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Abstract: Anion binding and extraction from solutions is currently a dynamic research topic in the
field of supramolecular chemistry. A particularly challenging task is the extraction of anions with
large hydration energies, such as the carbonate ion. Carbonate-binding complexes are also receiving
increased interest due to their relevance to atmospheric CO2 fixation. Nanojars are a class of self-
assembled, supramolecular coordination complexes that have been shown to bind highly hydrophilic
anions and to extract even the most hydrophilic ones, including carbonate, from water into aliphatic
solvents. Here we present an expanded nanojar that is able to bind two carbonate ions, thus doubling
the previously reported carbonate-binding capacity of nanojars. The new nanojar is characterized by
detailed single-crystal X-ray crystallographic studies in the solid state and electrospray ionization
mass spectrometric (including tandem MS/MS) studies in solution.

Keywords: supramolecular chemistry; inverse coordination; anion binding; nanojar; copper–pyrazolate
complex; carbonate binding

1. Introduction

Nanojars are a family of supramolecular coordination complexes that form from a
solution of Cu2+, OH− and pyrazolate (pz = C3H3N2

−) ions in the presence of a hydrophilic
anion, such as carbonate [1], sulfate [2], phosphate [3], arsenate [3] or chloride [4]. The
anion templates the formation of {cis-CuII(µ-OH)(µ-pz)}x metallamacrocycles (x = 6–14,
except 11). Three (in the case of carbonate, sulfate, phosphate, arsenate) or four (in the case
of chloride) of these metallamacrocycles self-assemble around a central anion into nanojars
of the formula [anion⊂{CuII(µ-OH)(µ-pz)}n] (n = 27–33), via inter-metallamacrocycle and
anion-metallamacrocycle hydrogen bonding, as well as inter-metallamacrocycle Cu···O
interactions. The incarcerated anion appears to be crucial for the formation of nanojars,
as the neutral nanojar host does not exist on its own without an anion guest. Figure 1
illustrates the structure of the nanojar with n = 27.

The recognition and binding of anions has been receiving increased interest in recent
years [5–7], as the supramolecular binding of anions finds applications in anion sensing,
extraction and separation of anions, transmembrane anion transport and anion-driven
architectonics and organocatalysis [8]. We have recently shown that nanojars bind the incar-
cerated oxoanions (carbonate, sulfate, phosphate, arsenate) with unprecedented strength by
wrapping a multitude of hydrogen bonds around the anion and totally isolating it from its
surrounding medium (as in the sulfate [9] and phosphate [10] binding proteins). Indeed, an
aqueous Ba2+ solution is unable to precipitate the corresponding barium salt (e.g., BaSO4,
Ksp = 1.08 × 10−10 at 25 ◦C in H2O) when stirred with a solution of the nanojars. We have
also demonstrated that nanojars are able to transfer these anions, including one of the most
hydrophilic ones, carbonate, from water into aliphatic solvents [11]. Thus, nanojars can
be used as extraction agents for the removal of such anions from contaminated aqueous
media by liquid–liquid extraction [12].

Herein we report the serendipitous discovery that upon addition of 1,10-phenathroline
into the nanojar-forming reaction mixture, expanded nanojars form that bind two carbonate
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ions instead of one, thus doubling the carbonate-binding capacity of nanojars. As described
below, the binding of the second carbonate ion by four copper-centers (µ4-CO3) provides
for an interesting new example of an inverse coordination complex, wherein the bridging
ligand is the coordination center surrounded by metal ions [13–20].
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2. Results and Discussion

Nanojars have so far been characterized almost exclusively with tetrabutylammo-
nium as counterion, such as in (Bu4N+)2[CO3

2−⊂{CuII(µ-OH)(µ-pz)}6+12+9] (1), with the
single exception of (K+ ⊂ 18-crown-6)2[SO4

2−⊂{CuII(µ-OH)(µ-pz)}8+14+9] [2]. In an at-
tempt to prepare nanojars with [Cu(phen)3]2+ formed in situ as the countercation, a mix-
ture of CuSO4·5H2O, pyrazole, NaOH and 1,10-phenanthroline (phen) was stirred in
tetrahydrofuran (THF). After filtration and evaporation, the resulting product was crys-
tallized from a nitrobenzene solution by heptane vapor diffusion. Instead of the expected
[Cu(phen)3][SO4⊂{CuII(µ-OH)(µ-pz)}n], X-ray crystallography showed the formation of
neutral, expanded nanojars, [CO3⊂{Cu29(µ-OH)27(µ-pz)27(phen)2(µ4-CO3)(H2O)}] (2). At-
mospheric CO2 was apparently absorbed during the reaction, leading to the binding of two
CO3

2− ions by the resulting nanojar. After rationalizing the obtained structure, the reaction
was also repeated using Cu(NO3)2·2.5H2O and Na2CO3·H2O instead of CuSO4·5H2O.

