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Introduction
Biomarker discovery is typically attempted by means of observa-
tional case-control studies where classification techniques are 
applied to high-throughput measurement technologies, such as 
DNA microarrays,1,2 next-generation RNA sequencing (RNA-
seq),3 or “shotgun” mass spectrometry.4 The validity and repro-
ducibility of the results depend critically on the availability of 
accurate and unbiased assessment of classification accuracy.5,6

The vast majority of published methods in the statistical 
learning literature make the assumption, explicitly or implicitly, 
that the data for training and accuracy assessment are sampled 
randomly, or unrestrictedly, from the mixture of the popula-
tions. However, observational case-control studies in biomedi-
cine typically proceed by collecting data that are sampled with 
restrictions. The most common restriction, and the one that is 
studied in this article, is that the data are sampled separately 
from the case and control populations. That creates an impor-
tant issue in the application of traditional statistical learning 
techniques to biomedical data, because there is no meaningful 
estimator of case prevalences under separate sampling. 
Therefore, any methodology that directly or indirectly uses 
estimates of case prevalence could be severely biased.

Precision and Recall have become very popular classification 
accuracy metrics in the statistical learning literature.7–9 The 
recall does not depend on the prevalence, while the precision 
does. Therefore, we investigate in this article the bias of the 
precision estimator when the typical separate sampling design 
used in case-control studies is not properly taken into account.

A similar study was conducted previously into the accu-
racy of cross-validation under separate sampling.10 It was 
shown in that study that the usual “unbiasedness” property 
of k-fold cross-validation does not hold under separate sam-
pling. In fact, the bias can in fact be substantial and system-
atic, ie, not reducible under increasing sample size. In 
Braga-Neto et al,10 modified k-fold cross-validation estima-
tors were proposed for the class-specific error rates. In the 
case where the true case prevalence is known, those estima-
tors can be combined into an estimator of the overall error 
rate, which satisfies the usual “unbiasedness” property of 
cross-validation.

By contrast, the present paper employs analytical and 
numerical methods to investigate precision estimation under 
separate sampling. We show that the usual precision estimator 
is asymptotically unbiased as sample size increases, under the 
condition that the classification rule has a finite Vapnik-
Chervonenkis (VC) dimension. However, under separate sam-
pling, we show that the usual precision estimator will in general 
display a systematic bias, which cannot be reduced by increas-
ing sample size, if the observed prevalence of cases in the data 
is different from the true prevalence in the population of inter-
est, and the bias is larger the more different they are. In particu-
lar, the bias tends to be large when the true prevalence is small 
but the training data contain an equal number of examples 
from both classes, which is a common scenario in practice. If 
the true case prevalence is known (eg, from public health 
records), then a modified precision estimator that uses the 
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known prevalence is shown to be asymptotically unbiased in 
the separate sampling case, under the condition that the clas-
sification rule is sufficiently stable as sample size increases. All 
of these theoretical results, and the approximations used to 
derive them, are verified by numerical experiments using both 
synthetic and real data from published studies.

Materials and Methods
In this section, we define and study the various error rates of 
interest in this study, including precision and recall.

Population performance metrics

The feature vector X∈Rd  summarizes numerical characteris-
tics of a patient (eg, blood concentrations of given proteins). 
The label Y ∈ {0,1}  is defined as Y = 0  if the patient is from 
the control population, and Y = 1  if the patient is from the case 
population.

The prevalence is defined by

prev= ( = 1)P Y 	 (1)

ie, the probability that a randomly selected individual is a case 
subject. The prevalence plays a fundamental role in the sequel.

A classif ier ψ : {0,1}Rd →  assigns X  to the control or case 
population, according to whether ψ ( ) = 0X  or ψ ( ) = 1X , 
respectively. The classification sensitivity and specificity are 
defined as follows:

sens = ( ( ) = 1 = 1)P Yψ X | 	 (2)

spec = ( ( ) = 0 = 0)P Yψ X | 	 (3)  

The closer both are to 1, the more accurate the classifier is. 
A noteworthy property of the sensitivity and specificity is that 
they do not depend on the prevalence.

