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Immune checkpoint blockade (ICB) is standard-of-care for patients with metastatic
melanoma. It may re-invigorate T cells recognizing tumors, and several tumor antigens
have been identified as potential targets. However, little is known about the dynamics of
tumor antigen-specific T cells in the circulation, which might provide valuable information
on ICB responses in a minimally invasive manner. Here, we investigated individual
signatures composed of up to 167 different melanoma-associated epitope (MAE)-
specific CD8+ T cells in the blood of stage IV melanoma patients before and during
anti-PD-1 treatment, using a peptide-loaded multimer-based high-throughput approach.
Additionally, checkpoint receptor expression patterns on T cell subsets and frequencies of
myeloid-derived suppressor cells and regulatory T cells were quantified by flow cytometry.
Regression analysis using the MAE-specific CD8+ T cell populations was applied to
identify those that correlated with overall survival (OS). The abundance of MAE-specific
CD8+ T cell populations, as well as their dynamics under therapy, varied between
patients. Those with a dominant increase of these T cell populations during PD-1 ICB
had a longer OS and progression-free survival than those with decreasing or balanced
signatures. Patients with a dominantly increased MAE-specific CD8+ T cell signature also
exhibited an increase in TIM-3+ and LAG-3+ T cells. From these results, we created a
model predicting improved/reduced OS by combining data on dynamics of the three most
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informative MAE-specific CD8+ T cell populations. Our results provide insights into the
dynamics of circulating MAE-specific CD8+ T cell populations during ICB, and should
contribute to a better understanding of biomarkers of response and anti-
cancer mechanisms.
Keywords: T cells, checkpoint blockade, melanoma, melanoma-associated antigen, regression analysis, dextramer
INTRODUCTION

Immune checkpoint blockade (ICB) (1, 2) has revolutionized the
treatment of metastatic melanoma and of an increasing number
of other solid cancers (3, 4). Monotherapy with antagonistic
antibodies targeting programmed cell death receptor 1 (PD-1,
CD279) on the surface of T cells or combination therapy with
antagonistic antibodies against cytotoxic T-lymphocyte-
associated protein-4 (CTLA-4, CD152) are now standard-of-
care treatments for patients with advanced melanoma with 5-
year survival rates of approximately 50% (5). Thus,
unfortunately, not all patients experience durable clinical
benefit (6). Hence, a better understanding of the modes of
action of ICB, and biomarkers predicting clinical outcome, are
urgently required. Candidate markers such as frequencies of
myeloid-derived suppressor cells (MDSCs), or T cell populations
with certain phenotypes possess promising biomarker
characteristics (7–12). However, defining tumor-specificity of
T cells based on their phenotype is challenging, and the described
cellular populations often lack proven specificity for the tumor.
The high mutational burden of melanoma (13, 14) results in a
potentially large number of T cell neo-epitopes derived
specifically from the cancer mutagenome and is thus thought
to be a key driver of successful ICB (15, 16). T cells recognizing
such neo-epitopes may play an important role in anti-tumor
immunity by recognizing cancer mutations unique to the tumor
and eliminating the cells carrying them (17, 18). Antigens
derived from non-mutated genes which are abnormally
expressed, or expressed only at low levels by normal tissues
[i.e. shared tumor-associated antigens (TAA)], may also
contribute to tumor elimination through T cell recognition
(19). Consequently, the identification of the products of such
abnormally expressed genes that are also immunogenic is a
promis ing approach for the deve lopment of new
immunotherapy concepts. Unfortunately, due to inter- and
intratumor heterogeneity, especially in a metastatic setting, this
is only possible in a fragmented manner. An elegant alternative
to study such tumor antigens expressed by primary tumors or
metastases is to investigate tumor-specific T cells in the
peripheral blood, which is the compartment allowing for
cellular exchange between different tissues as well as metastases.

Using tests of T cell function, in metastatic melanoma
patients not receiving anti-PD-1 treatment we have previously
shown that the presence of circulating NY-ESO-1 and Melan-A-
reactive T-cells was associated with prolonged overall survival
(OS) (7, 20, 21). Also, earlier studies by others revealed that these
TAAs might be promising targets for active interventions (22–
24). Recently, we reported that the dynamics of NY-ESO-1- and
org 2
Melan-A-reactive T cells under PD-1 ICB are associated with
clinical outcome (25). However, data on the impact of ICB on the
presence of circulating TAA-specific T cells (beyond established
epitopes like those from NY-ESO-1 or Melan-A) and
conclusively the presence of their antigens in the tumors is still
limited. However, this is urgently required to supplement the
range of T cell targets potentially recognized as a result of ICB
induced/modulated TAA expression patterns in the tumor. This
could lead to a significantly better understanding of ICB-
associated changes/accessibility of TAAs in the tumors of
patients who have been successfully treated, and thereby
provide opportunit ies for the development of new
immunotherapeutic treatments. Thus, the aim of the present
study was to characterize a broad spectrum of a large number of
different melanoma-associated epitope (MAE)-specific CD8+
T cell populations and their dynamics in the peripheral blood
of anti-PD-1-treated patients to screen for further TAAs with
potential clinical relevance. Therefore, we used a defined panel of
167 major histocompatibility complex (MHC) MAE dextramers
in an ex vivo, high-throughput analytical approach, that also
allows the detection of low affinity as well as high affinity T cell
receptors (TCR) (26).
MATERIAL AND METHODS

