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Abstract: Hexacoordinated heteroligand silicon catecholates, although being prospective as easily sol-
uble compounds with high hydrolytic stability and diverse redox properties, have been insufficiently
studied. The transesterification of 1-(trimethoxysilylmethyl)-2-oxohexahydroaze or N-methyl-N-
(trimethoxysilylmethyl)acetamide by two equivalents of catechol derivatives in the presence of
dicyclohexylamine afforded a series of target compounds in good yield. The complexes were char-
acterized using elemental analysis, FTIR, 1H, 13C and 29Si NMR spectra, X-ray crystallography
and cyclic voltammetry. X-ray diffraction confirmed that the silicon atom possesses the octahedral
geometry of the SiCO5 polyhedron that remains unchanged in solution as it follows from 29Si NMR
data. The compounds demonstrated up to three oxidation waves; and the reduction profile strongly
depended on the nature of the substituents on a catecholate anion.

Keywords: cyclic voltammetry; silicon catecholates; NMR studies; Si−C bond cleavage; X-ray diffraction

1. Introduction

Catecholate-containing silicon complexes are among the best-studied families of
coordination compounds for this element. Starting from the synthesis of the anionic
Si(Cat)3

2−complex from SiO2, published in 1920, nearly 150 various compounds containing
silicon atom connected with 1–3 catecholate ligands have been characterized (these can
be found in the Cambridge Structural Database, released 2020.3). This interest is induced
by the practical applications of silicon catecholates tuned by the electron-withdrawing
properties of these anions. Their electron-withdrawing effect is strong enough, for example,
to allow catecholate fragments of enterobacter to bind silicon even in conditions of living
bacterial cell [1,2]. Silicon complexes with tetrahalogen-substituted catecholate ligands
possess catalytic activity in the reactions of aldehyde hydrosilylation [3] related to the
high Lewis acidity of Si(Cat)2 fragments that exceed the acidity of SbF5 [4,5]. Halogen-
substituted catecholate anions are even able to stabilize a triplet state of silicon [6], which al-
lows stable Si(Cat)2 radical to be obtained, with spin density distributed over the ligands.
Some other substituted catecholates were used for the construction of macrocyclic and
framework assemblies with large pores [1,2,7–10].

One of the research lines for silicon catecholate applications is devoted to the ex-
ploration of complexes with reversible electrochemical reduction and oxidation. It was
demonstrated that pentacoordinated silicon atoms connected with an aryl or alkyl group
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beside two catecholate anions undergo irreversible electrochemical oxidation and can be
used as a source of allyl radicals [11]. The binding of silicon benzoquinones with cate-
cholate anions increased their stability towards electrochemical oxidation [12] that allowed
a macrocyclic ligand with pentacoordinated silicon able to bind with various metal cations
to be obtained. Silicon complexes containing both catecholate and 1,10-dipyridyl undergo
reversible redox processes [13].

Among previously studied silicon complexes, the pentacoordinated ones are the most
widespread; their number significantly exceeds that of the hexacoordinated. Among the
hexacoordinated silicon complexes present in the CSD, the majority is represented by salts
of Si(Cat)3 anions (for example see references. [14,15]), or complexes containing one cate-
cholate anion only. Hexacoordinated silicon complexes containing two catecholate anions
were typically obtained by the reaction of a Lewis base (for example, F− or DME) with a
Si(Cat)2 Lewis acid [4,5,16]. Thus, the number of anionic hexacoordinated heteroligand
silicon complexes containing two catecholate ligands and an organic ligand coordinated
through the covalent Si–C bond and an additional bond is limited by compounds contain-
ing an additional bond with amine [17,18] and with carbonyl groups [19]. Moreover, their
redox behavior was not described. Previously, some of us synthesized and characterized
two complexes containing acetamide and caprolactam ligands connected with a silicon
atom beside two catecholate anions [19]. These complexes demonstrated high hydrolytic
stability and moderate solubility with polar solvents (including water). We proposed
that similar compounds can be prospective for the production of silicon complexes with
reversible redox properties, as (i) their properties (solubility and redox potential) can be
tuned by variation of the catecholate anions, (ii) additional coordination can increase the
stability of complexes and allow at least partly reversible redox properties to be obtained.
Besides, substituted catecholate anions should stabilize bis(catecholate)silicon radicals,
obtained at the bond cleavage with acetamide or caprolactam fragments.

Herein we report the synthesis, IR,1H and 13C NMR spectra, crystal structures and
redox properties of a series of anionic complexes containing two substituted catecholate
anions, and acetamide or caprolactam. The nature of the substituents at the anions varies
from donor to acceptor, which allows the analysis of the electronic effects on the coor-
dination polyhedron of silicon atoms and the spectral and electrochemical properties
of the complexes.

2. Results and Discussion
2.1. Synthesis

N-Trimethoxysilylmethyl derivatives of N-methylacetamide and 2-oxohexahydroazepine
were synthesized as described in reference [20]. Their transesterification by two equivalents of
a series of commercially available catechol derivatives substituted by various electron donor
and electron acceptor groups occurred on heating in o-xylene in the presence of one equivalent
of dicyclohexylamine following the previously reported procedure [19]. The reaction afforded
seven novel compounds listed in Scheme 1. The reaction yield varied from 78 to 91%, except
for salt 4 (Yield is 47%).

