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Abstract: The modeling procedure of current biological neuron models is hindered by either hy-
perparameter optimization or overparameterization, which limits their application to a variety of
biologically realistic tasks. This article proposes a novel neuron model called the Regularized Spec-
tral Spike Response Model (RSSRM) to address these issues. The selection of hyperparameters is
avoided by the model structure and fitting strategy, while the number of parameters is constrained by
regularization techniques. Twenty firing simulation experiments indicate the superiority of RSSRM.
In particular, after pruning more than 99% of its parameters, RSSRM with 100 parameters achieves an
RMSE of 5.632 in membrane potential prediction, a VRD of 47.219, and an F1-score of 0.95 in spike
train forecasting with correct timing (±1.4 ms), which are 25%, 99%, 55%, and 24% better than the
average of other neuron models with the same number of parameters in RMSE, VRD, F1-score, and
correct timing, respectively. Moreover, RSSRM with 100 parameters achieves a memory use of 10 KB
and a runtime of 1 ms during inference, which is more efficient than the Izhikevich model.

Keywords: spike response model; neuron models; Izhikevich neuron model

1. Introduction

Biological neurons, the fundamental building blocks of the brain, have been the subject
of extensive research since the 1900s, and numerous models have been developed to describe
them from various perspectives. The Hodgkin–Huxley Model [1], the Fitzhugh-Nagumo
Model [2], and the Morris-Lecar Model [3] attempt to represent biophysical properties of
real neurons. The Leaky Integrate-and-Fire (LIF) Model [4], the Quadratic Integrate-and-
Fire Model [5], the Exponential Integrate-and-Fire Model [6], and the Izhikevich Model [7]
are designed from the phenomenological viewpoint. In addition to these two categories
consisting of a system of differential equations, the Point Process Model [8], the Linear-
Nonlinear-Poisson (LNP) Model [9], and the Generalized Linear Model (GLM) [10] describe
the input-output relation of biological neurons through a combination of a linear function
representing subthreshold membrane potentials and a nonlinear function simulating spike
firing rates. Although various neuron models provide valuable insights into biological
neurons, it remains difficult to replicate the full functionalities of real neurons. To express
the dynamics of a single biological neuron, it is necessary to implement a five-layer, fully-
connected artificial neural network using deep learning technologies [11].

Either hyperparameter selection or overparameterization is cumbersome in current
neuron models. First, it is challenging for neuron models to search the hyperparameter
space and select the appropriate value for each hyperparameter. Since there is no effective
technique to estimate hyperparameters, strategies for hyperparameter optimization depend
on experts’ domain knowledge and brute-force searching algorithms, which are extremely
laborious and time-consuming. In addition, the selection of hyperparameters is involved
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in neuron models with a system of differential equations. The Izhikevich model [7], for in-
stance, is a two-dimensional dynamical system composed of ordinary differential equations
with hyperparameters. The mechanism of neuron models is described by ordinary differen-
tial equations, whereas a set of hyperparameters correlates to a particular firing behavior.
The systematic differential equation solution is computationally intensive. The iterative na-
ture of numerical integration techniques such as the Euler’s method and the Runge–Kutta
method necessitates a substantial number of iterations in order to acquire solutions. Noise
makes the phenomenon more complicated, and stochastic differential equation solvers
increase the computational burden even further. Second, overparameterization signifies a
tremendous number of parameters. Since each parameter carries information regarding
spike history, neuron models, such as the Point Process Model, invariably associate a high
number of parameters [8]. Although increasing the number of parameters in a model tends
to improve its accuracy, the resulting increase in computing load can impede the model’s
computational efficiency.

In this article, a neuron model called the Regularized Spectral Spike Response Model
(RSSRM) is proposed, which combines the Spike Response Model (SRM) [12] with the
Fourier basis function. By combining their benefits, the model can overcome the afore-
mentioned obstacles. Specifically, a data-driven algorithm for parameter estimation is
implemented without hyperparameter optimization, and the enormous number of parame-
ters is reduced by means of suitable regularization techniques.

The remaining sections of this paper are structured as follows. The Spike Response
Model, the Fourier basis function, and regularization methods are reviewed in Section 2,
followed by an introduction to the Regularized Spectral Spike Response Model. In Section 3,
data preparation, extensive experiments, evaluation metrics, and a comprehensive model
comparison are presented, while in Section 4, a discussion is provided.

2. Materials and Methods

This section provides an overview of the Spike Response Model, the Fourier basis
function, and regularization methods. Then, the Regularized Spectral Spike Response
Model, a novel neuron model, is introduced.

2.1. Spike Response Model

The Spike Response Model (SRM) is a neuron model that describes the input-output
relation of biological neurons. It takes injected currents and spike history as inputs and
produces membrane potentials. In contrast to other neuron models that are developed
using differential equations, SRM is composed of linear filters and has the form

û(t) = urest +
∫ ∞

0
κ(s)I(t− s)ds + ∑

f
η(t− t f ), (1)

in which û is the estimated membrane potential, urest is the resting potential, I is injected
currents, κ is the filter for I, and ∑ f η(t− t f ) is the filter for spike history t f . Specifically,∫ ∞

0 κ(s)I(t− s)ds is a low-pass filter that processes the information of injected currents.
For example, when the input currents are noisy, such a low-pass filter can filter out extrane-
ous information and maintain stable, clear signals. It has been proven that linear filters are
essential components for portraying the neuronal behavior in the subthreshold regime [13].
∑ f η(t− t f ) is a function of the spike history, which accounts for neuronal characteristics
such as refractoriness after spiking.

Although linear filters form the foundation of SRM, there are strong connections
between it and other neuron models that comprise a system of differential equations.
First, SRM is a generalized LIF model when its analytical solution has been obtained
[12]. In addition, there is a relationship between SRM and the Hodgkin–Huxley model
under certain conditions [14]. Furthermore, a fast-spiking neuron model [15] can be well
represented by SRM [16].
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In addition to equivalent model structures between SRM and neuron models driven by
a system of differential equations, the performance of SRM appears promising. A number
of experiments have demonstrated that SRM is competitive in comparison to other neuron
models [17].

It is crucial to select filters κ and η since they determine the performance of SRM. There
are three primary methods. First, hand-crafted filters are proposed based on specific neural
data. For example, the background firing rate data of cat spinal motoneurons [18] can be
reproduced by SRM using filters of the following structure [12]

κ(t− t̂, s) =
R
τm

[1− e−
t−t̂
τrec ] e−

s
τm Θ(S) Θ(t− t̂− s), (2)

η(t− t̂) = −η0 e
− t−t̂

τre f Θ(t− t̂), (3)

in which t̂ indicates the last firing time. Filter κ(t− t̂, s) is a modified version of filter κ(s),
which takes t− t̂ an extra input. Θ represents the Heaviside step function with Θ(s) = 1 for
s > 0, and Θ(s) = 0 else. Variables R, τm, τrec, τm, η0 and τre f are hyperparameters. Second,
filter η can be derived from data using domain knowledge, and then filter κ can be obtained
by numerical implementation. The spike-triggered average (STA) is specifically employed
to extract η. Experts are able to design an appropriate function to describe η based on its
shape. The filter κ can then be determined by solving the Wiener–Hopf equation [19]. Third,
a linear approximation can be used to generate filters κ and η. The numerical optimization
is performed to prevent manually selecting filters [20]. In this scenario, SRM has the form

û(t) = urest +
S

∑
s=0

κs It−s +
Q

∑
q=1

ηqS(t− q), (4)

in which S(t) = ∑ f δ(t− t f ) represents spike history, Q is the number of time lags of S(t),
and S is the number of time lags of injected currents I. A time lag conveys information
pertaining to a prior or current event. For instance, membrane potentials at time t − 2
and t− 1 represent two time lags for the membrane potential at time t with lag = 2 and
1, respectively. In Equation (4), to predict membrane potential u at time t, we use the
information of injected currents from time t to time t− S and spike history from time t− 1
to time t−Q, which corresponds to S time lags of injected currents with lag = 0, 1, 2, . . . , S
and Q time lags of spike history with lag = 1, 2, . . . , Q.

