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ABSTRACT: We propose a quantum−classical transition analogy for Einstein’s
diffusion−mobility (D/μ) relation to reveal electron−hole dynamics in both the
degenerate and nondegenerate molecular and material systems. Here, one-to-one
variation between differential entropy and chemical potential (Δη/Δhs) is the
proposed analogy, which unifies quantum and classical transport. The degeneracy
stabilization energy on D/μ decides whether the transport is quantum or
classical; accordingly, the transformation occurs in the Navamani−Shockley
diode equation.

1. INTRODUCTION
The diffusion−mobility ratio (D/μ) is the fundamental
transport relation for all classes of systems, from molecules
to materials. Einstein’s relation works well in classical
nondegenerate systems at equilibrium and quasi-equilibrium
conditions.1 Numerous reports show that there is a deviation
in Einstein’s relation for degenerate systems.2−5 In fact, all
high-performance (conducting) devices are manufactured by
degenerate systems, which are normally electron/hole rich and
have high transporting ability without carriers’ energy loss. The
quantum-level understanding of charge transport in molecular
and material systems in both the cases of equilibrium and
nonequilibrium is crucial for next-generation semiconductor
technology. To get the complete picture of charge transport
mechanisms in different electronic systems, we propose here
the entropy-ruled D/μ relation, D

q h
5

3 s
= . Here, q, η, and hs

are the electric charge, chemical potential, and differential
entropy, respectively. Charge transport in molecular systems
generally follows the Gaussian diffusion function. Moreover,
the shape of the existing degeneracy states (by the external
field) in the material system (i.e., periodic) also seems to be
the Gaussian or Lorentzian width. The Gaussian-like transport
is referred to as normal diffusion transport. In principle, the
differential entropy (hs) is derived from the Gaussian function,

( )x( ) exp x1
2 2

2

2= ; hence, the differential entropy is

expressed as h x x x x e( ) ( ) ln ( )d ln( 2 )s = · = .6 The

entropy-ruled D/μ relation was derived from the generalized
Einstein relation with the conjunction of differential entropy-
dependent carrier density equation.2,6 This relation mainly
elucidates chemical potential over the degeneracy strength
(i.e., h/ /s · ) or vice versa on transport, which
decides the typical electron−hole dynamics (quantum or
classical or intermediate) in molecular devices. Here, σ is the
Gaussian disorder width or Gaussian variance. Note that the
molecular transport is generally studied by the Gaussian
disordered model, which leads to normal diffusion transport.2

In principle, the Gaussian variance (σ) increases with the
existing degeneracy levels (or the production of new states by
orbital splitting process, e.g., Stark and Zeeman effect), which
depends on the amplitude of external field and doping
concentrations. In this report, the introduced term h/ s
is the quantum−classical transition analogy of the D/μ relation
for the entire characteristic range of molecular and material
systems. Moreover, this analogy is related to the degeneracy
stabilization potential of a concerned molecule, VDS = Δη/
(q·Δhs). The degeneracy stabilization potential is defined as
the required minimum potential to maintain the existing
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degeneracy levels during charge transport. That is, the
existence of degenerate states by an applied field is
continuously sustained (or stabilized) without any collapse at
a certain chemical potential value in a given quantum system.
For high degenerate limits, the transport will be delocalized
(i.e., band model), and the localization transport (or hopping
mechanism) is normally anticipated in disorder with non-
degenerate or weakly degenerate molecules. Thus, the
proposed analogy here is so named quantum−classical
transition analogy (or band-hopping transition analogy),
which will suit both the equilibrium and the nonequilibrium
transport for wide temperatures.

It is a unique analogy of diffusion−mobility ratio to explain
both the Einstein transport regime, i.e., (i) D k T

q
B= , and non-

Einstein transport regimes of (ii) D k T
q
B> (diffusion-dominant

transport) and (iii) D k T
q
B< (diffusion-limited transport).