Other common performance metrics for a classifier are the 
false-positive (FP), false-negative (FN), true-positive (FP), and 
true-negative (FN) rates, given by

FP = ( ( ) = 1, = 0)P Yψ X 	 (4)

= (1 ) (1 )− × −spec prev 	 (5) 

FN sens prev= ( ( ) = 0, = 1)=(1 )P Yψ X − × 	 (6)

TP sens prev= ( ( ) = 1, = 1)=P Yψ X × 	 (7)

TN spec (1 prev)= ( ( ) = 0, = 0)=P Yψ X × − 	 (8)

Unlike sensitivity and specificity, the previous performance 
metrics do depend on the prevalence.

Note that

prev FN TP prev FP TN= , 1 =+ − + 	 (9)

sens TP
TP FN

,spec TN
TN FP

= =
+ +

	 (10)

Finally, we define the precision and recall accuracy metrics. 
Precision measures the likelihood that one has a true case given 
that the classifier outputs a case:

prec= ( = 1 ( ) = 1)P Y |ψ X 	 (11)

Applying Bayes’ Theorem and using previously derived rela-
tionships reveal that

prec TP
TP FP

sens prev
sens prev spec prev

= =
(1 ) (1 )+ × + − × −

×   (12)

On the other hand, recall is simply the sensitivity:

rec sens TP
TP FN

= =
+

	 (13)

It follows that precision depends on the prevalence, but 
recall does not.

Estimated performance metrics

In practice, the performance metrics defined in the previous 
section need to be estimated from sample data 
S Y Yn n n= {( , ), , , )}1 1X X . Let P  denote the empirical prob-
ability measure defined by Sn . The estimator of prevalence is

prev� �= ( = 1)=1 =1
1

P Y
n

IYi
i

n

=
∑ 	 (14)

where I A = 1  if A  is true and I A = 0  if A  is false. Similarly,

FP� �= ( ( ) = 1, = 0)=1

=1
{ ( )=1, =0}P Y

n
I

i

n

i Yi
ψ ψX X∑ 	 (15)

FN� �= ( ( ) = 0, = 1)=1

=1
{ ( )=0, =1}P Y

n
I

i

n

i Yi
ψ ψX X∑ 	 (16)

TP� �= ( ( ) = 1, = 1)=1

=1
{ ( )=1, =1}P Y

n
I

i

n

i Yi
ψ ψX X∑ 	 (17)

TN� �= ( ( ) = 0, = 0)=1

=1
{ ( )=0, =0}P Y

n
I

i

n

i Yi
ψ ψX X∑ 	 (18)

The remaining performance metrics estimators are defined 
analogously, using equations (10), (12), and (13):
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spec TN
TN FP

� �
� �= =

{ ( )=0, =0}=1

=0=1
+

∑
∑
I

I
i Yii

n

Yii

n

ψ X
	 (19)

prec TP
TP FP

� �
� �= =

{ ( )=1, =1}=1

( )=1=1
+

∑
∑

I

I
i Yii

n

ii

n

ψ

ψ

X

X

	 (20)

rec sens TP
TP FN

� � �
� �= = =

{ ( )=1, =1}=1

=1=1
+

∑
∑
I

I
i Yii

n

Yii

n

ψ X
	 (21)

Mixture and separate sampling

The usual scenario in Statistical Learning is to assume that 
S Y Yn n n= {( , ), ,( , )}1 1X X  is an independent and identically 
distributed (i.i.d.) sample from the true distribution of the pair 
( , )X Y . That makes Sn  a sample from the mixture of popula-
tions, where each label Yi  is distributed as

