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Abstract

Background: Identifying protein-protein interactions (PPIs) is of paramount importance for understanding cellular
processes. Machine learning-based approaches have been developed to predict PPIs, but the effectiveness of these
approaches is unsatisfactory. One major reason is that they randomly choose non-interacting protein pairs (negative
samples) or heuristically select non-interacting pairs with low quality.

Results: To boost the effectiveness of predicting PPIs, we propose two novel approaches (NIP-SS and NIP-RW) to
generate high quality non-interacting pairs based on sequence similarity and random walk, respectively. Specifically,
the known PPIs collected from public databases are used to generate the positive samples. NIP-SS then selects the
top-m dissimilar protein pairs as negative examples and controls the degree distribution of selected proteins to
construct the negative dataset. NIP-RW performs random walk on the PPI network to update the adjacency matrix of
the network, and then selects protein pairs not connected in the updated network as negative samples. Next, we use
auto covariance (AC) descriptor to encode the feature information of amino acid sequences. After that, we employ
deep neural networks (DNNs) to predict PPIs based on extracted features, positive and negative examples. Extensive
experiments show that NIP-SS and NIP-RW can generate negative samples with higher quality than existing strategies
and thus enable more accurate prediction.

Conclusions: The experimental results prove that negative datasets constructed by NIP-SS and NIP-RW can reduce
the bias and have good generalization ability. NIP-SS and NIP-RW can be used as a plugin to boost the effectiveness of
PPIs prediction. Codes and datasets are available at http://mlda.swu.edu.cn/codes.php?name=NIP.

Keywords: Protein-protein interactions, Non-interacting proteins, Deep neural networks, Sequence similarity,
Random walk

Background
As the essential component of all organisms, proteins
form the very basis of life and carry out a variety of
biological functions within living organisms. A protein
rarely accomplishes its functions alone, instead it interacts
with other proteins to accomplish biological functions.
It is thus generally accepted that protein-protein interac-
tions (PPIs) are responsible for most activities of living
organisms. As a hotspot of proteomics research, detecting
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PPIs can not only provide great insight for understand-
ing various biological functions in cells, but also con-
tribute to develop drugs for special diseases[1, 2]. In the
past decades, different high-throughput technologies had
developed to detect PPIs, such as tandem affinity purifi-
cation (TAP) [3], co-immunoprecipitation (Co-IP) [4],
x-ray crystallography [5], yeast two-hybrid (Y2H) screens
[6, 7], and mass spectrometric protein complex iden-
tification (MS-PCI) [8]. However, these wet-experiment
based solutions are costly and tedious. PPIs obtained from
these biological experiments only cover a small fraction of
the complete PPI network [9]. Furthermore, these high-
throughput technologies generally suffer from high rates
of false negatives and false positives [9–11].
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Computational approaches have been developed to
predict PPIs in an economic and reliable way. These
approaches use different data types to predict PPIs, such
as protein domains [12], protein structure information
[13], gene neighborhood [14], gene fusion [15], and phylo-
genetic profiles [16, 17]. Nevertheless, these methods are
barely achieved if the pre-knowledge of the proteins is not
available, i.e., protein functional domains, 3D structure
of proteins, and other information [18]. As the explosive
growth of sequence data, more and more researchers have
moved toward sequence data based approaches to pre-
dict PPIs. Experimental results show that it is adequate
to predict new PPIs using amino acid sequences alone
[19–27].

Martin et al. [19] extracted the feature information of
amino acid sequences by the extended signature descrip-
tor and used support vector machine (SVM) to predict
PPIs [19]. Shen et al. [20] adopted SVM as the classi-
fier and encoded the feature information of amino acid
sequences by conjoint triad (CT), in which the 20 standard
amino acids are grouped into 7 categories on the basis of
their dipoles and volumes of the side chains. This SVM-
based approach yields a high prediction accuracy of 83.9%.
However, this approach can not sufficiently encode the
feature information, since CT only takes into account the
neighboring effect of amino acid sequences, but PPIs usu-
ally occur at the non-continuous segments of amino acid
sequences. Guo et al. [21] employed the auto covariance
(AC) to detect the correlation among discontinuous seg-
ments and obtained an accuracy of 86.55%. You et al. [24]
combined a novel multi-scale continuous and discontin-
uous (MCD) feature representation and SVM to predict
PPIs. MCD feature representation can adequately cap-
ture continuous and discontinuous feature information of
segments within an amino acid sequence. This method
yields a high accuracy of 91.36% [24]. Different from these
SVM-based approaches, Yang et al. [22] combined kNN
and local descriptor (LD) to predict PPIs and obtained an
accuracy of 83.73%. Du et al. [27] applied deep neural net-
works (DNNs) and integrated diverse feature descriptors
to encode the feature information of amino acid sequences
to predict PPIs. This approach obtains a high accuracy of
92.5% on predicting PPIs of Saccharomyces cerevisiae [27].
Wang et al. [28] used DNNs and a novel feature descrip-
tor named local conjoint triad descriptor (LCTD), which
encodes continuous and discontinuous feature informa-
tion of local segments within an amino acid sequence,
to predict PPIs. This approach yields a high accuracy of
93.12% on PPIs of Saccharomyces cerevisiae.

However, the performance of all the aforementioned
sequence-based methods heavily depend on the quality
of PPIs datasets. Positive examples (interacting protein
pairs) are generally chosen based on reliable methods
(small scale experiments), interactions confirmed by Y2H

[6, 7], Co-IP [4], and other methods; or interactions con-
firmed by interacting paralogs [29, 30]. Therefore, given
the public protein-protein interactions databases [31], the
positive examples are readily available and can be easily
constructed. The difficulty is that there are no ‘gold stan-
dard’ of non-interacting protein pairs (negative examples),
which contribute to discriminatively predict PPIs. Two
kinds of strategies are widely used by previous computa-
tional methods [19–21, 23–27]. The first one randomly
pairs proteins and then removes the pairs included in the
positive examples [21, 30]. The second constructs negative
examples based on the subcellular localization of proteins
[23, 25–27]. However, these two strategies have limita-
tions and may compromise the prediction performance.
The first strategy wrongly takes a large number of positive
samples as negative samples, while the second strategy
leads to a biased estimation of PPIs prediction [30].

In this paper, two novel approaches (NIP-SS and NIP-
RW) are proposed to improve the performance of PPIs
prediction. NIP-SS and NIP-RW separately generate reli-
able non-interacting pairs (negative dataset) based on
sequence similarity and on random walk in the PPIs net-
work. The basic idea of NIP-SS is: given a positive protein
pair (i and j), and a protein k, the larger the sequence
difference between i and k is, the smaller the probabil-
ity that k interacts with j (i) is. In addition, we control
the degree distribution of selected protein pairs to make
it similar as that of the positive dataset. Given a PPI net-
work G = (V , E), where V is the set of proteins, and E
is the set of weighted undirected edges, where the weight
reflects the interaction strength between a protein pair, 1
means an interaction, 0 means unknown. The basic idea of
NIP-RW is: after a k-steps random walk on G, if the edge
weight between two proteins is larger than 0, there may be
an interaction between them; otherwise, there may be no
interaction.

To investigate the effectiveness of NIP-SS and NIP-
RW, we firstly collected the positive sets from Database
of Interacting Proteins (DIP) [31], and separately con-
structed negative sets using four strategies : 1) NIP-SS,
2) NIP-RW, 3) subcellular localization, 4) random pair-
ing, and then merged the positive set and each negative
set to form a training dataset. Next, we used the auto
covariance (AC) [21] descriptor to extract the features
from amino acid sequences and Deep neural networks
(DNNs) to predict PPIs. AC can account for the interac-
tions between residues with a certain distance apart in the
sequence and encode the features by a lower dimensional
vector [21], DNNs can automatically extract high-level
abstractions and reduce the model training time [32]. We
performed comparative and quantitative experiments on
public benchmark datasets to study the effectiveness of
negative datasets generated by different strategies. The
experimental results show that NIPI-SS and NIP-RW have
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good generalization ability and contribute to a higher
accuracy in predicting PPIs than other related and widely-
used strategies.

