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Background
Philadelphia chromosone negative (Ph-) myelo-
proliferative neoplasms (MPNs) are a heteroge-
neous group of clonal hematologic malignancies 
that include polycythemia vera (PV), essential 
thrombocythemia (ET), and myelofibrosis 
(MF).1 Activating mutations in the JAK/STAT 
pathway are the biologic hallmark of the MPNs.2 
MPNs are associated with a risk of transforma-
tion to acute leukemia, termed MPN-blast phase 
(BP), which is characterized by the presence of 
⩾20% blasts in the peripheral blood or bone mar-
row.3 Transformation to MPN-BP occurs within 
10 years from diagnosis in 1%, 4%, and 20% of 
patients with ET, PV, and MF, respectively.4,5 
Clinically, MPN-BP resembles secondary acute 
myeloid leukemia (sAML) and is typically pre-
ceded by an accelerated phase (MPN-AP) that is 

defined as presence of ⩾10–19% blasts in the 
peripheral blood or bone marrow.1 Rarely, MPNs 
can transform into acute lymphoblastic leukemia 
(ALL). In a literature review and report of 18 
cases of lymphoid blast transformation of 
Ph-MPNs, the majority of cases had a B-cell 
phenotype, a median time to progression to 
ALL of approximately 10 years and poor prog-
nosis, with a mortality of 80% in the published 
cases.6 The mechanisms surrounding the pro-
gression to MPN-AP/BP are not entirely under-
stood but are thought to involve the acquisition 
of somatic mutations and epigenetic alterations 
in hematopoietic progenitor and stem cells 
(HPSCs) leading to clonal expansion as well as 
a tumor supportive proinflammatory microenvi-
ronment.3,7,8 Both MPN-AP and MPN-BP have 
a poor prognosis with a median overall survival 
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(mOS) of approximately 13 months in MPN-AP 
and 3–5 months in MPN-BP.3,9 Newer targeted 
therapies have improved progression-free survival 
(PFS) but have not significantly impacted overall 
survival (OS). The only curative therapy is alloge-
neic hematopoietic stem cell transplant (HSCT) 
that is utilized in a minority of patients due to the 
high rate of associated morbidity and mortality in 
unfit populations. The molecular landscape of 
MPN-AP/BP differs significantly from that of de 
novo acute myeloid leukemia (AML). MPNs are 
characterized by driver mutations in Janus Kinase 
2 (JAK2), myeloproliferative leukemia virus 
oncogene (MPL), and Calreticulin (CALR). Over 
50% of patients with MPN-CP have additional 
somatic mutations in epigenetic regulators, splic-
ing modulators, RAS, and TP53. In addition to 
molecular mutations, cytogenetic abnormalities 
associated with MPNs often portend increased 
intratumoral heterogeneity and complexity.10 
Primary myelofibrosis (PMF) is associated with 
more molecular complexity and an increased fre-
quency of transformation to MPN-AP/BP than 
both ET and PV.10 Understanding the molecular 
landscape driving the progression to MPN-AP/
BP is paramount in stratifying patients who are at 
higher risk of progression and appropriate for 
risk-adapted therapeutic interventions including 
HSCT while still in the chronic phase (CP). 
Here, we provide an overview of the current man-
agement of patients with MPN-AP/BP as well as 
the future direction of therapeutic interventions.

Risk of progression
For the majority of patients who progress from 
CP disease to MPN-BP, the development of 
MPN-AP is an obligatory step in disease evolu-
tion.3 Several clinical characteristics associated 
with progression from MPN-CP to MPN-AP/BP 
include age ⩾60 years, red blood cell (RBC) 
transfusion dependence, leukocytosis, monoso-
mal karyotype, platelet count of <100 × 109/l, 
and circulating blasts ⩾ 3%.1,11–13 Three widely 
implemented prognostic scoring systems incorpo-
rate these clinical risk factors to risk stratify 
patients with MF. The Dynamic International 
Prognostic Scoring System (DIPSS) includes 
age, presence of systemic symptoms, as well as 
complete blood count abnormalities including 
leukocytosis, anemia, and presence of circulat-
ing blasts.14 The DIPSS-plus includes cytoge-
netic abnormalities, thrombocytopenia, and 
RBC transfusion dependence.15 The Mutation 

Enhanced International Prognostic Score System 
MIPSS70 incorporates the presence of known 
high-risk acquired somatic mutations.16