The composition of salts 1–7 was confirmed using elemental analysis, IR spectroscopy,
1H, 13C and 29Si NMR spectra, as well as X-ray crystallography. The FTIR spectra (in solid
KBr) exhibited the characteristic bands at 1602−1621 cm−1 and 1480–1529 cm−1 corre-
sponding to stretching vibrations of, respectively, ν(C=O) and ν(C=N) groups involved
in the five-membered chelate cycle. Bands at 1270–1220 cm−1 corresponded to Ph–O
vibrations of catecholate anions. Thus, the elemental analysis, FTIR spectra and X-ray
crystallography (see below) undoubtedly indicated that we had obtained heteroligand
complexes containing hexacoordinated silicon atoms. The presence of non-equivalent
ligands causes a prominent dipole moment of the anions. As result, the solids are soluble
in polar solvents.
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[SiIVLCatx
2]− anions 1–7 (Catx = substituted catecholate ligand, L-bidentate chelate

acetamide (2, 4, 6–7) or caprolactam (1, 3, 5) ligands) have a signal in 29Si NMR spectra in a
very strong field at ca.−133 ppm, which is a typical chemical shift for pentacoordinated
siloxane anions with formal excess of electron density on the silicon atom. The 29Si NMR
spectrum of the [SiIVLCatx

2]− anion 4 also has the second smallest signal in an even
stronger field at –141 ppm, which was assigned to the anion 4a [Si(C6O2Br4)3]2− with
hexacoordinated silicon atom and coordination polyhedron SiO6. To verify this hypothesis,
we have carried out several special 2D NMR experiments (Figure 1). The main feature of
this hexa-coordinated anion 4a is a total absence of protons in the molecule, which leads to
its invisibility in all spectra except direct long acquisition of the 29Si (Figure 1A). This is the
best confirmation of anion structure. Thus, in the 29Si INEPT and 1H–29Si HMBC spectra,
only [SiIVLCatx

2]− 4 with the presence of protons near the silicon atom gave a strong
signal/correlation peak (Figure 1A,B). In the 1H DOSY spectra, also only [SiIVLCatx

2]−

4 is visible for the same reason (Figure 1C). Because it is an ionic compound, the anionic
and cationic parts have different diffusion coefficients, which leads to the observation of
two components in the diffusion spectra. The approximate ratio of compounds 4 and 4a
according to the results of 29Si NMR was 83:17.

Considering the reasons for the formation of compound 4a [(C6H11)2NH2]2[Si(C6O2Br4)3]2,
we assumed that it could be a decomposition product of compound 4. In this case, tris-
catecholates should be formed during the decomposition of other compounds studied in this
work. After irradiation of compounds 2, 6, and 7 with a “white” UV radiation for 16 h, the signals
of hexacoordinated silicon completely disappeared from their 29Si spectra. After appropriate
irradiation of compound 4, the signals did not completely disappear, but the change in intensity
showed that the anion 4a was more stable than the anion of compound 4 (the ratio of compounds
4:4a changed to 74:26).

The peculiarities of the coordination environment and molecular structures of 1–7 in
the solid state were studied with single-crystal X-ray diffraction.

2.2. Crystal Structures

Single-crystal X-ray diffraction confirmed that we had obtained a series of [SiIVLCatx
2]−

complexes with two bidentate chelate catecholate anions and a bidentate chelate acetamide
(2, 4, 6–7) or caprolactam (1, 3, 5). Bis(cyclohexyl)ammonium (NH2[cyc]2

+) acted as a
counterion for all compounds. The asymmetric unit of 1 contained toluene molecules,
and solid 2 also contained a 4-methyl-1,2-benzoquinone and solvent benzene molecules.
In two isostructural crystal solvates of 3, two symmetrically independent anions, and two
types of cations, a potassium atom and NH2[cyc]2

+ were found, as well as uncoordinated
acetonitrile and water molecules. In Figure 2, the molecular view of the heteroligand anions
in 1–7 is represented.
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INEPT spectra in comparison. (B) Well-acquired 1H–29Si HMBC spectrum optimized on long-range J = 6 Hz. (C) 1H DOSY 
spectrum processed by the monoexponential fitting. All spectra were acquired at +50 °C in DMSO-d6 to prevent a slow 
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Figure 1. Crucial 29Si and diffusion NMR spectra for the elucidation of the [Si(C6O2Br4)3]2− anion 4a. (A) 29Si{1H} and
29Si-INEPT spectra in comparison. (B) Well-acquired 1H–29Si HMBC spectrum optimized on long-range J = 6 Hz. (C) 1H
DOSY spectrum processed by the monoexponential fitting. All spectra were acquired at +50 ◦C in DMSO-d6 to prevent a
slow rotational dynamic of sterically hindered molecules. In the 29Si-INEPT and 1H–29Si HMBC spectra, only RCH2[SiO4]−

was visible with the presence of protons near the silicon atom. In the 1H DOSY spectra, also only anion 4 was visible, in the
form of two anionic and cationic parts with different diffusion coefficients. Proton free anion 4a was invisible in all spectra
except direct long acquisition of the 29Si (marked by red dot line), which was the best confirmation of its structure.
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Hydrogen atoms are omitted. Color code: Br—brown; C—grey, F—green; N—blue; O—red; Si—orange.