2.1. Crystallographic Description

Located on a general position, nanojar 2 (triclinic, Pı̄) has pseudo-mirror symmetry
(Figure 2). Its structure is closely related to that of 1, in which three neutral [cis-CuII(µ-
OH)(µ-pz)]n rings, with a larger one (n = 12) sandwiched by two smaller ones (n = 6 and 9),
define the nanojar, with its cavity occupied by an incarcerated carbonate ion (Figure 1).
The same Cu6 + Cu12 + Cu9 ring combination is found in both 1 and 2, with the exception
that one OH− group of the Cu9-ring in 2 is replaced by an O-atom of a second CO3

2−

ion. The central, larger ring is approximately flat, with the pyrazolate units symmetrically
alternating slightly above and below the ring mean-plane and not forming hydrogen
bonds to the carbonate ion. The smaller side-rings are bowl-shaped, with their pyrazolate
moieties pointing away from the central ring and their OH groups pointing toward the
center of the nanojar and forming multiple hydrogen bonds with the incarcerated CO3

2−

ion. Although there is no direct bonding between the two smaller rings, they are both
involved in multiple H-bonds and weak axial Cu–O interactions with the larger central
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ring. In the [cis-CuII(µ-OH)(µ-pz)]n rings, Cu–O and Cu–N bond-lengths are within normal
ranges, 1.893(3)–2.007(3) and 1.943(6)–2.06(2) Å, respectively (Table 1). While in 1 the
2—charge of the incarcerated carbonate ion is balanced by two Bu4N+ counterions, in 2 it
is the additional bonded [Cu2(phen)2CO3]2+ moiety that renders the assembly neutral.
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Figure 2. Ball-and-stick representation of the crystal structure of 2(C6H5NO2)6.74(C7H16)0.76: (left) side-view; (right)
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only the major components of the disordered carbonate and pyrazolate moieties are shown.

In 2, two O-atoms of the additional carbonate ion are bound to two CuII(1,10-phen)
units, which are bridged by a OH− group (O28) and form weak Cu–O bonds (2.296(3)
and 2.268(3) Å) with the Cu9-ring (Figure 3). The OH− group (O28) is H-bonded to the
central carbonate ion. As a consequence of binding the second carbonate ion, a pyrazolate
group of the Cu9-ring is pulled away from the Cu12-ring, opening up a cavity that becomes
occupied by a water molecule. This H2O molecule bridges two Cu-atoms of the Cu9-ring
(Cu···O: 2.419(3) and 2.432(3) Å) and donates a H-bond to a OH-group of the Cu12-ring
(O40···O8: 2.684(5) Å).

While in 1 the central carbonate ion is approximately parallel to the [Cu(µ-OH)(µ-
pz)]n rings, in 2 it is found tilted: the angle between the CO3

2− and Cu12-ring mean-planes
is 2.2(1)◦ in 1 and 22.2(2)◦ in 2 (Figure 4). As a consequence of the tilting, some of the
H-bonding distances to CO3

2− in 2 (Table 2) are shorter (down to 2.657(5) Å) and others
are longer (up to 3.088(5) Å) than in 1 (2.746(5)–2.915(5) Å). Nonetheless, the average of the
twelve H-bonds to carbonate (four to each O-atom) is virtually identical in 1 (2.842(5) Å) and
2 (2.838(5) Å). The second CO3

2− ion in 2 is coordinate-covalently bound to the Cu9 ring and
the two additional Cu-atoms, almost parallel to the central CO3

2− ion (angle between mean-
planes: 6.6(2)◦), with a C···C separation of only 3.071(6) Å. Another very closely-spaced,
head-to-head pair of CO3

2− ions (C···C: 3.664(1), O···O: 1.946(1) Å) has been reported
in which both CO3

2− ions are bound to multiple metal centers [21]. The tetranuclear
Cu4(µ4-CO3) moiety has also been reported with a few other ligand systems [22–29].