P Y
P Y

i

i

( = 1)=
( = 0)=1

prev
prev−

	 (22)

for i n= 1, , . Under mixture sampling, N IYii

n
0 =00
=

=∑  and 

N I n N
i

n
Yi1 =1 =1 0= =∑ −  are binomial random variables, with 

parameters ( ,1 )n − prev  and ( , )n prev , respectively.
By contrast, observational case-control studies in biomedicine 

typically proceed by collecting data from the populations separa
tely, where the separate sample sizes n0  and n1 , with n n n0 1 =+ ,  
are pre-determined and nonrandom, ie, sampling occurs  
with the restriction N I nYii

n
0 =0 00
= =

=∑  (or, equivalently, 

N I nYii

n
1 =1 11
= =

=∑ ). Therefore, all probabilities and expecta-
tions over the sample are conditional on N n0 0= . The restriction 
means that the labels Y Yn1, ,  are no longer independent, even 
though the feature vectors X X1, , n  are still independent given 
the labels. In fact, under separate sampling, only the order of the 
labels Y Yn1, ,  may be random. Thus, f Y Y N nn( , , = )1 0 0 |  

is a discrete uniform distribution over all 
n
n0











 possible order-

ings. This can also be obtained by direct computation, as 
follows:

f Y Y N n f Y Y N n
P N nn

n

n n

( , , = )= ( , , , = )
( = )

=

(1 )

1 0 0
1 0 0

0 0
1 0



|

prev prev−
nn
n

n
n

I n
n n

Yi
i

n

0
1 0

0

=0 0
=1(1 )

= 1 , =

0













−












∑
prev prev

if

,, otherwise













	 (23)

It is not difficult to verify that under equation (23), the mar-
ginal distribution of each label Yi  is given by

P Y N n n
n

r

P Y N n n
n

r

i

i

( = 1 = )= =

( = 0 = )= =1

0 0
1

0 0
0

|

|

∆

−
	 (24)

for i n= 1, , , where r  is the (fixed) sample size ratio under 
separate sampling. Comparing equations (22) and (24) reveals 
the main difference between mixture and separate sampling.

Bias of the precision estimator

In this section, we present a theoretical large sample analysis of 
the bias of the estimators discussed previously, focusing on the 
precision estimator. Estimation bias is defined as the expecta-
tion over the sample data Sn  of the difference between the 
estimated and true quantities.

The situation is clear with the estimator of the prevalence 
itself, given by equation (14). Under mixture sampling, we have

E
n

E I P YYi
i

n

[ ]=1 [ ]= ( = 1)==1 1
1

prev prev

=
∑ 	 (25)

so the estimator is unbiased (in addition, as n  increases, 
Var prev( ) 0 →  and prev prev →  in probability, by the law of 
large numbers). However, under separate sampling,

E N n
n

E I N n

P Y N n r

Yi
i

n

[ = ]=1 [ = ]

= ( = 1 = )=

0 0 =1 0 0
1

1 0 0

prev | |

|
=
∑ 	 (26)

according to equation (24). This also follows directly from the 
fact that prev  becomes a constant estimator, prev ≡ r , accord-
ing to equation (14). Thus,

Bias prev prev prev
prev

sep( )= [ = ]
=

0 0
 E N n

r
−

−
|

	 (27)

Assuming that the sample size ratio r n n= /1  is held con-
stant as n  increases (eg, under the common balanced design 
case, n n n0 1= = / 2 ), then this bias cannot be reduced with 
increased sample size. Furthermore, the bias is larger the fur-
ther away prev  is from r . In particular, the bias tends to be 
large when prev  is small and r = 1 / 2 , which is a common 
scenario in practice.

The situation for FP , FN , FP , and TN  is more compli-
cated. First, we are interested in a classifier ψ n  derived by a clas-
sification rule from the sample data S Y Yn n n= {( , ), , , )}1 1X X . 
Therefore, all expectations and probabilities in the previous sec-
tions are conditional on Sn . Under mixture sampling, the power-
ful Vapnik-Chervonenkis Theorem can be applied to show that all 
of these estimators are asymptotically unbiased, provided that 
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classification rule has a finite VC Dimension.11 This includes 
many useful classification algorithms such as Linear Discriminant 
Analysis (LDA), linear Support Vector Machines (SVMs), per-
ceptrons, polynomial-kernel classifiers, certain decision trees, 
and neural networks, but it excludes nearest-neighbor classifiers, 
for example. Classification rules with finite VC dimension do 
not cut the feature space in complex ways and are thus generally 
robust against overfitting.