Methods
PPIs datasets
To comprehensively evaluate the rationality of NIP-SS
and NIP-RW, we constructed 3 non-redundant positive
PPIs sets for S. cerevisiae, H. sapiens, and M. musculus
from DIP [31]. Next, we separately generated negative
PPIs (non-interacting protein pairs) for these three species
using NIP-SS, NIP-RW, subcellular location, and random
pairing. After that, we merged the positive and negative
sets for each species. As a result, twelve PPIs datasets
are obtained. In addition, another six datasets were col-
lected as the independent test datasets to further assess
the generalization ability of NIP-SS and NIP-RW, Mam-
malian dataset collected from Negatome 2.0 [33] only
contains non-interacting protein pairs, they were gener-
ated by manual curation of literature. The procedure of
constructing the negative dataset will be introduced later.

The twelve datasets are divided into three groups
based on the species. The experimental-validated PPIs
of these three groups are all from DIP [31]. The first
group contains 17257 positive PPIs of S. cerevisiae (ver-
sion 20160731) collected by Du et al. [27]. The sec-
ond and third groups are processed by ourselves, they
contain 3355 and 923 positive PPIs of H. sapiens and
M. musculus(version 20170205), respectively. These pos-
itive PPIs are generated by excluding proteins with fewer
than 50 amino acids and with ≥ 40% sequence iden-
tity by cluster analysis via the CD-HIT program [34].
The excluded proteins have a heavy impact on the per-
formance of PPIs prediction [21]. Each of these three
groups contains four training sets and the difference
between these four sets is the negative samples, which
are generated by NIP-SS, NIP-RW, subcellular location,
and random pairing. Table 1 gives the statistics of these
18 datasets.

Generating non-interacting protein pairs
Negative samples must be chosen with caution, which can
heavily affect the performance of PPIs prediction. There
are two primary strategies to construct negative samples,
including random pairing and subcellular location. For
the first strategy, after constructing the positive set from
DIP, we count the number of proteins in the positive set
and put these proteins into set P . Next, we can randomly
select two proteins from P and take them as a non-
interacting pair if they do not have an interaction in the
positive set. Obviously, this random pairing is not com-
pletely reliable, it will produce a high rate of false negatives
for generated negative examples, since the interactions
between proteins in the DIP are far from complete.

Table 1 The 18 PPIs datasets used in this paper

Groups Datasets # Positive samples # Negative samples

SCa SC-SS1 17257 17257

SC-RW2 17257 17257

SC-Sub3 17257 17257

SC-RP4 17257 17257

HSb HS-SS 3355 3355

HS-RW 3355 3355

HS-Sub 3355 3355

HS-RP 3355 3355

MMc MM-SS 923 923

MM-RW 923 923

MM-Sub 923 923

MM-RP 923 923

Testd C. elegans 4013 0

E. coli 6984 0

H. sapiens 1412 0

H. pylori 1420 0

M. musculus 313 0

Mammalian 0 1937

aSC: S. cerevisiae;
bHS: H. sapiens;
cMM: M. musculus;
dTest: Six independent testing datasets;
1NIP-SS;
2NIP-RW;
3Subcellular location;
4Random pairing

The second strategy is based on a hypothesis that pro-
teins located in different subcellular localizations do not
interact. A protein can be divided into seven groups based
on subcellular location information extracted from Swiss-
Prot (http://www.expasy.org/sprot/), including cytoplasm,
nucleus, mitochondrion, endoplasmic reticulum, golgi
apparatus, peroxisome and vacuole. The negative samples
are obtained by pairing a protein from one group with
another protein from the other groups. These negative
samples further exclude the proteins pairs appeared in the
positive set. However, Ben-Hur and Noble [30] proved
that subcellular localization based approaches lead to a
biased accuracy of PPIs prediction.

Motivated by the limitations of existing solutions, we
proposed two novel approaches NIP-SS and NIP-RW to
construct the negative datasets. Let G = (V , E) encode
a PPIs network, where V is the set of proteins, and E
stores the known interactions. To construct a reliable neg-
ative dataset with good generalization ability, we hope that
proteins in the negative dataset are as many as possible.
The average repeatability can be employed to describe the
generalization ability of a dataset, which is calculated by

http://www.expasy.org/sprot/
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r = ∑n
i=1(d(i)−1)/n, where d(i) means the degree of pro-

tein i. Note, if a protein in the negative dataset does not
‘interact’ with five proteins, then this protein have a degree
of five. The smaller the value of r, the larger the general-
ization ability of this dataset is. On the one hand, we also
hope that the degrees of proteins in the negative dataset
are not too small, proteins with low degrees contain little
predictive information and are not conducive for pre-
dicting PPIs. On the other hand, the degrees of proteins
should not be too large, which will lead to an overesti-
mation of prediction results. In addition, the maximum
degree of proteins, the proportion of proteins in different
ranges of degrees, and the proportion of non-interactions
in each range all have an impact on the prediction per-
formance. Given these reasons, we need to construct a
reliable negative dataset, in which the degree distribu-
tion of proteins and interaction distribution are similar
to those in the positive dataset. Such a negative dataset
contains more proteins and has less bias.

Generating non-interacting protein pairs based on sequence
similarity
The basic idea of NIP-SS is that, for an experimental
validated PPI between protein i and j, if a protein k is
dissimilar to i, there is a low possibility that k interacts
with j. Based on this idea, we firstly generate the positive
set of proteins P having confirmed interactions between
another protein, and compute the sequential similarity
between any two proteins in P . Next, we sort the sequence
similarity between all protein pairs in P by the ascend-
ing order, and then select the top-m protein pairs with the
lowest similarity as negative examples (non-interacting
pairs), m is generally larger than the number of posi-
tive examples to facilitate the follow-up adjustment. If we
employ these negative examples to form a negative dataset
and then use this dataset to predict PPIs, it will lead to
an over-estimation of PPIs prediction. This is because
such negative dataset contains some proteins with very

large degrees, which occur more frequently in the nega-
tive dataset than in the positive dataset. For example, the
maximum degree in the positive dataset is 252, but 1439
in the initial negative dataset (see “Contribution of con-
trolling degrees” section). As such, the bias is introduced
into the training set composed with positive samples and
negative samples. To ensure a good generalization ability,
the degree distribution of proteins needs to be controlled
during constructing the negative dataset.

We advocate to make the degree distribution of proteins
in the negative dataset similar with that of the positive
dataset. We firstly calculate the degree distribution of pro-
teins, maximum degree, the proportion of proteins and
the number of interactions in different ranges of degrees
(such as the degree ≤ 10, the degree in (11, 20], and so
on) in the positive dataset. Similarly, we also compute the
above values in the negative dataset. Next, we compare
these values of positive and negative datasets, and then
adjust the number of non-interacting partners of a protein
by referring to the corresponding values of the positive
dataset. Finally, we remove the protein pairs appeared
in the positive dataset to generate the reliable negative
dataset. The process of NIP-SS is shown in Fig. 1.

We collect the amino acid sequences data from the
UniProt database [35]. Sequence similarity between two
proteins i and j is calculated using blocks substitution
matrix (BLOSUM), which is a substitution matrix used
for sequence alignment of proteins [36]. BLOSUM matri-
ces are used to score alignments between evolutionary
divergent protein sequences. We adopt BLOSUM50 to
compute the score between proteins, and then normalize
the score as follows:

b̃l(i, j) = bl(i, j) − min{bl(i, 1), · · · , bl(i, n)}
max{bl(i, 1), · · · , bl(i, n)} (1)

where n is the total number of proteins in P , bl(i, j) is the
original BLOSUM50 score of protein i and j.