It is difficult for SRM to solve a variety of biologically realistic tasks using the first
or the second method. Since selecting filters involves hyperparameter optimization, it is
arduous for specialists to develop filters that correspond to each task. The third method of
applying a linear approximation for filter selection is preferred, and since it is a data-driven
method, every filter can be obtained automatically from the data. This approach will be
performed to fit SRM in Section 3. However, overparameterization is an issue caused by
this method. SRM must memorize a large amount of information about injected currents
and spike history in order to achieve a high level of performance, which dramatically
increases the number of parameters and restricts its applications to biologically realistic
tasks due to intensive computation and large memory occupancy.

2.2. Fourier Basis Function

The Fourier series is a powerful tool in various fields. In mathematics, it is an efficient
alternative for solving a system of partial differential equations [21]. In deep learning, it
approximates non-differentiable functions to expedite the training process [22]. In data
analysis, it improves the performance of rainfall prediction models [23]. In neuroscience, it
is used to investigate the dynamics of neural spike trains [24].
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The Fourier series has the form

f (t) = a0 +
∞

∑
i=1

[ aicos(2πti/T) + bisin(2πti/T) ] , ∀ t = 1, . . . , n, (5)

in which T is the period, {a}∞
i=0 and {b}∞

i=1 are coefficients of sine and cosine components,
respectively.

In a matrix form, it is represented as

f (t) = Fc

=


1 cos(2π1 1

n ) sin(2π1 1
n ) cos(2π2 1

n ) sin(2π2 1
n ) . . .

1 cos(2π1 2
n ) sin(2π1 2

n ) cos(2π2 2
n ) sin(2π2 2

n ) . . .
. . .

1 cos(2π1 n
n ) sin(2π1 n

n ) cos(2π2 n
n ) sin(2π2 n

n ) . . .




a0
a1
b1
a2
b2
. . .

,
(6)

in which t = [1, . . . , n]T , F is a matrix called the Fourier basis [25], and c is a vector
of coefficients.

Considering the stability of estimating coefficients, the number of columns in F should
not be larger than the number of rows [26]. Specifically, if n is odd, then

f (t) = a0 +
(n−1)/2

∑
i=1

[ aicos(2πi
t
T
) + bisin(2πi

t
T
) ], (7)

and

F =


1 cos(2π1 1

n ) sin(2π1 1
n ) cos(2π2 1

n ) sin(2π2 1
n ) . . . cos(2π n−1

2
1
n ) sin(2π n−1

2
1
n )

1 cos(2π1 2
n ) sin(2π1 2

n ) cos(2π2 2
n ) sin(2π2 2

n ) . . . cos(2π n−1
2

2
n ) sin(2π n−1

2
2
n )

. . .
1 cos(2π1 n

n ) sin(2π1 n
n ) cos(2π2 n

n ) sin(2π2 n
n ) . . . cos(2π n−1

2
n
n ) sin(2π n−1

2
n
n )


n×n

. (8)

If n is even, then

f (t) = a0 +
n/2−1

∑
i=1

[ aicos(2πi
t
T
) + bisin(2πi

t
T
) ] + a n

2
(−1)t, (9)

and

F =


1 cos(2π1 1

n ) sin(2π1 1
n ) cos(2π2 1

n ) sin(2π2 1
n ) . . . cos(2π( n

2 − 1) 1
n ) sin(2π( n

2 − 1) 1
n ) −1

1 cos(2π1 2
n ) sin(2π1 2

n ) cos(2π2 2
n ) sin(2π2 2

n ) . . . cos(2π( n
2 − 1) 2

n ) sin(2π( n
2 − 1) 2

n ) (−1)2

. . .
1 cos(2π1 n

n ) sin(2π1 n
n ) cos(2π2 n

n ) sin(2π2 n
n ) . . . cos(2π( n

2 − 1) n
n ) sin(2π( n

2 − 1) n
n ) (−1)n


n×n

. (10)

One of the intriguing properties of the Fourier basis is its orthogonality. Orthogonality
improves the estimate of coefficients {a} and {b} because it indicates that columns in F are
independent of each other. Additionally, when performing variable selection, it is simple
to filter irrelevant columns, and retain only the essential ones.

Basis function approach, as a nonparametric regression technique, is flexible to fit
data [27]. It has the form [28]

yt = β0 + β1b1(xt) + β2b2(xt) + β3b3(xt) + . . . + εt, (11)

in which yt is the dependent variable, xt is the independent variable, and b1(·), b2(·),
b3(·), . . . represent basis functions, which are the transformations of xt.

The Fourier basis function applies the Fourier basis for the basis function approach,
and is described by
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yt = β0 + β11b11(xt) + β12b12(xt) + β21b21(xt) + β22b22(xt) + β31b31(xt) + β32b32(xt) + . . . + εi, (12)

in which basis functions are bi1 = cos(2πi t
n )xt and bi2 = sin(2πi t

n )xt.
The orthogonality of the Fourier basis is inherited by the Fourier basis function so that

it has advantages in both coefficients estimation and variable selection.

2.3. Regularization

Regularization is a technique for shrinking the magnitude of model parameters to
restrict model complexity. A complex model may capture noisy signals within a given
dataset, resulting in large variance and poor performance on the other dataset. By penaliz-
ing the scale of parameters, regularization methods reduce the variation and guarantee a
smooth fitted model.

Regularization is incorporated into the loss function during the model fitting pro-
cedure, and constrained parameters are acquired by numerical optimization. The loss
function has the form

E = error + regularization, (13)

where the error term measures the goodness-of-fit of the model, while the regularization
term aims to shrink the magnitude of parameters. Some classic regularization methods are
Ridge [29], LASSO [30], Elastic Net [31], and SCAD [32].

2.4. Regularized Spectral Spike Response Model

The Regularized Spectral Spike Response Model (RSSRM) is a neuron model that
combines the Spectral Spike Response Model (SSRM) and regularization methods, where
SSRM is constructed by a combination of SRM and the Fourier basis function. Specifically,
SSRM has the form

û(t) = urest +
J

∑
j=1

wj bt,j[I(t)] +
K

∑
k=1

wk bt−1,k[S(t− 1)], (14)

in which û(t) is the estimated membrane potential, urest is the resting potential, I is the
injected currents, and S(t) = ∑ f δ(t − t f ) is the spike history. bt,i is the Fourier basis
function that projects input currents and spike history from the time domain to the spectral
domain. Specifically, bt,i[x(t)] = cos(iωt) x(t) + sin(iωt) x(t), where ω = 2π

T and T is the
length of time.

Similar to the third method for selecting filters κ and η in SRM mentioned in Section 2.1,
a linear approximation is performed on SSRM so that filters κ and η, referred to as parame-
ters w here, are obtained by numerical optimization methods.

The loss function is

E =
1
2 ∑

t
[ u(t)− û(t) ]2 + λ(

J

∑
j=1
|wj|+

K

∑
k=1
|wk|), (15)

where the first term is the Mean Squared Error, and the second term is L1 regularization [30],
which shrinks the magnitude of parameters to zero so that the number of parameters is
reduced. λ, a hyperparameter, controls the degree of parameter shrinkage.

After mapping to the spectral domain, SSRM is able to exploit the potential of data,
requiring significantly fewer time lags than SRM. Specifically, Section 3.2 shows that
with zero time lag for the injected currents and one time lag for the spike history, SSRM
outperforms SRM in membrane potential prediction and spike train forecasting under the
scenario of parameter reduction.
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3. Results

In this section, the data, including twenty classic firing behaviors of biological neurons,
are generated, followed by exhaustive experiments of model fitting for membrane potentials
and spike trains, respectively. Then, evaluation metrics are introduced, and comprehensive
model comparisons are undertaken to evaluate the performance of each model.

3.1. Data

The data of twenty spiking behaviors of real neurons are generated from the Izhikevich
model by altering the hyperparameter values [7,33]. It is a two-dimensional dynamic
system where the first equation employs the quadratic integrate-and-fire model [20], and
has the form {

τm
dv
dt = (v− vrest)(v− θ)− Ru + RI

τu
du
dt = a(v− vrest)− u + bτu ∑ f δ(t− t f )

, (16)

with the after-spike resetting

if v = θreset, then

{
t f ← t
u← ur

, (17)

in which v is the membrane potential. u is the auxiliary variable. τm and τu are the
membrane time constants. vrest is the resting potential. θ is the critical voltage for spike
initiation by a short current pulse. R is the membrane resistance. ∑ f δ(t− t f ) is the spike
history. θreset is the numerical threshold. ur is the resting potential for the auxiliary variable.
a and b are hyperparameters.