One-to-one variation between η and hs or vice versa is the key
factor to determine the typical transport of one among the
above three D/μ transport regimes. Here, D

q h q
5

3
5

3s
= ·

, since h eln( 2 )s = . The production of degenerate states
(i.e., in terms of differential entropy changes) with respect to
the chemical potential in the given molecular solids decides
whether the transport is mobility-dominant or diffusion-
dominant. The typical transport is mainly correlated with our
entropy-ruled (μ/D) = 0.6q·dhs/dη ≡ 0.6q·dσ/(σ·dη). For
highly degenerate situations, mobility is the dominant
parameter in the molecular devices rather than the diffusion
coefficient due to large variation in σ, even at small η changes
(η can be tuned by applied bias/field and doping). In such
cases, the required degeneracy stabilization energy for orbital
splitting is small enough; hence, it is referred to as mobility-
dominant (i.e., bandlike) or diffusion-limited transport. The
large production of degenerate electronic levels in the materials
due to the applied field or by appropriate potential doping
naturally facilitates the delocalized transport behavior, which
leads to high field-response mobility. In this high-degeneracy
case, even at lower bias, the expected quantum characteristic
features are high. Here, the existing degenerate states are
stabilized by only infinitesimal potential, which is the class of
quantum materials. According to our analogy, quantum
systems principally have minimum degeneracy stabilization
potential (VDS = Δη/(q·Δhs)). That is, the quantum features in
a given system maximally appear with a minimum VDS. If the
required degeneracy stabilization energy (or chemical
potential) is more, at which the transport will be diffusion-
dominant. Highly doped molecular systems have a large
chemical potential which is more favored for the diffusion
process. In some cases, even at large applied bias conditions,
the existing degeneracy levels in the molecular or material
systems will be a minimum which in turn towards the low
mobility or insulator regimes. The intriguing point here is that
the μ belongs to an intrinsic nature (electronic structure) of
the systems and the D is driven by η (or charge density
gradient). Here, the parameter η is a direct consequence of
charge density, which can be modified by a few external agents
like gate voltage, doping, and temperature. Thus, our analogy
of μ/D unifies the band and hopping transport models via the
parameters hs and η. The parameter hs is responsible for band
transport due to the existence of continuum degeneracy levels

(closely packed orbitals due to the large electronic coupling)
and the parameter η helps to drift/activate the electron−hole
transfer (in terms of density flux) from one to the next
consequential electronic state (HOMO for hole and LUMO
for electron transport). The electron−hole dynamics in the
random site energy landscape (disordered) can be examined
by diffusion transport through the mean squared displacement
approach.7 If the energy gap between the existences of
degeneracy levels is in the order of kBT at which Einstein’s
relation is valid for a particular molecular device. This is
referred to as the thermally activated hopping mechanism;
therefore, the Marcus theory of charge transfer rate is more
suitable for molecular transport in high-temperature regions (T
> 150 K).7 Moreover, in the cases of nonequilibrium at a finite
temperature, the value of the D/μ ratio deviates from
Einstein’s original value, i.e., D/μ > kBT/q = gkBT/q, where g
always be greater than unity. Here, g is the enhancement factor,
which is a dimensionless quantity. On the other hand, in
periodic systems, the energy difference between the degener-
acy levels is dominated by the electronic part (i.e., quantum)
rather than the thermal energy (classical). Here, the expected
electron energy will be in the order of ℏ2k2/2m. In such
materials (delocalized band), the electronic-level interactions
are large enough, which reveals the large electronic coupling
and too lesser reorganization energy. The large weightage of
electronic interactions leads to quantum transport via a linear
superposition principle, which can be quantified by the
chemical potential shifting. For classical systems, the vibronic
interactions will be dominant rather than electronic energy.

In this paper, we mainly propose the quantum−classical
transition analogy of Einstein’s diffusion−mobility relation,
which unifies the delocalized band and hopping (localized)
transport and also elucidates the crossover nature between
them. Through this analogy, one can explain both the Einstein
transport and non-Einstein transport regimes; accordingly, we
classify the typical transport (hopping-dominant or band-like
or intermediate). Importantly, here we generalize the entropy-
ruled charge transport method for molecular and material
systems at a wide temperature range. Using this entropy-ruled
method, four sets of analytical procedures are proposed to
explore the charge transport mechanism in both the quantum
and classical molecular and material systems under equilibrium
and nonequilibrium cases.