Current understanding of molecular basis of 
advanced forms of disease
Activating driver mutations involving the JAK/
STAT pathway are the hallmark of CP-MPNs 
with JAK2V617F occurring in approximately 
98% of patients with PV and in 50–60% of 
patients with ET or MF.11 In patients with MF, 
mutations involving CALR and MPL also con-
tribute to hyperactivity of this signaling pathway 
and together with JAK2V617F account for 90% 
of driver mutations.17 The presence of other 
genomic alterations in TET2, EZH2, and TP53 
frequently further alter the biology of the disease 
and have prognostic implications.11 The most 
common somatic mutations in MPN-BP outside 
of JAK2 occur in TET2, SRSF2, IDH1/2 and 
TP53.11 Whereas, the most common somatic 
mutations in de novo AML occur in FLT3, NPM1, 
and DNMT3A.11 At least two distinct routes to 
leukemic transformation have been proposed: 
one route includes the acquisition of mutations in 
the clone bearing a JAK/STAT driver mutation, 
most commonly TP53 that is seen in approxi-
mately 15% of patients with JAK2V617F, 25% of 
patients with CALR mutations, and 0% of 
patients with MPL mutations.18 Co-operativity 
between JAK2 mutations and TP53 mutations/
alterations has been credentialed in murine mod-
els, thus establishing the biologic basis of these 
clinical observations.19 Alternatively, de novo 
emergence of a leukemic clone distinct from the 
clone bearing an activating driver mutation can 
emerge, ultimately leading to a decrease in variant 
allele frequency (VAF) or loss of pre-existing 
driver mutation, due to clonal expansion of the 
leukemic clones over the underlying MPN-clone 
(Figure 1).10,11,20 Even with a significant propor-
tion of MPN-BP arising from a potential non-
driver mutation MPN-CP clone, the molecular 
landscape and overall prognosis remains distinct 
from that in de novo AML.

Current therapies

MPN-CP
The goal of therapy for patients with MPN-CP is 
to prevent thrombotic and hemorrhagic events, 
reduce the systemic symptom burden and 
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splenomegaly, and minimize the risk of disease 
progression to MPN-AP/BP. The only curative 
therapy remains allogeneic HSCT, which is gen-
erally limited to patients with DIPSS intermedi-
ate-2 and high-risk MF due to associated 
morbidity and mortality. Current medical thera-
peutic agents for CP-MPNs include JAK inhibi-
tors, pegylated interferon-alfa, and nonspecific 
cytoreductive agents. Ruxolitinib, fedratinib, and 
pacritinib are the three Food and Drug 
Administration (FDA) approved JAK inhibitors 
for select patients with MPN-CP. Fedratinib is 
typically reserved for patients who have failed 
ruxolitinib; however, it is approved for use in the 
front-line setting as well.21,22 Pacritinib is reserved 
for patients with MF with severe thrombocytope-
nia.23 Momelotinib is another novel JAK inhibitor 
with positive phase III data seeking approval for 
MF patients with transfusion-dependent ane-
mia.24 While these therapeutic agents have dem-
onstrated efficacy in terms of the ability to 
improve splenomegaly, and alleviate symptom 
burden, none has demonstrated the ability to 
effectively deplete the underlying malignant clone 
or reduce the risk of disease progression.22,23,25–30 
Despite the availability of these targeted agents, 
the majority of patients treated with selective JAK 

inhibitors discontinue treatment within 3 years.31 
Interferon derivatives have demonstrated the 
ability to deplete the underlying malignant clone 
in a minority of patients with PV and ET; how-
ever, whether or not this translates to a reduced 
risk of disease progression remains controversial 
and not yet confirmed in prospective studies.32–34 
Nonspecific cytoreductive agents include hydrox-
yurea and anagrelide, which are effective in pre-
venting thrombotic and hemorrhagic events, but 
do not target the underlying malignant clone, and 
have not been shown to improve or reduce pro-
gression of disease to AP/BP.35,36 Rather than 
evaluating developmental agents based solely on 
thrombotic risk reduction, spleen size reduction, 
and symptom burden, there has been shift to 
develop novel anticlonal agents that can effec-
tively target the underlying malignant clone and 
prevent progression of disease to AP/BP.

Potentially disease-modifying agents in develop-
ment for patients with MF include inhibitors of 
MDM2, BET, BCL-2, PI3K, and telomerase, as 
well as recombinant PTX2 and an SMAC 
mimetic.37 Trials have also evaluated histone dea-
cetylase (HDAC) inhibitors in this patient popu-
lation; however, toxicity profiles precluded further 
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Figure 1.  Pathophysiology of progression to MPN-AP/AP.
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development.38,39 We are hopeful that as our 
understanding of disease biology continues to 
grow and more targeted treatment options 
become available, implementing these approaches 
will reduce the risk of disease progression and 
improve OS for CP-MPN. Even with optimal use 
of our current MPN-CP treatment armamentar-
ium, however, a significant portion of patients 
with MPNs continue to progress to AP/BP. There 
remains no standardized approach for the man-
agement of MPNs that have progressed to AP or 
BP.