The silicon atom in these complexes possessed octahedral geometry. The Si–C
and Si–O distances between the central atom and acetamide or caprolactam were the
longest of the coordination bonds in the SiCO5 polyhedron (Table 1). The structure of the
[SiIVLCatx

2]−anion closely resembled that of unsubstituted [SiIVLCat2]− [19]. The nature
of substituents X almost did not affect the length of the coordination Si1−O1 bond (Table
1) with the carbonyl group of acetamide or caprolactam moieties. Indeed, the variation
of the Si−O1 bond length was 0.03 Å only; and it was almost independent of the nature
of R1, R2 and R3 substituents. At the same time, the length of Si−O bonds with a cate-
cholate varied in a wider range (1.7638(17)–1.830(2) Å) that can be explained by either
the effect of the Si–C bond, or by the participation of the corresponding oxygen atom in
a strong hydrogen bond with NH2[cyc]2

+ cations or non-coordinated CatX ligands, or by
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coordination with potassium cation (in 6 and 7). Thus, [SiIVLCatx
2]− proved to be a rigid,

very stable cage system almost insensitive to the influence of the nature of a ligand and
intermolecular interactions.

Table 1. Selected geometrical parameters (Å, º) of SiCO5 polyhedra in 1–7.

1 2 3a 1 3b 1 4 5 6 7

Si1-O1 1.877(2) 1.8851(15) 1.880(12) 1.896(6) 1.867(3) 1.882(3) 1.860(17) 1.8873(19)
Si1-O2 1.788(2) 1.7935(14) 1.792(12) 1.777(6) 1.784(3) 1.809(3) 1.778(2) 1.8090(18)
Si1-O3 1.800(2) 1.7638(17) 1.795(11) 1.795(6) 1.830(3) 1.782(3) 1.7861(18) 1.8052(19)
Si1-O4 1.761(2) 1.7889(17) 1.798(11) 1.795(6) 1.784(3) 1.798(4) 1.7868(18) 1.7894(18)
Si1-O5 1.801(2) 1.7934(16) 1.801(11) 1.807(6) 1.815(3) 1.815(3) 1.8036(17) 1.768(2)
Si1-C1 1.918(3) 1.923(2) 1.927(19) 1.918(8) 1.925(4) 1.932(4) 1.996(17) 1.923(3)

O1Si1O2 174.71(11) 174.95(8) 176.5(6) 177.5(3) 175.38(14) 175.97(14) 174.0(5) 173.13(9)
O3Si1O4 173.31(11) 174.13(8) 172.8(6) 173.7(3) 175.10(14) 173.59(14) 176.33(9) 175.12(10)
O5Si1C1 171.91(12) 170.34(8) 167.2(7) 168.4(3) 169.15(16) 172.13(15) 169.6(5) 172.07(10)

1 For salt 3, two solvates were characterized using X-ray diffraction.

Salt 3 is the only one of the studied compounds that contains potassium ions besides
(NH2[cyc]2

+) ions. This complex was recrystallized from acetonitrile dried upon KOH. This
solvent probably became the source of potassium ions upon recrystallization, as elemental
analysis of the powder sample taken from the reaction mixture did not show the presence
of the alkali ion. Two different single crystals taken from the reaction mixture were
isostructural but contained various sets of solvent molecules. Potassium cations in solid
3a and 3b coordinated two silicon-containing anions. All 3,4,5,6-tetrabromocatecolate
anions were coordinated by the potassium atom through Br and O atoms forming a five-
membered cycle (r(K-Br) = 3.587(4)–3.730(5)Å, r(K-O) = 2.73(1)–2.80(1) Å), and caprolactam
was coordinated through an oxygen atom (r(K-O) = 2.85(1)–2.93(1)Å). The molecular
geometries of the trinuclear {K[SiLCatx

2]2}− anions were similar (Figure 3).

Molecules 2021, 26, x  5 of 12 
 

 

Table 1. Selected geometrical parameters (Å, º) of SiCO5 polyhedra in 1–7. 

 1 2 3a 1 3b 1 4 5 6 7 
Si1-O1 1.877(2) 1.8851(15) 1.880(12) 1.896(6) 1.867(3) 1.882(3) 1.860(17) 1.8873(19) 
Si1-O2 1.788(2) 1.7935(14) 1.792(12) 1.777(6) 1.784(3) 1.809(3) 1.778(2) 1.8090(18) 
Si1-O3 1.800(2) 1.7638(17) 1.795(11) 1.795(6) 1.830(3) 1.782(3) 1.7861(18) 1.8052(19) 
Si1-O4 1.761(2) 1.7889(17) 1.798(11) 1.795(6) 1.784(3) 1.798(4) 1.7868(18) 1.7894(18) 
Si1-O5 1.801(2) 1.7934(16) 1.801(11) 1.807(6) 1.815(3) 1.815(3) 1.8036(17) 1.768(2) 
Si1-C1 1.918(3) 1.923(2) 1.927(19) 1.918(8) 1.925(4) 1.932(4) 1.996(17) 1.923(3) 

