardiac regeneration [18]

lin that promotes the G1/S and G2/M phase,
nd induces CM mitosis after MI

[19,20]

gulator that drives G1/S transition, induces
thesis and CM proliferation in adulthood

[21]

regulator that drives G2/M transition, and
the proliferation of differentiated CMs

[21]

hat influence cell cycle of adult mammal by
egulating cyclin-CDK complexes

[23]

ators that can effectively induce cell division
t-mitotic mouse, rat, and human CMs

[17]

MI: Myocardial infarction; CKIs: Cyclin dependent kinase inhibitors.
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cycle by regulating the transcription of target genes, which
may serve as a potential strategy to promote myocardial

Among them, several miRNA families (such as the
miRNA-15, miRNA-30, and let-7 families) were up-
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regeneration after MI in adults.

Non-coding RNA (ncRNA) and cardiac regeneration
A large number of studies have shown that non-coding
RNA (ncRNA) may play an important role in the process
of cell proliferation, differentiation, apoptosis, and
inflammation.[30,31] The function of ncRNA including
microRNA (miRNAs), long noncoding RNA (lncRNA),
and circular RNA (circRNA) in the cardiovascular field is
emerging [Table 2].[30]
MicroRNA and cardiac regeneration
MiRNAs were first reported in the 1990s, and the research
on it has rapidly developed into a mature field. There are
increasing studies confirming that miRNAs are associated
with heart disease and cardiac functions including cardiac
proliferation.[32] However, its inhibitory regulation of gene
expression contributes to degradation or inhibition of
target mRNA by binding to it.[33]

Initially, with the application of miRNA expression profile
analysis, Porrello et al[34] showed that in comparison with
1-day-old mice, 7-day-old mice had 71 miRNAs which
were significantly up-regulated or down-regulated in CMs.
Table 2: Non-coding RNAs associated with cardiomyocyte regeneration

Non-coding RNAs Research objects

miRNA-195 Mouse Inhibition of
CM proliferat

miRNA-34a Mouse Inhibition of m
po

miRNA-128 Mouse Deletion of m

miRNA-590/199 Mouse Introduction o
of adult CM

miRNA-17-92 Mouse Expression of

miRNA-204 Mouse/rat Overexpressio
adu

miRNA-302-367 Mouse A miRNA th

miRNA-19a/19b Mouse Overexpress
im

miRNA-294 Mouse Transient intr
promote CM c

lncRNA ECRAR Rat A novel lncRN

lncRNA CPR Mouse A lncRNA tha

lncRNA uc.457 Mouse Expression

circRNA Nfix Mouse/rat Inactivation o
adult CM pro

miRNA: microRNA; lncRNA: Long non-coding RNA; circRNA: circular RN
cardiac regeneration-associated regulator; CPR:Cardiomyocyte proliferation reg
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regulated and miRNA-195 (a member of the miRNA-15
family) was confirmed to be the most up-regulated.
Obviously, the results showed that the loss of CM
regeneration potential in adulthood maybe because of
the up-regulation of these miRNAs, which may induce
postpartum cell cycle arrest. Thereafter, by injecting anti-
miRNAs modified by locked nucleic acid (LNA) to
postnatal mice, Porrello et al[35] further showed that the
inhibition of miRNA-15 family does increase adult CM
proliferation and promote recovery of cardiac function
after MI. Similarly, it has been demonstrated that the
inhibition of miRNA-34a would bring benefit to adult
heart post-MI via CM proliferation.[36] Recently, Huang
et al[37] generated the cardiac-specific miRNA-128 knock-
out mice and found that the deletion of miRNA-128 could
also promote endogenous regeneration of adult CM by
suppressing p27 (a negative cell cycle regulator) expression
and promote the activation of cyclin E/CDK2 (positive cell
cycle regulators).

Meanwhile, miRNA can also promote CM endogenous
regeneration. Eulalio et al[38] found that miRNA-590 and
miRNA-199 can induce the cell cycle re-entry of adult CMs
in vitro, and the introduction of has-miRNA-590 and has-
miRNA-199a in the heart of adult mice with MI can
contribute to CM regeneration. Therefore, with the
application of cardiac-specific gene knock-in mice or other
.