As in 1, the OH-groups of the Cu12-ring in 2 donate twelve alternating H-bonds, six
to the Cu6-ring (O···O: 2.716(4)–2.786(4) Å, average: 2.742(5) Å) and six to the Cu9-ring
(O···O: 2.721(4)–2.914(5) Å, average: 2.780(5) Å), with an overall average of 2.762(4) Å.
The corresponding overall average of the twelve O···O distances in 1 is virtually identical
(2.761(5) Å).
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The Cu6- and Cu9-rings in 2 each form six Cu···O contacts <3.00(8) Å with O-atoms of
the Cu12-ring (Cu6-ring, Cu···O: 2.410(3)–2.609(3) Å, average: 2.476(3) Å; Cu9-ring, Cu···O:
2.318(3)–3.079(3) Å; average: 2.698(3) Å). Two Cu-atoms of the Cu9-ring (bridged by an
O-atom of the second carbonate ion) bind the bridging H2O molecule. All other Cu-atoms,
including those of the Cu12-ring, are at distances larger than 3.196(3) Å from the closest
nonbonding O-atoms. Overall, there are twelve Cu···O distances <3.00(8) Å between
Cun-rings, with an average of 2.587(3) Å. The corresponding value for 1 is 2.564(4) Å.

In addition to the two carbonate ions, nanojar 2 also binds a nitrobenzene solvent
molecule in the outer cavity of the Cu6-ring (Figure 5) by a close π-π stacking interaction
between the phenyl group and a pyrazolate moiety (centroid···centroid: 3.593(3) Å, angle
between mean-planes: 6.7(2)◦) and by weak, bifurcated interactions between the O-atoms
of the nitro group and four Cu-atoms (Cu···O: 2.647(4) and 3.033(4) Å, and 2.827(4) and
2.844(4) Å, respectively).

Table 1. Selected bond lengths for 2.

Cu1–O1 1.906(3) Cu8–N14 1.964(4) Cu16–O16 1.928(3) Cu23–N45 1.946(3)
Cu1–O6 1.957(3) Cu8–N815 2.06(2) Cu16–N31 1.964(3) Cu23–O23 1.951(3)

Cu1–N12 1.983(4) Cu9–O9 1.910(3) Cu16–N30 1.975(4) Cu23–N44 1.963(3)
Cu1–N1 2.025(3) Cu9–O8 1.935(3) Cu17–O17 1.908(3) Cu24–O24 1.891(3)
Cu2–O1 1.928(3) Cu9–N16 1.961(6) Cu17–O16 1.934(3) Cu24–N46 1.948(3)
Cu2–O2 1.939(3) Cu9–N17 1.962(3) Cu17–N32 1.954(4) Cu24–O23 1.950(3)
Cu2–N3 1.982(3) Cu9–N816 2.00(2) Cu17–N33 1.974(4) Cu24–N47 1.968(4)
Cu2–N2 2.000(3) Cu10–O10 1.909(3) Cu18–O17 1.925(3) Cu25–O24 1.930(3)
Cu2–O11 2.411(3) Cu10–O9 1.939(3) Cu18–O18 1.934(3) Cu25–O25 1.937(3)
Cu3–O2 1.928(3) Cu10–N18 1.961(3) Cu18–N34 1.963(3) Cu25–N49 2.001(3)
Cu3–O3 1.940(3) Cu10–N19 1.983(3) Cu18–N35 1.976(4) Cu25–N48 2.005(4)
Cu3–N4 1.998(3) Cu11–O11 1.921(3) Cu19–O27 1.934(3) Cu25–O14 2.326(3)
Cu3–N5 2.003(3) Cu11–O10 1.931(3) Cu19–O19 1.958(3) Cu26–O25 1.893(3)
Cu4–O3 1.938(3) Cu11–N20 1.965(3) Cu19–N37 1.992(4) Cu26–N51 1.946(4)
Cu4–O4 1.941(3) Cu11–N21 1.967(3) Cu19–N54 2.000(3) Cu26–O26 1.950(3)
Cu4–N7 1.981(3) Cu12–O11 1.924(3) Cu19–O18 2.399(3) Cu26–N50 1.975(4)
Cu4–N6 2.010(4) Cu12–O12 1.932(3) Cu20–O19 1.919(3) Cu27–O27 1.905(3)
Cu5–O5 1.934(3) Cu12–N23 1.956(4) Cu20–N38 1.970(4) Cu27–O26 1.938(3)
Cu5–O4 1.941(3) Cu12–N22 1.966(3) Cu20–N39 1.989(4) Cu27–N53 1.961(4)
Cu5–N8 1.996(3) Cu13–O13 1.914(3) Cu20–O20 1.998(3) Cu27–N52 1.964(3)
Cu5–N9 2.002(4) Cu13–O12 1.933(3) Cu20–O40 2.419(3) Cu28–O28 1.922(3)
Cu6–O5 1.916(3) Cu13–N24 1.953(3) Cu21–O21 1.911(3) Cu28–O30 1.954(3)
Cu6–O6 1.956(3) Cu13–N25 1.975(4) Cu21–N40 1.958(4) Cu28–N56 2.022(4)