Fig. 1 The flowchart of constructing reliable negative samples. The left and right of this Figure describe the strategy of NIP-SS and NIP-RW,
respectively
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Generating non-interacting pairs based on random walk
NIP-RW is motivated by the observation that interact-
ing proteins are likely to share similar functions, level-1
(k = 1) neighborhood (or directly interacting) proteins
are more probable to share functions than level-2 (k = 2)
neighborhood proteins, whose interactions are mediated
by another protein. In other words, the probability of shar-
ing similar functions reduces as the increase of k [37].
Given that, two proteins that can only be connected after
a k-step random walk, is less likely to share functions
and thus less probable to interact with each other. The
flowchart of NIP-RW is shown in Fig. 1.

Let G = (V , E) represent a PPI network, where V is
the set of proteins, and E is the set of edges. Each vertex
u ∈ V stands for a unique protein, each edge (u, v) ∈ E
represents an observed interaction between protein u and
protein v, E ∈ R

n×n stores available interactions between
n proteins. We define a pair of proteins (u and v) as level-k
neighbors if there exists a path φ = (u, · · · , v) with length
k in G. The k-steps random walk process can be modeled
as follows:

W(k) = W(k−1)E (2)

After k-steps random walk, we can obtain a updated
adjancency matrix W(k) ∈ R

n×n, which reflects the
inferred interaction probability (strength) between any
pairwise proteins.

Since E is generally very sparse, W(k) still encodes a
sparse matrix. As such, the selected negative examples
are inclined to proteins connected with few proteins, and
lead to a bias of negative examples. To generate a neg-
ative dataset with good generalization ability, we use a
sub-matrix Wp×p of W(k) to control the number of pro-
teins and degree distribution of these selected p proteins.
After that, we select two proteins with Wp×p(i, j) = 0 and
take these two proteins as a non-interacting pair. We will
investigate the parameter sensitivity of p and provide a
principal way to specify p in “Contribution of controlling
degrees” section.

Feature vector extraction
To effectively predict PPIs based on amino acid sequences,
we need to extract and represent the essential information
of interacting proteins by a feature descriptor. Many fea-
ture descriptors have been utilized to predict PPIs. Among
these descriptors, conjoint triad (CT) [20] only takes into
account the neighboring effect of amino acid sequences.
However, PPIs generally occur at discontinuous segments
of amino acid sequences. Local descriptor (LD) [23], auto
covariance (AC) [21], multi-scale continuous and discon-
tinuous (MCD) [24] and local conjoint triad descriptor
(LCTD) [28] can effectively address this problem and
achieve better prediction. Among these four descriptors,

feature vectors encoded by AC have the lowest dimen-
sionality. To balance the effectiveness and efficiency, we
employ AC to encode the feature information of amino
acid sequences, and then use DNNs to predict PPIs. To be
self-inclusive, we introduce the AC feature descriptor in
the following subsection.

Auto covariance (AC)
PPIs generally can be divided into four interaction modes:
electrostatic, hydrophobic, hydrogen bond, and steric
[38]. Seven physicochemical properties of amino acids can
reflect these interaction modes whenever possible, includ-
ing hydrophobicity [39], hydrophilicity [40], volumes of
side chains of amino acids [41], polarity [42], polarizabil-
ity [43], solvent-accessible surface area [44], net charge
index of side chains [45]. The original values of these
seven physicochemical properties for each amino acid are
shown in Table 2. Feature normalization can improve the
accuracy and efficiency of mining algorithms on the data
[46]. Given that, we firstly normalize data with zero mean
and unit standard deviation as follows:

P′
ij = Pi,j − P̃j

Sj
(3)

where Pi,j is the j-th physicochemical property value for
the i-th amino acid, P̃j is the mean of the j-th physico-
chemical property over 20 amino acids and Sj is the corre-
sponding standard deviation of the j-th physicochemical
property. Then each amino acid sequence is translated
into seven vectors with each amino acid represented by
the normalized values.

AC is a statistical tool introduced by Wold et al. [38], it is
adopted to transform amino acid sequences into uniform
matrices. AC can account for the interactions between
residues using a certain lag apart the entire sequence. To
represent an amino acid sequence A with length l, the AC
variables are computed as:

AC(lag, j) = 1
l − lag

l−lag∑

i=1

⎛

⎝Aij − 1
l

l∑

i=1
Ai,j

⎞

⎠

×
⎛

⎝A(i+lag),j − 1
l

l∑

i=1
Ai,j

⎞

⎠ (4)

lag is the distance between residues. Aij is the j-th physic-
ochemical property of the i-th amino acid of A, l is the
length of the amino acid sequence A. In this way, the num-
ber of AC variables is D = lg × p, where p is the number
of descriptors, which is set as 7 according to seven proper-
ties of amino acids. lg is the maximum distance lag(lag =
1, 2, ..., lg), which is set as 30 [21]. After that, each amino
acid sequence is encoded by a 210-dimensional vector
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Table 2 The original values of the seven physicochemical properties for each amino acid

Code H1 H2 V P1 P2 SASA NCI

A 0.62 -0.5 27.5 8.1 0.046 1.181 0.007187

C 0.29 -1 44.6 5.5 0.128 1.461 -0.03661

D -0.9 3 40 13 0.105 1.587 -0.02382

E -0.74 3 62 12.3 0.151 1.862 0.006802

F 1.19 -2.5 115.5 5.2 0.29 2.228 0.037552

G 0.48 0 0 9 0 0.881 0.179052

H -0.4 -0.5 79 10.4 0.23 2.025 -0.01069

I 1.38 -1.8 93.5 5.2 0.186 1.81 0.021631

K -1.5 3 100 11.3 0.219 2.258 0.017708

L 1.06 -1.8 93.5 4.9 0.186 1.931 0.051672

M 0.64 -1.3 94.1 5.7 0.221 2.034 0.002683

N -0.78 2 58.7 11.6 0.134 1.655 0.005392

P 0.12 0 41.9 8 0.131 1.468 0.239531

Q -0.85 0.2 80.7 10.5 0.18 1.932 0.049211

R -2.53 3 105 10.5 0.291 2.56 0.043587

S -0.18 0.3 29.3 9.2 0.062 1.298 0.004627

T -0.05 -0.4 51.3 8.6 0.108 1.525 0.003352

V 1.08 -1.5 71.5 5.9 0.14 1.645 0.057004

W 0.81 -3.4 145.5 5.4 0.409 2.663 0.037977

Y 0.26 -2.3 117.3 6.2 0.298 2.368 0.023599

H1: hydrophobicity; H2: hydrophilicity; V : volume of side chains; P1: polarity; P2: polarizability; SASA: solvent accessible surface area; NCI: net charge index of side chains

with AC variables. Finally, feature vectors of two individ-
ual proteins are taken as inputs of two separate DNNs,
respectively.

Deep neural networks
Deep learning, the most active field in machine learning,
attempts to learn multi-layered models of inputs. It has
been achieving great success in many research areas, such
as speech recognition [47], signal recognition [48], com-
puter vision [49–51], natural language processing [52, 53]
and so on. Meanwhile, it also has been widely employed
in bioinformatics [54, 55]. Deep learning is not only good
at automatically learning the high-level features from the
original data, but also good at discovering intricate struc-
tures in high-dimensional data [56].

Deep neural networks (DNNs) are composed of an input
layer, multiple hidden layers (three or more hidden lay-
ers), and an output layer, the configuration of adopted
DNNs is shown in Fig. 2. In general, neural networks are
fed data from the input layer (x), then the output val-
ues are sequentially computed along with hidden layers
by transforming input data in a nonlinear way. Neurons
of a hidden layer or output layer are connected to all
neurons of the previous layer [32]. Each neuron com-
putes a weighted sum of its inputs and applies a nonlinear
activation function to calculate its outputs f (x) [32]. The

nonlinear activation functions usually include sigmoid,
hyperbolic tangent, or rectified linear unit (ReLU) [57].
ReLU and sigmoid are employed inthis work.