MPN-AP/BP

Cytotoxic chemotherapy
Cytotoxic chemotherapy with AML-inspired 
intensive induction regimens such as cytarabine 
and daunorubicin (7 + 3), fludarabine, cytara-
bine, and granulocyte colony-stimulating factor 
(G-CSF), idarubicin (FLAG-IDA), and mitox-
antrone, etoposide, and cytarabine (MEC) with-
out consolidative HSCT has been associated with 
poor outcomes.4,40,41 Complete response (CR) 
rates range from 0% to 30% often with incom-
plete count recovery (CRi), high treatment–
related mortality, and short duration of 
leukemic-free interval.4,40,41 In a retrospective 
study of 91 patients with MF-BP, patients were 
split into 3 treatment groups; 19 received low-
intensity therapy, 24 received an AML-like high-
intensity induction regimen, and 48 received best 
supportive care. Low-intensity regimens included 
monotherapy with vincristine, etoposide, oral-
alkylating agents, or low-dose cytarabine 
(LDAC). High-intensity regimens included 7 + 3 
or monotherapy with high-dose cytarabine. No 
patients in the group receiving high-intensity 
therapy achieved a CR, and the mOS was 
3.9 months. In a subset of patients who reverted 
to CP disease after high-intensity induction ther-
apy, the mOS was 6.2 months compared with 
2.7 months in those with persistently elevated 
blasts after induction therapy. The incidence of 
treatment-related mortality, however, was 33%. 
The mOS in the supportive care and low-inten-
sity therapy arms was 2.1 months and 2.9 months, 
respectively.41 Poor response to chemotherapy is 
likely due to the complex genetic profiles of MPN 
AP/BP that includes a high frequency of TP53 
mutations.1,11 Owing to advanced age at diagno-
sis and often presence of comorbid conditions, 

patients with MPN BP/AP are frequently not 
candidates for intensive induction chemotherapy 
or HSCT.1

Hematopoietic stem cell therapy
Consolidative HSCT is the only curative therapy 
in MPN-AP/BP. The significant morbidity and 
mortality associated with HSCT often precludes 
its use in older patients and those with signifi-
cant comorbidities. In those who are transplant 
candidates, there are many transplant-related 
considerations including donor selection, opti-
mal conditioning regimen, and post-transplant 
complications. In several retrospective studies of 
patients with MPN-BP who received HSCT, the 
only factor associated with prolonged OS was 
achievement of CR prior to transplant.40,42,43 In 
a retrospective review of 46 patients with 
MPN-BP, 42 of the 46 received induction ther-
apy, followed by HSCT. Thirty eight of the 46 
patients were assessable of which 24% achieved 
CR. At 3 years, the PFS and OS rates were 26% 
and 33%, respectively, and univariate analysis 
prior to HSCT demonstrated that only pretrans-
plant CR impacted survival. Transplant-related 
factors such as donor source and conditioning 
regimen did not impact survival.43 More recent 
data, however, suggest that CR is not required 
for improved outcomes in MPN-BP. A retro-
spective review of patients 46 patients with 
MPN-BP who received HSCT demonstrated 
that pre-HSCT blast count of <5% versus >5% 
or <10% versus >10% did not predict post-
HSCT survival.44 While there are no standard 
response criteria for patients with MPN AP/BP, 
the European LeukemiaNet (ELN) criteria are 
frequently employed to assess response.45 
Elevated circulating blasts and in the bone mar-
row >5%, however, can be seen in CP-MPNs 
due to aberrant MPN stem cell trafficking and 
resultant extramedullary hematopoiesis. A more 
comprehensive response assessment for 
MPN-BP has been proposed which incorporates 
five relevant components of MPN-CP and the 
leukemic clone: hematologic, clinical, patho-
logic, cytogenetic, and molecular changes.46

Hypomethylating agents
Hypomethylating agents (HMAs) have demon-
strated activity in MPN-AP/BP with less toxicity 
compared with intensive chemotherapy. In a 
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retrospective analysis of 54 patients with 
Ph-negative MPNs who progressed to MPN-AP 
or BP and were treated with azacitidine, 24% 
achieved a CR.47 The median duration of response 
was 9 months, and mOS was 11 months.47 
Another retrospective study that evaluated 
patients with high-risk MF and MPN-AP/BP, 
treated with single agent decitabine, demon-
strated an overall response rate (ORR) of 29%, 
with an mOS of 10.5 months in those who 
responded and 4 months in nonresponders.48 A 
retrospective review of a cohort of 410 patients 
with MPN-BP from the Mayo clinic and AIRC-
Gruppo Italiano Malattie Mieloproliferative 
(AGIMM) treated with HMA monotherapy, the 
CR rate was only 4%.12 While there is clearly a 
benefit for a certain subpopulation of patients 
with MPN-BP, when used as monotherapy, 
HMA therapy does not appear to provide a dura-
ble response in the majority of treated patients.