Cu6–N11 1.991(3) Cu14–O14 1.914(3) Cu21–N41 1.973(4) Cu28–N55 2.023(4)
Cu6–N10 2.006(3) Cu14–O13 1.926(3) Cu21–O20 2.007(3) Cu28–O26 2.296(3)
Cu7–O18 1.905(3) Cu14–N26 1.959(4) Cu21–O40 2.432(3) Cu29–O28 1.919(3)
Cu7–O7 1.921(3) Cu14–N27 1.960(3) Cu22–O22 1.927(3) Cu29–O29 1.942(3)

Cu7–N13 1.954(4) Cu15–O14 1.923(3) Cu22–N42 1.969(4) Cu29–N57 2.019(4)
Cu7–N36 1.963(3) Cu15–O15 1.925(3) Cu22–O21 1.975(3) Cu29–N58 2.026(3)
Cu8–O7 1.907(3) Cu15–N29 1.966(3) Cu22–N43 2.004(4) Cu29–O23 2.269(3)
Cu8–O8 1.941(3) Cu15–N28 1.969(4) Cu22–O10 2.318(3)

Cu8–N15 1.943(6) Cu16–O15 1.916(3) Cu23–O22 1.894(3)

As shown in Figure 6, the close-packing of nanojars leaves relatively large void spaces
in the crystal lattice, which are filled by multiple solvent molecules (see also Figure 7).
In addition to the nitrobenzene molecule bound in the outer cavity of the Cu6-ring of the
nanojar, there are five more nitrobenzene molecules filling up the void spaces, as well as
a seventh nitrobenzene molecule disordered with a heptane molecule. The presence of
aromatic moieties in the included solvent molecules appears to be crucial for the formation
of nanojar crystals, as they form multiple aromatic interactions with the nanojar molecules
and with each other. Nevertheless, the crystal lattice is not robust: the crystals quickly
become opaque and disintegrate if removed from the mother liquor at ambient conditions,
requiring low-temperature conditions for X-ray diffraction measurement.
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Figure 4. Comparison of the crystal structures of 1 and 2, illustrating the formation of 2 from 1 by incorporation of a
[Cu2(phen)2CO3]2+ moiety. Color code: dark blue—Cu; light blue—N; red—O; black—C; pink—H. The 1,10-phenanthroline
moieties are highlighted in orange.