We separately construct two DNNs using TensorFlow
platform, as illustrated in Fig. 2. Next, the feature vectors
of two individual proteins extracted by AC are employed
as the inputs for these two DNNs, respectively. After that,
these two separate DNNs were combined in a hidden
layer to predict PPIs. Adam algorithm [58] (an adaptive
learning rate methods) is applied to speed up training.
Meanwhile, the dropout technique is employed to avoid
overfitting. The ReLU activation function [57] and cross
entropy loss are employed, since they can both acceler-
ate the model training and obtain better prediction results
[59]. The batch normalization approach is also applied
to reduce the dependency of training with the parameter
initialization, speed up training and minimize the risk of
overfitting. The following equations are used to calculate
the loss:

Hm
i1 = σ1(Wi1Xi1 + bi1)(i = 1, · · · , n; m = 1, 2) (5)

Hm
ij = σ1(WijHi(j−1) + bij)

(i = 1, · · · , n; j = 2, · · · , h1; m = 1, 2)
(6)
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Fig. 2 The framework of our deep neural networks for protein-protein interactions prediction

H3
ik = σ1

(
Wik

(
H1

ih1
⊕ H2

ih1

)
+ bik

)

(i = 1, · · · , n, k = h1 + 1)
(7)

H3
ik = σ1

(
WikHi(k−1) + bik

)

(i = 1, · · · , n; k = h1 + 2, · · · , h2)
(8)

L = − 1
n

n∑

i=1
[yiln(σ2(Wih2 Hih2 + bih2)

+ (1 − yi)ln(1 − σ2(Wih2 Hih2 + bih2))]

(9)

where n is the number of PPIs for batch training, m rep-
resents the individual network, and h1 is the depth of two
individual networks, h2 is the depth of fused network. σ1 is
the activation function of ReLU, σ2 is the activation func-
tion of the output layer with sigmoid, ⊕ represents the
concatenation operator. X is the batch training inputs, H
is the output of hidden layer, and y is the corresponding
desired outputs. W is the weight matrix between the input
layer and output layer, b is the bias.

Results and discussion
In this section, we briefly introduce several widely-used
evaluation criteria for performance comparison, and the
recommended configuration of experiments. Next, we
analyze and discuss the experimental results and compare
our results with those of other related work.

Evaluation metrics
To comprehensively compare the performance, six eval-
uation metrics are employed, accuracy (ACC), precision

(PE), sensitivity (SEN), specificity (SPE), matthews corre-
lation coefficient (MCC), F1 score values, and area under
the receiver operating characteristic curve (AUC). These
metrics (except AUC) are computed as follows:

ACC = TP + TN
TP + TN + FP + FN

(10)

SEN = TP
TP + FN

(11)

SPE = TN
TN + FP

(12)

PE = TP
TP + FP

(13)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(14)

F1 = 2TP
2TP + FP + FN

(15)

where true positive (TP) stands for the number of true
PPIs which are correctly predicted; false negative (FN)
stands for the number of true PPIs which are incorrectly
predicted as non-interacting pairs; false positive (FP) is
the number of true non-interacting pairs which are pre-
dicted as interacting pairs; true negative (TN) represents
the number of true non-interacting pairs which are cor-
rectly predicted. MCC is considered as the most robust
metric of a binary classifier. MCC equal to 0 represents
completely random prediction, whereas 1 means perfect
prediction. F1 score is a harmonic average of precision
and sensitivity, and a larger score indicates a better per-
formance. Receiver operating characteristic (ROC) curve
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is also employed to assess the performance of prediction
model. To summarize ROC curve in single quantity, the
area under ROC curve (AUC) is used. AUC ranges from 0
to 1, the maximum value 1 stands for perfect prediction.
For a random guess, the AUC value is close to 0.5.

Experimental setup
Our approach is implemented on TensorFlow platform
https://www.tensorflow.org. We firstly constructed the
negative datasets using four different strategies. We then
encoded the amino acid sequences from the datasets
using auto covariance (AC) [24]. After that, we trained
two separate neural networks with graphics processing
unit (GPU) based on the feature sets encoded by AC.
Finally, we fused these two networks to predict new PPIs.
Deep learning algorithms contains a number of hyper-
parameters, which may heavily impact the experimental
results. The recommended hyper-parameters configura-
tion of our proposed model is summarized in Table 3.
As to the parameter specification of the comparing meth-
ods, we employed the grid search to obtain the optimal
parameters, which are shown in Table 4. For Du et al. [27]
work, they also provided with a similar hyper-parameters
configuration with ours, which can be accessed via the
reference [27]. All the experiments are carried out on a
server with configuration: CentOS 7.3, 256GB RAM, and
Intel Exon E5-2678 v3. Meanwhile, we used NVIDIA Cor-
poration GK110BGL [Tesla K40c] to accelerate training
of DNNs.

Contribution of controlling degrees
For the negative dataset generated by NIP-SS, we select
the top-m protein-protein pairs with the lowest sequen-
tial similarity as the negative PPIs. Among all protein

Table 3 Recommended parameters of our model

Name Range Recommend

Learning rate 1, 0.1, 0.001, 0.002, 0.003, 0.0001 0.002

Batch size 32, 64, 128, 256, 512, 1024, 2056 1024, 2056

Weight
initialization

uniform, normal, lecun_uniform,
glorot_normal, glorot_uniform

glorot_normal

Per-parameter
adaptive
learning rate

SGD, RMSprop, Adagrad,
Adadelta, Adam, Adamax,
Nadam

Adam

Activation
function

relu, tanh, sigmoid, softmax,
softplus

relu, sigmoid

Dropout rate 0.5, 0.6, 0.7 0.6

Depth 2, 3, 4, 5, 6, 7, 8 ,9 3

Width 16, 32, 64, 128, 256, 1024, 2048,
4096

128, 64, 32

GPU Yes, No Yes

pairs, the similarity between these protein pairs is mini-
mum. However, there are some proteins having very large
degrees, which will lead to a bias and overestimation
of prediction results. Therefore, we need to control the
degree distribution of the negative dataset, and approx-
imate the distribution with that of the positive dataset
to guarantee the generalization ability of negative exam-
ples. Table 5 reports the degree distribution of proteins in
S. cerevisiae, H. sapiens and M. musculus, and Fig. 3
reveals the prediction performance of NIP-SS with and
without controlling the degree of proteins related to neg-
ative samples.

From Table 5, we can see that the maximum degree of
proteins in the negative dataset (NIP-SS-NonControl) is
1439, and the proportion of non-interactions with degree
larger than 150 is 27.39%, which may lead to a bias.
As a result, using this datasets produce a higher accu-
racy of 97.05%. Compared to NIP-SS-NonControl, the
negative dataset constructed by NIP-SS contains more
proteins and smaller maximum degree. Meanwhile, non-
interactions are mainly related to proteins whose degrees
fewer than 50. As such, the negative dataset generated
by NIP-SS has a better generalization ability and lower
bias than that by NIP-SS-NonControl. The contribu-
tion of controlling the degree of proteins in the negative
dataset is also significant on H. sapiens and M. musculus
datasets.

If we directly select protein pairs whose correspond-
ing entries equal to 0 in the updated W(k) to generate
the negative dataset, such a dataset brings less predic-
tive information and is not conducive for predicting
PPIs, since this dataset contains many proteins with low
degrees. Therefore, a sub-matrix Wp×p is employed to
control the degree distribution of proteins. In addition, k
also affects the degree distribution. Given that, we need
to specify suitable input values of p and k. Particularly,
we firstly fix k to 3, and then tune p from 500 to 4382
with an interval of 500. Next, we calculate the average
repeatability (r), maximum degree of proteins, the pro-
portion of proteins in different ranges of degrees, and the
proportion of non-interactions in each range. We then
choose p that makes the degree of proteins in the nega-
tive dataset similar to those of the positive dataset. After
that, we adopt p selected in the first step and tune k within
{1, 2, 3, 6, 10, 50, 300, 1000}.