2. MODEL
In principle, the activity (a)−chemical potential (η) relation in
the molecular species can be expressed as8,9
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zzzzzk T a k T

n
n

(1 ln ) 1 lnB B
o

= + = +
(1)

Here, n0, n, and ζ are the initial and final electron densities
and the activity coefficient for electron transfer reactions,
respectively.

According to our earlier model,6 the charge carrier density is
given by
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5h 0

s
s

=
(2)

Through the Marcus theory of electron transfer reactions
within the molecular specimens, the activity coefficient (ζ) is
generally described as8,9
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where λ and E E( ) are the reorganization energy and site
energy difference, respectively. Inserting eqs 2 and 3 into eq 1,
we get the explicit form of chemical potential
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(4)

Therefore, the activity can be expressed as
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Here, the charge hops from one site to the next electronic site
of the potential energy surface (or barrier height) of the
disordered systems. The barrier height is generally described
by the relative chemical potential and hence the minimum
required energy for charge hopping across the barrier is η. The
above relations are more appropriate for studying the electron
transfer kinetics in molecular solids. On the other hand of
inorganic materials, the traversing chemical potential gives rise
to the quantum flux (in terms of electronic level shift), which is
mainly responsible for chemical, magnetic, and quantum
transport properties. For example, the Landau level shift in
the materials is observed under magnetic field circumstances,
which can be quantified by the chemical potential. In principle,
the changes in carrier density with respect to the chemical
potential provide information on the thermodynamic density
of states (TDOS) or electronic compressibility in the systems.
That is, the total interactions are well-adjusted by the single
energy parameter, which is the chemical potential. Thus, the
electronic transport in the materials is ruled by the chemical
potential, which generally includes the kinetic, exchange, and
correlation terms. Through the doping process, one can usually
modify the carrier concentration in the systems (for both
molecules and materials), which is directly associated with the
chemical potential. According to the dopant concentrations,
the magnitude of chemical potential will be varied, which
makes a potential difference in different sites in the system and
leads to the diffusion process. Here, the charge density gradient
(in terms of chemical potential variation) is mainly responsible
for diffusion current.

Based on the above ground, we unify the diffusion−mobility
relation for both the molecular (disordered) and material
(periodic) systems in equilibrium and nonequilibrium cases.
According to the entropy-ruled method,8 the governing
relation for the diffusion−mobility ratio is

D
q h

5
3 s

=
(6)

In this relation, Δη/(q·Δhs) is the degeneracy stabilization
potential, which is the deterministic factor for unifying both
the delocalized band and the hopping transport. In this relation
(eq 6), Δη/Δhs is the quantum−classical transition analogy of
Einstein’s D/μ relation, which can be valid for the entire
temperature ranges, from equilibrium to nonequilibrium
situations.
2.1. Four Sets of Analytical Procedures. Using the

quantum−classical transition analogy of Δη/Δhs, we have
proposed here the four sets of analytical procedures for

hopping and band transport at different thermodynamic
conditions.

2.1.1. Analytical Set 1. For disordered dominant transport
under equilibrium cases of ζ → 1 (see refs 8 and 9), eq 1 is
reduced to
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Inserting eq 2 in eq7 and taking the differentiation will give

h
k T3

5s
B=

(8)

Substituting eq 8 into eq 6 then gives

D
q h

k T
q

5
3 s

B= =
(9)

The above relation shows the validity of the Einstein relation at
high-temperature ranges (T > 150 K) with equilibrium cases.
Here, we retain the original Einstein relation.

2.1.2. Analytical Set 2. In the case of disordered hopping
transport with nonequilibrium (ζ > 1), the variation of
chemical potential with respect to the degeneracy-coupled
energy fluctuations can be described as

h E E
E E

h
k T

E E E E
h( )

( ) 3
5

( ( ))
2

( )

s s
B

s
= = + +

(10)

The applied electric or magnetic field modifies the site
energy fluctuation in the given molecular devices. Based on eq
10, the reformulation of Einstein’s diffusion−mobility relation
for nonequilibrium systems is

D k T
q

E E
q

E E
h

5( ( ))
6

( )B

s
+ +

(11)

In the cases of nonequilibrium at a high-temperature range
of T > 150 K, the value of the D/μ ratio deviates from
Einstein’s original value, i.e., D/μ > kBT/q = gkBT/q, where g
always be greater than unity. In this regime, the energy flux is
observed, which depends on the value of E E

h
( )

s
, see eq 11.