Assuming mixture sampling and a classification algorithm 
with finite VC dimension V , it can be shown that (the details 
are omitted; see Braga-Neto and Dougherty6 for a similar 
argument)

Bias FPmix ( ) 8
( 1) 4

2
 ≤

+ +V n

n
 log 	 (28)

so that the bias vanishes as n →∞ . Similar inequalities apply 
to FN , FP , and TN . These are distribution-free results; 
hence, vanishingly small bias is guaranteed if n V  , regard-
less of the feature-label distribution. For linear classification 
rules, V d = 1+ , where d  is the dimensionality of the feature 
vector. In this case, the FP , FN , FP , and TN  estimators are 
essentially unbiased if n d

.
Next we consider the bias of the precision and recall 

estimators under mixture sampling (the analysis for the 
sensitivity and specificity estimators is similar; in fact, the 
former is just the recall estimator). We will make use of the 
following approximation for the expectation of a ratio of 
two random variables W  and Z  (see Appendix 1 for the 
derivation of this approximation and the conditions under 
which it is valid):

E W
Z

E W
E Z









≈

[ ]
[ ]

	 (29)

The approximation is quite accurate if W  and Z  are around 
E W[ ]  and E Z[ ] , respectively (it is asymptotically exact as 
W E W→ [ ]  and Z E Z→ [ ] ). For the precision estimator,

E E E P
E

E
E

[ ]= [ ]
[ ]

[ ]
[

prec TP
TP FP

T
TP FP

TP
TP FP

� �
� �

�
� �+












≈

+

≈
+ ]]

= [ ]≈
+









E ETP

TP
prec

FP

	 (30)

for a sufficiently large sample, where we used the previously 
established asymptotic unbiasedness of TP , TP , and FN . An 
entirely similar derivation shows that E E[ ] = [ ]rec rec . Hence, 
for “well-behaved” classification algorithms (those with finite 
VC dimension), both the precision and recall estimators are 
asymptotically unbiased under mixture sampling.

We are not aware of the existence of a VC theory for sepa-
rate sampling at this time. To obtain approximate results for 
the separate sampling case, we will assume instead that at large 
enough sample sizes, the classifier ψ  is nearly constant, and 

invariant to the sample. This assumption is not unrelated to the 
finite VC dimension assumption made in the case of mixture 
sampling. Many of the same classification algorithms that have 
finite VC dimension, such as LDA and linear SVMs, will also 
become nearly constant as sample size increases. In this case, 
we have

E N n
n

E I N n

P Y
i

n

Xi Yi
[ = ]=1 [ = ]

= ( ( ) = 1, =

0 0
=1

{ ( )=1, =1} 0 0

1 1

TP | |∑ ψ

ψ X 11 = )
= ( ( ) = 1 = 1) ( = 1 = )
=

0 0

1 1 1 0 0

|
| |

N n
P Y P Y N n

r
ψ X

sens×

  (31)

where we used the fact that the event { ( ) = 1}1ψ X  is inde-
pendent of N 0  given Y1  and equation (24). Note that the 
equality P Y( ( ) = 1 = 1) =1 1ψ X | sens  depends on the fact that 
ψ  is assumed to be constant, so that ( , )1 1X Y  behaves as an 
independent test point (also because of a constant ψ , there is 
no expectation around sens ). Hence, TP  is biased under sepa-
rate sampling, with

Bias TP sens TP sens prevsep( )= = × − × −( )r r 	 (32)

As in the case with the bias of prev  under separate sam-
pling, the bias of TP  cannot be reduced with increasing sam-
ple size. The bias is in fact larger the more sensitive the classifier 
is. One can derive similar results for FP , FN , and TN .