Patient Material
Venous blood samples were obtained from HLA-A*0201+ stage
IV melanoma patients (n=36) before [baseline (BL)] and during
therapy [follow-up (FU)], at a median of 42 days after the first
anti-PD-1 antibody dose (Figure 1A). Samples were collected
between February 2016 and February 2019 at centers in
Tübingen and Dresden. Within 24h of donation, peripheral
blood mononuclear cells (PBMCs) were isolated using Ficoll-
Hypaque density gradient centrifugation and were immediately
cryopreserved until use. Patients’ HLA-types were determined
using LUMINEX-based high resolution HLA-typing following
validated clinical routines (27). Patient characteristics are
summarized in Table 1. All patients gave their written
informed consent for biobanking and use of biomaterials as
well as clinical data for scientific evaluation. The Ethics
Committee of Tübingen University Hospital approved the
study (490/2014BO1, 616/2018BO2).

Determination of MAE-Specific
CD8+ T Cells
A library of HLA-A*0201-restricted peptide-loaded MHC
(pMHC) multimers (“dextramers”) representing a selection of
July 2022 | Volume 13 | Article 906352
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167 MAE (Figure 1B and Supplementary Table 1) was used to
screen cryopreserved PBMC samples for the presence of MAE-
specific CD8+ T cells. A dextramer consists of a phycoerythrin-
labeled dextran backbone to which multiple pMHC complexes
are bound. Each dextramer has two 25-mer DNA barcodes,
unique for the respective pMHC complex [for technical details
see reference (26)]. The nomenclature used here for the MAE-
specific CD8+ T cell populations combines the respective protein
name and the first 3 letters of the peptide amino acid sequence
(e.g., MAGE-A1 KVL represents the MAGE-A1 peptide with the
amino acid sequence KVLEYVIKV).

The samples were treated as follows: PBMCs were thawed in
batches and a median number of 5 x 106 cells per sample was
incubated with the dextramer library. Dead cells were labeled
and monoclonal antibodies against CD8 and lineage markers
(CD4, CD14, CD16, CD19, CD40) were used to identify CD8+
Frontiers in Immunology | www.frontiersin.org 3
T cells (Supplementary Table 2), followed by overnight fixation
using 1% PFA in PBS. The next day, multimer-binding CD8+
T cells were isolated by fluorescence-activated cell sorting (FACS;
Melody or Aria fusion, both BD; for gating strategy see
Supplementary Figure 1). Next, the samples were centrifuged
at 5000xg (to break up the cells), supernatant was discarded and
the samples were stored as pellets in PBS at -20°C until
amplification of the DNA barcodes via PCR was carried out.
Additionally, an “input” sample (total dextramer library as
triplicate) per batch was used to calculate barcode enrichment
in individual samples as well as an internal quality control for the
amplification of the barcode sequences in each individual sample
via PCR. The primers employed contained unique DNA
sequences (in-house generated “DNA keys”) per patient
sample to label the resulting DNA libraries for multiplexed
sequencing of pooled samples. The PCR-products were
A B

C

FIGURE 1 | Assessment of peripheral blood Melanoma-Associated Epitope (MAE)-specific CD8+ T cell signatures. The study design is depicted in (A) and was
created with BioRender.com. Peripheral blood T cell screening profiles of three representative patients using 167 melanoma-associated epitopes. Data on the y-axis
present the detected log fold-change of the individual T cell population (x-axis) relative to the input sample. The dotted lines represent the selected threshold level
log2FC (B). The relative abundance of all detected 117 MAE-specific CD8+ T cells at baseline and follow-up within the investigated cohort is depicted in the scatter
plot. The normalized numbers of each specific T cell population are illustrated in the heat map (C).
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purified (QIAquick PCR purification kit, Qiagen) following the
manufacturer´s instructions. The purified samples were then
sequenced using the Ion Torrent approach (Thermo Fisher).

Sequencing data were processed by the software package
Barracoda, available online at (https://services.healthtech.dtu.
dk/service.php?Barracoda-1.8). The tool identifies the DNA
barcodes annotated for a given experiment, assigns a sample
ID and pMHC specificity to each DNA barcode, and counts the
total number of reads and clonally reduced reads for each
peptide-MHC-associated DNA barcode. Log2FC in read counts
mapped to a given sample relative to the mean read counts
mapped to triplicate baseline samples are estimated using
normalization factors determined by the trimmed mean of M-
values method. A minimum read count fraction of 0.1% for a
given DNA barcode of the total DNA barcode number in that
given sample was set as threshold to avoid false-positive
detection of T cell responses due to low number of reads in
the baseline samples. DNA barcodes with p<0.01, estimated
using the Benjamini–Hochberg method and log2FC>1,5 over
the input values for the total pMHC library were considered as
T cell responses. Barracoda outputs were further processed and
annotated using an R-based script. Frequency of a pMHC-
specific CD8+ T cell population was estimated based on the %
read count of the associated barcode relative to the total %
multimer-positive CD8+ T cell population. Sum of the estimated
frequency represents the pooled frequencies of all T cell
populations in a given sample.