Interestingly, we preserve the original Einstein’s relation from
eq 11, while the electric field-assisted energy fluctuations along

the molecular sites will be zero, 0E E
h
( )

s
.

2.1.3. Analytical Set 3. The anticipated degeneracy
stabilization energy for an ideal periodic (i.e., ordered) system
is in the order of k

m2

2 2
, where k and m are the wave vector and

effective mass of an electron, respectively. In this quantum
regime, the dynamics of the delocalized electron in the Fermi
surface can be equated by

h
E mv3

5
3

10s
F F

2

(12)

where vF is the Fermi velocity. On the other hand of localized
disordered systems, the Fermi energy term is replaced by the
thermal energy (see eq 8). In the disordered systems, the
charge transport can be studied by the thermally activated
hopping mechanism. It is to be noted that the Fermi energy is
principally equated with the kBTF. Comparing eqs 9 and 12
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Since l = vFτrel, here l is the mean free path and τrel is the
relaxation time. In order to validate, we herein revisit the
Boltzmann approach using an entropy-ruled charge transport
method for periodic (i.e., ordered) materials in an equilibrium
state and is expressed as
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F
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The governed mobility expression (eq 14) is the quite
general form for most of the quantum systems, which is
originally developed from an entropy-ruled method with
conjunction of the Boltzmann approach.5,8,10 Comparing eqs
6 and 14, we get

D
v l

2 2
F
2

rel
2

rel
= =

(15)

Here, the differential entropy is h eln( 2 )s = and hence

hd
d

1i
s

f

f
=

(16)

In our study, the satisfying condition for delocalized band
transport is σf ≫ σi, which usually occurs in high-degeneracy
cases even at small perturbation. That is, the existence of
continuum degeneracy levels leads to the state of equilibrium;
the degeneracy levels are equally distributed in the energy scale
of k

m2

2 2
. Here, the relative chemical potential is the changes of

energy during the particle flux (dE/dN), which is directly
proportional to the Fermi energy11,12

E
N

Ed
d
d

3
5 F=

(17)

Substituting eqs 16 and 17 into eq 6, the diffusion−mobility
relation becomes

D E
q

mv
q

ml
q2 2

F F
2 2

rel
2= =

(18)

Now, we explicitly get the same relation as eq 13. The above
D/μ relation (eq 18) is more appropriate for continuum band
transport. For localized hopping cases, the diffusion equation
(15) will be replaced by

D
x t

t
( )

2

2

=
(19)

where ⟨x2(t)⟩ and t are the mean squared displacement and
simulation time, respectively. Using eqs 15 and 18, one can
preserve the original band mobility as

q
m

rel=
(20)

Using eq 14, the extent of the diffusion-based mobility for
Dirac materials (e.g., monolayer graphene) is

qv
E

qv
k

ql
kDirac

F
2

rel

F

F rel

F F
=

(21)

Since, D = vF
2τrel/2.

2.1.4. Analytical Set 4. For periodic systems with
nonequilibrium cases, the D/μ ratio is described as
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In this case,

i
k
jjjjj

y
{
zzzzzh

b E
3
5s NE

F
NE

(23)

Here, b is the proportionality dimensionless constant, which is
associated with the enhancement factor, g ≥ 1. It is to be noted
that the variation in differential entropy (dhs) is the deciding
factor for the deviation range from its electronic and thermal
equilibrium value.