The degree distribution and prediction results on
S. cerevisiae are shown in Table 6 and Fig. 4, respectively.
From Table 6, we can see that when p ≈ 2000, the degree
distribution of the negative dataset is most similar to that
of the positive dataset. In addition, from Fig. 4, we can
also observe that when n < 2000, the accuracy with the
setting p = 500, 1000 and k = 3 is higher than 95%.
This is because the average repeatability is large and leads
to a bias.

https://www.tensorflow.org
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Table 4 Optimal parameters of comparing methods

Method Name Parameters

Guo’s work [21] SVM+AC C γ Kernel

32768.0 0.074325444687670064 Poly

Yang’s work [22] kNN+LD n_neighbors Weights Algorithm p

3 Distance Auto 1

Zhou’s work [23] SVM+LD C γ Kernel

3.1748021 0.07432544468767006 rbf

You’s work [25] RF+MCD n_estimators Max_features Criterion Bootstrap

5000 Auto Gini True

The similar parameter selection strategy is also
conducted on the other two datasets. The experimental
results and the degree distribution of proteins are shown
in Fig. 4, Tables 6, and 7. According to Table 6, we set
p = 700 and p = 300 for H. sapiens and M. musculus,
respectively. In addition, according to the right of Fig. 4
and Table 7, we fix k = 3 for H. sapiens and k = 50 for M.
musculus. From Table 6, we can also observe that when p
is set to n/2 (or n/3, n is the number of proteins in the pos-
itive set), the degree distribution generally approximates
well with that of the positive dataset.

Results of different negative dataset construction
strategies
To investigate the effectiveness of the proposed two
strategies for constructing negative dataset, we conduct
experiments on three prevalent PPIs datasets, including
S. cerevisiae, H. sapiens and M. musculus datasets, and
take the performance of PPIs prediction as the comparing
index. To avoid over-fitting and data dependency, five-fold
cross-validation is adopted. Table 8 reports the average
prediction results on these three species using different
negative dataset generation strategies.

We can see that for the S. cerevisiae dataset, the model
based on the negative dataset generated by NIP-SS gives
the average accuracy of 94.34%, precision of 95.62%, recall
of 92.96%, specificity of 95.74%, MCC of 88.73%, F1 of
94.27% and AUC of 98.24%, respectively. These values are
higher than those of other strategies, which separately
adopt random walk, random pairing, subcellular local-
ization to generate the negative dataset. These results
prove the effectiveness of NIP-SS in generating reliable
non-interacting protein pairs for PPIs prediction. In addi-
tion, the negative dataset constructed by NIP-SS contain
more proteins and have similar degree distributions to the
positive dataset, which can effectively control the bias of
the dataset. The model trained on the negative dataset
generated by random pairing yields very low accuracy of
74.20%. That is because this negative dataset has a high

rate of false negatives, and the degree distribution mainly
concentrates on proteins with degree smaller than 10.
The model based on negative dataset generated by sub-
cellular localization also yields a good performance with
accuracy of 93.79%, MCC of 87.62%, and AUC of 98.13%.
However, compared to the negative dataset generated by
NIP-SS, this dataset covers fewer proteins and a larger
proportion of non-interactions in the degree range 50-70,
which are higher than those NIP-SS. Those will produce
an over-optimistic estimate of prediction.

The model trained on the negative dataset generated by
NIP-RW yields an average accuracy of 87.92%, MCC of
75.97% and AUC of 94.23%. These values are lower than
those of NIP-SS. That is mainly because the proteins in the
negative datasets generated by NIP-SS and NIP-RW have
different degrees. 21.05% non-interacting protein pairs in
the negative dataset generated by NIP-SS are located in
range of degree larger than 50, but no non-interacting pro-
tein pairs in the negative dataset generated by NIP-RW
are located in that range. Another reason is that random
walk process is restricted by the connected positive exam-
ples. For the small network of H. sapiens and M. musculus
datasets, NIP-RW yields good results.

As to the H. sapiens and M. musculus datasets, we can
observe that the model based on the negative datasets of
subcellular localization yields the best prediction accuracy
of 93.34% and 91.82%, respectively. We find the nega-
tive datasets constructed by subcellular localization has
the maximum average repeatability (r) and contains the
fewest proteins, which lead to a bias and an overestimated
performance. Since the degree distribution of negative
datasets constructed by NIP-SS and NIP-RW are similar,
the prediction performance using these two strategies are
similar. The model based on negative datasets generated
by random pairing again gives the lowest performance.

To further investigate the effectiveness of our model that
uses two separate DNNs at first, we introduced a variant
of our model called DNNs-Con. DNNs-Con firstly con-
catenates AC features of two individual proteins, and then
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Fig. 3 The experimental results of NIP-SS-NonControl and NIP-SS on S. cerevisiae, H. sapiens, and M. musculus. The negative datasets constructed by
NIP-SS control the degree distribution of proteins

takes the concatenated features as input of DNNs. The
hidden layers for this network are fixed as 420-256-32.
To check the statistical significance between our model
and DNNs-Con, the pairwise t-test (at 95% significance
level) is also used. The experimental results of five-fold
cross validation are reported in Table 9. From Table 9,
we can observe that the accuracy, MCC, F1 and AUC of
our model are 2.61%, 5.22%, 2.68% and 1.29% higher than
those of DNNs-Con, respectively. In addition, we observe
that our model converges faster than DNNs-Con during
the training process, that is due to two separate net-
works can faster extract sequence information contained
in each amino acid sequence. These results prove that our
model (using two separate DNNs, instead of single one) is
efficient and effective to predict PPIs.

Based on the above analysis, we fix p = 2000 and
vary k ∈ {1, 2, 3, 6, 10, 50, 300, 1000}. Figure 4 (right of
this Figure) reports the results under different values of
k. We also calculate the degree distribution at different k,
which are listed in Table 7. From the right of Fig. 4, we
can observe that when k ≥ 6, the result is close to 1.
That is because there are more nonzero entries in W(k)

as k increases, which change the degree distribution of
proteins and thus bring in a larger bias. Table 7 shows
the degree distribution when p = 2000. Based on these
results, we fix k to 3.

The impact of of imbalanced class
In general, the number of negative PPIs has a large impact
on prediction performance. To investigate the impact of

imbalanced class on our proposed two strategies, three H.
sapiens datasets are constructed with different numbers
of negative samples for NIP-SS and NIP-RW, respectively.
The ratios of positive samples (3355 interaction pairs) and
negative samples in these three datasets are 1:1, 1:2 and
1:3, respectively. Four metrics of sensitivity (SEN), speci-
ficity (SPE), area under the receiver operating character-
istic curve (AUC), and geometric mean (GM) are used
to evaluate the prediction performance. GM is commonly
used for class-imbalance learning [60], it can give a more
accurate evaluation on imbalanced data. The GM is cal-
culated by this formula: GM = √

SEN × SPE. The predic-
tion results are shown in Table 10. From the Table 10, we
can see that as the number of negative samples increases,
the overall performance of the model shows a downward
trend. In addition, the prediction values of AUC and GM
decrease significantly. AUC is respectively decreased by
10.51% and 8.27% for NIP-SS and NIP-RW, and GM is
decreased by 16.63% and 11.27%. Given that, to avoid the
performance degradation caused by imbalanced class, we
adopt the widely-used solution that uses the same number
of negative PPIs as that of positive samples.