The recall estimator is approximately unbiased under sepa-
rate sampling:

E N n E N n

E N n

[ = ]= | =

= | =

0 0 0 0

0 0

rec TN
TN FP

TP
prev

� �
� �

�
�

|
+

























×

=
[ = ]

= = =

0 0E N n
r

r
r

TP

sens sens rec

� | 	 (33)

This is a consequence of recall’s not being a function of the 
prevalence. However, for the precision estimator,

E N n E N n

E N n
E

[ = ]= | =

[ = ]
[

0 0 0 0

0 0

prec TP
TP FP

TP
TP

� �
� �

�

�

|

|
+













≈
++

×
× + − × −

≠
×

×

FP
sens

sens spec
sens prev

sens pre

� |N n
r

r r

0 0= ]
=

(1 ) (1 )

vv spec prev
prec

+ − × −(1 ) (1 )
=

	 (34)

The precision estimator is thus biased under separate sam-
pling unless the true prevalence matches exactly the sample ratio 
r n n= /1 ; the bias is larger the further away prev  is from r .
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In case the true prevalence is known, eg, from public health 
records and government databases, then we show below that 
the following estimator of the precision,

prec sens prev
sens prev spec prev

prev




 

=
(1 ) (1 )

×

× + − × −
	 (35)

which is based on equation (12), is an asymptotically unbiased 
estimator of the precision under either mixture or separate 
sampling. Asymptotic unbiasedness in the mixture sampling 
case can be shown by repeating the steps in the analysis of the 
ordinary precision estimator. Under separate sampling, we have

E N n

E N
E N E

[ = ]

[ ]
[ ] (1 [

0 0

0

0

prec

sens prev
sens prev s

prev






|

|
|

≈
×

× + − ppec prev
sens prev

sens prev spec prev
p

 |N 0 ]) (1 )

=
(1 ) (1 )

=

× −
×

× + − × −
rrec

   (36)

since E N n[ = ] =0 0sens sens |  and E N n[ = ] =0 0spec spec | , 
as can be easily shown. Hence, prec

prev
  is an asymptotically 

unbiased estimator of the precision under either mixture or 
separate sampling. The ordinary precision estimator prec  
should not be used under separate sampling, or large and irre-
ducible bias may occur. On the other hand, in the impossibility 
of obtaining information on the true prevalence value, then no 
meaningful estimator of the precision is possible.

Results and Discussion
In this section, we employ synthetic and real-world data to 
investigate the accuracy of the analysis in the previous section 
and the performance of the precision estimator under sepa-
rate sampling. Corresponding results for mixture sampling 
and the recall estimator can be found in the Supplementary 
Material.

Experiments with synthetic data

We performed a set of experiments employing synthetic data 
from a homoskedastic Gaussian model, consisting of three-
dimensional class-conditional distributions N i( , )µµ Σ , for 
i = 0,1 , with µ0 = (0,0,0) , µµ1 = (0,0, )θ , where θ > 0  is a 
parameter governing the separation between the classes, and 
Σ = ( , , )1

2
2
2

3
2diag σ σ σ  (ie, a matrix with σ σ σ1

2
2
2

3
2, ,  on the 

diagonal and zeros off the diagonal). We consider two sample 
sizes, n = 30  and n = 200 , so that we can compare the 
results for small and large sample sizes. All experiments 
with separate sampling are performed with sample size ratio 
r n n= 0.1,0.91 / [ ]∈ . The synthetic data parameters are sum-
marized in Table 1.

For each value of r  and prev , we repeat the following pro-
cess 1000 times and average the results to estimate expected 
values:

1.	 Generate sample data Sn  of size n  according to r  (sep-
arate sampling) or prev  (mixture sampling);

2.	 Train a classifier using one of three classification rules:12 
LDA, 3-Nearest Neighbors (3NN), and a nonlinear 
Radial-Basis Function Support Vector Machine 
(RBF-SVM).

3.	 Obtain recall and precision estimates. Compute both the 
usual precision estimate prec  and the modified precision 
estimate prec

prev
 .