2.2. Mass Spectrometric Studies

Electrospray ionization mass spectrometry (ESI-MS) studies show that the prod-
uct obtained from the reaction of copper nitrate, pyrazole, sodium hydroxide, sodium
carbonate and 1,10-phenanthroline is a mixture of nanojars (Figure 8). The spectrum
shows the following peaks in the negative mode (no nanojar peaks are observable in
the positive mode): [CO3⊂{Cu(µ-OH)(µ-pz)}n]2− (CunCO3; n = 27, m/z = 2023; n = 29,
m/z = 2171; n = 30, m/z = 2245; n = 31, m/z = 2318) and [{Cu2O(phen)3CO3}CO3⊂{Cu(µ-
OH)(µ-pz)}31]2− (m/z = 2690). The first four peaks correspond to nanojars without the addi-
tional [Cu2(phen)2CO3]2+ moiety. Obviously, neutral [Cu2(phen)2(CO3)2{Cu(OH)(pz)}n]
nanojar peaks cannot be expected in the mass spectrum. It is apparent that during ion-
ization in the mass spectrometer, the neutral nanojars lose the [Cu2(phen)2CO3]2+ moiety
and become [CO3⊂{Cu(µ-OH)(µ-pz)}n]2−. Although the parent, neutral nanojars can-
not be observed directly by ESI-MS, several independent observations indirectly support
their assumed structure. First, the crystal structure of [Cu2(phen)2(CO3)2{Cu(OH)(pz)}n]
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with n = 27 has been unambiguously established. In this Cu6+Cu12+Cu9 nanojar, the
Cu2(phen)2CO3 moiety is bound to the Cu9-ring. Other nanojar sizes, such as with n = 29
(Cu7+Cu13+Cu9), n = 30 (Cu8+Cu13+Cu9) and n = 31 (Cu8+Cu14+Cu9) also have Cu9-
rings to which the Cu2(phen)2CO3 moiety can bind. Second, a peak corresponding to
[CuI(phen)2]+ (m/z = 424) is observed in the positive mode ESI-MS spectrum of the as-
synthesized neutral nanojar mixture, which originates from the [Cu2(phen)2CO3]2+ moiety
detached from the nanojar upon ionization. Third, the neutral nanojar mixture has signif-
icantly decreased solubility in organic solvents, compared to the 2− charged analogs in
(Bu4N+)2[CO3⊂{CuII(µ-OH)(µ-pz)}n]2−. Thus, the neutral nanojar mixture only dissolves
well in solvents such as DMF, nitrobenzene and THF, but not in toluene, chlorobenzene,
butyl acetate, methanol, acetone and dioxane, which are good solvents for the 2− charged
nanojars. Finally, the peak at m/z = 2690 corresponding to [{Cu2O(phen)3CO3}CO3⊂{Cu(µ-
OH)(µ-pz)}31]2− clearly demonstrates the existence of expanded nanojars in solution.

Table 2. Hydrogen bonding data for 2. O1–O6: Cu6-ring; O7–O18: Cu12-ring; O19–O27: Cu9-ring;
O28: Cu2(OH)(phen)2 unit; O31–O33 and O931–O933: central carbonate (disordered, 91/9).

D–H···A D–H (Å) H···A (Å) D···A (Å) D–H–A (◦)

O1–H1O···O33 0.80(2) 1.89(2) 2.687(5) 170(5)
O2–H2O···O33 0.78(2) 2.15(2) 2.915(5) 165(5)

O2–H2O···O933 0.78(2) 1.91(2) 2.657(5) 158(5)
O3–H3O···O31 0.80(2) 2.34(2) 3.124(5) 166(5)
O4–H4O···O32 0.80(2) 2.28(3) 3.036(5) 158(5)

O4–H4O···O931 0.80(2) 1.92(3) 2.678(5) 157(5)
O5–H5O···O32 0.80(2) 1.88(2) 2.677(5) 175(5)

O6–H6O···O932 0.80(2) 1.93(3) 2.713(5) 166(5)
O7–H7O···O19 0.81(2) 2.11(2) 2.914(5) 172(5)
O8–H8O···O6 0.80(2) 1.92(2) 2.716(4) 178(6)

O9–H9O···O21 0.81(2) 2.01(2) 2.818(4) 172(5)
O10–H10O···O1 0.81(2) 1.93(2) 2.731(4) 171(5)
O11–H11O···O22 0.81(2) 1.92(2) 2.731(4) 175(5)
O12–H12O···O2 0.80(2) 2.00(2) 2.787(4) 172(5)
O13–H13O···O24 0.79(2) 1.95(2) 2.743(5) 177(6)
O14–H14O···O3 0.80(2) 1.94(2) 2.721(4) 168(5)
O15–H15O···O25 0.81(2) 1.91(2) 2.722(4) 178(5)
O16–H16O···O4 0.80(2) 1.96(2) 2.764(4) 174(5)
O17–H17O···O27 0.81(2) 1.97(2) 2.767(4) 171(5)
O18–H18O···O5 0.80(2) 1.94(2) 2.736(4) 172(5)
O19–H19O···O32 0.81(2) 2.17(2) 2.949(5) 161(5)