Observed effects References

the miRNA-15 family does increase adult
ion and promote cardiac function after MI

[34]

iRNA-34a may bring benefit to adult heart
st-MI through CM proliferation

[36]

iRNA-128 can promote CM endogenous
regeneration in adult mice

[37]

f it can contribute to the cell cycle re-entry
s as well as CM endogenous regeneration

[38]

it in adult mice with MI can promote CM
proliferation

[39]

n of it may promote CM proliferation of
lt and neonates in vitro and vivo

[40]

at promote CM proliferation by inhibiting
Hippo signaling pathway

[32]

ion of it promotes CM proliferation and
prove cardiac function after MI

[41]

oduction of miRNA-294 in adult mice can
ell cycle reentry and cardiac repair after MI

[42]

A that can promote DNA synthesis and cell
mitosis in adult rat CMs

[30]

t obstructs CM proliferation by inhibiting
the transcription of MCM3

[43]

of it may inhibit the differentiation and
proliferation of CMs

[44]

r silencing of circRNA Nfix may promote
liferation and functional recovery after MI

[47]

A; CM: Cardiomyocyte; MI: Myocardial infarction; ECRAR: Endogenous
ulator;MCM3:Minichromosomemaintenance 3;Nfix:Nuclear factor I-X.
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methods, miRNA-17–92 cluster,[39] miRNA-204,[40] and
miRNA-302-367[32] have also been reported to potentially

could promote CM proliferation and functional recovery
after MI by inhibiting Y box binding protein 1 (Ybx1)
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promote CM proliferation of adult mammalian heart.

In 2019, Gao et al[41] found that overexpression of
miRNA-19a/19b in mouse hearts by intramyocardial
injection of miRNA-19a/19b mimics or adeno-associated
virus 9 (AAV9) carrying miRNA-19a/19b could promote
CM proliferation and improve cardiac function after MI.
Coincidentally, Borden et al[42] found that transient
reintroduction of miRNA-294 (which was found in
embryonic stem cell exosomes) by delivering AAV-9-
miRNA-294 vectors to adult mice heart could promote
CM cell cycle reentry and cardiac repair after MI.

Thus, current studies indicate that miRNA plays an
important role in cardiac repair. However, to make the
miRNA a potential strategy for treatingMI in adults, some
substantial difficulties need to be resolved, such as how to
effectively deliver miRNAs to the target site as well as
whether there are other side effects with adenovirus as the
carrier.

Long non-coding RNA (lncRNA) and cardiac regeneration
Many studies have found that lncRNA, a kind of non-
coding RNA composed of more than 200 nucleotides, may
play a significant role in cardiac hypertrophy, inherited
cardiomyopathy, and other cardiovascular diseases.
Meanwhile, the roles of lncRNA in CM proliferation
and regeneration are explored systematically.

Chen et al[30] found that 3092 lncRNAs were differentially
expressed in human hearts during the fetal-to-adult
transition by analyzing publicly available RNA-seq data
of cardiac tissues. Then, they identified endogenous
cardiac regeneration-associated regulator (ECRAR), a
novel upregulated fetal lncRNA that could promote
DNA synthesis and cell mitosis in 7-day-old and adult
rat CMs. The ECRAR functions by activating extracellular
signal-regulated kinases 1 and 2 (ERK1/2) signaling. By
generating cardiomyocyte proliferation regulator (CPR)
knockout mice, Ponnusamy et al[43] found that lncRNA
CPR could inhibit the transcription of MCM3 (an initiator
of eukaryotic genome replication), and proved that
deletion of CPR could significantly promote CM prolifer-
ation and improve cardiac function in postnatal and adult
hearts after MI. The expression of lncRNA uc.457[44] also
inhibited the differentiation and proliferation of CMs,
which is similar to the function of lncRNA CPR. In
summary, lncRNAs take part in the regulation of CM
proliferation and cardiac repair, which may provide a new
therapeutic strategy for effective cardiac regeneration after
MI.