Ruxolitinib
Ruxolitinib, a selective JAK 1/2 inhibitor, has 
also been evaluated in MPN-BP in multiple clin-
ical trials. A single-center phase II study evaluat-
ing high-dose ruxolitinib monotherapy was 
conducted in patients with R/R leukemia. Two of 
the 18 patients (11%) with MPN-BP treated 
with ruxolitinib at a dose of 25 mg twice daily 
attained a CR and one patient (5.5%) attained 
CRi. Notably, all three responding patients har-
bored JAK2V617F.49 Overall, the regimen was 
well-tolerated, but led to limited and transient 
responses.49 In a single-center phase I/II study in 
27 patients testing three dose levels of ruxolitinib 
50 mg twice daily (n = 4), 100 mg twice daily 
(n = 5), and 200 mg twice daily (n = 18) in patients 
with R/R AML and ALL, no CR was observed 
and the study was stopped due to lack of clinical 
benefit.50 Similarly to HMA monotherapy, rux-
olitinib alone has not demonstrated significant 
benefit in MPN-AP/BP. Several studies have 
evaluated ruxolitinib in combination with decit-
abine in this advanced phase setting. In a multi-
center phase II study of 25 patients with MPN 
AP/BP treated with ruxolitinib at an induction 
dose of 25 mg twice daily and then 10 mg twice 
daily in subsequent 28-day cycles plus decitabine 
at 20 mg/m2 days 1–5 of a cycle, the ORR was 
44% with an mOS of 9.5 months, and the combi-
nation was well-tolerated.51 A single institution 
phase I study of ruxolitinib including 18 patients 

with R/R AML and phase II study including 29 
patients with MPN-BP of ruxolitinib at a recom-
mended phase II dose of 25 mg twice daily con-
tinuously and standard decitabine demonstrated 
an mOS of 6.9 months.52 Because of the cross-
trial mOS benefit of combination JAK2 inhibitor 
and HMA when compared with monotherapy 
data, and an improved toxicity profile when com-
pared with intensive chemotherapy regimens, 
HMA and ruxolitinib are often administered in 
combination in this patient population when 
HSCT is not a therapeutic option for consolida-
tion or as a bridge to HSCT in select patients 
(Table 1).

Venetoclax
Venetoclax, a BCL-2 inhibitor, in combination 
with HMA is a well-described low-intensity regi-
men approved for the treatment of patients with 
AML.53 These data have been extrapolated and 
employed in the anecdotal care of MPN-BP. 
This regimen has been evaluated in several ret-
rospective studies in this patient population. A 
retrospective multicenter study of 32 patients 
with MPN-BP treated with a combination of 
venetoclax and azacitidine 75 mg/m2 (days 1–7) 
or decitabine 20 mg/m2 (days 1–5) demonstrated 
a 44% ORR (CR/CRi) and mOS of 8 months.54 
In a single-center study of 31 patients with 
MPN-BP treated with a combination venetoclax 
and HMA, 6 of 14 patients (43%) treated in the 
front-line setting achieved a CR/CRi and 1 
patient (7%) achieved a partial response (PR). 
The mOS was 7 months.55 In the R/R setting, no 
patients responded, and mOS was 3 months.55 
There was significant treatment-related toxicity 
with 83% of patients developing grade 3 or 
higher infections during the first cycle.55 Another 
retrospective multicenter analysis that evaluated 
venetoclax and HMA or LDAC in 27 patients 
with MPN-AP or BP similarly demonstrated 
clinical activity with an ORR of 53% in MPN-BP 
and 50% in MPN-AP. There was limited sur-
vival benefit with an mOS of 6 months for both 
MPN-BP and MPN-AP.56 While venetoclax 
plus HMA has significantly improved outcomes 
in patients with de novo AML, it has not demon-
strated convincing beneficial impact in patients 
with MPN-BP. It is associated with significant 
toxicity, without survival benefit to merit its use 
in this patient population outside of a clinical 
trial.
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IDH inhibitors
Mutations in isocitrate dehydrogenase 1/2 
(IDH1/2) result in aberrant IDH1/2 activity and 
impaired myeloid differentiation. The use of 
small molecule inhibitors targeting these muta-
tions, ivosidenib and enasidenib, which target 
IDH1 and IDH2, respectively, has led to improved 
outcomes in IDH-mutated AML in both the 
front-line and R/R setting.53,57 Importantly, IDH1 
or IDH2 mutations occur in approximately 22% 
of MPN-AP/BP cases and thus represent a thera-
peutic opportunity in a significant portion of this 
patient population.58,59 In a retrospective analysis 
of MPN-BP patients with IDH1/2 mutations 
treated with an IDH inhibitor as monotherapy or 
in combination with ruxolitinib, venetoclax, 
HMA or intensive chemotherapy, 3 out of 12 
(25%) patients achieved a CR with undetectable 
IDH1/2 mutations by next generation sequencing 
(NGS).59 The mOS was 10 months for all patients 
and 19 months for responders.59 Another group 
conducted a retrospective analysis of patients 
with IDH1 or IDH2-mutated MPN-AP/BP 
treated with IDH inhibitors. Of 8 patients treated, 
2 (25%) achieved a CR, 4 (50%) achieved a PR, 
and 1 (12.5%) had stable disease. The median 
OS had not been reached at the median follow-up 

