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Abstract

Background: Histology is a traditional way to classify subtypes of thymoma, because of low cost and convenience. Yet,
due to the diverse morphology of thymoma, this method increases the complexity of histopathologic classification, and
requires experienced experts to perform correct diagnosis. Therefore, in this study, we developed an alternative method
by identifying protein biomarkers in order to assist clinical practitioners to make right classification of thymoma subtypes.

Methods: In total, 204 differentially expressed proteins in three subtypes of thymoma, AB, B2, and B3, were identified
using mass spectrometry. Pathway analysis showed that the differentially expressed proteins in the three subtypes were
involved in activation-related, signaling transduction-related and complement system-related pathways. To predict the
subtypes of thymoma using the identified protein signatures, a support vector machine algorithm was used. Leave-one-
out cross validation methods and receiver operating characteristic analysis were used to evaluate the predictive
performance.

Results: The mean accuracy rates were > 80% and areas under the curve were 20.93 across these three subtypes.

Especially, subtype B3 had the highest accuracy rate (96%) and subtype AB had the greatest area under the curve
(0.99). One of the differentially expressed proteins COL17A2 was further validated using immunohistochemistry.

Conclusions: In summary, we identified specific protein signatures for accurately classifying subtypes of
thymoma, which could facilitate accurate diagnosis of thymoma patients.
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Background

Epithelial tumors of the thymus include thymoma and
thymic carcinoma. Compared to thymic carcinoma,
thymoma tends to recur locally and is frequently associ-
ated with autoimmune diseases, such as myasthenia
gravis. The incidence rate of thymoma is around 2.5 per
million people per year [1]. The age distribution ranges
from 10 to 80 years old with an average age of 50 to 60
in both males and females [1].

* Correspondence: chuangey@ntu.edu.tw; vwtfang12@shchest.org
fliang-Chuan Lai and Qiang-Ling Sun contributed equally to this work.
3Bioinformatics and Biostatistics Core, Center of Genomic and Precision
Medicine, National Taiwan University, Taipei 10055, Taiwan

’Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao
Tong University, Shanghai 200030, China

Full list of author information is available at the end of the article

K BMC

In the quest for accurate diagnosis, treatment, and
prognosis for thymoma patients, researchers use clinical
data to classify thymoma into different types. In 1999,
the World Health Organization (WHO) proposed a clas-
sification system that divided thymic tumors into six
types according to the morphology of epithelial cells and
the lymphocyte-to epithelial cell ratio: thymoma type A,
AB, B1, B2, and type C [2]. Type C thymoma was then
revised into thymic carcinoma instead in the 2004 ver-
sion of WHO thymoma classification standard [3, 4].

In this system, the existence of spindled or epithelioid
neoplastic epithelial cells and the amount of lymphocytes
was used as a basic classifying criterion. Also, Suster et al.
proposed a thymoma classification system based on the
differentiation level of tumor cells [5]. In this classification
system, thymoma, atypical thymoma, and thymic
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carcinoma are defined as highly, moderately, and poorly
differentiated, respectively. However, distinguishing
thymic tumors merely through histological observations is
still quite complicated because of the diverse morphology
of thymoma and the presence of non-neoplastic lympho-
cytes. For example, type AB, B2 and B3 are all admixed
with various amount of lymphocytes, but the prognosis of
type AB was different from those of type B2 and B3 [6].
Furthermore, due to the rarity of the disease, lack of ex-
perience among pathologists in general were quite com-
mon. Therefore, Suster et al. has reviewed several
classification systems of thymic epithelial neoplasms,
including Suster & Moran, WHO, Kirchner & Muller-
Hermelink, and Bernatz, and suggested that the future of
thymoma classification should include a simplified
nomenclature rather than increasing complexity of histo-
pathologic classification [2, 5, 7-9].

With the development of sequencing techniques in the
twenty-first century, the Cancer Genome Atlas (TCGA)
also provide thymoma sequencing data for genomic ex-
ploration [10, 11]; and the Clinical Lung Cancer Gen-
ome Project [12] as a genetic foundation for more
accurate classification [13]. Also, Zettl et al. performed
comparative genomic hybridization in 28 thymoma and
9 thymic squamous cell carcinoma cases. They found
distinct genetic phenotypes between thymoma type A
and type B3 [14]. Lee et al. also performed comparative
genomic hybridization in 39 thymoma cases, and identi-
fied a set of 33 genes that could be divided into 4 genet-
ically distinct groups (A, AB, Bl + 2, and B3) according
to the WHO classification, where type AB was deter-
mined to be genetically heterogeneous [15]. These re-
ports indicate the importance of and trend toward
integrating clinical data with genomics and proteomics
data for a more comprehensive understanding of thym-
oma classification.

Therefore, the purpose of this study was to classify three
thymoma types (AB, B2, and B3), which were difficult to
classify histologically, by analyzing the proteomics data of
21 Chinese patients. In total, 204 differentially expressed
proteins were detected in the three subtypes of thymoma,
and their functions were identified. Also, a predictive
model for thymoma subtype was created, and leave-one-
out cross validation (LOOCV) methods and receiver oper-
ating characteristic (ROC) curve analysis were used to
evaluate the performance of the predictive model. Lastly,
immunohistochemistry was used for validation.