O19–H19O···O932 0.81(2) 2.27(3) 3.055(5) 166(5)
O21–H21O···O33 0.80(2) 2.22(3) 2.973(5) 156(5)

O21–H21O···O932 0.80(2) 2.30(3) 3.088(5) 167(5)
O22–H22O···O33 0.80(2) 1.90(2) 2.696(4) 170(5)

O22–H22O···O933 0.80(2) 2.18(2) 2.907(4) 151(5)
O23–H23O···O31 0.79(2) 2.47(3) 3.195(5) 153(5)

O23–H23O···O933 0.79(2) 1.95(3) 2.730(5) 167(5)
O24–H24O···O31 0.80(2) 1.95(2) 2.737(5) 168(5)

O24–H24O···O933 0.80(2) 2.29(2) 3.023(5) 153(5)
O25–H25O···O31 0.80(2) 1.90(3) 2.682(5) 164(5)

O25–H25O···O931 0.80(2) 2.24(3) 2.985(5) 156(5)
O26–H26O···O31 0.80(2) 2.33(3) 3.045(5) 150(5)

O26–H26O···O931 0.80(2) 1.90(3) 2.693(5) 177(5)
O27–H27O···O32 0.80(2) 1.96(3) 2.741(5) 163(5)

O27–H27O···O931 0.80(2) 2.14(3) 2.893(5) 155(5)
O28–H28O···O31 0.82(2) 2.11(3) 2.895(5) 159(5)
O40–H40O···O8 0.82(2) 1.87(2) 2.684(5) 174(6)
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Earlier tandem mass spectrometry (MS-MS) studies showed that the various
[CO3⊂{Cu(µ-OH)(µ-pz)}n]2− nanojar species shrink as the trap collision energy is in-
creased, by losing neutral Cu5(OH)10(Hpz)10−y(H2O)(n+y−20)/2 fragments (y = 4–12; y has
the same parity as n [1]. Thus, four to five shrunken daughter-nanojar species of the
formula [Cun−5O(n − y)/2(pz)n + y − 10CO3]2− were observed for each parent nanojar. Sim-
ilarly, the peak at m/z = 2690 corresponding to [{Cu2O(phen)3CO3}CO3⊂{Cu(µ-OH)(µ-
pz)}31]2− gradually disappears upon increasing the trap collision energy, by losing a neutral
Cu4(OH)y(Hpz)8 − y(H2O)(31 − y)/2(phen) fragment and giving rise to peaks at m/z 2092,
2151, 2269 and 2210 (Figure 9), which correspond to [Cu27O(31 − y)/2(pz)31 + y − 8CO3]2−

(y = 1, 3, 5, 7) species (Figure 10). So far, these shrunken daughter-nanojars have only
been observed by mass spectrometry and have not been isolated; therefore, their detailed
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structure is yet unknown. As with other nanojars, a peak at m/z = 198, corresponding to
[CuI(pz)2]−, is also observed in the tandem mass spectrum.
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The following observations further support the assumption that the [Cu2(phen)2CO3]2+

moiety binds only to the Cu9-ring in nanojars. The ESI-MS(–) spectrum of the product
obtained from the reaction of copper sulfate, pyrazole, sodium hydroxide
and 1,10-phenanthroline is shown in Figure 11. The major peak in this spectrum
corresponds to [SO4⊂{Cu(µ-OH)(µ-pz)}31]2− (Cu31SO4), assumingly derived from
[{Cu2(phen)2CO3}SO4⊂{Cu(µ-OH)(µ-pz)}31]. Smaller peaks are observed at m/z 2023
(Cu27CO3) and m/z 2171 (Cu29CO3). These latter species formed as side-products upon
absorption of small amounts of atmospheric CO2 during the reaction and explain the
serendipitous formation of a few crystals of 2. Noteworthy is the absence of signifi-
cant peaks at m/z 2041 (Cu27SO4), m/z 2115 (Cu28SO4), m/z 2189 (Cu29SO4) and m/z 2262
(Cu30SO4). As shown earlier, Cu27SO4 and Cu29SO4 species form in very small amounts
under similar reaction conditions from copper sulfate, pyrazole, sodium hydroxide and
tetrabutylammonium hydroxide in THF, whereas Cu30SO4 was not observed at all (the
major species observed were Cu28SO4 and Cu31SO4) [1]. The absence of a peak at m/z
2115, corresponding to Cu28SO4, suggests that [{Cu2(phen)2CO3}SO4⊂{Cu(µ-OH)(µ-pz)}28]
nanojars do not form, probably due to the fact that the Cu28SO4 nanojar (Cu6+Cu12+Cu10)
lacks a Cu9-ring and cannot accommodate the Cu2(phen)2CO3 moiety.
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3. Materials and Methods