In principle, the carrier energy (E) must be in the order of η
and hence E ≥ η. That is, the required minimum energy for
carrier kinetics, E ≡ η. Here, the parameter η is the energy
difference between the adjacent sites. The average charge
transfer energy (kinetic term) and Fermi energy are principally
related by E E3

5 F= (see ref 11). In such a way, one other
simplified form of quantum−classical transition for Einstein’s
D/μ relation is D

q h q
E
h q

k T
h

5
3

1 1

s

F

s

B F

s
= , where TF is the

Fermi temperature. On the other hand of disordered solids, the
charge hops over the barrier height, which is normally activated
by the thermal energy, kBT (see eq 1 and 7). In such high-
temperature limits, D/μ is equivalent to that of thermal energy,
kBT/q.

3. RESULTS AND DISCUSSION
Herein, our proposed analogy (i.e., quantum−classical
transition analogy) is analytically verified and tested for
dialkyl-substituted thienothiophene-capped benzobisthiazole
(BDHTT-BBT) and methyl-substituted dicyanovinyl-capped
quinquethiophene (DCV5T-Me) molecular solids at different
electric field values. The presence of a benzobisthiazole unit
along with the substituted dicyanovinyl-capped quinquethio-
phene in the BDHTT-BBT molecule naturally provides
electron affinity property. Here, the benzobisthiazole unit
provides the planar geometry in this molecule, which is
responsible for strong π−π interactions. The DCV5T-Me
molecule has a crystalline nature due to the methyl-substituted
thiophene rings, which support good charge transport
properties. More details of the structure−property relation
were presented in our earlier study.6 The applied field naturally
modifies the site energy disorder (i.e., ΔE (E⃗)), which has a
direct impact on charge transport. It is to be expected that the
enhancement of the D/μ relation is due to nonequilibrium,
which is shown in Figures 1 and 2. Interestingly, one can
reproduce the original Einstein relation from our analogy at a
high-temperature range of nondegenerate or weakly degenerate
limits, under equilibrium conditions. To show the validity of
our analogy, we perform and extent the computational studies
for electronic transport properties of BDHTT-BBT and
DCV5T-Me molecular systems. For our calculations, the
computed charge transport parameters (charge transfer
integral, site energy, and reorganization energy) from quantum
chemical calculations and molecular conformation (stacking
angle, angular distribution) with structural kinetics information
are taken from our previous study.6 The molecular
conformation is generally obtained through molecular
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dynamics simulation. In this work, we extent the kinetic
Monte−Carlo simulations to calculate the diffusion−mobility
ratio in BDHTT-BBT and DCV5T-Me molecules for both
equilibrium and nonequilibrium cases (see Figure 1). It is
observed that the results of equilibrium transport confirm the
validity of Einstein’s relation for both molecules. However, in
the case of nonequilibrium, we observe a deviation (i.e.,
enhancement) in Einstein’s relation from its original value of
kBT/q.

Comparably, the BDHTT-BBT molecule has a larger value
of D/μ (=3.14kBT/q) under a nonequilibrium condition,
which reveals that the field-response diffusion coefficient is
dominant rather than field-response mobility. In this case,
Einstein’s relation deviates from its real value by 3.14 (i.e.,
3.14kBT/q), which is shown in Figures 1 and 2. That is, the
required applied bias is more for BDHTT-BBT rather than the
DCV5T-Me system to hop along the barrier. Here, it is
anticipated that the probability of the Gaussian distribution
width in this molecule (BDHTT-BBT) will be lesser than
unity, P hd 1GW s

d= < , since h eln( 2 )s = . This
analysis reveals that the cooperative behavior between the
chemical potential and differential entropy is the deterministic
factor for the D/μ ratio.

Various reports clearly manifest that the D/μ relation
influences the diode performance, which can be analyzed by
the current density (J)−voltage (V) characteristic study with
the aid of the diode ideality factor (Nid).