Visualization of MAE-Specific CD8+ T Cell
Signatures and Their Dynamics
The pre-processed sequencing data (as described above) were
used to identify and visualize the presence of individual MAE-
Frontiers in Immunology | www.frontiersin.org 4
specific CD8+ T cell populations per sample (output of the
Barracoda package). The abundance of the populations within
the cohort and the normalized number of detected MAE-specific
CD8+ T cell populations provides an overview of all identified T
cell clones. It was calculated as the sum of the absolute numbers
of each population divided by the number of patients (n=36) for
BL and FU samples separately.

Comparing BL and FU samples of each individual patient
illustrates the dynamics within the MAE-specific CD8+ T cell
signatures under therapy. These dynamics were visualized by the
sum of the absolute numbers of detected MAE-specific CD8+
T cell populations per patient in subgroups where either they
appeared (i.e. they were not present at BL, but detected at FU),
remained stable (present at both time points) or disappeared
(present at BL, but no longer detected at FU). The resulting
patient-specific vectors (e.g. patient 15 had 24 appearing and 0
disappearing MAE-specific T cell populations under therapy
while 3 populations were present at both time points) were
designated “melanoma-associated epitope-specific T cell Score
A” (TMAES A). The latter was the basis for the calculation of the
“melanoma-associated epitope-specific T cell Score B” (TMAES
B), which provides a single variable to visualize total changes in
MAE-specific CD8+ T cell profiles per patient. TMAES B was
calculated by subtracting the sum of disappearing from the sum
of appearing MAE-specific CD8+ T cell populations, resulting in
a positive value (dominantly “increased” signature), a negative
value (dominantly “decreased” signature) or “0” (balance
between appearances and disappearances or the lack of MAE-
specific CD8+ T cell populations at either timepoint; “balanced”
signature). The heatmap was created by Complexheatmaps (28),
Circlize (29) and RColorBrewer using R Studio (v1.2.1335).

Phenotyping of PBMCs
T cell and myeloid compartments were phenotyped for patients
with additional cryopreserved PBMC samples available using
flow cytometry (n=24 with a T cell antibody panel and n=22 with
a myeloid antibody panel). In brief, samples were thawed, dead
cells were stained with ethidium monoazide bromide (EMA,
Biotinum) and Fcg receptors were simultaneously blocked using
human immunoglobulins (Gamunex, Grifols). For the T cell
antibody panel, two aliquots per sample were stained
simultaneously with antibodies against the extracellular
markers or with the respective isotype-controls. Next, the cells
were fixed and permeabilized (eBioscience FoxP3 Transcription
Factor Staining Buffer Set, Thermo Fisher Scientific) and stained
for FoxP3 expression (Supplementary Table 3). For the myeloid
cell panel, the samples were stained for cell surface markers
(Supplementary Table 4).

Samples from both panels were acquired immediately after
staining on an LSR II cytometer (BD). Data analysis was
performed with FlowJo (v10.7.1, BD), using established gating
strategies (Supplementary Figures 2, 3). In brief, single viable
lymphocytes were gated for CD3+ T cells. Tregs (CD4+CD25+
CD127lowFoxP3+), CD4+ (all CD4+ non-Tregs) and CD8+
T cells were selected for the analysis of checkpoint receptor
(TIM-3, LAG-3 and PD-1) and CD25 expression. PD-1
expression was only quantified in BL-samples, as commercially
TABLE 1 | Cohort characteristics.

Factor Category n %

Sex male 24 66.7
female 12 33.3

Clinical site Tübingen 34 94.4
Dresden 2 5.6

Therapy anti-PD-1 17 47.2
anti-PD-1 & -CTLA-4 19 52.8

Age median 68 –

≥60 22 61.1
<60 14 38.9

M-category M1a 2 5.6
(AJCC v7) M1b 7 19.4

M1c 24 66.7
n.a. 3 8.3

HLA-A zygosity heterozygous 33 91.7
homozygous 3 8.3

Prior systemic therapies immunotherapy 6 16.7
targeted therapy 5 13.9
chemotherapy 1 2.8
none 24 66.7

LDH BL elevated 11 30.6
normal 25 69.4

LDH FU elevated 15 41.7
normal 20 55.6
unknown 1 2.7
HLA, human leukocyte antigen; LDH, lactate dehydrogenase.
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available diagnostic antibody clones cannot reliably stain all PD-
1 molecules in patients treated with therapeutic anti-PD-1
antibodies. Myeloid cells were gated as single, viable, lineage-
negative (CD3-CD19-CD56-) cells expressing CD11b and CD33.
MDSCs were defined as CD14+HLA-DRlow/-, classical
monocytes as CD14+CD16-HLA-DR+, intermediate
monocytes were defined as CD14+CD16+HLA-DR+ and non-
classical monocytes as CD14dimCD16+HLA-DR+.

Statistical Analyses
OS was defined as the time from the first administration of ICB
until death or the end of follow-up. Progression-free survival
(PFS) was defined from the start of ICB to the last follow-up or
disease progression using RECIST 1.1 criteria (30). Disease-
specific survival probabilities (OS and PFS) were analyzed
using the Kaplan-Meier method and the respective arms
compared using log-rank testing (Prism v5, GraphPad). To test
for unintended confounding factors, correlations between
clinical parameters and OS were calculated by the confounding
function using the swamp R package (31). Changes of the
individual immune cell phenotypes under ICB were
investigated using the Wilcoxon matched-pairs signed rank
test. Group comparisons of immune cell phenotypes between
BL and FU were statistically evaluated using the Mann-Whitney
U test (Prism v5, GraphPad). Non-parametric Spearman
correlations were computed to test for correlations between
continuous variables (Prism v5, GraphPad). P<0.05 was
considered statistically significant.