All commercially available chemicals were used as received. Reactions were carried
out in closed vessels, but not under strictly air-free conditions.

Synthesis of [{Cu2(phen)2CO3}CO3⊂{Cu(µ-OH)(µ-pz)}n] (n = 27, 29, 30, 31). Cu(NO3)2·2.5H2O
(0.4652 g, 2.00 mmol), pyrazole (0.132 g, 1.94 mmol), NaOH (0.155 g, 3.88 mmol), 1,10-
phenanthroline (0.037 g, 0.21 mmol) and Na2CO3·H2O (0.2481, 2.00 mmol) were stirred
for six days in 15 mL of THF. The reaction mixture was filtered, and the solvent was left to
evaporate. The solid product obtained was washed with water, methanol and acetone and
was dried under high vacuum to yield 0.283 g of a dark blue powder.

Synthesis of [{Cu2(phen)2CO3}SO4⊂{Cu(µ-OH)(µ-pz)}31]. This compound was pre-
pared as described above, using CuSO4·5H2O (1.0000 g, 4.00 mmol), pyrazole (0.2640 g,
3.88 mmol), NaOH (0.3100 g, 7.75 mmol) and 1,10-phenanthroline (0.0740 g, 0.41 mmol) in
30 mL of THF. Yield: 0.5348 g dark blue powder.

3.1. Mass Spectrometry

Mass spectrometric analysis of the nanojars was performed with a Waters Synapt
G1 HDMS instrument using electrospray ionization (ESI). 10−4–10−5 M solutions were
prepared in N,N-dimethylformamide (DMF). Samples were infused by a syringe pump
at 5 µL/min, and nitrogen was supplied as nebulizing gas at 500 L/h. The electrospray
capillary voltage was set to –2.5 or +3.0 kV, respectively, with a desolvation temperature of
150 ◦C. The sampling and extraction cones were maintained at 40 V and 4.0 V, respectively,
at 80 ◦C. The MS/MS conditions were the same, except the transfer collision energy was
5 V and the trap collision energies were 5, 30, 40, 50, 60 and 70 V.

3.2. X-ray Crystallography

A few single-crystals of 2 were grown from a nitrobenzene solution by heptane vapor
diffusion. Once removed from the mother liquor, the crystals are very sensitive to solvent
loss at ambient conditions and were mounted quickly under a cryostream (100 K) to prevent
decomposition. X-ray diffraction data were collected at 100 K from a single-crystal mounted
atop a glass fiber under Paratone-N oil with a Bruker SMART APEX II diffractometer using
graphite-monochromated Mo-Kα (λ = 0.71073 Å) radiation. The structure was solved by
employing SHELXTL direct methods and refined by full-matrix least squares on F2 using
the APEX2 v2014.9-0 software package [30]. C–H hydrogen atoms were placed in idealized
positions and refined using the riding model. Hydroxyl and water H atom positions were
located from difference density maps and were refined with O–H distance restraints of
0.82(2) Å. A pyrazolate ligand was refined as disordered. The two disordered moieties
were restrained to have similar geometries. Uij components of ADPs for disordered atoms
closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions,
the occupancy ratio refined to 0.805(13)/0.195(4). The oxygen atoms of the carbonate
ion were refined as disordered. The two disordered moieties were restrained to have
similar geometries. Uij components of ADPs for disordered atoms closer to each other
than 2.0 Å were restrained to be similar. Subject to these conditions, the occupancy ratio
refined to 0.913(4)/0.087(4). Three nitrobenzene solvate molecules were disordered with
two alternative orientations (one by two-fold symmetry, two in general positions), one
with three orientations, and one was disordered with a heptane molecule. The disordered
nitrobenzene moieties were restrained to have similar geometries (SAME commands).
C926 of one nitrobenzene moiety was restrained to be coplanar with its neighboring atoms.
Bond distances within the heptane molecule were restrained to be similar to each other
(SADI command). Uij components of ADPs for disordered atoms closer to each other than
2.0 Å were restrained to be similar. Subject to these conditions, the occupancy rates refined
to 0.910(4)/0.090(4) for the two moieties of the nitrobenzene of N60, to 0.489(14)/0.511(14)
for the two moieties of the nitrobenzene of N62, to 0.502(3)/0.313(3)/0.185(3) for the three
moieties of the nitrobenzene of N64 and to 0.765(6)/0.235(6) for the disorder of heptane
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and nitrobenzene (in favor of heptane). A thermal ellipsoid plot of the crystal structure is
shown in Figure 7.