O1Si1O2 174.71(11) 174.95(8) 176.5(6) 177.5(3) 175.38(14) 175.97(14) 174.0(5) 173.13(9) 
O3Si1O4 173.31(11) 174.13(8) 172.8(6) 173.7(3) 175.10(14) 173.59(14) 176.33(9) 175.12(10) 
O5Si1C1 171.91(12) 170.34(8) 167.2(7) 168.4(3) 169.15(16) 172.13(15) 169.6(5) 172.07(10) 

1 For salt 3, two solvates were characterized using X-ray diffraction. 
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Figure 3. {K[SiLCatx
2]2}− anions represented with overlayed K and Si atoms in solid 3a and 3b.

One of the most noticeable structural features of the crystal structure was the packing
motifs formed by the R2CHR3NCOSi(catX) anions. In previously studied structures, the
R1CHR2NCOSi(Cat) and N[cyc]2

+ cations formed chains via N−H . . . O bonds. Besides,
non-coordinated catechol was also found to be H–bonded to anions. In solid 1−7, the cation
(NH2[cyc]2

+) formed two N−H . . . O bonds with catecholate anions or solvent molecules.
In crystals of 1−3a and 5, water molecules or catechol co-formers also took part in H–
bonding. However, neither acetamide nor caprolactam took part in H–bonding in all these
compounds. Note, that H–bonds weaken the Si−OCat bond involved in the H–bonding,
as was demonstrated by the DFT calculations [19]. This effect can be demonstrated in
the example of solvent-free salt 7. The Si1−O2 and Si1−O3 bonds involved in N–H . . .
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O bonding with the cation were elongated as compared with the Si1−O4 and Si1−O5
bonds that took part in weaker C–H . . . O interactions (1.805(2) and 1.809(2) Å as compared
with 1.768(2) and 1.789(2) Å, Table 1). In our opinion, these data indicate, that in water
or other solutions containing H-bond donors, the catecholate anions will be the main
goal of solvent “attack”. More details about supramolecular organization can be found in
Supplementary Materials.

2.3. Electrochemical Characterization

To date, the mechanism of electrochemical oxidation/reduction of hypervalent sil-
icon compounds is still not revealed completely. In literature, there are few examples
of electrochemical oxidation/reduction of compounds of silicon with derivatives of py-
rocatechol [11–13]. As it follows from quantum chemical calculations, there should be
several high lying redox-active orbitals localized on catecholate ligands [12]. The influence
of organic substituents on the oxidation potential can be explained by π→σ* donation
from respective orbitals of catecholate ligands to those of a substituent. In the case of
pentacoordinated bis(catecholato)silicon compounds with different exocyclic substituents
R [11] it was found that the oxidation potential varied from +0.28 to +0.89 V, for R = NH2
and Ph, respectively (DMSO, Fc+/Fc). The oxidation processes for the latter compounds
were the irreversible and homolytic cleavage of the Si−R bond. In macrocyclic compound
[(XbicH2)SiPh][HCl2] [12] the value of irreversible oxidation potential was almost the same
as in the abovementioned bis(catecholato)silicon complex with R = Ph (+0.81, Fc+/Fc,
CH2Cl2). In general, the coordination of the metal atoms to oxygen ones of catecholate
ligands leads to a significant decrease of oxidation potentials. We expected that transition
from pentacoordinated to hexacoordinated silicon would significantly change the oxidation
potential or would make the oxidation/reduction process reversible because an additional
coordination bond led to the increase of steric overcrowding and rearrangement of electron
density. The role of hypervalent bonding with the carbonyl group of L ligand is unclear.
The latter is often described as the n→σ* interaction, however, two types of donation,
from a lone electron pair of oxygen atoms of catecholate ligand to the lowest unoccupied
orbital of acetamide (caprolactame) substituent and in the reverse direction. In addition,
the energies of redox-active orbitals depend on the nature of the substituents in benzene
cycles of catecholate ligands. As a result, the oxidation potentials could be increased or
decreased, and the values of the oxidation potentials cannot be easily predicted.

To determine the oxidation potentials of compounds, cyclic voltammetry was carried
out. Clean voltammograms were obtained showing irreversible oxidation waves (ESI).
The oxidation potentials were determined to be between +0.006 V for 5 to +0.928 V versus
Fc/Fc+ pair in DMSO for 7. It was shown that the oxidation potentials were apparently
dependent on the nature of the substituent in the phenyl cycle (Figure 4). Caprolactam-
containing compounds with Me and CN substituents demonstrated the lowest potentials,
so all three oxidation waves can be revealed upon measurements in DMSO. In acetamide-
containing anions, going from electron donor Me group (2, E1ox = 0.649 V) to electron
acceptor NO2 (6, E1ox = 0.593 V) and F (7, E1ox = 0.312 V) one could see a decrease in
the oxidation potential value (Table 2). In the case of acceptor substituents, only one
or two potentials were detected upon the measurements in DMSO. Possibly, the second
and the third potentials were too high to measure in the above-mentioned conditions.
Unfortunately, the measurements in water carried out for 4 (the other compounds were
insoluble in distilled water or DMF) in water showed the presence of only one wide
oxidation wave. Analogously to catecholate complexes with pentacoordinated silicon
atoms, the first oxidation potentials in most of the compounds can be attributed to the
homolytic cleavage of Si−C bond with the acetamide or caprolactam moiety.
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Table 2. Cyclic voltammogram data of 1–7 recorded in DMSO, 0.1 M TBAPF6 as support-
ing electrolyte, Ag/AgCl in saturated KCl solution reference electrode, Pt working electrode.
C(comp) = 1 mM.