By fitting the spike initiation dynamics of a cortical neuron, dependent parameters are
estimated. The simplified form is described below [7]{

dv
dt = 0.04v2 + 5v + 140− u + I
du
dt = a(bv− u)

, (18)

with the after-spike resetting

if v ≥ 30 mV, then

{
v← c
u← u + d

, (19)

in which v is the membrane potential. u is the auxiliary variable. a, b, c, and d are hyperpa-
rameters.

To simulate twenty spiking patterns of biological neurons, injected currents I, initial
values of v0 and u0, and the value for each hyperparameter are provided. Then, the Euler’s
method, a first-order numerical integration, is applied to solve the two-dimensional system
of ordinary differential equations of the Izhikevich model [34]. Figure 1 shows the twenty
generated spiking modes generated by the Izhikevich model, which are (a) tonic spiking,
(b) phasic spiking, (c) tonic busting, (d) phasic bursting, (e) mixed mode, (f) spike frequency
adaptation, (g) class 1 excitable, (h) class 2 excitable, (i) spike latency, (j) subthreshold
oscillation, (k) resonator, (l) integrator, (m) rebound spike, (n) rebound burst, (o) threshold
variability, (p) bistability, (q) depolarizing after-potential, (r) accommodation, (s) inhibition-
induced spiking, and (t) inhibition-induced bursting.
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Figure 1. Twenty firing behaviors generated by the Izhikevich Model, where y-axis is the membrane
potential (mV) and x-axis is the time (ms).

Although the Izhikevich model strikes a balance between biological plausibility and
computational efficiency [7], it is limited in its flexibility to tackle biologically realistic
tasks. Given that the simplicity of the Izhikevich model is derived from the fitting of the
spike initiation dynamics of a cortical neuron [7], it is unclear whether the superiority
of such a modeling is universal. In addition, the Izhikevich model produces a limited
number of firing patterns. Twenty firing behaviors correlate to hyperparameter values.
In reality, biological neurons are diverse and sensitive to varying amplitudes of injected
currents [35,36]. Consequently, the resulting spiking patterns are complicated, and it
is difficult for the Izhikevich model to obtain the relevant hyperparameter values. The
inability of the Izhikevich model to tackle various biologically realistic tasks is due to
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its restricted modeling of a single biological neuron and its hyperparameter-associated
representation of firing behaviors. It is necessary to develop a novel neuron model that
is adaptable enough to generate spiking behaviors that support a variety of biologically
realistic tasks and that avoids the use of hyperparameters.

3.2. Experiments

Six neuron models, the Spike Response Model (SRM), the Regularized Spike Response
Model (RSRM), the Spectral Spike Response Model (SSRM), the Regularized Spectral Spike
Response Model (RSSRM), the Principal Component Regression (PCR) [28], and the Raised
Cosine Basis Function Regression (RCR) [37–39], are applied to fit the data of twenty
firing behaviors. The dependent variable, membrane potentials, is shared, whereas the
independent variables are versatile. Specifically, independent variables of SRM are injected
currents and spike history with different amounts of time lags. SSRM takes as inputs
the Fourier basis function on injected currents and the spike history with a single time
lag. RSRM is SRM with L1 regularization for the parameter reduction, while RSSRM is
SSRM with L1 regularization. The features of PCR are modified inputs of SRM, where
the principal component analysis, a technique for dimension reduction, is performed to
transform the independent variables of SRM into the principal components. Then, the first
few principal components are selected as the features of PCR to decrease the dimension.
RCR takes the raised cosine basis function on injected currents and spike history with a
single time lag as predictors, where the raised cosine basis function captures temporal
signals close to the time of a spike with relatively few hyperparameters [39]. The details of
each neuron model are shown in Table 1.

Table 1. Attributes of neuron models.

Model Independent Variables Transformation Regularization

SRM It, It−1, . . . , It−J , St−1, . . . , St−K / /
SSRM It, St−1 Fourier basis function /

RSRM It, It−1, . . . , It−J , St−1, . . . , St−K / L1
RSSRM It, St−1 Fourier basis function L1

PCR It, It−1, . . . , It−J , St−1, . . . , St−K Principal component analysis /
RCR It, St−1 Raised cosine basis function /

There are two aspects of the model fitting that should be emphasized. First, parameter
estimation is undertaken using the same numerical optimization method. The curse of
dimensionality results from the fact that some models contain more independent variables
than observations, resulting in high-dimensional input data. To fairly compare all neuron
models, the L2 norm with the hyperparameter λ = 0.01 is performed in the optimization
process to reduce the variability in the parameter estimation. Second, since the goal is
to assess the effect of parameter reduction on neuron models, instead of splitting data of
spiking patterns into training and test sets, the entire data is used for the model fitting,
and the generalizability of models is not considered here.

In addition to prominent membrane potential prediction, excellent spike train forecast-
ing is expected for neuron models. However, the relationship between estimated membrane
potentials and predicted spike trains are unobvious. It is possible that undesirable esti-
mated membrane potentials are from the prediction in the subthreshold regime, while
estimated spike trains are outstanding. Three algorithms are proposed to convert estimated
membrane potentials to estimated spike trains with a reasonable tolerance for mismatches
between the actual and estimated spike trains.

Before discussing each algorithm, the following notations are introduced. The lower-
case letters represent scalars, while the bold ones indicate vectors. In addition, calligraphic
uppercase letters signify sets.

Algorithm 1 aims to convert membrane potentials to spike trains. The quantile q in line
1 is defined as a threshold value in predicted membrane potentials, where the estimated
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firing ratio r× β is larger than the true firing proportion r to take fluctuations in predicted
membrane potentials into account. For example, given the true firing proportion r = 10%
and an inflation coefficient β = 1.5, the estimated firing ratio is r × β = 15%. The 85th
quantile q indicates that 15% of predicted membrane potentials are greater than q. At the
time t, if the value of the predicted membrane potential is over the threshold point q and is
also a local maximum, then a predicted spike is established, which is formalized by lines 2
to 6.

Algorithm 1: Convert membrane potentials to spike trains.
Input: Predicted membrane potential: v̂

Proportion of spikes in the true spike train: r
Inflation coefficient: β

Output: Predicted spike train: ŝ

1 q← v̂ in (1− r× β)-th percentile;
2 for i← 1 to #v̂ do // #v̂ is the length of a vector v̂
3 if v̂i > q and v̂i−1 ≤ v̂i and v̂i ≥ v̂i+1 then
4 ŝi ← 1;
5 else
6 ŝi ← 0;

7 return ŝ;

The hyperparameter β ranges from 1 to 1.5 for SRM and SSRM, and from 1 to 270
for RSRM, RSSRM, PCR, and RCR due to their significant oscillations after parameter
reduction. It is introduced because the predicted membrane potentials may be subject
to substantial fluctuations so that it is difficult to differentiate between these membrane
potentials and potential membrane potentials for spiking. By tuning β, potential membrane
potentials for spiking are accounted for, despite the inclusion of membrane potentials with
substantial fluctuations. Evaluation metrics such as F1-score is applied to to accommodate
this phenomenon in Section 3.3. Overall, the hyperparameter β is applied to capture all
potential membrane potentials for spiking, despite the fact that some membrane potentials
exhibit variations, which will be reflected in the evaluation metrics.

Algorithm 2 searches for the maximum tolerance of predicted spike trains, where
maximum tolerance is a reasonable value such that predicted spikes within it are treated as
the true spikes. The concept is introduced since it is common for the true spike time and
the predicted spike time to differ by a few milliseconds [19]. The maximum tolerance is
an auxiliary variable that improves the assessment of neuron model performance. Since
the performance of each neuron model in twenty firing behaviors differs, the associated
maximum tolerances can vary considerably. For a certain evaluation metric, the greater
the performance, the smaller the maximum tolerance. It is straightforward to transform
the output vector of spike trains from Algorithm 1 into the input set of the spike times
for Algorithm 2 due to the one-to-one relationship between spike trains consisting of 0 s
and 1 s and spike times denoting the precise time of firings. τmax in line 1 is the upper
bound of the maximum tolerance. For example, T̂ = {1, 10} and T = {3, 15}, then
τmax = max((10− 3), (15− 1)) = 14.