CircRNAs and myocardial regeneration
19
As a novel class of ncRNAs that are circularized by joining
the 3’ end to the 5’ end of the RNA,[45] circRNAmay play a
fundamental role in the regulation of CMproliferation and
cardiac regeneration.[46] For example, in 2019, Huang
et al[47] found that inactivation or silencing of the nuclear
factor I-X (Nfix), a circRNA enriched in adult mice CMs,
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ubiquitin-dependent degradation and increasing activity of
miR-214.

Signaling pathway and cardiac regeneration
The Hippo signaling pathway is evolutionarily conserved
and was first identified in Drosophila melanogaster.[48]

The Hippo signaling pathway in mammals consists of a
series of kinase cascades, which mainly includes the
mammalian sterile 20-like kinases 1/2 (MST1/2), Salvador
homolog 1 (SAV1), large tumor suppressor 1/2 (LATS1/2),
Mps one binder kinase activator-like 1 (MOB1), and Yes-
associated Protein (YAP)/ transcriptional coactivator with
PDZ-binding motif (TAZ).[49] The terminal effector of
Hippo pathway is YAP/TAZ, a transcription coactivator
regulating gene expression that promotes cell proliferation,
survival, and metabolic function.[50] Many groups have
shown that YAP is essential for CM proliferation and
regeneration, and Lin et al[51] found that the damaged
heart can no longer regenerate when the YAP gene is
specifically knocked out in embryonic CMs. However,
YAP/TAZ only works when it has entered the nucleus, and
the activation of Hippo signaling pathway can finally
obstruct the expression of proliferation-related genes by
phosphorylating YAP/TAZ and then preventing it from
entering into the nucleus.[52] In contrast, Heallen et al[53]

demonstrated that CMs specific knockout of the gene of
SAV1 or LATS1/2 (components of Hippo signaling
pathway) may contribute to cell cycle re-entry and
proliferation of CMs. It was shown that Hippo signaling
pathway may limit CMs proliferation and control heart
size by negatively regulating Wnt signaling.[54] Therefore,
the activation of YAP may promote CM proliferation and
cardiac repair after MI in adulthood, while inhibition of
Hippo pathway may also result in this outcome [Figure 1].

Likewise, there are other signaling pathways playing
potential roles in CM endogenous proliferation and
regeneration after MI. Inhibition of the phosphatidylino-
sitol 3 kinase (PI3K)/protein kinase B (AKT), an
intracellular signaling pathway, can accelerate the degra-
dation of cyclin D1 and then negatively regulate CM cell
cycle,[55] which means that PI3K-AKT signaling pathway
may be a positive regulator of CM proliferation.

Also, in mouse myocarditis models, the recovery of cardiac
structure and function after myocardial injury was caused
by the re-entry of the cell cycle, in which Janus kinases
(JAK)/ signal transducers and activators of transcription
(STAT) signaling pathway may play an important role.[56]

STAT3 may also participate in CM proliferation induced
by acute inflammation. The Wnt/b-catenin and p38
signaling pathways[24] may also participate in the mecha-
nism of cardiac regeneration.

Acute inflammation and myocardial regeneration
Acute inflammation is known to occur immediately after
myocardial injury, this triggers a significant fibrotic
response in adult hearts followed by deterioration of
cardiac function.[57] However, acute inflammation may be

http://www.cmj.org


closely related to the proliferation of CMs in neonatal
hearts. Han et al[58] found that by injecting the

acute inflammation may play an important role in CM
regeneration in mammals, there will still be a long way