The impact of different feature descriptors
The extracted features can affect the performance of
PPIs prediction [28]. To investigate the contribution of
auto covariance (AC) [21] descriptor, we separately train
DNNs on S. cerevisiae (the negative dataset constructed
by NIP-SS) based on AC [21], CT [20], LD [23], and
MCD [25]. Table 11 reports the results of five-fold cross
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Fig. 4 Left: the accuracy under different input values of p (the size of submatrix). Right: the accuracy under different input values of k (the steps of
random walks)

validation. Meanwhile, we also use pairwise t-test (at
95% significance level) to check the statistical signifi-
cance between AC and CT, LD, MCD. From Table 11, we
observe that DNNs-AC achieves an average accuracy as
94.25%, precision as 94.7%, recall as 93.75%, specificity as
94.74%, MCC as 88.5%, F1 as 94.22%, and AUC as 98.15%.
The performance difference of these descriptors is not
significant, but AC descriptors have the smallest feature
dimension. For this reason, we adopt AC to encode amino
acid sequences.

Comparison with existing methods
To further study the performance of our model and
the contribution of negative dataset generated by NIP-
SS and NIP-RW, we compare our prediction results on
S. cerevisiae with those of other competitive methods,
including Guo et al. [21], Yang et al. [22], Zhou et al. [23],
You et al. [25], and Du et al. [27]. These approaches were
introduced in “Background” section.

Table 12 shows the experimental results. Our method
yields average prediction accuracy of 94.34%, precision
of 95.62%, recall of 92.96%, MCC of 88.73%, F1 of
94.27%, and AUC of 98.24%. Compared to the other
two negative datasets, the negative dataset constructed
by NIP-SS covers more proteins and the degree distri-
bution is close to the degree distribution of the positive
dataset. In addition, we can observe that the com-
paring methods using the negative dataset constructed
by NIP-RW also produces good results. However, for
a large datasest, the degrees of proteins in the neg-
ative dataset generated by NIP-RW are almost always
smaller than 50. This is because the distribution of
degree is restricted by the collected positive examples
and a large network makes the random walk process less

controlled. For this reason, the NIP-RW is reliable on
H. sapiens and M. musculus. These results prove that
the negative datasets constructed by NIP-SS and NIP-
RW are rational and can boost the performance of PPI
prediction.

Results on independent datasets
Six independent datasets, which just only contain the
examples of interactions (non-interactions), includ-
ing Caenorhabditis elegans (4013 interacting pairs),
Escherichia coli (6954 interacting pairs), Helicobacter
pylori (1420 interact-ing pairs), Homo sapiens (1412 inter-
acting pairs), Mus musculus (313 interacting pairs), and
Mammalian (1937 non-interacting pairs), are employed
as test sets to evaluate the generalization ability, and
to further assess the practical prediction ability of our
model and the rationality of NIP-SS and NIP-RW. Three
datasets of H. sapiens (3355 positive examples and 3355
negative examples) are constructed and the difference
between these datasets is the negative samples, which
are generated by NIP-SS, NIP-RW, and subcellular
location, respectively. Then, three models with optimal
configuration (provided in “Evaluation metrics” section)
are trained on these three datasets. After that, these six
independent datasets are used to test the generaliza-
tion ability of these models. The prediction results are
shown in Table 13. From Table 13, we can observe that
the accuracy of our model using the negative datasets
generated by NIP-SS and NIP-RW on C. elegans, E. coli,
H. sapiens, H. pylori, M. musculus, and Mammalian
are 86.10%, 85.34%, 86.20%, 81.86%, 85.64%, 15.69%
and 78.113%, 79.65%, 85.03%, 79.15%, 80.66%, 18.58%,
respectively. These prediction results indicate that the
negative datasets generated by NIP-SS and NIP-RW



Zhang et al. BMC Bioinformatics 2018, 19(Suppl 19):525 Page 118 of 188

Ta
b

le
7

Th
e

de
gr

ee
di

st
rib

ut
io

n
of

pr
ot

ei
ns

un
de

rd
iff

er
en

tk
on

S.
ce

re
vi

sia
e,

H
.s

ap
ie

ns
,a

nd
M

.m
us

cu
lu

s

r
M

ax
im

um
de

gr
ee

N
um

be
r

Th
e

pr
op

or
tio

n
of

pr
ot

ei
ns

/t
he

nu
m

be
ro

fi
nt

er
ac

tio
ns

(n
on

-in
te

ra
ct

io
ns

)

1<
de

gr
ee

<
10

10
<

de
gr

ee
<

20
20

<
de

gr
ee

<
30

30
<

de
gr

ee
<

50
50

<
de

gr
ee

<
70

70
<

de
gr

ee
<

80
80

<
de

gr
ee

<
10

0
10

0<
de

gr
ee

<
15

0
de

gr
ee

>
15

0

S.
ce

re
vi

sia
e

Po
si

tiv
e

6.
87

63
25

2
43

82
0.

79
76

/0
.3

41
8

0.
11

30
/0

.2
13

1
0.

04
36

/0
.1

37
2

0.
02

99
/0

.1
42

9
0.

00
87

/0
.0

66
7

0.
00

14
/0

.0
13

2
0.

00
30

/0
.0

34
1

0.
00

25
/0

.0
38

2
0.

00
05

/0
.0

12
8

p=
20

00
k=

1
10

.1
94

9
33

30
83

0.
53

36
/0

.3
50

1
0.

40
32

/0
.5

19
6

0.
06

26
/0

.1
28

5
0.

00
06

/0
.0

01
9

0/
0

0/
0

0/
0

0/
0

0/
0

k=
2

10
.2

09
5

22
30

79
0.

53
20

/0
.3

45
2

0.
40

05
/0

.5
13

8
0.

06
59

/0
.1

36
4

0.
00

16
/0

.0
04

6
0/

0
0/

0
0/

0
0/

0
0/

0

k=
3

10
.2

13
1

39
30

78
0.

53
38

/0
.3

31
2

0.
37

65
/0

.4
76

5
0.

08
54

/0
.1

80
0

0.
00

42
/0

.0
12

3
0/

0
0/

0
0/

0
0/

0
0/

0

k=
6

10
.2

46
0

58
3

30
69

0.
86

61
/0

.3
68

5
0.

09
09

/0
.1

09
0

0.
01

30
/0

.0
29

2
0.

00
75

/0
.0

25
7

0.
00

33
/0

.0
16

9
0.

00
13

/0
.0

08
9

0.
00

16
/0

.0
12

8
0.

00
10

/0
.0

11
0

0.
01

53
/0

.4
17

9

k=
10

10
.1

84
1

67
9

30
86

0.
91

80
/0

.4
23

4
0.

06
80

/0
.0

73
1

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0.
01

39
/0

.5
03

5

k=
50

10
.3

57
0

65
8

30
39

0.
91

05
/0

.4
17

2
0.

07
60

/0
.0

79
7

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0.
01

35
/0

.5
03

1

k=
10

0
10

.2
35

0
57

4
30

72
0.

91
34

/0
.4

20
1

0.
07

13
/0

.0
76

0
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0
0.

01
53

/0
.5

03
8

k=
30

0
10

.2
75

4
59

8
30

61
0.

91
38

/0
.4

20
5

0.
06

99
/0

.0
74

9
0.

00
07

/0
.0

01
2

0/
0

0/
0

0/
0

0/
0

0/
0

0.
01

57
/0

.5
03

4

k=
10

00
10

.2
86

5
64

2
30

58
0.

90
94

/0
.4

15
6

0.
07

55
/0

.0
80

8
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0
0.

01
50

/0
.5

03
6

H
.s

ap
ie

ns
Po

si
tiv

e
1.

81
46

31
23

84
0.

97
27

/0
.8

47
0

0.
02

43
/0

.1
26

2
0.

00
25

/0
.0

21
9

0.
00

04
/0

.0
04

9
0/

0
0/

0
0/

0
0/

0
0/

0

p=
70

0
k=

1
4.

58
24

21
12

02
0.

90
85

/0
.8

05
7

0.
09

07
/0

.1
91

4
0.

00
08

/0
.0

02
9

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

k=
2

4.
67

20
18

11
83

0.
92

31
/0

.8
28

2
0.

07
69

/0
.1

71
8

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

k=
3

4.
63

39
23

11
91

0.
92

78
/0

.8
35

1
0.