To identify dynamic changes of particular MAE-specific CD8+
T cell populations that correlated with patients’ OS, we trained an
elastic net regression model (32) on the changes in numbers of
MAE-specific T cell populations under therapy (FU sample – BL
sample). We computed the elastic net regularization for the Cox
models using the glmnet R package (33). To select the elastic net
model hyperparameter a (0≤a≤1), the patient cohort was divided
into a training and a test set (80% and 20% of the samples,
respectively). Here, a=1 is equivalent to a lasso regression, whereas
the model reduces to ridge regression with a=0. The best a in [0.1,
1] was selected when we achieved the highest prediction accuracy
on the test set. The regularization parameter l that penalized the
least absolute shrinkage (lasso) was selected from 10-fold cross-
validation on the training set. The identified MAE-specific CD8+
T cell populations were further investigated for correlations with
patients’ OS using uni- and multivariate Cox regressions. Only
those T cell populations that revealed robust statistical correlations
with patients’ OS in univariate Cox regressions were considered
for the calculation of a multivariate Cox proportional hazard
model (34). The Cox model was fitted to the data using the
survival R package (35).
RESULTS

Patients
In this study, the dynamics of 167 MAE-specific CD8+ T cell
populations in the peripheral blood of 36 HLA-A*0201+ stage IV
Frontiers in Immunology | www.frontiersin.org 5
melanoma patients under anti-PD-1 ICB were investigated.
Blood was drawn before starting therapy and at a median of 42
days thereafter (Figure 1A). Median patient age was 68 years
(range: 28-88), 66.7% were male and 33.3% were female (n=24
and 12, respectively); 47.2% (n=17) were treated with anti-PD-1
antibody monotherapy, while the remaining 52.8% received a
combination of anti-PD-1 and anti-CTLA-4 antibodies (n=19).
The one-year OS was 76.1% and the median PFS was 9 months.
Cohort characteristics are summarized in Table 1.

Melanoma-Associated Epitope-Specific
CD8+ T Cell Signatures
T cells carrying receptors specific for 117 of the 167 MAE-
specific dextramers tested were present in at least one sample.
We identified T cells specific for a variety of cancer-testis
antigens (CTAs), overexpressed antigens and differentiation-
specific antigens (36) in 33 of 36 patients. Seventy-two MAE-
specific CD8+ T cell populations were present both at baseline
(BL) and follow-up (FU) whereas 31 that had not been present at
BL appeared at FU; there were also 14 present at BL that were no
longer detectable at FU. A qualitative assessment of these 117
shared MAE-specific CD8+ T cell populations revealed a high
degree of inter-individual variability suggesting a relatively
“private” composition of these T cell signatures, while the
observed intra-individual variability reflects ICB-induced
effects (Figure 1B).

The most prevalent MAE-specific CD8+ T cell population
carried receptors for the MAGE-A2 LVH peptide (36.1% of
patients at BL and FU), followed by CDKN1A GLG (19.4% at
BL and 27.8% at FU) and MAGE-C2 KVL peptide (22.2% at BL
and 16.7% at FU). Figure 1C depicts the prevalence and the
normalized absolute numbers of the 117 detected MAE-specific
CD8+ T cell populations at BL and FU. The patterns of MAE-
specific CD8+ T cell populations are highly heterogeneous and
suggest a patient-unique T cell profile. Similar patterns were also
identified for the impact of PD-1 ICB on the estimated frequencies
of the individual MAE-specific CD8+ T cell populations
(Supplementary Figure 4 and Supplementary Table 5).

Dynamics of the MAE-Specific CD8+
T Cell Signature Under ICB Correlate
With Clinical Outcome
Dynamics of the investigated MAE-specific CD8+ T cell
signatures were investigated in patients receiving PD-1 ICB
alone or in combination with CTLA-4 antibodies (Figure 2A).
To assign ICB-driven dynamics to the individual patient, we
defined an MAE-specific CD8+ T cell score A (TMAES A) that
summarizes the individual numbers of i) appearing, ii)
disappearing or iii) stable MAE-specific CD8+ T cell
populations in the blood under ICB (Figure 2A). We identified
patients with dominantly increasing, dominantly decreasing, or
with little or no change in the total MAE-specific CD8+ T cell
TMAES A. These three parameters were then used to define the
score TMAES B reflecting the dominance of either an increasing
or not-increased (decreased or balanced) MAE-specific CD8+
T cell signature (Figure 2A).
July 2022 | Volume 13 | Article 906352
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Dichotomizing the cohort according to TMAES B as defined
above allowed a correlation to be made with clinical outcome.
We found that a TMAES B >0 (dominantly increased CD8+
MAE-specific T cell signature) was associated with both
prolonged OS (p=0.02, HR:0.24, Figure 2B) and PFS (p<0.01,
HR:0.3, Figure 2C). Not only the qualitative, but also a semi-
quantitative analysis identified a significant increase of the
estimated frequencies of the CD8+ MAE-specific T cell
populations in patients with a TMAES B >0 (p=0.04), but not in
those with a TMAES B ≤0 (p=0.39) (Supplementary Figure 5).
The swimmer plot in Supplementary Figure 6 summarizes
further clinical follow-up data for each individual patient.