Compound Fc E1ox (V) E2ox (V) E3ox (V)

1 0.487 0.006 0.346 0.497
2 0.447 0.649
3 0.464 0.869
4 0.459 0.654 0.928
5 0.485 0.047 0.511 0.845
6 0.486 0.593 0.837
7 0.489 0.312 0.756

3. Materials and Methods
3.1. General

All reagents and solvents were purchased from SigmaAldrich (Merck KGaA, Darm-
stadt, Germany). The IR spectra were recorded on a «Bruker Tensor-27» ( Bruker Optik
GmbH, Ettlingen, Germany) instrument in KBr pellets. The NMR spectra were measured
on Bruker Avance II spectrometer (1H, 400 MHz; 13C, 75 MHz, (Bruker BioSpin, Silber-
streifen, Germany) in CD3CN, DMSO-d6, CDCl3 relative to Me4Si as the internal standard.
1H, 13C, 29Si, 29Si INEPT, 2D 1H–29Si HMBC, and 2D 1H DOSY NMR spectra were recorded
using a Bruker Avance-III 400MHz (Bruker BioSpin, Silberstreifen, Germany) and a Bruker
Avance-III-HD 300 MHz NMR spectrometers (Bruker BioSpin, Silberstreifen, Germany) in
DMSO-d6 at +30 ◦C and +50 ◦C, using standard modern pulse sequences with a z-gradient,
if necessary, from Bruker library and using a Bruker Topspin 3.2 and 3.5 software for spectra
processing; chemical shifts for all nuclei are auto-referenced precisely by spectrometers us-
ing a deuterium lock-channel for DMSO-d6

2H signal (ca. 2.50 ppm). Elemental analysis was
carried out in the Laboratory of Organic Microanalysis of INEOS RAS, using Carlo-Erba
CE-1106 element analyzer (Carlo-Erba Strumentazione, Milan, Italy). Melting temperatures
were measured with Stuart SMP10.

3.2. Synthesis

N-(Trimethoxysilylmethy)-N-methylacetamide and N-(trimethoxysilylmethyl)-N
-hexahydrozepin-2-one were synthesized as described in reference [20]. Pyrocatechol derivatives
and dicyclohexylamine were purchased from Aldrich.

Dicyclohexylammonium bis-(4-methyl-1,2-catechelato-κ2O,O′)-[(2-oxo-1-hexahydroazepin-
2-yl)-methyl-κ2C,O]silicone(IV) (1). The mixture of 1-(trimethoxysilylmethyl)-2-oxoh
exahydroazepine (1.23 g, 5 mmol), of 4-methylcatechol (1.24 g, 10 mmol) and dicyclohexy-
lamine (0.9 g, 5 mmol) was dissolved in 15 mL o-xylene at stirring and heated at 130–140 ◦C
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for 2 h. After cooling to room temperature, crystals were formed over 10 h. The solid was
recrystallized from toluene resulting in a pure product (2.25 g, 78% yield), m.p. 178–180 ◦C.
IR-spectra (KBr, ν, cm−1): 1602 (NCO), 1497, 1447 (NH2

+bend.), 1251 (Ar-O). 1H NMR (400
MHz, DMSO-d6) δ: 1.00–2.02 (m, 30H: 20H from C6H11 and 10H from lactam), 2.05 (s, 3H,
PhCH3), 2.11 (s, 3H, PhCH3), 2.54 (s, 1H, SiCH2N), 3.02 (m, 2H, NCH), 3.47 (s, 1H, SiCH2N),
5.97–6.62 (m, 6H, Ar), 8.68 (s, 2H, NH2). 13C{1H} NMR (101 MHz, DMSO-d6) δ:20.41, 21.25,
22.27, 24.01, 24.95, 25.93, 29.08, 29.36, 31.47, 46.51, 51.52, 52.18, 108.32, 110.38, 115.18, 115.46,
116.41, 119.49, 123.39, 127.90, 142.88, 145.01, 149.74, 152.02, 176.09.29Si NMR (60MHz, DMSO-d6)
δ: −132.01. HRMS calcd. (m/z) for C21H24NO5Si: 398.1429; found: 398.1438.

