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Exploration of multiphoton 
entangled states by using weak 
nonlinearities
Ying-Qiu He1, Dong Ding1,2, Feng-Li Yan1 & Ting Gao3

We propose a fruitful scheme for exploring multiphoton entangled states based on linear optics and 
weak nonlinearities. Compared with the previous schemes the present method is more feasible because 
there are only small phase shifts instead of a series of related functions of photon numbers in the 
process of interaction with Kerr nonlinearities. In the absence of decoherence we analyze the error 
probabilities induced by homodyne measurement and show that the maximal error probability can be 
made small enough even when the number of photons is large. This implies that the present scheme is 
quite tractable and it is possible to produce entangled states involving a large number of photons.

Undoubtedly, entanglement1–4 is one of the most crucial elements in quantum information processing, e.g. quan-
tum cryptography5, quantum teleportation6, quantum secure direct communication7,8, etc. In recent years, quan-
tum entanglement has been extensively investigated in various candidate physical systems9–16, in particular, one 
can prepare and manipulate multipartite entanglement in optical systems17–28.

Generally, a spontaneous parametric down-conversion (PDC) source29,30 is capable of emitting pairs of 
strongly time-correlated photons in two spatial modes. As extensions of interest, with linear optics and nonlinear 
optical materials several schemes for creating multiphoton entangled states have been proposed31–37. For a large 
number of photons, however, there are some technological challenges such as probabilistic emission of PDC 
sources and imperfect detectors. A feasible approach is to use the simple single-photon sources, instead of waiting 
the successive pairs, and quantum nondemolition (QND) measurement38–45 with weak Kerr nonlinearities. Note 
that the Kerr nonlinearities46–48 are extremely weak and the order of magnitude of them is only 10−2 even by using 
electromagnetically induced transparency49,50. More recently, Shapiro et al.51,52 showed that the causality-induced 
phase noise will preclude high-fidelity π-radian conditional phase shifts created by the cross-Kerr effect. In these 
cases, with the increase of the number of photons it is usually more and more difficult to study multiphoton 
entanglement in the regime of weak nonlinearities.

In this paper, we focus on the exploration of multiphoton entangled states with linear optics and weak nonlin-
earities. We show a quantum circuit to evolve multimode signal photons fed by a group of arbitrary single-photon 
states and the coherent probe beam. Particularly, there are only two specified but small phase shifts induced in 
the process of interaction with weak nonlinearities. This fruitful architecture allows us to explore multiphoton 
entangled states with a large number of photons but still in the regime of weak nonlinearities.

Kerr nonlinearities
Before describing the proposed scheme, let us first give a brief introduction of the Kerr nonlinearities. The non-
linear Kerr media can be used to induce a cross phase modulation with Hamiltonian of the form χ= ħ † †H a a a as s p p, 
where χ is the coupling constant and as ( )ap  represents the annihilation operator for photons in the signal (probe) 
mode. If we assume that the signal mode is initially described by the state ψ = +c c0 1s s s0 1  and the coherent 
probe beam is α p

, then after the Kerr interaction the whole system evolves as 

ψ α α α= + , ( )
θ/ħ c ce 0 1 e 1
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where θ χ= t with interaction time t. In order to distinguish different cases, one may perform a homodyne meas-
urement39 on the probe beam with quadrature operator φ( ) = +φ φ−ˆ †x a ae ep p

i i , where φ is a real constant. 
Especially for φ = 0, this operation is conventionally referred to as X homodyne measurement; while for φ π= /2, 
it is called P homodyne measurement.

Creation of multiphoton entangled states with linear optics and weak nonlinearities
Let , = , , ,a i n1 2i  represent input ports with respective spatial modes, namely signal modes, and α  is a 
coherent beam in probe mode. The setup of creating multiphoton entangled states is shown in Fig. 1.

Without loss of generality we may suppose that each input port is supplied with an arbitrary single-photon 
state. Then, the total input state reads
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, , , , ∈ , i i i {0 1}n1 2 , are complex coefficients satisfying the normalization condition 
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Each polarizing beam splitter (PBS) is used to transmit H  polarization photons and reflect V  polarization pho-
tons. When the signal photons travel to the PBSs, they will be individually split into two spatial modes and then 
interact with the nonlinear media so that pairs of phase shifts θ and 2θ are induced on the coherent probe beam, 
respectively. We here introduce a single phase gate θ θ( ) = − /R n3 2n  so as to implement the next X homodyne 
measurement on the probe beam. ϕ ( )xm , = , , , /m n1 2 2 for even n and = / , / , , /m n1 2 3 2 2 for odd n, are 
phase shifts on the signal photons based on the measured values of x via the classical feed-forward information. 
At last, at the ports , = , , ,b i n1 2i  one may obtain / +n 2 1 output states for even n or ( + )/n 1 2 states for odd 
n.