Figure 1: The components of canonical hippo signaling pathway. YAP/TAZ, the terminal
effectors of hippo pathway, enter the nucleus and promote gene expression by binding to
transcription factors such as TEAD. Activation of hippo pathway prevents YAP from entering
nucleus by phosphorylation (P) and inhibits cardiomyocyte proliferation. Ischemia/
reperfusion and pressure load have been known to activate the pathway, while miRNA-
302-367 inhibit it. miRNA: microRNA; MST1/2: Mammalian sterile 20-like kinases 1/2;
SAV1: Salvador homolog 1; LATS1/2: Large tumor suppressor kinase 1/2; MOB1: Mps one
binder kinase activator-like 1; YAP: Yes-associated protein; TAZ: Transcriptional coactivator
with PDZ-binding motif; TEAD: Transcriptional enhanced associate domain.
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immunogenic zymosan A (ZA) into the myocardium,
the induction of acute aseptic inflammation in the hearts of
neonatal mice could induce endogenous CM proliferation,
which, however, could be suspended after suppressing the
immune response of neonatal mice. Moreover, they found
that damaged hearts in neonatal mice could not live up to
regeneration without interleukin-6 (IL-6). A similar
phenomenon could be observed with the absence of
STAT3, a major downstream effector activated by tyrosine
phosphorylation of IL-6.[59]

Interestingly, the different outcomes of result from acute
inflammation between neonatal and adult hearts might be
due to the different sources of macrophages.[60] It has been
found that some embryonic-derived cardiac resident
macrophages could be immediately mobilized in heart of
neonatal mice after myocardial injury, while the preferen-
tial increase of bone-marrow-derived macrophages was
observed in the heart of adult mice.[61] Compared with the
latter, embryo-derived macrophages have more significant
angiogenesis ability in vitro.[61] Unfortunately, although

7

from achieving the goal to promote cardiac regeneration in
adults by targeting acute inflammation after MI.

Hypoxia and myocardial regeneration
In recent years, the adverse effects of oxidative stress on
CM proliferation have become a focus. Induction of
systemic hypoxia in patients with MI may be a future
research direction and a potential therapeutic strategy.

The function of reactive oxygen species
Mitochondrial oxidative phosphorylation produces
adenosine triphosphate (ATP) for the organism more than
anaerobic metabolism, which, in turn, contributes to more
generation of mitochondrial reactive oxygen species (ROS)
that can lead to cellular dysfunction and senescence.[62] It is
known that mitochondrion-derived ROS can induce CM
cell cycle arrest by stimulating DNA damage responses.[63]

Kimura et al[64] found that inhibiting ROS activity with
N-acetyl-L-cysteine could promote CM regeneration after
ischemia/reperfusion injury in mice, while scavenging ROS
could also achieve the goal. Further, the toxic or
physiological effects that ROS generated are actually
influenced by the level, source, type of ROS, and other
factors. For example, in contrary to mitochondrion-
derived ROS, the production of cytoplasmic H2O2 induced
by NADPH oxidase 4 (Nox4) can extend the time window
for postpartum CM proliferation.[64]

The role of hypoxia in myocardial regeneration
Thepresence of oxygen in the environmentwill influence the
production and clearance of ROS through the oxygen
content in the circulatory system, and hence influence the
proliferation of CMs. It has been found that the transition
from intrauterine hypoxic environments to postpartum
hyperoxic environments can lead to cell cycle arrest of CMs
in neonatal mammals through oxidative DNA damage
induced by mitochondrial ROS.[64] More significantly, by
exposing mice to low oxygen tension (7% O2) for 2 weeks,
Nakada et al[65] found that induction of systemic hypoxia
could effectively reduce the production of mitochondrion-
derived ROS, attenuate DNA damage, and finally activate
CM mitosis. In addition, CM proliferation induced by
systemic hypoxia may also be related to hypoxia-inducible
factor (HIFs) and HIF-regulating prolyl-hydroxylase
domain enzymes (PHDs).[66] It has been shown that
inhibition of PHDs activity can reduce myocardial infarc-
tion area and improve cardiac function.[67]

Protein kinase and myocardial regeneration
Protein kinase, a kind of enzyme that can phosphorylate
substrate proteins and regulate cell growth, differentiation,
proliferation, and apoptosis has become a focus of research
in recent years and may become a potential therapy for
CHD.