time of 9 months.60 There is an ongoing multi-
center Myeloproliferative Neoplasms Research 
Consortium (MPN-RC) phase II study assessing 
the safety and efficacy of the combination of rux-
olitinib and enasidenib in patients with MPN AP/
BP or CP MF and at least 5% circulating blasts 
with an IDH2 mutation (NCT04281498). 
Despite persistently low-response rates overall in 
published data, patients who responded have 
demonstrated favorable survival outcomes. 
Therefore, IDH inhibitors are typically incorpo-
rated into the treatment regimen for those 
MPN-AP/BPs with mutations in IDH1 or IDH2.

Future directions

Tumor microenvironment
MPNs are characterized by dysregulated JAK/
STAT signaling resulting in an increase in proin-
flammatory cytokines such as transforming 
growth factor-beta (TGF-β), tumor necrosis fac-
tor alpha (TNFα) and interleukins (ILs) 2, 6, and 
8 that have been implicated in supporting malig-
nant clonal hematopoiesis and promoting bone 
marrow fibrosis.61 Specifically, IL-2 and IL-8 
have demonstrated particular importance in the 

Table 1.  Therapeutic regimens and associated response rates and median OS.

Regimen Population Response rate Median OS References

Cytotoxic chemotherapy MPN-BP CR 0% 3.9 months Mesa et al.41

Ruxolitinib MPN-BP CR 11% – Eghtedar et al.49

CR 0% – Pemmaraju et al.50

Ruxolitinib and decitabine MPN-AP/BP ORR (CR/CRi) 44% 9.5 months Mascarenhas et al.51

IDH inhibitor MPN-AP/BP CR 25% Not reached at 9 months Patel et al.60

IDH inhibitor monotherapy or in 
combination with ruxolitinib, venetoclax, 
HMA, or intensive chemotherapy

MPN-BP CR 25% 10 months Chifotides et al.59

HMA MPN-BP CR 24% 11 months Thepot et al.47

MPN-AP/BP ORR 29% 10.5 months Badar et al.48

MPN-BP CR 4% – Tefferi et al.12

Venetoclax and HMA MPN-BP ORR (CR/CRi) 44% 8 months Gangat et al.54

MPN-BP CR/CRi 43% 7 months Masarova et al.55

CR, complete response; Cri, incomplete count recovery; HMA, hypomethylating agent; IDH, isocitrate dehydrogenase; MPN-AP, myeloproliferative 
neoplasms–accelerated phase; MPN-BP, myeloproliferative neoplasms–blast phase; ORR, overall response rate; OS, overall survival.
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prognosis and phenotype of MF. Increased levels 
of both cytokines have been associated with con-
stitutional symptoms and increased RBC transfu-
sion requirements.62 In treatment naïve patients, 
increased levels of circulating IL-8 were found to 
be associated with inferior survival, increased cir-
culating blasts, and shorter leukemia-free sur-
vival.62 A murine model of MF demonstrated 
high levels of TGF-β, mCXCL1 (the murine 
equivalent of hCXCL8, the gene coding IL-8) 
and its receptors CXCR1 and CXCR2.63 After 
treatment with reparixin, a CXCR1/2 inhibitor, 
megakaryocytes demonstrated lower levels of 
TGF-β compared with control suggesting that 
IL-8 may be a viable therapeutic target.63 There is 
evidence that constitutive JAK/STAT signaling in 
MF leads to an immunosuppressive tumor micro-
environment by upregulation of PD-L1 expres-
sion, checkpoint receptor.64 Oncogenic JAK2 
activity via increased STAT3 and STAT5 activa-
tion has been shown to enhance PD-L1 promoter 
activity and, therefore, PD-L1 expression in 
murine JAK2V617F knock-in model. PD-L1 
expression was also shown to be upregulated in 
human T cells of MF patients when compared 
with healthy controls.64 In addition to PD-L1 
overexpression, peripheral blood T cells have also 
demonstrated overexpression of other checkpoint 
receptors including CTLA4 and TIM-3.65 Given 
these data, it was hypothesized that PD-1 inhibi-
tion with pembrolizumab may potentiate the 
immune system to target MPN HPSCs.64 In a 
multicenter single-arm phase II study that 
included 10 patients with advanced MF and sin-
gle patient with MPN-BP who received pembroli-
zumab monotherapy, there was no significant 
clinical or pathologic response. There, however, 
was evidence of T-cell activation and changes in 
T-cell clonality with shared epitope demonstrat-
ing changes in the immune phenotype suggesting 
an MPN cell–directed immune repsonse.66 
Despite a lack of clinical or pathologic response to 
anti-PD1 monotherapy, combination therapy tar-
geting LAG3, CTLA4, or TGF-β may provide 
additional benefit. Further investigation into the 
role of targeted combination immunotherapy in 
MPN AP/BP is warranted.