Major demographic and clinical factors (age, sex, type of therapy,
elevated LDH and previous systemic therapies), that might
confound the identified associations of MAE-specific CD8+ T cell
signatures and dynamics under ICB with clinical outcome were
correlated with each other. The confounding function matrix
revealed no concerning correlations with OS and PFS
(Supplementary Figure 7). By univariate analyses, there were also
no statistically significant differences in OS or PFS between patients
receiving anti-PD-1 antibodies alone or in combination with anti-
Frontiers in Immunology | www.frontiersin.org 6
CTLA-4 antibodies (Supplementary Figure 8A); there were also no
correlations with age (Supplementary Figure 8B). Furthermore,
there was no significant correlation between age and TMAES B
(Supplementary Figure 8C). Thus, the identified dominantly
increasing MAE-specific CD8+ T cell signatures under
ICB (TMAES B >0) in patients with prolonged OS and PFS can be
considered as not confounded by typical clinical and
demographic variables.

Alterations in Cellular Phenotypes
Correlate With the Dynamics of
MAE-Specific CD8+ T Cell
Signatures Under ICB
To study the associations of the expression profiles of checkpoint
molecules on T cells and the abundance of immune regulatory
cells in the context of the above-described beneficial increase of the
individual MAE-specific CD8+ T cell signatures (TMAES B >0), we
assessed phenotypic profiles of myeloid cells and T cells. These
phenotypes were comparatively evaluated in patients with
increased (TMAES B >0) or decreased/balanced (TMAES B ≤0)
MAE-specific CD8+ T cell signatures, as defined above. We found
A

B C

FIGURE 2 | Dynamics within the MAE-specific CD8+ T cell signature correlate with clinical outcome. The applied therapy (Tx) is displayed for each patient in (A, top
row) and changes within the individual MAE-specific CD8+ T cell signatures under PD-1 ICB are indicated in the absolute number of appearing, disappearing and
stable MAE-specific T cell populations summarized as “TMAES A” – a 3 digit score - on a per patient basis (A, middle 3 rows). Dominant changes as a single digit
value of the MAE-specific CD8+ T cell signature of each patient are displayed in (“TMAES B”) (A, lower row). The cohort was dichotomized for Kaplan-Meier analysis
after TMAES B >0 (dominant increased) versus ≤0 (balanced or decreased) T cell signature) and correlated with patients’ OS (B) and PFS (C).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gaißler et al. MAE-Specific CD8+ T Cell Dynamics
no differences between the two patient groups at BL for any of the
observed immune cell phenotypes (Figures 3A–F), including
frequencies of PD-1+ cells within CD8+ T cells, CD4+ T cells
and Tregs (Figure 3B). There were also no differences regarding
changes of total CD8+ T cells, CD4+ T cells or Treg frequencies
(Figure 3A). However, patients with an increasing MAE-specific
CD8+T cell signature under ICB had increasing frequencies of
TIM-3+CD8+ T cells (p=0.04, Figure 3C), whereas no differences
were found in the CD25+CD8+ T cell population (Figure 3D).
Furthermore, we observed that a LAG-3+ subset of the CD4+ and
Treg populations increased significantly in patients with an
increasing MAE-specific CD8+ T cell signature (p=0.04
and p=0.01, respectively, Figure 3E) but not in the reciprocal
group. Vice versa, patients with a decreased/balanced MAE-
specific CD8+ T cell signature exhibited a decrease in the
frequency of TIM-3+CD4+ T cells (p=0.02, Figure 3C).
Frontiers in Immunology | www.frontiersin.org 7
The frequencies of MDSCs, intermediate, classical- and non-
classical monocytes revealed no statistically significant changes
under ICB either in patients with increasing or with decreasing/
balanced MAE-specific CD8+ T cell signatures (Figure 3F). The
medians and interquartile ranges (IQR) of all these populations
are shown in Table 2.

Regression-Based Identification of
MAE-Specific CD8+ T Cell Populations
Correlating With OS
Next, we aimed to identify the most relevant dynamics of certain
MAE-specific CD8+ T cell populations through correlations with
patients’ OS. We first noticed that similar to the previously
studied NY-ESO-1 TAA (25), the disappearance of NY-ESO-1
QLS and SLL-specific T cells from the periphery tended to
correlate with a prolonged OS under ICB (p=0.14; data not
July 2022 | Volume 13 | Article 9063
A B
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C