Within iterations of the tolerance τ, a comparison is performed between the true spike
time and the predicted spike time. When all elements in either set have been enumerated,
indicating that the comparison is complete, the procedure terminates and further increments
of τ have no effect. Such a τ is known as the maximum tolerance. To simulate specific
firing behaviors, neuron models PCR and RCR may require large values of the maximum
tolerance. Since an enormous maximum tolerance is not biologically reasonable and is
inefficient in applications, the value of maximum tolerance for PCR and RCR is set to 30 ms
by observing that the most considerable maximum tolerance among neuron models SRM,
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SSRM, RSRM, and RSSRM in twenty firing behaviors is around 30 ms. These pre-defined
maximum tolerances are marked by asterisks in Table 2.

Algorithm 2: Find maximum tolerance.

Input: Predicted spike time: T̂
True spike time: T

Output: Maximum tolerance: τ

1 τmax ← the maximum difference between elements in T̂ and in T ;
2 for τ ← 0 to τmax do
3 S ← T̂ ;
4 c = 0;
5 for i ∈ T do
6 m← 1e10;
7 for j← i− τ to i + τ do
8 if j ∈ S then
9 d← |i− j|;

10 if d < m then
11 m← d;
12 mind ← j;

13 if m 6= 1e10 then
14 S ← S \{ mind };
15 c← c + 1;

16 if S = ∅ or c = #T then
17 break;

18 return τ;

Table 2. The performance on twenty firing behaviors.

(a) Tonic Spiking

Model No. Params Inference Memory (MB) 1 Inference Time (s) RMSE VRD 2 F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.42 0.034 0 0 1 (0)

SRM 10,000 0.52 0.056 0.451 1.264 0.980 (0.02)
SSRM 39,998 0.56 0.252 6.93 × 10−7 0 1 (0)

RSRM 95 0.05 0.0007 15.092 7.81 × 106 0.006 (0)
RSSRM 95 0 0.0008 8.844 45.513 0.857 (0.55)

PCR 95 0.77 0.0006 12.850 3.92 × 105 0.079 (30 *)
RCR 95 0.48 0.0008 12.472 126.424 0.621 (30 *)

(b) Phasic Spiking

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.25 0.033 0 0 1 (0)

SRM 11,000 0.77 0.056 0.084 0 1 (0)
SSRM 17,998 0 0.052 1.14 × 10−6 0 1 (0)

RSRM 109 0.08 0.0007 8.910 1.12 × 105 0.007 (0)
RSSRM 108 0 0.0014 2.380 0 1 (0.25)

PCR 109 0.51 0.0007 7.937 0 1 (0.67)
RCR 109 1.11 0.0034 4.084 0 1 (0.56)
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Table 2. Cont.

(c) Tonic Bursting

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.19 0.032 0 0 1 (0)

SRM 10,000 0.95 0.052 0.033 0 1 (0)
SSRM 37,998 0.59 0.225 3.85 × 10−7 0 1 (0)

RSRM 100 0.05 0.0012 17.184 9.17 × 106 0.005 (1.5)
RSSRM 99 0 0.0009 7.828 0 1 (0.23)

PCR 100 0.95 0.0006 12.190 7.22 × 104 0.135 (30 *)
RCR 100 0.31 0.0015 8.677 5.057 0.773 (30 *)

(d) Phasic Bursting

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.63 0.031 0 0 1 (0)

SRM 9832 0.83 0.0631 0.281 0 1 (0)
SSRM 39,998 0.86 0.2568 5.59 × 10−5 0 1 (0)

RSRM 101 0.04 0.0006 13.949 3.29 × 106 0.007 (0.01)
RSSRM 100 0 0.0008 6.558 1.264 0.957 (0.43)

PCR 101 1.3 0.0004 12.623 2.41 × 104 0.075 (30 *)
RCR 101 0.55 0.0008 7.324 0 0.727 (30 *)

(e) Mixed Mode

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.38 0.032 0 0 1 (0)

SRM 14,000 0.68 0.072 0.087 0 1 (0)
SSRM 39,998 0.64 0.259 3.39 × 10−7 0 1 (0)

RSRM 137 0 0.0007 10.016 1.92 × 106 0.005 (0.33)
RSSRM 136 0 0.001 4.095 0 1 (0.26)

PCR 136 0.9 0.0007 7.331 1.07 × 104 0.077 (30 *)
RCR 136 0.84 0.0013 3.969 1.264 0.923 (0.62)

(f) Spike Frequency Adaptation

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.23 0.031 0 0 1 (0)

SRM 12,000 0.87 0.057 0.054 0 1 (0)
SSRM 39,998 0.46 0.257 2.08 × 10−8 0 1 (0)

RSRM 127 0.05 0.0008 10.677 1.98 × 107 0.003 (0)
RSSRM 127 0 0.001 5.309 0 1.000 (0.4)

PCR 127 0.88 0.0007 8.888 1.07 × 104 0.111 (30 *)
RCR 127 0.95 0.001 5.486 20.228 0.8 (1.23)

(g) Class 1 Excitable

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.6 0.039 0 0 1 (0)

SRM 19,284 0.97 0.069 0.299 0 1 (0)
SSRM 39,998 0.95 0.252 1.67 × 10−7 0 1 (0)

RSRM 200 0.06 0.0011 8.010 247.791 0.125 (30.3)
RSSRM 199 0 0.0014 3.919 0 1 (1.4)

PCR 200 1.28 0.0007 7.674 2.92 × 104 0.099 (30 *)
RCR 200 1.28 0.0015 4.850 0 1 (0.2)

(h) Class 2 Excitable

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.04 0.031 0 0 1 (0)

SRM 19,534 0.86 0.068 1.645 0 1 (0.1)
SSRM 39,998 0.58 0.259 0.0002 0 1 (0)

RSRM 201 0.02 0.0008 10.298 668.784 0.768 (21.1)
RSSRM 201 0 0.0014 5.709 31.606 0.938 (0.3)

PCR 201 0.18 0.0007 10.438 1.19 × 106 0.0713 (9.5)
RCR 201 0.81 0.0015 7.113 1461.463 0.19 (36)
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Table 2. Cont.

(i) Spike Latency

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.12 0.031 0 0 1 (0)

SRM 10,001 0.97 0.047 0.044 0 1 (0)
SSRM 39,998 0.06 0.26 1.37 0 1 (0)

RSRM 102 0.02 0.0009 2.651 8091 0.024 (0)
RSSRM 102 0 0.0039 1.860 0 1 (0.4)

PCR 102 0.9 0.0007 1.946 0 1 (1.4)
RCR 102 1.13 0.0012 1.937 0 1 (1.5)

(j) Subthreshold Oscillations

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 2.36 0.024 0 0 1 (0)

SRM 10,001 0.52 0.034 0.228 0 1 (0)
SSRM 30,198 0.91 0.143 4.054 0 1 (0.41)

RSRM 97 0.01 0.0005 1.753 557.530 0.087 (0)
RSSRM 96 0 0.0006 4.053 0 1 (0.43)

PCR 97 0.72 0.0006 1.995 0 1 (0.23)
RCR 97 0.88 0.0003 4.054 0 1 (0.41)

(k) Resonator

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 0.63 0.005 0 0 1 (0)

SRM 1043 0.87 0.004 0.382 0 1 (0)
SSRM 4730 0.4 0.004 2.292 0 1 (11)

RSRM 10 0 0.0001 3.687 182 0.143 (0)
RSSRM 9 0 0.0003 2.308 5.057 0.5 (12.5)

PCR 10 0.95 0.0001 3.548 0 1 (1)
RCR 10 0.58 0.0001 2.299 11.378 0.4 (1)

(l) Integrator

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 1.03 0.008 0 0 1 (0)

SRM 2001 0.52 0.003 3.57 0 1.000 (0)
SSRM 10,598 0.56 0.017 3.16 × 10−7 0 1 (0)

RSRM 20 0.01 0.0001 11.655 7.46 × 104 0.008 (0.23)
RSSRM 20 0 0.0004 9.171 0 1 (0.34)

PCR 20 0.17 0.0001 4.394 0 1 (0.06)
RCR 20 0.13 0.0001 9.205 0 1 (0.06)

(m) Rebound Spike

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 0.71 0.01 0 0 1 (0)

SRM 2159 1.04 0.002 0.147 0 1 (0)
SSRM 6998 0.95 0.007 0.928 0 1 (0)

RSRM 22 0.03 0.0001 12.432 2.88 × 105 0.004 (1)
RSSRM 22 0 0.0001 6.171 0 1 (0.51)

PCR 22 1.67 0.0004 5.616 0 1 (0.3)
RCR 22 0.27 0.0001 6.613 0 1 (0.64)

(n) Rebound Burst

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 2.09 0.031 0 0 1 (0)

SRM 10,001 0.86 0.063 0.009 0 1 (0)
SSRM 49,998 0.58 0.405 5.963 0 1 (0.2)

RSRM 105 0.01 0.0008 5.963 4.22 × 105 0.049 (6.9)
RSSRM 105 0 0.001 5.977 0 1 (0.2)

PCR 105 0.8 0.0008 4.039 2.44 × 104 0.191 (1.8)
RCR 105 0.35 0.0018 5.963 0 1 (0.2)
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Table 2. Cont.