TP53 pathway dysregulation
Dysregulation of the TP53 pathway via deletion, 
mutation, or inactivation of p53 plays an impor-
tant role in the pathogenesis across a diverse array 

of both solid and hematologic malignancies.67 
TP53 loss is among the most common genomic 
alterations observed at the time of leukemic trans-
formation in MPNs occurring in 30% of 
patients.11 Paired patient samples in MPN-CP 
and post-MPN AML demonstrated that muta-
tions in JAK2 and TP53 were almost always pre-
sent at high VAFs (>50%) in patients with 
MPN-BP at the time of transformation. This sug-
gests their presence in the dominant AML clone 
and consistent with loss of wild-type TP53.11 
Inactivation of p53 occurs commonly as a result 
of overexpression of mouse double-minute 
homolog 2 (MDM2) and mouse double-minute 
homolog 4 (MDM4) – two important negative 
regulators of TP53 transcription and activation.68 
MDM2 is an E3 ubiquitin ligase that regulates 
the stability of p53 by mediating its degradation 
thus acting as a negative regulator of the path-
way.69 MDM4 can increase or decrease the E3 
ubiquitin ligase activity.70 Several chromosomal 
analyses of patients with MPNs have demon-
strated an association between abnormalities in 
chromosomes 1q, which encodes MDM4, with 
increased risk of disease progression to myelofi-
brosis and MPN-AP/BP.67,71,72 In addition, 
increased expression of MDM2 has been demon-
strated in CD34+ HSPCs in MPNs.73 JAK2V617F 
has been demonstrated to be a negative regulator 
of TP53 via increased MDM2 translation.74 
Several therapeutic candidates are being devel-
oped that target reactivation of the p53 pathway.

Expression of MDM2 is upregulated in the 
HPSCs of patients with JAK2V617F MPNs due 
to upregulation of La antigen, an enhancer of 
MDM2 translation.74 A class of drugs called 
Nutlins, named after the town in which they were 
discovered (Nutley, NJ), was the first identified 
selective MDM2 inhibitors.75 RG7112 is a small 
molecule inhibitor of p53-MDM2 binding and in 
preclinical leukemia models demonstrated sensi-
tivity to RG7112 through induction of 
p53-dependent apoptosis.76 In a phase I study of 
patients with R/R leukemias including AML and 
ALL, RG7112 demonstrated stabilization in p53 
levels and transcriptional activation of p53 target 
genes.77 The high doses required for efficacy, 
however, led to significant GI intolerance.77 A 
phase II trial evaluated idasanutlin (RG7388, 
Roche Pharmaceuticals, Basel, ‎Switzerland), an 
oral MDM2 inhibitor, in patients with 
JAK2V617F positive PV resistant/intolerant to 
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hydroxyurea. Subjects enrolled demonstrated a 
39% median reduction in the JAKV617F VAF at 
the end of three treatment cycles and a median 
reduction of 76% at 32 weeks suggesting robust 
anticlonal activity.38 Therapy, however, was asso-
ciated with significant gastrointestinal toxicity 
leading to treatment discontinuation in greater 
than 50% of patients.38 Navtemadlin (KRT232, 
Kartos Therapeutics, Redwood City, CA, USA), 
a more potent MDM2 inhibitor demonstrated 
dose-dependent activity in the reduction of leuke-
mic burden and OS in a patient-derived xenograft 
(PDX) MPN-BP murine model.78 Navtemadlin 
demonstrated clinical activity in a phase Ib dose 
escalation study in TP53 WT patients with MPN 
BP79 and in a phase II study of patients with R/R 
MF and DIPSS intermediate 2-risk R/R patients 
with MF.80 It is currently being investigated in a 
multicenter phase Ib/II study in patients with R/R 
AML (including those with MPN-BP) as mono-
therapy and in combination with LDAC or decit-
abine.81 Interferon-alfa (IFNα) has also 
demonstrated the ability to decrease the 
JAK2V617F VAF in patients with ET and PV 
and induce molecular remissions in 17–18% of 
patients.33,82,83 In preclinical studies RG7112 and 
Peg-IFNα 2a, each demonstrated the ability to 
significantly decrease JAK2V617F VAF in MF- 
and PV-HPSCs. When combined in low doses, 
RG7112 and Peg-IFNα 2a were able to eliminate 
JAK2V617F HPSCs, suggesting that they work 
synergistically to enhance p53 expression.84 Early 
generation MDM2 inhibitors have demonstrated 
efficacy in restoring p53 activity. The higher 
doses, however, needed to be effective as mono-
therapy have been precluded by GI toxicity and 
bone marrow suppression, as MDM2 is needed 
for normal hematopoiesis. ALRN-6924 (Aileron 
Therapeutics, Cambridge, MA, USA) is a dual 
MDM4/MDM2 that mimics the inhibitor bind-
ing region of TP53.85 In preclinical studies involv-
ing AML cell, ALRN-6924 induced apoptosis 
and cell cycle arrest as well as improved survival 
in AML xenograft models.85 A 71 patient phase I 
study of ALRN-6924 in advanced solid tumors 
and lymphomas irrespective of TP53 status was 
found to be safe with limited myelosuppression, a 
dose-limiting toxicity well-described in other 
MDM2 inhibitors.86 In the solid tumor cohort, 
the disease-control rate was 59% with a median 
duration of clinical benefit of 7.5 months.86 
Preliminary results of a phase I/Ib study of ALRN-
6924 alone and in combination with cytarabine in 