4.	 Obtain accurate estimates of the true precision values 
using a test set of size 10 000.

Figure 1 displays the results of the experiment. Note that 
there is only one curve for the traditional precision estimator 
prec  because it does not employ the actual value of prev . 
The values of prec  and prec

prev
  coincide when prev = r , as 

expected. However, as the values of prev  and r  become dif-
ferent, their values become quite different, and prec

prev
  dis-

plays much less bias, ie, it tracks the true precision much more 
closely, than prec . At the small sample size n = 30 , both esti-
mators display bias, which is however much larger overall for 
prec  than for prec

prev
 . At the large sample size n = 200 , the 

bias of prec
prev

  nearly disappears for LDA and is reduced for 
the other classification rules. We note that among these clas-
sification rules, LDA is the only one with a finite VC dimen-
sion; the fact that the bias in this case shrinks to zero as 
sample size increases confirms the results of the theoretical 
analysis in the previous section (convergence is quite fast, and 
quite evident at n = 200 , due to the fact that the synthetic 
data are homoskedastic Gaussian). Note also that the bias of 
prec  cannot be reduced by increasing sample size, which is 
also in agreement with the theoretical analysis (and so are the 
results in the Supplementary Material).

To examine more closely the effect of the difference between 
prev  and r  on precision estimation, Figure 2 plots bias esti-
mates for prec  and prec

prev
  as a function of the absolute dif-

ference between prev  and r , using the same data employed in 
Figure 1. It can be seen that the bias is always positive, indicat-
ing optimistic precision estimates. In nearly all cases, prec

prev
  

Table 1.  Synthetic data parameters.

Parameter Value

Dimensionality/feature size D = 3

Mean difference θ = 2

Covariance matrix σ σ σ1
2

2
2

3
2= 0.5, = 0.5, = 1

Sample size n = 30,200

Sample size ratio r r = 0.1,0.3,0.5,0.7,0.9

True prevalence prev = 0.1,0.3,0.5,0.7,0.9

https://journals.sagepub.com/doi/suppl/10.1177/1176935119860822
https://journals.sagepub.com/doi/suppl/10.1177/1176935119860822
https://journals.sagepub.com/doi/suppl/10.1177/1176935119860822
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Figure 1.  Average true precision (solid curves), average usual precision estimate prec  (dash-diamond curves), and average modified precision estimate 

prec
prev

  (dashed curves), for LDA, 3NN, and RBF-SVM, with sample sizes n = 30  and n = 200 , and different prevalence values, as a function of the 

sample size ratio. LDA indicates Linear Discriminant Analysis; 3NN, 3-Nearest Neighbors; RBF-SVM, Radial-Basis Function Support Vector Machine.
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has a smaller bias than prec , and when prev  is far from r , the 
difference in bias becomes quite large.

Case studies with real data

Here we further investigate the bias of precision estimation 
under separate sampling using real data from three published 
studies.

Leukemia study.  This publication13 used a tumor microarray 
data set containing two types of human acute leukemia: acute 
myeloid leukemia (AML) and acute lymphoblastic leukemia 
(ALL). Gene expression measurements were taken from 
15154  genes from 72 tissue specimens, 47 of which of ALL 
type (class 0), and 25 of AML type (class 1), so that r = 0.347 .  
The estimator prec

prev
  was computed using the value 

prev = 0.222 , which is the incidence rate of ALL over AML 
in the US population.14

Breast cancer study.  The second publication15 employed the 
Wisconsin Breast Cancer (Original) Dataset from the Univer-
sity of California-Irvine (UCI) Machine Learning Reposi-
tory,16,17 which has been used by several groups to investigate 
breast cancer classification methods.18,19 The data set consists 
of 699 instances, 458 and 241 of which are from benign and 
malignant tumors, respectively, and 10 features corresponding 
to cytological characteristics of breast fine-needle aspirates. 
According to Wilkins,20 fewer than 20% of breast lumps are 

Figure 2.  Estimated bias of the usual precision estimator prec  (dotted curves), and the modified precision estimator prec
prev

  (dashed curves) for LDA, 

3NN, and RBF-SVM, with sample sizes n = 30  and n = 200 , and different prevalence values, as a function of the absolute difference between true 

prevalence and sample size ratio. LDA indicates Linear Discriminant Analysis; 3NN, 3-Nearest Neighbors; RBF-SVM, Radial-Basis Function Support 

Vector Machine.

malignant; therefore, we used used prev = 0.2  in the computa-
tion of the modified precision estimator prec

prev
 .