1,6,13,14 Here, the
ideality factor has a direct correlation with the enhancement

parameter, g. According to an entropy-ruled method, the
governing Navamani−Shockley (NS) diode equation for
molecular quantum devices is given by8,10
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where J0 is the saturation current density. Comparing eqs 12,
13, and 24, we can reform eq 24 as
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In equilibrium condition (Δhs →1), the Navamani−Shockley
diode equation becomes
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For equilibrium nondegenerate and most of the weakly
degenerate cases of a high-temperature limit (T ≥ 150 K)

( )h
k T k T

1s

B F B
(see ref 8), we preserve the original Shockley

diode equation from eq 25. During the trap-free diffusion
current of the Langevin mechanism, the calculated ideality

Figure 1. Chemical potential (η) with respect to the field-response
differential entropy (hs) for electron transport in (a) BDHTT-BBT
and (b) DCV5T-Me molecules at different ΔE (E⃗) of 0, 20, 40, 60,
and 80 meV. The η linearly increases with hs, and hence the slope of
η−hs characteristic study is constant. The main observation is that the
η−hs relation is an analogy form of Einstein’s mobility−diffusion (D/
μ) relation.

Figure 2. Using the quantum−classical transition analogy of the D/μ
factor, the validity and limitations of Einstein’s relation are studied in
(a) BDHTT-BBT and (b) DCV5T-Me molecular solids. Here, we
preserve the original Einstein’s relation for both molecular systems
under equilibrium cases (see eqs 7−9). The magnitude of deviation is
equated by the enhancement parameter (g) in nonequilibrium limits,
which influence the diode performance. The site energy disorder-
coupled polaron movement (see eq 4) plays a vital role for the
nonequilibrium D/μ factor, which reveals a diffusion enhancement
rather than mobility. The plots show that there is a nonequilibrium,
while the applied bias is strong enough.
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factor is close to unity, Nid → 1 (see Figure 3). For instance,
using current density−voltage characteristic study under

dispersion−correction, the calculated ideality factor for the
DCV5T-Me molecule is 1.147, which suggests the Langevin
transport (see Figure 3). Here, the expected D/μ relation is
equal to 1.147 times the Einstein value, kBT/q.

At a low temperature limit (T → 0), the Navamani−
Shockley diode current equation for quantum degenerate

molecular devices is
Ä
Ç
ÅÅÅÅÅÅÅ
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s

F
= . Now, our

analogy of the D/μ relation becomes quantum in nature and
will be D

q h q
E
h

5
3

d
d

1 d
ds

F

s
= . On the other hand, in the trap-

assisted recombination mechanism (i.e., Shockley−Read−Hall
(SRH) transport), the ideality factor will be close or equal to 2.
Here, the Navamani−Shockley diode equation during the
recombination process in quantum devices is explicitly
described as
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(27)

Now, the analogy turns out to be D
q h q

E
h

10
3

d
d

2 d
ds

F

s
= . Here, the

effective chemical potential with respect to the electron−hole
dynamics at a particular electronic site in the studied organic
semiconductor is 2reco e h= = , since e h= = | |
. For disordered molecular solids (classical regime) at a high-
temperature limit, the diode equations for the Langevin and

S R H m e c h a n i s m s a r e
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k T0 2 B
= , respectively. In such a high-temper-

ature limit, as we discussed earlier, the original Einstein’s
relation will be retained from our proposed analogy.

Some of the interesting ongoing research reports suggest
that Dirac-type electronic transport is observed in some
organic systems at appropriate thermodynamic conditions.15,16

This leads to a new dimension of electronic transport in
synergetic nature between molecules and materials via the

structure−property relationship. In the Dirac-type quantum
regime, the chemical potential is the sole parameter for the D/
μ relation. Hence, one needs to investigate the D/μ ratio in
two-dimensional (2D) Dirac materials for a thorough under-
standing via our quantum−classical transition analogy. Due to
relativistic characteristic phenomena, 2D Dirac systems
naturally follow the transport behavior of (2 + 1)D (i.e.,
normal 3D) materials. Herein, among the best examples of the
Dirac system is graphene. In this regard, we have here analyzed
the electronic transport (via diffusion−mobility relation) of
graphene to generalize our model for all Dirac systems from
molecules to materials. Recently, Chen et al. explored the
modulation of quantum mechanical resonance through the
chemical potential oscillation in monolayer graphene.17 In this
experiment, the characteristics of a graphene mechanical
resonator were systematically investigated at 4.3 and 300 K
temperatures for different bias conditions by using a magnetic
field B( ) and a gate voltage (Vg). In this resonator, the distance
between the gate electrode and graphene was 200 nm. Here,
graphene acts as a metallic plate. The results reveal the
chemical potential (η)-driven electron density (n) flux between
the Landau levels (LLs), which is naturally tuned by Vg and
applied B . From this experimental data, using eq 2, we here
further compute the relative differential entropy (hs) at
different electron densities (n) for different Vg-driven η values,
which is presented in Figure 4.