FIGURE 3 | Comparison of myeloid and T cell phenotypes in a group of patients dichotomized by TMAES (B) Baseline (BL, full symbol) and follow-up samples (FU,
empty symbols) of each individual patient are connected by a line. Frequencies of patients with an increased MAE-specific CD8+ T cell TMAES B are displayed in
grey, those with a decreased/balanced in orange. Frequencies of Tregs, CD8+ and CD4+ T cells among all CD3+ T cells (A). Frequency of PD-1-expressing subsets
at baseline (B). Alterations of frequencies of TIM-3-expressing (C), CD25-expressing (D) and LAG-3-expressing (E) T cell subsets. Changes of frequencies of MDSC
and monocytic phenotypes are shown in (F) ★ indicate p-values <0.05.
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shown). Next, we performed several regression analyses in
parallel and/or in sequence (Figure 4A) to identify those
MAE-specific T cell populations with the greatest relevance for
therapy outcome in an unbiased approach. First, an elastic net
model was trained to identify associations of the dynamics of
MAE-specific CD8+ T cell populations with patients’ OS. The
resulting model achieved the highest prediction accuracy as well
as a smaller set of features at an a of 0.7 (Supplementary
Table 6). Dynamics of 9 of the 117 detected MAE-specific
CD8+ T cell populations (the CTAs MAGE-A10 SLL, TAG-1
SLG, TRAG-3 ILL, the differentiation antigen TRP-2 SVY and
the overexpressed antigens STEAP1 FLY, P-cadherin FII,
Telomerase RLF, Telomerase ILA and Tyrosinase CLL) were
identified as most informative for predicting clinical outcome by
regression analysis. Univariate Cox regression analysis using
Wald and log-rank testing identified the dynamics of two of
these 9 MAE-specific CD8+ T cell populations as potentially
unreliable and they were excluded from further modelling (P-
cadherin FII and Telomerase ILA; see Supplementary Table 7).
Multivariate Cox regression analysis of the remaining 7 MAE-
specific CD8+ T cell populations revealed independent
correlations of the dynamics of CD8+ T cells specific for
Frontiers in Immunology | www.frontiersin.org 8
TAG-1 SLG, Telomerase RFL and TRP-2 SVY (p<0.01,
HR:0.01, p=0.03, HR:0.01; and p=0.02, HR:0.03, respectively;
Figure 4B). A combinatorial model, comprising the dynamics of
these 3 MAE-specific CD8+ T cell populations suggested that
patients exhibiting a disappearance from the peripheral blood of
at least one of these MAE-specific CD8+ T cell populations
under therapy had a significantly shorter OS compared to those
patients with appearing or stable T cell populations (p<0.01,
HR:40.96, Figure 4C). Importantly, the disappearance of these
selected MAE-specific CD8+ T cells, did not correlate with any
observed dynamics of all other investigated MAE-specific CD8+
T cell populations (TMAES A or B) at the individual patient level
(P35, P34, P29, P12, P16, P9).

Furthermore, patients in the appearing/stable group also
experienced an increase in the sum of estimated frequencies of
these three T cell populations specific for TAG-1 SLG,
Telomerase RFL and TRP-2 SVY (Supplementary Figure 9A;
p=0.03). Interestingly, the sum of the estimated frequencies of
these three MAE-specific CD8+ T cell populations was higher at
BL in patients with a disappearance of at least one of them under
therapy compared to the reciprocal group (Supplementary
Figure 9A; p<0.01). No significant differences were found in
this subset-analysis applying the sum of estimated frequencies of
all detected MAE-specific CD8+ T cell populations
(Supplementary Figure 9B).

Taken together, these results underscore the importance of the
composition, the frequency and the dynamics of the individual
peripheral anti-melanoma T cell repertoire early under ICB.
DISCUSSION

Here, we applied a high-throughput approach to investigate the
ex vivo dynamics of peripheral blood melanoma-associated
epitope-specific CD8+ T cell signatures in HLA-A*0201+ stage
IV melanoma patients under ICB. To this end, using multiple
pMHC dextramers, we investigated 167 MAE-specific CD8+
T cell populations of which 117 were found to be present in
one or more patients at one or more time points. We observed
T cell recognition most prevalent towards an epitope (LVH)
derived from the differentiation antigen MAGE-A2, which was
detected in over one-third of the cohort. Also, other previously-
identified MAE-specific CD8+ T cell populations such as Melan-
A ELA were detected in about 20% of pre-treatment baseline as
well as follow-up samples. Other tumor-associated epitopes such
as Telomerase RLF or p53 RMP were less frequently recognized.
In agreement with expectations, the distribution of the
abundance of the different MAE-specific CD8+ T cell
populations varied greatly between BL and FU, and the
identified individual signatures were heterogeneous and often
private (37). On a per-patient level, the dynamics of MAE-
specific CD8+ T cell populations were of particular interest.
On the basis of these dynamics, we defined two scores. One of
these, TMAES A consisted of 3 variables reflecting the number of
appearing, disappearing and stable MAE-specific CD8+ T cell
populations. Secondly, based on TMAES A we defined TMAES B as
TABLE 2 | Median and IQRs of the determined immune phenotypes,
dichotomized by TMAES B (>0: increased vs ≤0: decreased/balanced).

Cell subset Time point Increased Decreased/balanced

Median IQR Median IQR

CD8+ BL 26.6 26.1 27.3 18.0
FU 29.2 27.5 20.7 18.1

CD4+ BL 55.3 27.6 62.4 27.0
FU 56.1 28.7 55.3 25.5

Tregs BL 2.9 1.3 3.0 1.5
FU 2.6 1.7 3.2 1.3

PD1+CD8+ BL 19.7 19.5 23.0 23.0
PD1+CD4+ BL 11.0. 11.6 11.9 14.4
PD1+Tregs BL 13.6 13.1 14.4 4.6
TIM-3+CD8+ BL 11.2 17.9 13.3 9.3