Dicyclohexylammonium bis-(4-methyl-1,2-catechelato-κ2O,O′)-[N-methyl-N-(acetamido)-
methyl-κ2C,O]silicone(IV) (2). The mixture of 4-methylcatechol (0.6 g, 5 mmol), of N-methyl-N-
(trimethoxysilylmethyl)acetamide (0.5 g, 2.5 mmol), and dicyclohexylamine (0.45 g, 2.5 mmol)
was dissolved in o-xylene (20 mL) and stirred and heated at 130–140 ◦C for 1 h. After cooling
to room temperature, the mixture was extracted with hexane (50 and 30 mL). Then, the
crystalline material was formed (1.07 g, 79% yield), m.p. 118–121 ◦C. Single crystals were
given by recrystallization from benzene. IR-spectra (KBr pellets, ν, cm−1): 1618, (NCO),1495,
1450 (NH2

+bend.), 1251 (Ar−O). 1H NMR (400 MHz, DMSO-d6) δ:0.96–2.00 (m, 20H, C6H11),
2.06 (s, 6H,CH3CO and PhCH3), 2.11 (s, 3H, PhCH3),2.54 (s, 1H, SiCH2N), 2.80 (s, 1H, SiCH2N),
3.04 (m, 2H, NCH), 3.04 (s, 3H, NCH3), 5.96–6.65 (m, 6H, Ar), 8.62 (s, 2H, NH2). 13C NMR
(101 MHz, DMSO-d6) δ:16.91, 20.41, 21.24, 24.00, 24.92, 29.19, 38.18, 45.49, 52.20, 108.37, 110.42,
115.26, 115.46, 116.41, 119.49, 123.48, 127.90, 142.89, 145.02, 149.58, 151.86, 171.22. 29Si NMR
(60MHz, DMSO-d6)δ: −133.18. HRMS calcd. (m/z) for C18H20NO5Si: 358.1116; found:
358.1112.

Dicyclohexylammonium potassium bis(bis-(3,4,5,6-tetrabromo-1,2-catechelato- κ2O,O′)-
[(2-oxo-1-hexahydroazepin-2-yl)-methyl-κ2C,O]silicone(IV)) (3). The synthesis was carried out
as described (2.60 g, 88% yield), m.p. 210–214 ◦C. Single crystals were given by recrystallization
from acetonitrile. IR-spectra (ν, cm−1): 1611, 1529 (NCO), 1446 (NH2

+bend.), 1221 (Ar−O).
1H NMR (400 MHz, DMSO-d6) δ: 0.97–1.97(m, 30H: 20H from C6H11 and 10H from lactam),
2.44 (s, 1H, SiCH2N), 3.04 (m, 2H, NCH), 3.46 (s, 1H, SiCH2N), 8.05 (s, 2H, NH2). 13C NMR
(101 MHz, DMSO-d6) δ: 21.87, 23.92, 24.81, 25.24, 28.95, 29.11, 30.74, 44.86, 51.32, 52.22, 104.78,
111.36, 150.13, 177.43. 29Si NMR (60 MHz, DMSO-d6) δ: −141.19,−133.78. HRMS calcd. (m/z,
max peak) for C16H8Br8NO5Si: 961.3564; found: 961.3559.

Dicyclohexylammonium bis-(3,4,5,6-tetrabromo-1,2-catechelato-κ2O,O′)-[N-methyl-
N-(acetamido)-methyl-κ2C,O]silicone(IV) (4). The synthesis was carried out as described
(1.35 g, 47% yield), m.p. 225–230 ◦C. A suitable for X-ray diffraction single crystal was
obtained without further purification. IR-spectra (ν, cm−1): 1621 (NCO), 1580 (Ar),
1448 (NH2

+bend.), 1273, 1220 (Ar−O). 1H NMR (400 MHz, DMSO-d6) δ:0.96–2.03(m,20H,
C6H11), 2.17 (s, 3H,CH3CO), 2.54 (s, 1H, SiCH2N), 3.10 (m, 2H, NCH), 3.13 (s, 3H, NCH3),
3.31 (s, 1H, SiCH2N), 8.17 (s, 2H, NH2). 13C NMR (101 MHz, DMSO-d6) δ:16.51, 23.90, 24.80,
28.86, 38.17, 44.33, 52.18, 105.21, 111.62, 149.98, 172.36.29Si NMR (60MHz, DMSO-d6) δ:
−135.23. HRMS calcd. (m/z, max peak) for C19H12Br8NO5Si: 1001.3877; found: 1001.3874.

Dicyclohexylammonium bis-(4-nitrilo-1,2-catechelato-κ2O,O′)-[(2-oxo-1-hexahydroazepin-
2-yl)-methyl-κ2C,O] silicone (IV) (5). The synthesis was carried out as described with recalcu-
lation to 5 mmol (2.57 g, 85% yield), 128–131 ◦C. A suitable for X-ray diffraction single crystal
was obtained without further purification. IR-spectra (ν, cm–1): 2208 (CN), 1608 (NCO). 1H
NMR (400 MHz, DMSO-d6) δ: 0.97–2.00 (m,30H: 20H from C6H11 and 10H from lactam), 2.54
(s, 1H, SiCH2N), 2.99 (m, 2H, NCH), 3.50 (m, 1H, SiCH2N), 6.37 (d, J = 7.9 Hz,2H, Ar), 6.53 (d,
J = 1.8 Hz,2H, Ar), 6.79 (dm, J = 8.0 Hz,2H, Ar).13C{1H} NMR (101 MHz, DMSO-d6) δ:22.26,
24.17, 25.11, 25.82, 29.09, 29.68, 31.24, 45.97, 51.62, 52.27, 96.84, 96.89, 110.26, 111.09, 116.32,
117.90, 120.13, 121.71, 123.27, 124.98, 146.50, 151.88, 152.12, 157.25, 177.06.29Si NMR (60MHz,
DMSO-d6)δ: −132.95. HRMScalcd. (m/z) for C21H18N3O5Si: 420.1021; found: 420.1004.