(o) Threshold Variability

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 0.76 0.01 0 0 1 (0)

SRM 2946 1.06 0.005 4.233 0 1 (0)
SSRM 12,398 0.7 0.0242 6.512 0 1 (0.54)

RSRM 30 0 0.0002 8.765 3.7 × 105 0.004 (0.2)
RSSRM 30 0 0.0002 6.521 0 1 (0.61)

PCR 30 0.16 0.0001 5.036 0 1 (0.31)
RCR 30 1.03 0.0002 6.518 0 1 (0.54)

(p) Bistability

Model No. params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.47 0.031 0 0 1 (0)

SRM 16,001 1.12 0.061 0.033 0 1 (0)
SSRM 39,998 0.24 0.25 4.37 × 10−9 0 1 (0)

RSRM 172 0 0.0008 19.727 365.366 0.154 (4.2)
RSSRM 172 0 0.0051 10.341 5.057 0.909 (0.4)

PCR 172 1.59 0.0016 15.401 728.203 0.49 (3.3)
RCR 172 1.05 0.0013 15.573 80.911 0.5 (7.2)

(q) Depolarizing After-potential

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 0.28 0.004 0 0 1 (0)

SRM 1001 0.86 0.001 0.09 0 1 (0)
SSRM 3290 0.16 0.002 6.34 × 10−7 0 1 (0)

RSRM 10 0.01 0.0005 18.203 2.34 × 104 0.015 (0.88)
RSSRM 10 0 0.0005 10.802 0 1 (0.26)

PCR 10 0.18 0.0005 6.735 0 1 (0.22)
RCR 10 0.2 0.0001 10.269 1.264 0.667 (0.22)

(r) Accommodation

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 1.79 0.016 0 0 1 (0)

SRM 5103 0.84 0.014 0.06 0 1 (0)
SSRM 18,998 0.71 0.057 3.59 × 10−9 0 1 (0)

RSRM 51 0 0.0002 2.750 0 1 (10.3)
RSSRM 51 0 0.0003 2.438 0 1 (2.6)

PCR 51 1.46 0.0002 1.761 0 1 (0.3)
RCR 51 0.35 0.0003 3.050 0 1 (0.2)

(s) Inhibition-induced Spiking

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.35 0.031 0 0 1 (0)

SRM 16,001 0.6 0.062 0.004 0 1 (0)
SSRM 39,998 0.7 0.25 1.08 × 10−9 0 1 (0)

RSRM 160 0 0.0008 6.734 1.88 × 104 0.013 (10.3)
RSSRM 160 0 0.0011 3.067 1.264 0.963 (0.9)

PCR 160 0.97 0.0007 5.495 7302 0.233 (16.2)
RCR 160 1.48 0.0012 5.237 0 1 (8.5)
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Table 2. Cont.

(t) Inhibition-induced Bursting

Model No. Params Inference Memory (MB) Inference Time (s) RMSE VRD F1-Score (Maximum Tolerance (ms))

Izhikevich / 3.21 0.031 0 0 1 (0)

SRM 16,001 0.86 0.065 0.007 0 1 (0)
SSRM 39,998 0.68 0.252 2.44 × 10−9 0 1 (0)

RSRM 156 0 0.0007 14.701 2.86 × 107 0.035 (1.8)
RSSRM 155 0 0.0011 5.294 854 0.869 (3.2)

PCR 155 0.82 0.0007 9.400 1.31 × 105 0.359 (8.5)
RCR 155 1.52 0.0014 11.965 0 1 (0.2)

1 Inference memory, the memory consumption during inference, of 0 MB indicates the actual memory usage is
smaller than 10 KB. 2 VRD of 0 represents the actual VRD is tiny and is close to 0. Such a rounding error may
come from Equation (21), which approximates the exact VRD involving kernels and integrals, and an error in
numerical computations that is smaller than the machine epsilon. * They are pre-defined maximum tolerances
considering biological plausibility and applicability.

Algorithm 3 takes two sets of the spike time and a maximum tolerance as inputs and
returns a predicted spike train with the maximum tolerance. This algorithm is similar to
Algorithm 2, with the exception that when a predicted spike time falls inside the maximum
tolerance, the true spike time is substituted.

Algorithm 3: Predicted spike train with maximum tolerance.

Input: Predicted spike time: T̂
True spike time: T
Maximum Tolerance: τ

Output: Predicted spike train with the maximum tolerance: ŝτ

1 for i ∈ T do
2 m← 1e10;
3 for j← i− τ to i + τ do
4 if j ∈ T̂ then
5 d← |i− j|;
6 if d < m then
7 m← d;
8 mind ← j;

9 if m 6= 1e10 then
10 T̂ ← T̂ \{ mind } ∪ { i };

11 ŝτ ← converting from T̂ ;
12 return ŝτ ;

3.3. Evaluation

Neuron models are evaluated based on the evaluation metrics Root Mean Square Error
(RMSE) [20], van Rossum distance (VRD) [40], and F1-score [41] after fixing the number of
parameters. RMSE, the measure of membrane potentials, calculates the deviation between
true membrane potentials derived from data of firing behaviors and predicted membrane
potentials obtained from neuron models. It is defined as

RMSE =

√
1
n

n

∑
i=1

(ui − ûi)2, (20)

in which ui is the true membrane potential at time i, ûi is the predicted membrane potential
at time i, and n is total time steps in the simulation.
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VRD measures the similarity of two spike trains, which calculates the Euclidean
distance of modified spike trains with an exponential function. It has the explicit form [42]

VRD = ∑
i

∑
j

e−|ui−uj |/τ + ∑
i

∑
j

e−|vi−vj |/τ − 2 ∑
i

∑
j

e−|ui−vj |/τ , (21)

where u is the true spike train and v is the predicted spike train. Without loss of generality,
the hyperparameter τ is set to be 1 for simpler calculation.

Since VRD compares a specific time of a spike train with all times of another (the
third term in Equation (21)), it is unnecessary to use maximum tolerance mentioned in
Algorithms 2 and 3, and the predicted spike train is obtained by Algorithm 1. Neuron
models with smaller VRD are desirable.

F1-score, the measure of spike trains, computes the harmonic mean between precision
and recall. Since predicted spike trains are converted from predicted membrane potentials
by Algorithms 1–3, neuron models with higher F1-score and smaller maximum tolerance
are preferred. F1-score has the form

F1 = 2× precision× recall
precision + recall

, (22)

in which precision is the proportion of predicted spikes that are true spikes, while recall
indicates the proportion of true spikes predicted by neuron models correctly. They are
described below

precision =
TP

TP + FP
, (23)

recall =
TP

TP + FN
, (24)

where TP represents the True Positive that there is a fired spike and the prediction of the
neuron model is correct. FP is the False Positive, indicating there is no spike but the neuron
model fires. FN, the False Negative, represents a spike generated by the biological neuron,
but the neuron model does not fire.

3.4. Model Comparison

The model comparison of neuron models is shown in Table 3. The Izhikevich model
composed of a two-dimensional dynamical system of differential equations is regarded as
the ground truth, where parameters are fitted by the cortical neuron data and hyperparam-
eters are specified. The Spike Response Model (SRM) owns 9895 parameters on average of
twenty firing behaviors. In comparison, the Spectral Spike Response Model (SSRM) has
an average of 29,659 parameters, which is a result of applying the Fourier basis function
to injected currents and spike histories, respectively. In order to acquire 100 parameters
on average in the Regularized Spike Response Model (RSRM), a parameter reduction,
pruning more than 99% of parameters, is performed on SRM using L1 regularization for
each firing behavior. To fairly compare different neuron models, the number of parameters
for the Regularized Spectral Spike Response Model (RSSRM), the Principal Component
Regression (PCR), and the Raised Cosine Basis Function Regression (RCR) is restricted and
is the same as in RSRM for each firing pattern. Details are shown in Table 2. Specifically,
RSSRM applies a similar procedure to RSRM, where L1 regularization is conducted on
SSRM in order to control the number of parameters in RSSRM to be the same as in RSRM by
selecting hyperparameters appropriately. PCR utilizes the first n principal components as
new features [28], where n is the number of parameters in RSRM. The corresponding n pa-
rameters are achieved by numerical optimization. Due to the fact that the dimensionality of
the raised cosine basis is a hyperparameter, the required parameters in RCR are controlled.
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Table 3. Average performance on twenty firing behaviors.