FU 16.0 17.8 14.2 10.1
TIM-3+CD4+ BL 5.8 5.6 6.2 4.5

FU 6.6 5.8 5.2 4.0
TIM-3+Tregs BL 7.7 8.3 10.3 6.1

FU 9.8 7.8 9.3 6.6
CD25+ CD8+ BL 3.8 13.6 5.3 6.8

FU 5.4 12.3 6.6 11.2
LAG-3+CD8+ BL 0.7 1.6 0.4 0.6

FU 0.9 2.7 0.6 2.2
LAG-3+CD4+ BL 0.4 0.4 0.2 0.2

FU 0.6 0.6 0.3 0.8
LAG-3+Tregs BL 0.7 1.6 0.4 0.6

FU 0.9 2.7 0.6 2.2
MDSC BL 10.8 6.7 11.6 8.1

FU 11.3 9.5 16.5 7.3
Classical monocytes BL 7.8 3.0 9.2 4.3

FU 9.0 4.9 12.1 10.0
Intermediate monocytes BL 1.1 1.7 0.8 0.9

FU 1.1 1.4 1.6 1.3
Non-classical monocytes BL 0.2 0.2 0.2 0.2

FU 0.2 0.3 0.4 0.4
BL, baseline; FU, follow-up; IQR, interquartile range; MDSC, myeloid derived suppressor cells.
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a single variable reflecting a dominant increasing or not-
increasing (decreasing or balanced) T cell signature. As
expected, we found ICB-associated dynamics of MAE-specific
CD8+ T cell signatures in the majority of the observed patients,
regardless of whether they received PD-1 monotherapy or a
combination of PD-1 and CTLA-4 antibodies, similar to reports
on the dynamics of selected TAA- or virus-specific T cells under
PD-1 ICB (11, 12, 38) or neo-epitope specific T cells under PD-
L1 ICB (39). However, our findings contrast with those of a
recent study from Gangaev et al. who reported a broadening of
MAE-specific CD8+ T cells mostly in patients treated with anti-
CTLA-4 antibodies (but only rarely under PD-1 monotherapy)
(37). Despite highly overlapping pMHC-multimer panels in both
studies, the discrepancy may be explained by the different
multimer approaches employed. Thus, we detected 117 MAE-
specific CD8+ T cell populations using 167 dextramers while
Gangaev et al. found 7 MAE-specific CD8+ T cell populations in
anti-PD-1 and 6 in anti-CTLA-4 treated patients using 71
tetramers. Admittedly, both studies enrolled a modest number
of patients (36 in the current study-vs-9 in the anti-CTLA-4- and
24 in the anti-PD-1-treated cohorts in the work of Gangaev
et al.). Thus, future investigations of MAE-specific CD8+ T cells
under ICB are warranted.

The main finding of the present study was that dominantly
increasing MAE-specific CD8+ T cell signatures summarized in
TMAES B correlated with prolonged OS and PFS. This
complements published data that associates epitope spreading
(40) or induction of TCR repertoire divergence (41) under ICB
Frontiers in Immunology | www.frontiersin.org 9
with beneficial clinical outcomes. ICB-induced epitope spreading
and disease control requires the patient´s possession of an
appropriate T cell receptor repertoire and retention of T cell
functionality. Additionally, the presence of regulatory immune
cells such as MDSCs, or Tregs that might dampen anti-cancer
T cell responses can play a critical role in cancer immunotherapy
(42, 43). To evaluate the impact of the abundance of such
immune regulatory cells in the context of the above-described
beneficial increase of the individual MAE-specific CD8+ T cell
score B (TMAES B), we assessed phenotypic MDSC and Treg data,
and also checkpoint receptor expression on T cell subsets in our
cohort. Our findings revealed no differences between patients
with dominantly decreasing/balanced (TMAES B ≤0) or increasing
(TMAES B >0) MAE-specific CD8+ T cell signatures before the
start of ICB (BL) in any of the observed cellular phenotypes
including frequencies of PD-1+, LAG-3+ and TIM-3+ cells within
Tregs, CD8+ and CD4+ T cell populations. Perhaps this is
not surprising, despite reports that PD-1+ peripheral blood
T cell subsets harbor tumor-specific T cell populations (44),
because the expression of PD-1, LAG-3 and TIM-3 alone has
not been identified as a predictive biomarker candidate for
successful ICB. Nonetheless, recent reports suggest that
combinatorial analyses of several such checkpoint receptor-
expressing T cell subsets may reveal an association with clinical
outcome. For example, the PD-1+CD8+/PD-1+Treg ratio in
tumor-resident cells was reported to predict the clinical efficacy
of PD-1 ICB (45), and a combinatorial analysis of LAG-3
expression on several peripheral blood cell subsets (prominently
A

B C

FIGURE 4 | Selected MAE-specific CD8+ T cell populations identified by a regression approach correlate with clinical outcome. The applied workflow to identify
relevant MAE-specific T cell populations (A) (created with BioRender.com) and the resulting hazard ratios (HR) (including the 95% confidence intervals) of the
identified MAE-specific T cell populations are shown in a forest plot (B). Those CD8+ T cell populations, specific for TAG-1 SLG, Telomerase RLF and TRP2 SVY,
independently correlating with OS, were combined in a comprehensive model. Patients with a disappearance of at least one of those populations had a shorter OS
(C) compared to the reciprocal group. * indicate p-values <0.05 and ** indicate p-values <0.01.
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on CD8+ T cells) before the start of PD-1 ICB correlated with
poorer clinical outcome (46). Also the utility of examining
relationships between phenotypes and clinical features under
ICB, such as a validated negative association with OS of the
expression of Ki67 on circulating PD-1+ CD8+ T cells and
tumor burden has been reported (12).