Summary of the crystallographic data. Chemical formula, C152.76H171.91Cu29N64.74O47.47;
formula weight, 5517.12; crystal system, triclinic; space group, P ı̄ (No. 2); a = 14.7855(3) Å;
b = 20.6120(4) Å; c = 31.7417(6) Å; α = 95.026(1)◦; β = 92.124(1)◦; γ = 93.936(1); V = 9604.6(3)
Å3; Z = 2; Dcalc = 1.908 g/cm3; µ = 3.225 mm−1; no. of reflns collected, 299360; no. of unique
reflns, 39404; no. of obsd reflns (I > 2σ(I)), 29554; R(int), 0.0723; data/parameters/restrains,
39404/3255/2672; goodness-of-fit (on F2): 1.032; R(F) (I > 2σ(I)), 0.0384; Rw(F) (I > 2σ(I)),
0.0793; R(F) (all data), 0.0641; Rw(F) (all data), 0.0891; residual electron density, max/min
(e/Å3), 2.122/–1.143. Crystallographic data for 2(C6H5NO2)6.74(C7H16)0.76 were deposited
with the Cambridge Crystallographic Data Center (CCDC 2078120). Copies of the data can
be obtained free of charge at http://www.ccdc.cam.ac.uk/products/csd/request (accesed
on 20 May 2021).

4. Conclusions

In summary, we present a new, expanded nanojar of the formula [CO3⊂{Cu29(µ-
OH)27(µ-pz)27(phen)2(µ4-CO3)(H2O)}], which is able to bind two carbonate ions, compared
to only one carbonate ion in previously reported nanojars [CO3⊂{Cu(µ-OH)(µ-pz)}n]2−

(n = 27, 29, 30, 31). Single-crystal X-ray crystallographic studies in the solid state show
that the new nanojar is an extension of the [CO3⊂{Cu(µ-OH)(µ-pz)}6+12+9]2− motif, with
a [Cu2(phen)2CO3]2+ moiety bound to the Cu9-ring of the nanojar. Upon binding of
this additional moiety, one OH− group of the Cu9-ring is displaced by an O-atom of
the second carbonate ion and becomes a bridging ligand for the Cu2-moiety. Thus, the
expanded nanojar can also be described as [{Cu2(µ-OH)(phen)2(µ4-CO3)}CO3⊂{Cu27(µ-
OH)26(µ-pz)27}]. Solution studies by electrospray ionization mass spectrometry indicate
that homologous nanojar species based on [CO3⊂{Cu(µ-OH)(µ-pz)}n]2− (n = 29, 30, 31)
also form in the reaction of copper nitrate, pyrazole, sodium hydroxide, sodium carbon-
ate and 1,10-phenanthroline. Although the expanded nanojars described above cannot
be observed directly by ESI-MS due to their overall neutral charge, ionization by loss
of the [Cu2(phen)2CO3]2+ moiety does lead to [CO3⊂{Cu(µ-OH)(µ-pz)}n]2− (n = 27, 29,
30, 31) daughter-species. Additionally, a peak in the mass spectrum corresponding to
[{Cu2O(phen)3CO3}CO3⊂{Cu(µ-OH)(µ-pz)}31]2− does provide direct evidence and demon-
strates the existence of expanded nanojars in solution.
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