The present analysis here elucidates that the Vg-driven η
significantly enhances the hs and hence the expected orbital
splitting (or degeneracy levels) will be more (compare Figures
1 and 4). In such a quantum limit, diffusion and mobility are
associated with the mean free path and Fermi energy. On the
other hand, for classical disordered systems, the diffusion and
mobility are related with the mean squared displacement and
temperature, respectively. Moreover, it was observed from an
earlier report by Martin et al. that for each volt of variation by
back-gate voltage (Vg), the electron density (n) changes in the
order of 7 × 1010 cm−2 for monolayer graphene.18 This
experiment was performed at 0.3 K. Using this relation, we
extend the Vg-tuned Fermi energy and μ/D relation, which is
shown in Figure 5.

Figure 3. Logarithmic current density with respect to the normalized
voltage at different site energy disorder (0, 20, 40, 60, and 80 meV)
for electron transport in the DCV5T-Me molecule. In this calculation,
the dispersion−correction is included. The ideality factor (Nid) is
obtained from the logarithmic current density (ln J)−voltage (V)
characteristic study. The numerical differentiation of this plot shows
the validity of the Navamani−Shockley diode equation.

Figure 4. Chemical potential-driven differential entropy provides the
diffusion−mobility ratio for monolayer graphene. The result shows a
linear relationship between hs and η. Here, the diffusion coefficient−
mobility relation falls in the quantum regime and hence the mean free
path is evolved instead of mean square displacement (since D = l2/
(2τrel) ≡ 2vF

2τrel/2) instead of D = ⟨x2(t)⟩/2t, which is responsible for
the large enhancement in the D/μ ratio.
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The authors observed the carrier density flux changes when
the magnetic field was turned on (i.e., 0 to 11 Tesla).18 Here,
the noted carrier density distribution follows the Gaussian-
based disorder width (σ). At B T11= , the estimated σ
magnitude was 6 times greater than that calculated at 0 T (i.e.,

6B T B T11 0= = ). In this situation, using our quantum−
classical transition analogy, the calculated D/μ ratio value is
around 40 mV (see Figure 5). The analysis clearly illustrates
that the synergetic relation between the Fermi energy
(chemical potential) and differential entropy determines the
value of the D/μ ratio for all typical systems with a wide range
of thermodynamic limits.

■ 4. CONCLUSIONS
In summary, based on our developed four sets of analytical
procedures, it is concluded that the proposed analogy

( )D
q h

5
3

d
d s

= is a unified form of all typical transport relations,

from quantum to classical in both the cases of equilibrium and
nonequilibrium. Our analogy (in terms of four sets of analytical
procedures) is numerically verified and tested for dialkyl-
substituted thienothiophene-capped benzobisthiazole
(BDHTT-BBT) and methyl-substituted dicyanovinyl-capped
quinquethiophene (DCV5T-Me) molecular solids, as well as
for Dirac-type electron−hole dynamical systems (e.g.,
graphene) at different physical limits. According to the four
sets of analytical procedures, the Navamani−Shockley diode
current density equation will be transformed. Our study
suggests that for the systems of large degeneracy stabilization
energy (for large chemical potential), we anticipate the electric
field-response diffusion coefficient is more dominant than
mobility. On the other hand, for highly degeneracy cases (in
terms of large differential entropy), the typical transport is
dominated by the mobility (or field-response mobility) rather
than the diffusion coefficient. Our analogy of Einstein’s D/μ
ratio (along with the four sets of analytical procedures) is a
more suitable analogy for both the molecular (e.g., organic)
and material (e.g., inorganic) systems in entire thermodynamic
ranges, which is the unified transport analogy. This is a basic
anatomy for designing novel electronic devices, which might
lead to a new dimension in next-generation semiconductor
technology.
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