Model No. Params Inference
Memory (MB) 1

Inference Time
(s) RMSE VRD 2

F1-Score
(Maximum

Tolerance (ms))

Izhikevich / 2.48 0.025 0 0 1 (0)

SRM 9895 0.83 0.043 0.587 0.063 0.999 (0.051)
SSRM 29,659 0.56 0.174 1.056 0 1 (1.056)

RSRM 100 0.02 0.0006 10.158 3.6 × 106 0.123 (4.453)
RSSRM 100 0 0.0015 5.632 47.219 0.95 (1.444)

PCR 100 0.86 0.0006 7.265 9.5 × 104 0.546 (11.19)
RCR 100 0.77 0.001 6.833 85.399 0.83 (7.049)

1 Inference memory, the memory consumption during inference, of 0 MB indicates the actual memory usage is
smaller than 10 KB. 2 VRD of 0 represents the actual VRD is tiny and is close to 0. Such a rounding error may
come from Equation (21), which approximates the exact VRD involving kernels and integrals, and an error in
numerical computations that is smaller than the machine epsilon.

Although SRM has significantly fewer parameters than SSRM, its overall performance
is superior. In particular, SRM it has a faster inference time, lower RMSE, and smaller
maximum tolerance than SSRM, as well as comparable VRD and F1-score despite requiring
slightly larger memory for inference, i.e., simulating firing behaviors. Both SRM and SSRM
are well performed on the vast majority of firing behaviors, which are shown in Figures 2–5.
However, the parameter reduction of SRM is not robust. After pruning 99% of parameters
using L1 regularization, the inference memory, RMSE, VRD, F1-score, and maximum
tolerance of RSRM are inferior than those of RSSRM with the same number of parameters.
Specifically, inference memory, RMSE and maximum tolerance of RSSRM are about half as
tiny as those of RSRM, while VRD and F1-score of RSSRM are 72,000 times less and 8 times
higher than those of RSRM, respectively. Their difference in inference time is minor, as both
require approximately 1 ms, which is far faster than the Izhikevich model.

In addition, the robustness of parameter reduction in RSSRM has been demonstrated
by comparing the changes in F1-score before and after the parameter pruning. RSSRM’s
F1-score decreases by only 0.05 after parameter reduction, while F1-score of RSRM is re-
duced drastically. Furthermore, the difference in RMSE and VRD between RSSRM and
SSRM is trivial when compared to the difference between RSRM and SRM. Specifically,
the RMSE of RSSRM and RSRM is approximately 5 and 20 times larger than that of SSRM
and SRM, whereas the VRD of RSSRM and RSRM is 47 and 3,600,000 times larger, respec-
tively. Moreover, their changes in inference memory and inference time are noteworthy.
After parameter pruning, the memory usage and runtime of RSSRM during inference are
56 times lower and 116 times faster than those of SSRM, although RSRM has 41 times larger
memory and 72 times faster runtime than SRM.

0 25 50 75 100 125 150 175 200
80

60

40

20

0

20

(a) Tonic Spiking

0 20 40 60 80

80

60

40

20

0

20

(b) Phasic Spiking

0 25 50 75 100 125 150 175 200

80

60

40

20

0

20

(c) Tonic Bursting

0 25 50 75 100 125 150 175 200

80

60

40

20

0

20

(d) Phasic Bursting

Figure 2. Cont.
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Figure 2. Membrane potentials of SRM (blue) vs. Izhikevich Model (green), where y-axis is the
membrane potential (mV) and x-axis is the time (ms).
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Figure 3. Spike trains of Izhikevich Model (black) vs. unmodified SRM (green) vs. modified SRM by
maximum tolerance (blue), where x-axis is the time (ms).
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Figure 4. Membrane potentials of SSRM (blue) vs. Izhikevich Model (green), where y-axis is the
membrane potential (mV) and x-axis is the time (ms).

60 80 100 120 140 160 180 200

(a) Tonic Spiking

0 20 40 60 80

(b) Phasic Spiking

0 25 50 75 100 125 150 175 200

(c) Tonic Bursting

0 25 50 75 100 125 150 175 200

(d) Phasic Bursting

0 25 50 75 100 125 150 175 200

(e) Mixed Model

0 25 50 75 100 125 150 175 200

(f) Spike Frequency Adaptation

0 250 500 750 1000 1250 1500 1750 2000

(g) Class 1 Excitable

0 250 500 750 1000 1250 1500 1750 2000

(h) Class 2 Excitable

0 100 200 300 400 500

(i) Spike Latency

0 20 40 60 80 100 120 140

(j) Subthreshold Oscillations

0 200 400 600 800 1000 1200

(k) Resonator

0 10 20 30 40 50

(l) Integrator

0 5 10 15 20 25 30 35

(m) Rebound Spike

0 200 400 600 800 1000

(n) Rebound Burst

0 10 20 30 40 50 60

(o) Threshold Variability

0 20 40 60 80 100 120 140

(p) Bistability

Figure 5. Cont.



Brain Sci. 2022, 12, 1008 20 of 33

0 2 4 6 8 10 12 14 16

(q) Depolarizing After-potential

0 200 400 600 800 1000

(r) Accommodation

0 200 400 600 800 1000

(s) Inhibition-induced Spiking

0 200 400 600 800 1000

(t) Inhibition-induced Bursting

Figure 5. Spike trains of Izhikevich Model (black) vs. unmodified SSRM (green) vs. modified SSRM
by maximum tolerance (blue), where x-axis is the time (ms).

Although PCR and RCR have superior overall performance than RSRM, they are not
able to compete with RSSRM, which has the lowest RMSE, the lowest VRD, the highest
F1-score, and the smallest maximum tolerance among these four neuron models with
parameter reduction. The inadequate performance of PCR is further demonstrated by the
low variance explanation. On average for twenty firing behaviors, the first 100 principal
components of PCR explain only about 51% of the variance in data. In an ideal scenario,
the first few principal components should explain more than 80% of variance. Since PCR
assumes that principal components are obtained by a linear combination of the original data,
non-linear methods are advocated. Therefore, RSSRM and RCR, obtaining nonlinearity
from basis functions, perform better than PCR. RSSRM and RCR achieve the best and
the second-best performance among neuron models with parameter reduction. However,
considering the involvement of hyperparameters in constructing the raised cosine basis in
RCR, RSSRM, consisting of the hyperparameter-free Fourier basis function, is preferable.

In addition to evaluating the performance of neuron models on an average of twenty
firing behaviors, their capacity on different categories of spiking modes is studied, respec-
tively. Twenty spiking patterns are classified into two types based on the number of spikes.
One class, as shown in Table 4, is the one-spike firing behavior, which includes (b) phasic
spiking, (i) spike latency, (j) subthreshold oscillations, (k) resonator, (i) integrator, (m)
rebound spike, (o) threshold variability, (q) depolarizing after-potential, and (r) accommo-
dation. These nine spiking modes each produce a single spike throughout the experiment.
As illustrated in Table 5, the other class contains eleven spiking patterns that fire multiple
spikes during the simulation. It consists of (a) tonic spiking, (c) tonic bursting, (d) phasic
bursting, (e) mixed mode, (f) spike frequency adaptation, (g) class 1 excitable, (h) class 2
excitable, (n) rebound burst, (p) bistability, (s) inhibition-induced spiking, and (t) inhibition-
induced bursting. Table 4 demonstrates that SRM is superior to SSRM in terms of the
number of parameters, inference time, RMSE, and maximum tolerance. After parameter
reduction, RSSRM beats RSRM in terms of inference memory, RMSE, VRD, and F1-score.
With only 50 parameters, PCR has the best performance among the neuron models with
parameter reduction. It has the fastest inference time, the smallest RMSE, the lowest VRD,
the highest F1-score, and the smallest maximum tolerance. Although its memory usage
during inference is greater than that of other neuron models with parameter reduction, it is
significantly lower than that of the Izhikevich model. PCR is the most notable model for
predicting one-spike firing behaviors, whereas RSSRM is the second-best model. In Table 5,
it is challenging to distinguish between the performance of SRM and SSRM. Although SRM
has fewer parameters, a faster inference time, and a smaller RMSE, SSRM shows lower
memory usage, a lower VRD, a higher F1-score, and a smaller maximum tolerance. When
parameter reduction is considered, RSSRM has the lowest memory consumption, the lowest
RMSE, the lowest VRD, the highest F1-score, and the smallest maximum tolerance among
all neuron models. Furthermore, RCR is the second most prominent neuron model though
the maximum tolerance is greater than twelve times that of RSSRM. Moreover, RSRM is
the most unsatisfactory neuron model. Compared with RSSRM, it has around twice the
RMSE, more than seventy thousand times the VRD, one-ninth the F1-score, and more than
seven times the maximum tolerance. Comparing Table 4 and Table 5, the Izhikevich model
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doubles the memory usage for inference from one-spike firing behaviors to multiple-spike
firing patterns, but the other neuron models do not exhibit this increase. Moreover, RSSRM
demonstrates a consistent inference time, whereas the inference time for the other neuron
models increases dramatically.