32 patients with AML and myelodysplastic syn-
drome (MDS) also demonstrated safety with no 
drug-limiting toxicities and no  maximum toler-
ated dose (MTD) identified. Out of 27 patients, 
there were two CRs.87,88 WIP1 is another negative 
regulator of TP53. Inhibition of WIP1 with 
GSK2830371 in combination with the MDM2 
inhibitor Nutlin-3A synergistically decreased via-
bility and apoptosis in a TP53 WT AML cell 
line.89 More potent and selective MDM2 inhibi-
tors like navtemadlin in combination with JAK2 
inhibitors, immunomodulatory agents, or other 
negative regulators of TP53 may mitigate myelo-
suppression seen in MDM2 inhibitors and lead to 
significant advances in treatment of MPN-AP/
BP.

Wee1 inhibition
Genomic instability due to JAK2V617F and 
TP53 loss leads to increased dependence on DNA 
repair mechanisms.19 Wee1 is an important regu-
lator of G2/M checkpoint of the cell cycle.19 In a 
study of a JAK2V617F and Trp53 mutant leuke-
mic mouse model, the combination of ada-
vosertib, a selective Wee1 inhibitor in combination 
with a PARP inhibitor olaparib, demonstrated 
significant reduction in the leukocyte count and 
leukemic burden in both the peripheral blood and 
bone marrow. In addition, treated mice demon-
strated a decrease in spleen size and increase in 
OS compared with controls. Inhibition of Wee1 is 
thought to induce replicative stress while PARP 
inhibition inhibits DNA damage repair. 
Additional preclinical models evaluating ada-
vosertib demonstrated DNA repair suppression, 
increase in caspase-mediated apoptosis in ALL 
cell lines, and a synergistic effect when combined 
with adriamycin.90 This cell cycle pathway regula-
tor is a promising target for evaluation in 
MPN-AP/BP in a clinical setting.