Wang et al[68] found that CHIR-99021, an inhibitor of
glycogen synthase kinase 3-beta (GSK-3b) kinase, could

http://www.cmj.org


induce human atrial CM proliferation by increasing the
level of b-catenin in the cell nucleus. However, it remains

unsatisfactory and uncertain results from stem cell method,
the European Society of Cardiology concluded that the
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indefinite that the observation in atrial CMs would also be
directly applicable to ventricular CMs. In contrast, Yester
et al[22] found that induction of active erb-b2 receptor
tyrosine kinase 2 (ERBB2) in neonatal and adult CMs
may lead to CM proliferation and cardiac regeneration
after MI, a process including sequential CM dedifferen-
tiation, proliferation, and finally redifferentiation. Further
studies found that this process might be mediated by
extracellular signal-regulated kinases (ERK), AKT, and
GSK 3b/b-catenin signaling pathways.[69] In addition, p38
mitogen-activated protein kinase (MAPK), a member of
the serine/threonine protein kinase family, may play a
negative role in CM proliferation post-MI both in vitro
and in vivo.[70] This has been verified in a series of mice[71]

and even human randomized controlled trials.[72] Inhibi-
tion of p38 MAPK through inhibitors may increase the
expression of cyclin A2 and cyclin B, and then promote the
expression of genes responsible for CM proliferation and
regeneration.[70]

Moreover, it has been found that growth and differentia-
tion factor 11 (GDF11)[73] and Pim1 kinase[74] may also
play underlying roles in CM proliferation and reduction of
infarction area in neonatal mice after MI. With the
application of quantitative phosphorylation proteomics
method, more kinases, which may be involved in the
endogenous CM proliferation, can be discovered. This
may provide new conceptions for further studies on
cardiac regeneration in mammals.

Epigenetics and other factors in CM regeneration
1. Mikton CR, Butchart A, Dahlberg LL, Krug EG. Global status report
Epigenetic regulation of CMproliferation is a new research
direction. It is known that post-translational modification
of histones such as DNA methylation, deacetylation and
phosphorylation can affect the expression of adult cardiac
cyclin.[75] In mammal heart, the combination of epigenetic
modifying proteins with cardiac-specific transcriptional
factors (such as GATA binding protein 4, Tbx5) and cell
cycle regulators (such as Rb/p130) contributes to mod-
ifications of histones at promoter regions, which may
determine the phenotype of adult CM.[75] Additionally,
studies showed that the recombinant growth factor
neuregulin-1 (rNRG1)[76] and the activation of comple-
ment receptor C5aR1[77] may also participate in the
process of CM regeneration in neonatal mice. In 2019,
Hirose et al[78] found that increased levels of circulating
thyroxine could deprive the heart of the ability to
regenerate in adult CMs.

Conclusion
21
For decades, stem cells derived from the bone marrow and
other tissues had been infused into the coronary arteries or
injected directly into the myocardium,[79] which has been
thought to be a method to promote CM regeneration and
recovery of cardiac function after MI. However, subse-
quent studies have shown that stem cells may not be able to
differentiate into cardiomyocytes, and the benefits gener-
ated from stem cell therapy for patients may originate from
the subsequent paracrine effects.[80] Given the generally
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promise of cell therapy has not been realized. Conversely,
the endogenous proliferation of adult CMs may be a
promising method to promote the recovery of cardiac
function after MI, as shown in animal models. However,
some challenges are yet to be addressed before the
realization of clinical applications. First, we need to
understand the interaction between reported mechanisms
involved in cardiac regeneration. Hashmi et al[24] proposed
a “molecular switch model” and advocated the “locked”
cell cycle of adult CMs could be changed through cell cycle
checkpoints. In the model, some mechanisms, including
cyclins and CDKs, signaling pathways, transcription
factors and others, can modulate the transition at cell
cycle checkpoints. Nevertheless, how to turn off the
“switch” of CM proliferation once it is turned on remains
elusive. Moreover, many other mechanisms, such as
ncRNA, hypoxia, and kinase are not mentioned in the
suggested “molecular switch model.” Second, some
methodological limitations must be overcome before
clinical application, such as whether the application of
adenovirus will have other side effects. It is believed that
the multi-step preclinical and clinical trials can deal with
the limitations and generate benefits for human beings.
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