Dicyclohexylammonium bis-(4-nitro-1,2-catechelato-κ2O,O′)-[N-methyl-N-(acetamido)-
methyl-κ2C,O]silicone (IV) (6).The synthesis was carried out as described with recalculation to
2.9 mmol (1.58 g, 91% yield), m.p. 179–180 ◦C. A suitable for X-ray diffraction single crystal
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was obtained without further purification. IR-spectra (ν, cm–1): 1613 (NCO), 1584 (Ar), 1490
(NH2

+bend.), 1262, 1251 (Ar−O). 1H NMR (400 MHz, DMSO-d6) δ:0.97–2.06 (m, 20H, C6H11),
2.13(s, 3H, C(O)CH3), 2.73(s, 1H, SiCH2N), 3.08 (m, 2H, NCH), 3.10 (s, 3H, NCH3), 3.55 (s, 1H,
SiCH2N), 6.42 (d, J = 8.5 Hz, 2H, Ar),7.08 (d, J = 2.6 Hz,2H, Ar),7.49 (dm, J = 8.5 Hz, 2H,
Ar).13C{1H} NMR (101 MHz, DMSO-d6)δ:16.71, 24.04, 24.94, 29.04, 38.24, 44.84, 52.29, 103.87,
108.75, 116.38, 137.60, 137.67, 151.43, 160.25, 172.46.29Si NMR (60MHz, DMSO-d6)δ: −132.46.
HRMS calcd. (m/z) for C16H14N3O9Si: 420.0505; found: 420.0477.

Dicyclohexylammonium bis-(3-fluoro-1,2-catechelato-κ2O,O′)-[N-methyl-N-(acetamido)-
methyl-κ2C,O]silicone (IV) (7). The synthesis was carried out as described with recalculation to
3.5 mmol (1.66 g, 86% yield), m.p. 223−225 ◦C. A suitable for X-ray diffraction single crystal
was obtained without further purification. IR-spectra (ν, cm–1): 1612 (NCO), 1588 (Ar), 1487
(NH2

+bend.), 1271 (Ar−O). 1H NMR (400 MHz, DMSO-d6) δ: 0.98–2.02 (m, 20H, C6H11), 2.12(s,
3H, C(O)CH3), 2.55(d, J = 3.9 Hz,1H, SiCH2N), 3.07 (m, 2H, NCH), 3.10 (s, 3H, NCH3), 3.31 (d, J
= 4.1 Hz,1H, SiCH2N), 6.06–6.29 (m,6H, Ar).13C{1H} NMR (101 MHz, DMSO-d6)δ:16.73, 23.93,
24.82, 28.99, 38.13, 45.18, 52.34, 103.82 (d, J =18.7 Hz), 105.91, 114.27 (d, J =8.7 Hz),138.23 (d, J =
10.2 Hz), 148.56 (d, J = 236 Hz), 154.44 (d, J = 8.1 Hz), 171.65.29Si NMR (60MHz, DMSO-d6)δ:
−132.41. HRMS calcd. (m/z) for C16H14F2NO5Si: 366.0615; found: 366.0603.

3.3. X-ray Diffraction Studies

Single crystal X-ray studies of 4–7 were carried out in the Center for Molecule Com-
position Studies of INEOS RAS, using MoKα radiation at 120 K. X-ray datasets for 1–3
were collected in Kurchatov Centre for Synchrotron Radiation and Nanotechnology using
the “Belok” beamline ( λ = 0.79313 Å, T = 100 K) because of the low diffraction quality of
crystals of 1 and 2 and high absorption of 3. The structures were solved by by dual-space
algorithm starting from Patterson superposition minimum function method and refined in
anisotropic approximation for non-hydrogen atoms. Hydrogen atoms of methyl, methylene
and aromatic fragments were calculated according to the ideal geometry and refined with
constraints applied to C–H bond lengths and equivalent displacement parameters (Ueq(H)
= 1.2Ueq(X), X-central atom of XH2 group; Ueq(H) = 1.5Ueq(Y) for methyl groups and water
molecules). Solvated molecules of C6H6, toluene and molecules of non-coordinated ligands
in 1 and 2 are disordered. The geometry of those moieties was refined using rigid body
approximation for aromatic benzene rings. In the case of 7 fluorine atoms in Catx ligands
were disordered over two positions in ratio 1:5. An attempt to refine C−F distances without
restraints led to unrealistic values, while the usage of DFIX restraints caused a noticeable
increase in R-values. All structures were solved with the ShelXT [21] program and refined
with the ShelXL [22] program. Molecular graphics were drawn using OLEX2 [23] pro-
gram. The structures 3a and 3b were refined as inversion twins, using TWIN and BASF
instructions (Flack parameters were equal to 0.095(8) and 0.368(15), respectively). Crystal
parameters and refinement details are listed in Table 3. CCDC 2035549-2035556 contain the
supplementary crystallographic data for 1–7. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures.