Ruxolitinib and BCL-2 inhibitors
Constitutively activated JAK/STAT signaling is 
associated with a proinflammatory cytokine pro-
file and overexpression of antiapoptotic B-cell 
lymphoma proteins BCL-BCL-XL, BCL-2, and 
MCL-1 (a STAT target gene).91 Expression of 
MCL-1 has represented a barrier to selective 
BCL-2 inhibition.91 JAK inhibition leads to a 
decrease in MCL-1 expression, shifting the bur-
den to BCL-XL and BCL-2 to maintain survival 
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and sensitizing the leukemic cells to BCL-2/BCL-
XL inhibitors.91–93 Navitoclax is a novel small 
molecule BCL-2/BCL-XL antagonist. In a phase 
II multicenter trial of MF patients with prior rux-
olitinib exposure and suboptimal response, the 
combination of ruxolitinib and navitoclax dem-
onstrated an improvement in spleen volume and 
symptoms in 58% of patients harboring high-risk 
mutations (HMRs).94 Zn-d5 is another viable 
BCL-2 inhibitor under investigation that is a 
more selective inhibitor of BCL-2 over BCL-XL 
and may mitigate some of the on-target myelo-
suppression seen in combination therapy with 
venetoclax and HMA.95 Another novel therapeu-
tic targeting antiapoptotic proteins is the BCL-
XL/BCL-2 proteolysis-targeting chimera 
(PROTAC). PROTACs are small molecule com-
pounds that cause degradation of target proteins 
through a ubiquitin proteasome system.96 753B is 
a BCL-XL/BCL-2 PROTAC that causes BCL-
XL/BCL-2 ubiquitination in cells expressing von-
Hippel Lindau (VHL) that spares platelets as 
VHL is minimally expressed in platelets. It dem-
onstrated efficacy when evaluated in a diverse 
group of leukemia cell lines and was able to 
reduce cell viability and increase apoptosis via 
degradation of BCL-XL in all 17 cell lines as well 
as BCL-2 in 16 of the 17 leukemia cell lines. In 
addition, 753B was able to eliminate chemother-
apy induced senescent leukemia cells.97 Inhibition 
of both JAK/STAT and BCL-2-related pathways 
may provide synergy and significantly add to the 
benefit noted in data discussed above that have 
evaluated venetoclax in this context.

Novel therapies in MDS and AML
Novel therapeutic agents used to that have dem-
onstrated efficacy in MDS and AML and could 
be explored in MPN-AP/BP as part of a combina-
tion regimen include Magrolimab and 
Eprenetapopt (APR-246). Magrolimab is an anti-
CD47 antibody and macrophage checkpoint 
inhibitor which in combination with both veneto-
clax and HMA has demonstrated safety and effi-
cacy in MDS and AML. A phase I/II study 
evaluated venetoclax, azacitidine, and magroli-
mab in newly diagnosed older, unfit, or high-risk 
patients with AML. The CR/CRi rate was 94%, 
and 8-week mortality was 0. In seven patients 
with TP53 mutation, the CR/CRi was 100%, CR 
86%, measurable residual disease (MRD) nega-
tive, and CR 57%.98 Eprenetapopt (APR-246) is 

a pro-drug that binds to cysteine residues in 
mutant p53 leading to stabilization of the p53 
protein and restoration of the wild-type confor-
mation in addition to increasing oxidative stress 
and the promotion of tumor cell death.99 A phase 
IB/II study of APR-246 in combination with 
azacitidine in TP53 patients with TP53-mutated 
MDS or AML demonstrated an ORR of 71% and 
CR 44%. In the MDS patients, the ORR was 
73% and CR was 50%. In the AML patients, the 
ORR was 64% and CR 36%.100

When used in combination with azacitidine, it has 
demonstrated efficacy in both TP53 mutant and 
TP53 wild-type AML patients and was been well-
tolerated. The phase III trial, however, failed to 
meet the primary endpoint, and this agent is no 
longer being developed (Table 2).

Conclusion
Despite the development of a number of novel-
targeted therapeutic agents and approaches, 
MPN-AP/BP carries a dismal prognosis. The 
cytogenetic and mutational landscape in 
MPN-AP/BP is associated with increased rates of 
TP53 alterations compared with de novo AML, 
rendering patients less responsive to cytotoxic 
chemotherapy. Current practice for transplant 
eligible patients remains intensive induction 
chemotherapy followed by consolidative HSCT. 
For those ineligible for transplant, current thera-
pies include HMA, BCL-2 inhibitors, and JAK 
inhibitors, which have demonstrated modest but 
often transient clinical responses. Novel targeted 
agents including IDH1/2 inhibitors have demon-
strated modest improvement in patients with 
IDH mutations in retrospective series, and pro-
spective evaluation in this molecularly defined 
subgroup is still ongoing. The combination of 
HMA and a BCL-2 inhibitor has demonstrated 
synergy in poor risk CP-MF but has not led to a 
significant clinical benefit in the absence of con-
solidative HSCT. There remains an urgent need 
for improved therapies in this patient population. 
Further investigation into combination therapies 
involving targeted agents that are able to deplete 
malignant HPSCs and alter the microenviron-
ment that supports these cells may provide 
improved and more durable responses. Novel 
agents targeting CXCR1/2 and Wee1 appear 
promising in the preclinical setting but do not yet 
have clinical data. Immunotherapeutic agents 
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such as PD-1 pathway inhibitors have not shown 
promising clinical activity as monotherapy to 
date. Given the pathophysiology of these diseases, 
however, it is plausible that combination regi-
mens or novel agents may potentiate the immune 
system to more effectively target the underlying 
malignant cell population. Despite slow incre-
mental progress, we are hopeful for better out-
comes for patients with MPN AP/BP as new 
mechanism–based therapeutic agents continue to 
be developed and combined in innovative 
approaches.
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