Table 4. Average performance on one-spike firing behaviors.

Model No. Params Inference
Memory (MB) 1

Inference Time
(s) RMSE VRD 2

F1-Score
(Maximum

Tolerance (ms))

Izhikevich / 1.55 0.016 0 0 1 (0)

SRM 5028 0.83 0.018 0.982 0 1 (0)
SSRM 16,134 0.49 0.063 1.685 0 1 (1.328)

RSRM 50 0.02 0.0004 7.867 9.8 × 104 0.144 (1.401)
RSSRM 50 0 0.0015 5.078 0.562 0.944 (1.989)

PCR 50 0.75 0.0004 4.330 0 1 (0.499)
RCR 50 0.63 0.0006 5.336 1.405 0.896 (0.57)

1 Inference memory, the memory consumption during inference, of 0 MB indicates the actual memory usage is
smaller than 10 KB. 2 VRD of 0 represents the actual VRD is tiny and is close to 0. Such a rounding error may
come from Equation (21), which approximates the exact VRD involving kernels and integrals, and an error in
numerical computations that is smaller than the machine epsilon.

Table 5. Average performance on multiple-spike firing behaviors.

Model No. Params Inference
Memory (MB) 1

Inference Time
(s) RMSE VRD 2

F1-Score
(Maximum

Tolerance (ms))

Izhikevich / 3.24 0.032 0 0 1 (0)

SRM 13,878 0.83 0.062 0.264 0.115 0.998 (0.093)
SSRM 40,725 0.62 0.265 0.542 0 1 (0.018)

RSRM 141 0.03 0.0008 12.032 6.5 × 106 0.106 (6.95)
RSSRM 141 0 0.0014 6.086 85.394 0.954 (0.997)

PCR 141 0.95 0.0008 9.667 1.7 × 105 0.175 (19.936)
RCR 141 0.87 0.0013 8.057 154.123 0.776 (12.35)

1 Inference memory, the memory consumption during inference, of 0 MB indicates the actual memory usage is
smaller than 10 KB. 2 VRD of 0 represents the actual VRD is tiny and is close to 0. Such a rounding error may
come from Equation (21), which approximates the exact VRD involving kernels and integrals, and an error in
numerical computations that is smaller than the machine epsilon.

Although Tables 3–5 demonstrate that the overall performance of RSSRM is prominent
among neuron models with parameter reduction, it is worthwhile to measure the capability
of neuron models for each firing behavior. Details are shown in Table 2.

First, SRM, containing fewer parameters, exhibits faster inference time than SSRM
in twenty firing patterns with the exception of (b) phasic spiking. Furthermore, RMSE
of SRM for spiking behaviors (i) spike latency, (j) subthreshold oscillations, (k) resonator,
(m) rebound spike, (n) rebound burst, and (o) threshold variability is smaller than that
of SSRM. However, VRD and F1-score of both SRM and SSRM are nearly all 0.0 and
1.0 for twenty firing behaviors, respectively, indicating that perfect spike train prediction,
the maximum tolerance of SSRM for (j) subthreshold oscillations, (k) resonator, (n) Rebound
Burst, and (o) threshold variability is substantially greater than those of SRM, which
remains zero, indicating perfect matches between the predicted and true spike trains. Zero
maximum tolerance for SSRM is shown for (i) spike latency and (m) rebound spike due to
a moderate corresponding RMSE.

In addition, in contradiction to the other firing behaviors, RMSE of RSSRM for (j)
subthreshold oscillations and (n) rebound burst are larger than those of RSSRM. Specifically,
the comparable RMSE of SSRM and RSSRM for (j) subthreshold oscillations indicates the
Fourier basis function cannot capture the variability of membrane potentials, as depicted
in Figures 4 and 6. When it comes to (n) rebound burst, Figures 4 and 6 reveal that
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neither SSRM nor RSSRM are able to reproduce the membrane potentials during spikes
firing precisely.
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Figure 6. Membrane potentials of RSSRM, where y-axis is the membrane potential (mV) and x-axis is
the time (ms).

Furthermore, Table 2 show that none of RSRM owns a higher F1-score and a lower
VRD than RSSRM though maximum tolerance of RSRM for (a) tonic spiking, (b) phasic
spiking, (f) spike frequency adaptation, (i) spike latency, (j) subthreshold oscillations,
and (k) resonator are all zeros. The rationale is indicated in Figures 7 and 8, where
RSRM is incapable of reproducing those firing behaviors precisely and instead provides a
combination of step functions. In contrast to this circumstance, there are cases in which a
considerable tolerance is required. To capture firing behaviors (g) class 1 excitable, (h) class
2 excitable, (r) accommodation, and (s) inhibition-induced spiking, the maximum tolerance
values for RSRM range from 10.3 to 30.3 ms.
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Figure 7. Membrane potentials of RSRM, where y-axis is the membrane potential (mV) and x-axis is
the time (ms).
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Figure 8. Spike trains of Izhikevich model (black) vs. unmodified RSRM (green) vs. modified RSRM
by maximum tolerance (blue), where x-axis is the time (ms).

Moreover, Table 2 illustrates that, among all neuron models, RSSRM takes the lowest
memory consumption during inference, whereas the Izhikevich model shows the highest
memory usage for twenty spiking patterns, excluding (k) resonator, (m) rebound spike,
(o) threshold variability and (q) depolarizing after-potential. Compared to SRM, SSRM
requires smaller memory for twenty firing behaviors despite a slower inference time. Specif-
ically, the memory consumption of SSRM is lower for fifteen firing behaviors (b) phasic
spiking, (c) tonic bursting, (e) mixed mode, (f) spike frequency adaptation, (g) class 1 ex-
citable, (h) class 2 excitable, (i) spike latency, (k) resonator, (m) rebound spike, (n) rebound
burst, (o) threshold variability, (p) bistability, (q) depolarizing after-potential, (r) accommo-
dation, and (t) inhibition-induced bursting, while SSRM has only one faster inference time
than SRM for (b) phasic spiking. Among neuron models with parameter reduction, RSRM
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has the second-lowest memory usage in twenty firing patterns. Although PCR shows the
highest memory consumption in nine spiking modes, it consumes the largest memory on
average, as shown in Table 3. A comparison of inference time among neuron models with
parameter reduction is trivial, as all of them takes about 1 ms during inference, which is
over thirty times faster than the Izhikevich model.

To compare neuron models with parameter reduction, Table 6 ranks the performance
of RSRM, RSSRM, PCR, and RCR across twenty firing behaviors. RSSRM achieves the
smallest RMSE for eleven spiking patterns, including (a) tonic spiking, (b) phasic spiking,
(c) tonic bursting, (d) phasic bursting, (f) spike frequency adaptation, (g) class 1 excitable,
(h) class 2 excitable, (i) spike latency, (p) bistability, (s) inhibition-induced spiking, and
(t) inhibition-induced bursting, and the second-smallest RMSE for five firing modes, which
are (e) mixed mode, (k) resonator, (l) integrator, (m) rebound spike, and (r) accommodation.
Specifically, the difference between RSSRM and the best neuron model in terms of RMSE
is less than 0.5. RSSRM produces the third-smallest RMSE among the other four spike
behaviors, and the difference between it and the second-best model is minor, except for
(q) depolarizing after-potential, where the difference is around 0.6.