07
14

/0
.1

61
4

0.
00

08
/0

.0
03

4
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0

k=
6

4.
65

77
19

11
86

0.
91

15
/0

.8
00

4
0.

08
85

/0
.1

99
6

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

k=
10

4.
81

96
26

11
53

0.
88

03
/0

.6
97

5
0.

11
10

/0
.2

68
6

0.
00

87
/0

.0
34

0
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0

k=
50

4.
78

95
29

11
59

0.
86

45
/0

.6
43

2
0.

11
82

/0
.2

87
5

0.
01

73
/0

.0
69

3
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0

k=
10

0
4.

94
86

31
11

28
0.

86
08

/0
.6

40
5

0.
12

32
/0

.2
94

2
0.

01
51

/0
.0

60
7

0.
00

09
/0

.0
04

6
0/

0
0/

0
0/

0
0/

0
0/

0

k=
30

0
4.

91
19

28
11

35
0.

85
20

/0
.6

19
1

0.
12

51
/0

.2
91

2
0.

02
29

/0
.0

89
7

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

k=
10

00
4.

83
48

29
11

50
0.

86
78

/0
.6

59
0

0.
11

65
/0

.2
76

6
0.

01
57

/0
.0

64
4

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

M
.m

us
cu

lu
s

Po
si

tiv
e

0.
94

73
24

94
8

0.
99

26
/0

.9
45

0
0.

00
63

/0
.0

41
1

0.
00

11
/0

.0
13

9
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0

p=
30

0
k=

1
2.

88
63

14
47

5
0.

99
16

/0
.9

74
5

0.
00

84
/0

.0
25

5
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0

k=
2

2.
72

93
13

49
5

0.
98

79
/0

.9
61

5
0.

01
21

/0
.0

38
5

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

k=
3

2.
81

40
14

48
4

0.
98

97
/0

.9
67

0
0.

01
03

/0
.0

33
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

k=
6

2.
80

62
12

48
5

0.
99

59
/0

.9
87

5
0.

00
41

/0
.0

12
5

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

k=
10

2.
76

73
13

49
0

0.
99

39
/0

.9
79

4
0.

00
61

/0
.0

20
6

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

k=
50

2.
80

62
14

48
5

0.
98

76
/0

.9
59

9
0.

01
24

/0
.0

40
1

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

k=
10

0
2.

82
19

14
48

3
0.

98
34

/0
.9

50
2

0.
01

66
/0

.0
49

8
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0

k=
30

0
2.

88
63

15
47

5
0.

97
89

/0
.9

35
0

0.
02

11
/0

.0
65

0
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0

k=
10

00
2.

79
06

15
48

7
0.

98
56

/0
.9

52
9

0.
01

44
/0

.0
47

1
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0



Zhang et al. BMC Bioinformatics 2018, 19(Suppl 19):525 Page 119 of 188

Ta
b

le
8

Re
su

lts
ba

se
d

on
di

ffe
re

nt
ne

ga
tiv

e
da

ta
se

ts
on

S.
ce

re
vi

sia
e,

H
.s

ap
ie

ns
an

d
M

.m
us

cu
lu

s

Sp
ec

ie
s

N
eg

at
iv

e
sa

m
pl

es
A

C
C

PE
RE

SP
E

M
C

C
F 1

A
U

C

S.
ce

re
vi

sia
e

N
IP

-S
S

94
.3

4%
±

0.
38

%
95

.6
2%

±
0.

75
%

92
.9

6%
±

0.
40

%
95

.7
4%

±
0.

75
%

88
.7

3%
±

0.
77

%
94

.2
7%

±
0.

34
%

98
.2

4%
±

0.
11

%

N
IP

-R
W

87
.9

2%
±

0.
24

%
90

.0
4%

±
1.

69
%

85
.3

2%
±

1.
90

%
90

.4
8%

±
2.

20
%

75
.9

7%
±

0.
55

%
87

.5
9%

±
0.

35
%

94
.2

3%
±

0.
12

%

Su
b

93
.7

9%
±

0.
43

%
95

.1
8%

±
0.

41
%

92
.2

5%
±

0.
78

%
95

.3
3%

±
0.

45
%

87
.6

2%
±

0.
83

%
93

.6
9%

±
0.

38
%

98
.1

3%
±

0.
17

%

Ra
nd

om
m

et
ho

d
74

.2
0%

±
0.

78
%

72
.6

8%
±

1.
45

%
77

.5
9%

±
0.

89
%

70
.8

3%
±

1.
77

%
48

.5
3%

±
1.

47
%

75
.0

4%
±

0.
76

%
81

.2
9%

±
0.

34
%

H
.s

ap
ie

ns
N

IP
-S

S
86

.1
7%

±
0.

93
%

86
.3

8%
±

1.
27

%
85

.8
8%

±
1.

55
%

86
.4

8%
±

1.
00

%
72

.3
6%

±
1.

85
%

86
.1

2%
±

1.
05

%
92

.2
0%

±
0.

82
%

N
IP

-R
W

86
.4

4%
±

0.
59

%
90

.0
5%

±
0.

48
%

81
.8

7%
±

2.
35

%
90

.9
1%

±
1.

09
%

73
.1

4%
±

1.
12

%
85

.7
5%

±
1.

28
%

92
.3

0%
±

0.
70

%

Su
b

93
.3

4%
±

0.
58

%
93

.1
9%

±
0.

42
%

93
.5

1%
±

0.
94

%
93

.1
7%

±
0.

37
%

86
.6

8%
±

1.
16

%
93

.3
5%

±
0.

57
%

96
.2

2%
±

0.
45

%

Ra
nd

om
m

et
ho

d
60

.4
6%

±
1.

54
%

60
.0

7%
±

1.
74

%
62

.3
3%

±
1.

91
%

58
.5

0%
±

3.
24

%
20

.8
5%

±
3.

14
%

61
.1

7%
±

1.
63

%
64

.5
7%

±
1.

35
%

M
.m

us
cu

lu
s

N
IP

-S
S

81
.6

9%
±

1.
48

%
80

.5
7%

±
2.

20
%

83
.7

3%
±

2.
97

%
79

.5
1%

±
4.

47
%

63
.4

4%
±

3.
16

%
82

.0
6%

±
0.

84
%

87
.0

4%
±

1.
95

%

N
IP

-R
W

80
.6

6%
±

2.
14

%
84

.8
9%

±
5.

41
%

74
.8

3%
±

3.
46

%
86

.7
2%

±
4.

62
%

61
.9

7%
±

4.
53

%
79

.4
1%

±
2.

52
%

87
.7

5%
±

2.
25

%

Su
b

91
.8

2%
±

1.
26

%
90

.1
3%

±
2.

57
%

93
.9

3%
±

2.
38

%
89

.7
6%

±
2.

41
%

83
.7

8%
±

2.
40

%
91

.9
5%

±
1.

44
%

94
.8

1%
±

0.
74

%

Ra
nd

om
m

et
ho

d
50

.7
6%

±
2.

12
%

50
.8

0%
±

5.
77

%
52

.1
7%

±
1.

90
%

49
.4

4%
±

3.
26

%
1.

60
%

±
3.

86
%

51
.3

7%
±

3.
58

%
51

.4
0%

±
2.