Liver disease study.  The final publication21 employed a liver dis-
ease data set, also from the UCI Machine Learning Repository. 
This data set contains 5 blood test attributes and 345 records, of 
which 145 belong to individuals with liver disease (class 0) and 
200 measurements are taken from healthy individuals (class 1), 
so that r = 0.42 . This data set was donated to UCI in 1990, 
when the prevalence rate for chronic liver disease in the United 
States was prev = 0.1178 ,22 which we use as the prevalence in 
the computation of the prec

prev
  estimator.

All three studies used libraries from the Weka machine 
learning environment23 to compute usual precision estimates 
on separately sampled data, while ignoring true prevalences, for 
different classification rules: Naive Bayes (NB),24 C4.5 deci-
sion tree,25 Back-Propagated Neural Networks, 3NN, and 
Linear SVM.12 We reproduced the analysis in all three papers 
using Weka, obtaining almost exactly the same prec  estimates 
reported in those papers, and added for comparison the prec

prev
  

using the prevalence values described above. The results, dis-
played in Figure 3, show that without exception, the usual pre-
cision estimates prec  are larger than the more accurate prec

prev
  

estimates, in agreement with the previously observed fact that 
prec  displays a larger (optimistic) bias. The bias is particularly 
large in the case of the liver disease study, reflecting the fact 
that among the three data sets, this is the one where the value 
of prev  and r  differ the most.
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Concluding Remarks
Accuracy and reproducibility in observational studies is critical 
to the progress of biomedicine, in particular, in the discovery of 
reliable biomarkers for disease diagnosis and prognosis. In this 
study, theoretical results confirmed by numerical experiments 
show that the usual estimator of precision can be severely 
biased under the typical separate sampling scenario in observa-
tional case-control studies. This will be true especially if the 
true disease prevalence differs significantly from the apparent 
prevalence in the data. If knowledge of the true disease preva-
lence is available, or can even be approximately ascertained, 
then it can be used to define a modified precision estimator, 
which is nearly unbiased at moderate sample sizes. In all the 
results using real data sets, we observed that the usual precision 
estimator produces values that are larger, ie, more optimistic, 
than the modified one using the true prevalence, which agrees 
with the results obtained with the synthetic data. Absence of 
knowledge about the true prevalence means simply that the 
precision cannot be reliably estimated in observational case-
control studies and its use should be discouraged. Finally, we 
note that in our experiments, we considered the case where the 
prevalence is between 0.1 and 0.9, not without reason. If the 
prevalence is significantly under 0.1, as is the case in some rare 
diseases, then neither the precision, nor in fact the classification 
error, should be used as a criterion of performance, but rather 
the sensitivity and specificity need to be considered sepa-
rately—otherwise, a large precision and small classification 
error can be achieved by biasing the classification rule to pro-
duce FP rates close to zero while ignoring the FN rate.
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Appendix 1
Here we derive the asymptotic approximation in equation 
(29). If f : 2 →  is infinitely differentiable at point ( , )a b ,  
then it can be expanded by a bivariate Taylor series around 
( , )a b  as

f x y f a b f a b
x

x a f a b
y

y b( , )= ( , ) ( , )( ) ( , )( )+
∂
∂

− +
∂
∂

−

+second and higherr order terms in and x a y b− −
	 (37)

Now let Xn  and Yn  be sequences of random variables with 
means µX and µY , with µY ≠ 0 . The ratio x y/  is infinitely 

differentiable at ( , )a b  if b =/ 0 ; therefore, we can apply the 
previous result and get
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   (38)

Taking expectations on both sides gives

E X
Y

E X Y
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   (39)

Except in pathological cases involving heavy-tailed distribu-
tions, the remainder in the previous equation becomes negligible as 
Xn X→ µ  and Yn Y→ µ  in probability. Therefore, we write

E X
Y

E X
E Y









≈

[ ]
[ ]

	 (40)

as long as X  and Y  are around E X[ ]  and E Y[ ] , respectively 
(ie, Var[ ]X  and Var[ ]Y  are small).