We describe our method in details. For n is even, after the interaction between the photons with Kerr media 
and followed by the action of the phase gate, the combined system evolves as

Figure 1.  The schematic diagram of creating multiphoton entangled states with linear optics and weak 
nonlinearities. , = , , ,a i n1 2i  are input ports and each port is supplied with an arbitrary single-photon 
state, while , = , , ,b i n1 2i  are the corresponding outputs, respectively. θ and 2θ represent phase shifts in the 
coherent probe beam α  induced by Kerr interaction between photons. θ( )Rn  is a phase shift gate. Each ϕ ( )xm  
represents a phase shift on the signal photons based on classical feed-forward information.
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In order to create the desired multiphoton entangled states, we here perform an X homodyne measurement38,45 
on the probe beam. If the value x of the X homodyne measurement is obtained, then the signal photons become
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where 

α θ π( , ( )) = ( ) , ( )α θ− / − − ( ) /f x mcos 2 e 6x m1 4 [ 2 cos ] 42

= , , , , /m n0 1 2 2, are respectively Gaussian curves which are associated with the probability amplitudes of 
the outputs, and 

φ α θ α θ π( ) = ( ) − ( ) , ( )x m x msin [ 2 cos ]mod 2 7m

= , , , /m n1 2 2, are respectively phase factors based on the values of the X homodyne measurement. Note that 
the peaks of these Gaussian distributions locate at α θ( )m2 cos . Thus, the midpoints between two neighboring 
p e a k s  α θ θ= ( / ) ( − / )x k2 cos 2 cos[ 1 2 ]mk

 a n d  t h e  d i s t a n c e s  o f  t w o  n e a r b y  p e a k s 
α θ θ= ( − ) − ( )x k k2 {cos[ 1 ] cos }dk

 with = , , , /k n1 2 2. Obviously, with these /n 2 midpoint values xmk
 

there exist / +n 2 1 intervals and each interval corresponds to an output state.
We now consider the phase shifts ϕ ( )xm . The signal photon evolves as = ϕ ( )ˆ ˆ

† †b aei
x

i
i m , = , , ,i n1 2 .  

A straightforward calculation shows that
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After these feed-forward phase shifts have been implemented and the signal photons pass through the PBSs, one 
can obtain the desired states as follows. Clearly, for <
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Similarly, for odd n, we have
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Also,
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Here, the functions α θ( , ( ))f x mcos , phase shifts φ ( )xm  and ϕ ( )xm  are approximately the same as those 
described for even n, except for = / , / , , /m n1 2 3 2 2, and then the similar results hold for the midpoints xmk
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As an example of the applications of interest for the present scheme, we introduce a class of remarkable mul-
tipartite entangled states
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are two orthonormal states, namely Dicke states53,54. In view of its “catness”, the state Ψn
k  can be referred to as 

cat-like state, and especially for = /k n 2 it can be expressed as the canonical n-partite Greenberger-Horne-Zeilinger 
(GHZ) state. In the present scheme, obviously, for = /



a 1 2i i i
n

n1 2
, , , , = , i i i 0 1n1 2 , we can obtain these 

cat-like states with = , , , /k n0 1 2 for even n and = / , / , , /k n1 2 3 2 2 for odd n, where the qubits are 
encoded with the polarization modes ≡H 0  and ≡V 1 . Of course, more generally, we may project out a 
group of multiphoton entangled states involving generalized Dicke states.

Discussion
There are two models commonly employed in the process of Kerr interaction, single-mode model and 
continuous-time multi-mode model51. The former implies that one may ignore the temporal behavior of the 
optical pulses but the latter is causal, non-instantaneous model involving phase noise. It has been shown that52 
this causality-induced phase noise will preclude the possibility of high-fidelity CPHASE gates created by the 
cross-Kerr effect in optical fiber. To solve this problem, one may need to find an optimum response function for 
the available medium, or to exploit more favorable systems, such as cavitylike systems55. After all, the ultimate 
possible performance of Kerr interaction with a larger system is an interesting open issue. More recently, we note 
that Feizpour et al.56 showed the first direct measurement of the cross-phase shift due to single photons. It may be 
possible to open a door for future studies of nonlinear optics in quantum information processing. In the present 
scheme, we restrict ourselves to ignoring the phase noise and concentrate mainly on showing a method for 
exploring multiphoton entangled states in the regime of weak cross-Kerr nonlinearities, i.e. θ π .

It is worth noting that, there are only small phase shifts θ and 2θ instead of a series of related functions of the 
number of photons in the process of interaction with Kerr nonlinearities. This implies that the present scheme is 
quite tractable especially for creating entangled states with a larger number of photons. In addition, the error 
probabilities εk are ( )/ /xerfc 2 2 2dk

, which come from small overlaps between two neighboring curves. 
Considering the distances of two nearby peaks αθ≈ ( − )x k2 1d

2
k

 with = , , , /k n1 2 2 for even n and 
= / , / , , /k n3 2 5 2 2 for odd n, the maximal error probability ε αθ= ( / )/erfc 2 2 2max

2 , which is exactly the 
result described by Nemoto and Munro in40. Obviously, the error probabilities in our scheme are no more than 
that one even when the number of photons is large. Therefore, by choosing an appropriate coherent probe beam 
the error probability can be reduced to as low a level as desired and then the present scheme may be realized in a 
nearly deterministic manner.

In summary, based on linear optics and weak nonlinearities we have shown a fruitful method for exploring a 
class of multiphoton entangled states, the generalized cat-like states. Evidently, three aspects are noteworthy in the 
present framework. First, since there are no large phase shifts in the interacting process with weak Kerr nonlin-
earities, our scheme is more feasible compared with the previous schemes. Second, the system is measured only 
once with a small error probability and it means that the present scheme might be realized near deterministically. 
Finally, the fruitful architecture allows us to explore a group of multiphoton entangled states involving a large 
number of photons, i.e., to produce entangled states approaching the macroscopic domain.
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