3.4. Electrochemistry

Electrochemical analysis was conducted on an Autolab PGSTAT128N Potentiostat-
Galvanostat with NOVA 2.0 software, using a typical three-electrode array. Platinum
working electrode was used, as well as Ag/AgCl (saturated KCl solution) as a reference
electrode, and platinum wire as a counter electrode. A 0.1M TBAPF6 solution in DMSO
was used as the supporting electrolyte. All scans were performed with 100 mV/s scan rate.
Before each experiment, the solution was purged with N2 gas for 5 min and the working
electrode was thoroughly polished. All the tests were carried out at room temperature.
The measured potentials were determined versus Fc/Fc+ pair.

https://www.ccdc.cam.ac.uk/structures
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Table 3. Crystal parameters and refinement details for salts 1–7.

1·C7H8O2·2C7H8 2·C7H8O2·2.5C6H6 3a·H2O·0.5C2H3N 3b·2C2H3N 4 5·2H2O 6 7

Formula C54H72N2O7Si C52H67N2O7Si C51H51·50Br16KN3·50O11Si2 C54H54Br16KN5O10Si2 C28H32Br8N2O5Si C33H46N4O7Si C28H38N4O9Si C28H38F2N2O5Si
Fw 889.22 860.16 2263.29 2306.86 1143.92 638.83 602.71 548.69

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic Orthorhombic Triclinic Monoclinic
Space group P21/n P21/c Cc Cc P21 Pbca P1— P21/c

a, Å 16.231(3) 12.302(3) 20.160(4) 20.754(4) 9.3422(5) 15.651(16) 11.2726(17) 9.192(2)
b, Å 15.185(3) 15.613(3) 20.620(4) 20.697(4) 20.4930(11) 19.49(2) 11.7569(17) 20.522(6)
c, Å 19.933(4) 25.066(5) 17.620(4) 18.740(4) 9.4596(5) 21.76(3) 13.4405(19) 14.798(3)
α, ◦ 90 90 90 90 90 90 73.242(3) 90
β, ◦ 92.22(3) 100.08(3) 113.78(3) 115.59(3) 98.6190(10) 90 80.444(4) 105.325(10)
γ, ◦ 90 90 90 90 90 90 77.905(4) 90
V, Å 4909.2(17) 4740.1(17) 6703(3) 7260(3) 1790.58(17) 6637(13) 1657.1(4) 2692.2(12)

Z 4 4 4 4 2 8 2 4
dcalc, g cm−1 1.203 1.205 2.243 2.111 2.122 1.279 1.208 1.354
µ, mm−1 0.132 0.134 12.912 11.924 9.031 0.123 0.124 0.143

F(000) 1920 1852 4308 4400 1096 2736 640 1168
Ref. coll. 29,344 43,014 46,282 40,319 40,981 23,440 16,813 18,206

Ref. ind. Rint
10,704
0.086

10,824
0.052

14,922
0.039

16,243
0.046

10,879
0.038

7593
0.145

9841
0.062 8030 (0.099)

Ref. obs. (I > 2σ(I)) 5451 6465 13,780 11,537 9735 3465 4296 3840
Parameters 717 576 780 831 399 424 413 363

R1 (I > 2σ(I)) 0.067 0.057 0.033 0.066 0.025 0.073 0.068 0.066
wR2 (all refls.) 0.205 0.171 0.087 0.204 0.050 0.196 0.172 0.171

GOF 1.013 1.038 1.039 1.038 0.993 1.001 0.929 0.958
ρmin/ρmax, eÅ−3 −0.276/0.253 −0.322/0.242 −1.028/0.946 −0.717/1.565 −0.494/0.776 −0.298/0.463 −0.288/0.303 −0.616/0.623

Flack - - 0.095(8) 0.368(15) 0.006(4) - - -
No. of restr. 19 79 46 128 1 0 2 6
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4. Conclusions

In conclusion, a series of heteroligand silicon catecholates was successfully synthesized
with satisfactory yields, using a transesterification reaction. The protocol can be easily
modified to obtain other anionic complexes of hexacoordinated silicon based on various
catechol derivatives and N-methylamides. This synthetic development is important for
the development of hydrolytically stable silicon compounds with enhanced solubility for
processing in electrochemical reactions. The only exclusion is anion complex 4 where
the cleavage of Si–C bond was detected under synthetic conditions or UV irradiation.
For the acetamide-containing series we found correlation between the first oxidation
potential and the electronic properties of a substituent at catechol anion. The more negative
charge the substituent has, the lower the oxidation potential of the complex. Caprolactam-
containing compounds demonstrated the lowest potentials, so that up to three oxidation
waves can be revealed for these compounds. Thus, the electrochemical properties of this
family of compounds can be easily tuned by changing the ligands, and the search for the
representatives able to exhibit reversible redox processes is underway now.

Supplementary Materials: The following are available online. Figures S1–S10: H-bonded architec-
tures in crystal structure of 1–5, Figures S11–S16: CV plots of 1–7, Figures S17–S44: 1H, 13C, 29Si
NMR and HRMS spectra of 1–7.
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