Taking spike train forecasting into account, RSSRM achieves the highest F1-score for
ten firing modes containing (a) tonic spiking, (b) phasic spiking, (c) tonic bursting, (d)
phasic bursting, (e) mixed mode, (f) spike frequency adaptation, (h) class 2 excitable, (i)
spike latency, (n) rebound burst, and (p) bistability, and the second-highest F1-score for six
spiking patterns, which includes (g) class 1 excitable, (k) resonator, (m) rebound spike, (q)
depolarizing after-potential, (s) inhibition-induced spiking, and (t) inhibition-induced burst-
ing. Specifically, RSSRM maintains a perfect F1-score for (g) class 1 excitable, (m) rebound
spike, and (q) depolarizing after-potential despite a slightly larger maximum tolerance.
RSSRM obtains the third-highest F1-score among the other four firing modes. While the
perfect F1-score remains, the corresponding maximum tolerance is insufficient. Moreover,
RSSRM accomplishes the lowest VRD across twenty firing behaviors, with the exception of
(d) phasic bursting, (k) resonator, (s) inhibition-induced spiking, and (t) inhibition-induced
bursting, where the second-lowest VRD is obtained. Although the rankings of VRD and
F1-score for RSSRM fluctuate across eight firing modes, they are nearly identical when the
influence of maximum tolerance is removed.

Moreover, PCR obtains six of the smallest RMSE, nine of the lowest VRD, and six of
the highest F1-score among twenty spiking behaviors, whereas RCR achieves two of the
smallest RMSE, twelve of the lowest VRD, and six of the highest F1-score. Specifically,
RSSRM and RCR earn the highest F1-score for (n) rebound burst, while PCR and RCR
accomplish the highest F1-score for (l) integrator. Although RSRM does not attain the
highest F1-score for any firing behavior, it achieves the smallest RMSE for (j) subthreshold
oscillations though the corresponding F1-score is the lowest.

In Table 6, RSSRM achieves the smallest RMSE, the lowest VRD, and the highest
F1-score for eleven, sixteen, and ten firing behaviors, respectively, outperforming the other
neuron models with parameter reduction.

Corresponding rankings support such an observation, where RMSE, VRD, and F1-
score rankings of RSSRM are 1.65, 1.2, and 1.7, respectively. The superior performance of
RSSRM is attributed to its excellent modeling strategy. Under the Fourier basis function,
one time lag is imposed so that the model takes advantage of data maximally, which are
shown in Figures 6 and 9. Constructing RSRM requires an enormous number of time
lags, which wastes a substantial quantity of data. Table 1, Figures 7 and 8 present this
phenomenon. With the second-lowest VRD and the second-highest F1-score, RCR, endows
the potential in spike train prediction at the expense of membrane potential forecasting.
Figure 10 shows the prominent spike train prediction, whereas Figure 11 demonstrates that
predicted membrane potentials in firing behaviors such as (c) tonic bursting, (d) phasic
bursting, (h) class 2 excitable, and (p) bistability are dramatically different from those of
other neuron models, which use abnormal downward vertical lines to represent spikes.
The performance of PCR is extreme, since the rankings of RMSE, VRD, and F1-score for
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the majority of firing patterns are either first or third. Figures 12 and 13 illustrate that
substantial fluctuations in the subthreshold regime contribute to its undesirable RMSE.
Nevertheless, its performance exceeds expectations, considering that the modeling does
not include the temporal structure.

Table 6. Ranked Performance on twenty firing behaviors.

RMSE VRD F1-Score
RSRM RSSRM PCR RCR RSRM RSSRM PCR RCR RSRM RSSRM PCR RCR

(a) Tonic spiking 4 1 3 2 4 1 3 2 4 1 3 2
(b) Phasic Spiking 4 1 3 2 4 1 1 1 4 1 3 2
(c) Tonic Bursting 4 1 3 2 4 1 3 2 4 1 3 2
(d) Phasic Bursting 4 1 3 2 4 2 3 1 4 1 3 2
(e) Mixed Mode 4 2 3 1 4 1 3 2 4 1 3 2
(f) Spike Frequency Adaptation 4 1 3 2 4 1 3 2 4 1 3 2
(g) Class 1 Excitable 4 1 3 2 3 1 4 1 3 2 4 1
(h) Class 2 Excitable 3 1 4 2 2 1 4 3 2 1 4 3
(i) Spike Latency 4 1 3 2 4 1 1 1 4 1 2 3
(j) Subthreshold Oscillations 1 3 2 4 4 1 1 1 4 3 1 2
(k) Resonator 4 2 3 1 4 2 1 3 4 2 1 3
(l) Integrator 4 2 1 3 4 1 1 1 4 3 1 1
(m) Rebound Spike 4 2 1 3 4 1 1 1 4 2 1 3
(n) Rebound Burst 4 3 1 2 4 1 3 1 4 1 3 1
(o) Threshold Variability 4 3 1 2 4 1 1 1 4 3 1 2
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Figure 9. Spike trains of Izhikevich Model (black) vs. unmodified RSSRM (green) vs. modified
RSSRM by maximum tolerance (blue), where x-axis is the time (ms).
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Figure 10. Spike trains of Izhikevich model (black) vs. unmodified RCR (green) vs. modified RCR by
maximum tolerance (blue), where x-axis is the time (ms).
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Figure 11. Membrane potentials of RCR, where y-axis is the membrane potential (mV) and x-axis is
the time (ms).
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Figure 12. Membrane potentials of PCR, where y-axis is the membrane potential (mV) and x-axis is
the time (ms).
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Figure 13. Spike trains of Izhikevich Model (black) vs. unmodified PCR (green) vs. modified PCR by
maximum tolerance (blue), where x-axis is the time (ms).

4. Discussion

In this article, in order to overcome the challenges of hyperparameter optimization
and overparameterization, which impede the deployment of neuron models in different
biologically realistic tasks, the Regularized Spectral Spike Response Model (RSSRM) is
proposed. This model avoids hyperparameter selection by data-driven methods and solves
overparameterization through regularization approaches.

A comprehensive comparison of neuron models with parameter reduction is con-
ducted, including the Regularized Spike Response Model (RSRM), the Regularized Spectral
Spike Response Model (RSSRM), the Principal Component Regression (PCR), and the
Raised Cosine Basis Function Regression (RCR). Their predictability of membrane poten-
tials and spike trains is evaluated based on Root Mean Square Error (RMSE), van Rossum
distance (VRD), F1-score, and maximum tolerance. On average of twenty firing behaviors,
RSSRM with 100 parameters achieves the best performance, as demonstrated by the small-
est RMSE (5.632), the lowest VRD (47.219), the highest F1-score (0.95), and the smallest
maximum tolerance (1.4 ms). RSSRM with 141 parameters achieves the lowest RMSE
(6.086), the lowest VRD (85.394), the highest F1-score (0.954), and the smallest maximum
tolerance (0.997 ms) for the class of multiple-spike firing behaviors, whereas RSSRM with
50 parameters is the second-best neuron model that obtains the second-lowest RMSE (5.078),
the second-lowest VRD (0.562), second-highest F1-score (0.944), and the fourth-smallest
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maximum tolerance (1.989 ms). RSSRM demonstrates superior performance in membrane
potential prediction and spike train forecasting in the majority of spiking patterns examin-
ing twenty firing behaviors independently. After ranking the capacity of neuron models
with parameter reduction for each firing behavior, RSSRM achieves the top position on
average, where RMSE, VRD, and F1-score rankings are 1.65, 1.2, and 1.7, respectively. In
addition, RSSRM achieves the lowest memory consumption (<10 KB) and approximate
1 ms runtime during inference among neuron models, which is 248 times lower and 25
times faster than the Izhikevich model, as shown in Table 3.

However, there are some limitations to this work. First, we only evaluate neuron
models with L1 regularization and do not consider the other regularization methods
such as elastic net and SCAD. Second, our simulated data of twenty firing behaviors is
generated from the Izhikevich model. It is worthwhile to evaluate the performance of
neuron models using data derived from biological neurons. Third, the performance of
biological neural networks composing RSSRM is not evaluated since the involvement of
learning rules and network structures potentially complicates the analysis. These problems
will be investigated in future research.
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