However, comparative analyses of alterations in the observed
T cell phenotypes under PD-1 ICB identified significant differences
in our cohort that were dichotomized according to their TMAES B.
We observed an increase of TIM-3+CD8+ T cells in patients
with (TMAES B >0) but not in those without (TMAES B ≤0) an
increasing MAE-specific CD8+ T cell signature, which might reflect
a PD-1 blockade-driven evasion of co-inhibitory signaling through
the TCR complex for negative regulatory checkpoint receptors other
than TIM-3. The latter mechanism has been described in a mouse
model of lung adenocarcinoma, where adaptive resistance to anti-
PD-1 treatment was associated with an upregulation of TIM-3 on
PD-1+ T cells in the tumor (47). Whether such an increase in
the TIM-3+CD8+ T cell population in our study correlates
with exhaustion of CD8+ T cells (48) or rather marks competent/
reactive CD8+ T cells could not be functionally assessed here.
The dynamics of changes of CD8+ T cells expressing the activation
marker CD25 did not allow further conclusions either. Increases
in LAG-3+CD4+ T cells and LAG-3+ Tregs in patients with
increasing MAE-specific CD8+ T cell signatures, but also a
decrease of TIM-3+CD4+ T cells in patients with decreasing/
balanced MAE-specific CD8+ T cell signatures, might additionally
illustrate the multifaceted modulatory effects of ICB on the CD4+ as
well as the CD8+ T cell population, which could not be examined in
detail here. In particular, the increases of LAG-3+CD4+ T cell and
LAG-3+Treg frequencies in patients with an increasing MAE-
specific CD8+ T cell signature underscores our hypothesis that
these patients have retained a competent T cell compartment and
therefore have a better chance of obtaining clinical benefit through
ICB. This hypothesis is consistent with data from a study by Zelba
et al. who reported an increase of LAG-3+ and TIM-3+ CD4+ and
CD8+ T cells in an in-vitro PD-1 ICB assay in renal cell carcinoma
TILs (49). Unexpectedly, we did not see differences in monocytic
and MDSC subsets between the two patient groups, suggesting no
direct associations between dynamics of MAE-specific CD8+ T cell
populations and the peripheral frequencies of these cells that were
previously reported as biomarker candidates in melanoma under
ICB (8, 9).

We exploited our dataset further by applying a regression-based
approach to identify those MAE-specific CD8+ T cell populations
that were most informative for OS – the most robust endpoint of
our study. We found that a loss of CD8+ T cells specific for the
differentiation antigen TRP-2 SVY, the CTA TAG-1 SLG and the
overexpressed antigen Telomerase RLF was associated significantly
and independently with shorter OS. The resulting combinatorial
model defined a subgroup of patients with a significantly reduced
OS, characterized by a loss of at least one of the three MAE-specific
CD8+ T cell populations. Reasons for the disappearance of TAA-
specific T cells – and thus also the loss of these mostly apparently
clinically-beneficialMAE-specific CD8+ T cells - from the periphery
might be diverse. This might be of particular relevance as we
Frontiers in Immunology | www.frontiersin.org 10
recently reported the early disappearance of functional Melan-A-
or NY-ESO-1-reactive CD4+ and/or CD8+ T cells from the
peripheral blood in some melanoma patients with superior OS
and PFS under PD-1 ICB resulting from a hypothetical migration to
the metastases (25). A similar pattern for the dynamics of NY-ESO-
1-specific CD8+ T cells was also found in the present study.
However, the (opposite) correlation of the loss of T cells specific
for the TRP-2 SVY-, TAG-1 SLG- and Telomerase RLF-peptide-
MHC complexes with OS noted here might be explained by these
cells being dysfunctional or exhausted already before the start of
ICB, as commonly reported in advanced stages of cancer (50).
Taken together, we hypothesize that T cell specificity (37), kinetics
of (ICB triggered) epitope accessibility (40) and essentially also
functionality (20–22, 24, 25) at the single cell level might be
considered as major features to classify T cell populations that
actively contribute to cancer immunosurveillance as opposed to
those from dysfunctional and/or anergic subsets that cannot be
reinvigorated by ICB. Thus, such future evaluations of TAG-1-,
Telomerase- and TRP-2-reactive T cells (including also CD4+
T cells) is warranted to discriminate between functionally
competent and dysfunctional specific T cell clones, similar to our
previous studies on MAGE-A3, Survivin-, Melan-A- and NY-ESO-
1-reactive T cell populations (7, 20, 21).

Taken together, our pilot study shows a high degree of
individuality in the MAE-specific CD8+ T cell profiles in these
melanoma patients. Nevertheless, we were able to identify some
epitopes that might contribute to the search for targets for novel
TAA-based cancer vaccines, which are currently regaining
attention (19, 51, 52). However, this requires further in-depth
studies of these epitopes and in addition to the qualitative
investigations described in this pilot study, must also include
functional studies. Furthermore, our results provide important
insights into the dynamics of circulating MAE-specific CD8+
T cells under ICB and should contribute to a better
understanding of the role of these cells in cancer rejection.
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