43
%



Zhang et al. BMC Bioinformatics 2018, 19(Suppl 19):525 Page 120 of 188

Ta
b

le
9

Re
su

lts
of

di
ffe

re
nt

ne
tw

or
k

ar
ch

ite
ct

ur
es

on
S.

ce
re

vi
sia

e,
th

e
ad

op
te

d
ne

ga
tiv

e
da

ta
se

ti
s

co
ns

tr
uc

te
d

by
N

IP
-S

S

A
rc

hi
te

ct
ur

es
D

at
a

se
t

A
C

C
PE

RE
SP

E
M

C
C

F 1
A

U
C

D
N

N
s

Fo
ld

1
94

.0
8%

94
.0

4%
94

.1
7%

93
.9

8%
88

.1
5%

94
.1

1%
98

.2
4%

Fo
ld

2
94

.0
3%

94
.3

6%
93

.6
4%

94
.4

2%
88

.0
7%

94
.0

0%
98

.1
3%

Fo
ld

3
94

.5
7%

95
.2

5%
93

.6
6%

95
.4

5%
89

.1
4%

94
.4

5%
98

.1
7%

Fo
ld

4
94

.3
8%

94
.9

9%
93

.7
8%

94
.9

8%
88

.7
7%

94
.3

8%
98

.1
6%

Fo
ld

5
94

.1
9%

94
.8

4%
93

.5
0%

94
.8

8%
88

.3
9%

94
.1

7%
98

.0
3%

A
ve

ra
ge

94
.2

5%
±

0.
22

%
94

.7
0%

±
0.

49
%

93
.7

5%
±

0.
26

%
94

.7
4%

±
0.

56
%

88
.5

%
±

0.
45

%
94

.2
2%

±
0.

19
%

98
.1

5%
±

0.
08

%

D
N

N
s-

C
on

Fo
ld

1
91

.9
2%

92
.4

0%
91

.2
7%

92
.5

5%
83

.8
4%

91
.8

3%
97

.1
5%

Fo
ld

2
91

.8
6%

93
.8

7%
89

.2
1%

94
.4

0%
83

.7
9%

91
.4

8%
96

.9
0%

Fo
ld

3
91

.5
8%

93
.6

2%
89

.3
2%

93
.8

6%
83

.2
6%

91
.4

2%
96

.8
3%

Fo
ld

4
91

.8
6%

93
.6

5%
90

.0
7%

93
.7

0%
83

.7
9%

91
.8

3%
96

.9
2%

Fo
ld

5
91

.4
2%

92
.2

4%
90

.5
3%

92
.3

2%
82

.8
6%

91
.3

8%
96

.9
3%

A
ve

ra
ge

91
.7

3%
±

0.
21

%
•

93
.1

6%
±

0.
77

%
•

90
.0

8%
±

0.
86

%
•

93
.3

7%
±

0.
89

%
•

83
.5

1%
±

0.
43

%
•

91
.5

9%
±

0.
23

%
•

96
.9

5%
±

0.
12

%
•

•/
◦i

nd
ic

at
es

w
he

th
er

ou
rm

od
el

is
st

at
is

tic
al

ly
(a

cc
or

di
ng

to
pa

irw
is

e
t-

te
st

at
95

%
si

gn
ifi

ca
nc

e
le

ve
l)

su
pe

rio
r/

in
fe

rio
rt

o
th

e
D

N
N

s-
C

on



Zhang et al. BMC Bioinformatics 2018, 19(Suppl 19):525 Page 121 of 188

Table 10 Results on H. sapiens with different numbers of negative samples for NIP-SS and NIP-RW

Method Dataset SEN SPE AUC GM

NIP-SS H.sapiens1:1 86.57% 87.08% 92.01% 86.57%

H.sapiens1:2 69.95% 89.25% 86.33% 79.00%

H.sapiens1:3 52.93% 92.48% 81.50% 69.94%

NIP-RW H.sapiens1:1 81.87% 90.91% 92.30% 86.27%

H.sapiens1:2 72.84% 90.13% 87.41% 81.02%

H.sapiens1:3 58.33% 94.51% 84.03% 75.00%

contribute to a good performance across species. We
note that the accuracy on Mammalian using the NIP-SS
and NIP-RW strategies are 3.36 and 3.98 times higher
than that using subcellular localization (which is only
4.67%). Given that, we can conclude that the negative
dataset generated by subcellular localization may produce
a bias for predicting PPIs. In other words, subcellular
localization based negative examples generation strategy
is inclined to predict a new protein pair as interaction.To
further demonstrate this discovery and the advantages of
NIP-SS and NIP-RW, we constructed a dataset (named
Mammalian-imbalanced), in which the number of nega-
tive samples is about 4 times than that of positive samples,
since the number of protein pairs (non-interacting) is
far greater than the number of interaction pairs in the
real world. The negative samples are from Mammalian
dataset (1937 negative samples), while the positive are
from the M. musculus (313 positive samples). Finally,
the dataset contains 313 + 1937 protein pairs.
The prediction results are also shown in Table 13.
From Table 13, we can see that the accuracy on
Mammalian-imbalanced dataset using the NIP-
SS and NIP-RW strategies are 23.45% and 27.56%,
respectively, which are both higher than that using
subcellular localization (only 17.75%). These prediction
results show that NIP-SS and NIP-RW hold a good gener-
alization ability and performance in predicting PPIs, and
the strategies of subcellular location will lead to a bias in
predicting.

Conclusion and future work
Effective PPIs prediction approaches depend on a high
quality negative dataset (non-interacting protein pairs),
which contributes to discriminative and accurate predic-
tion. In this paper, we present two novel strategies (NIP-SS
and NIP-RW) to generate high-quality negative dataset
and to boost the performance of PPIs prediction. NIP-
SS uses sequence similarity between proteins to guide the
generation of negative examples, whereas NIP-RW uti-
lizes the interaction profiles of proteins to select negative
examples. To reduce the bias and enhance the general-
ization ability of the generated negative dataset, these
two strategies separately adjust the degree of the non-
interacting proteins and approximate the degree to that
of the positive dataset. We found that NIP-SS is compe-
tent on all datasets and hold a good performance, whereas
NIP-RW can only obtain a good performance on small
dataset (positive samples ≤ 6000) because of the restric-
tion of random walk and the results of extensive exper-
iments. In addition, these experiments also indicate that
the negative datasets constructed by NIP-SS and NIP-RW
can significantly improve the performance of PPIs predic-
tion and these two strategies work better than other two
widely adopted strategies.

We will fuse multiple types of biological data, including
the sequence similarity, functional similarity and domain
similarity of proteins, to generate the negative datasets.
In addition, we will investigate more intelligent ways to
adjust the degree of non-interacting proteins.

Table 11 Results of DNNs with AC, CT, LD and MCD feature descriptors on S. cerevisiae

Model Dimension ACC PE RE SPE MCC F1 AUC

DNNs-AC (210+210) 94.25%± 0.22% 94.70%± 0.49% 93.75%± 0.26% 94.74%± 0.56% 88.50%± 0.45% 94.22%± 0.19% 98.15%± 0.08%

DNNs-CT (343+343) 94.37%± 0.24% 95.55%± 0.75% 93.09%± 0.81% 95.67%± 0.65% 88.78%± 0.48% 94.30%± 0.23% 98.20%± 0.21%

DNNs-LD (630+630) 94.41%± 0.14% 95.46%± 0.41% 93.25%± 0.44% 95.56%± 0.44% 88.84%± 0.28% 94.34%± 0.15% 98.23%± 0.06%

DNNs-MCD (882+882) 94.25%± 0.22% 94.70%± 0.49% 93.75%± 0.26% 94.74%± 0.56% 88.50%± 0.45% 94.22%± 0.19% 98.15%± 0.08%

•/◦ indicates whether DNNs-AC is statistically (according to pairwise t-test at 95% significance level) superior/inferior to the other descriptors
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Table 13 Prediction results on seven independent PPIs datasets, PPIs of H. sapiens are used as the training set

Species Test pairs Negative

NIP-SS NIP-RW Sub

C. elegans 4013 (interactions) 86.10% 78.11% 94.42%

E. coli 6984 (interactions) 85.34% 79.65% 92.68%

H. sapiens 1412 (interactions) 86.20% 85.03% 96.29%

H. pylori 1420 (interactions) 81.86% 79.15% 92.28%

M. musculus 313 (interactions) 85.64% 80.66% 96.10%

Mammalian 1937 (non-interactions) 15.69% 18.58% 4.67%

Mammalian-imbalanced 2250 (313 interactions, 1937 non-interactions) 23.45% 27.56% 17.75%
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