Methods

Collection and processing of clinical material and patient
information

Fresh tumor and adjacent normal tissue specimens were
obtained during surgery between 1994 and 2010 and
snap-frozen. The specimens were obtained from 21
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patients treated at the Shanghai Chest Hospital, Shang-
hai Jiao Tong University, Shanghai, China. Tumor hist-
ology was determined according to the WHO
classification [16] by an experienced pathologist (LZ)
who reviews over a hundred cases of thymic malignan-
cies annually. Information regarding age, gender, patho-
logical stage, and WHO classification was collected
prospectively. The study was approved by the Institu-
tional Review Board of Shanghai Chest Hospital. And
written consent was acquired from all patients included
in this study.

Mass spectrometry analysis

In contrast to shotgun mass spectrometry (MS) and trad-
itional database searches, the quantitative proteomic profil-
ing of type AB, type B2 and type B3 tissues were performed
by using Data Independent Acquisition Mass Spectrometry
(DIA-MS) to expand the detectable dynamic range and im-
prove the overall confidence of protein quantification mea-
surements. Fresh frozen tissues were lysed and subjected to
reduction, alkylation, and tryptic digestion. Peptides were
then subjected to desalt using C18 SPE 96-well plates prior
to LCMS/MS analysis using Orbitrap Fusion (Thermo
Scientific). One pg peptides was loaded onto a nano-C18
column and separated at a flow rate of 300 nL/min. Data
independent high-resolution MS/MS spectra were acquired
by sequential 25amu window. Protein identification and
quantification were processed by Spectronaut software
(Biognosys Inc.). Differential expressed proteins were sub-
jected to bioinformatics analysis.

Data analysis
Raw protein expression intensities were preprocessed by
log, transformation and then normalized by quantile
normalization. To remove the background noise, proteins
whose normalized intensity was below 32 were removed
from further analysis, which accounted for ~2.5% of the
total protein in each sample. Then, differentially expressed
proteins (DEPs) between tumor and adjacent normal tis-
sue in each subtype were identified by log, fold-change
value 27 and P-value <0.05 using Wilcoxon signed-rank
test. After selecting DEPs from each subtype, the total and
unique (subtype-specific) DEPs were identified and visual-
ized by Venn diagrams. Principal component analysis
using the expression values of total DEPs was used to
visualize the similarity of different samples. An unsuper-
vised hierarchical clustering method was applied using Eu-
clidean distance and the method of average linkage in
Genesis version 1.8.1 (http://genome.tugraz.at/genesiscli-
ent/genesisclient_description.shtml). Ingenuity Pathway
Analysis (IPA) was used to identify enriched pathways of
DEPs for each subtype.

To predict the subtypes of thymoma by identified pro-
tein signatures, a support vector machine (SVM)
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algorithm, a supervised learning model, was used. The
unique DEPs in each subtype were chosen as a set of
features for training the classifiers. In this study, our
classifiers are the three thymoma subtypes, the closer to
real results in the prediction, the more accurate classi-
fiers they are. During the LOOVC analysis, each set of
unique DEPs of one subtype took turns serving as test-
ing data, whereas the remaining two sets served as train-
ing data. After the predictive models were established
(three models in total), all three subtypes were then
served as three sets of sample data, yielding nine pre-
dictive results. The robustness of each classifier was esti-
mated by the average classification accuracy rate in each
validation. After LOOCYV, the sensitivity, specificity,
positive predictive value, and negative predictive value of
the prediction models for each subtype were calculated.
The evaluation of these parameters was performed using
ROC curve analysis, the result of which was quantified
by computing the area under the curve (AUC).

Immunohistochemical analysis

Five type AB and five type B2/B3 thymoma formalin-
fixed and paraffin-embedded (FFPE) tissue sections were
used to examine the presence of COL17A2. Briefly,
slides were deparaffinized with diaminobenzene at 65 °C
for 2 h, and rehydrated in graded alcohol solutions. The
tissue sections were then treated with 3% hydrogen per-
oxidase to block endogenous peroxidase activity. After
washing in PBS solution, the tissue sections were incu-
bated in 20% normal goat serum at 37°C for 10 min.
Rabbit monoclonal antihuman COL17A2 antibody
(Abcam ab184996) was applied at 1:100 dilution over-
night. Biotin- and streptavidin-labeled antibodies were
used for 3,3’-diaminobenzidine staining. Nucleus was
further stained with hematoxylin. Images were taken by
ZEISS fluorescent microscope.

The score system was based on the immunoreactive
intensity to COL17A2 antibody and the percentage of
positively stained cells. The stained intensity was scored
from a value from 0 to 3. The percentage of positively
stained cells were the average score in 5 fields (100 cells
per field in 400x magnitude). Score 4 was given for >
75% of positive stained cells; score 3 for 75-51% of cells
positive; score 2 for 50-26% of cells positive; score 1 for
25-6% of cells positive; score 0 when less, than 5% of
tumor cells or no visible staining was observed. The im-
munoreactive score is determined by multiplication of
the score of staining intensity with the score of percent-
age of positively stained cells.

Results
Patients
The clinicopathological characteristics of the 21 thym-
oma patients included in this study are summarized in
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Table 1. The median of age was 51. Tumor stages and
histology subtypes were defined by Masaoka-Koga sys-
tem [17] and WHO classification separately. There was
no significant difference in the distribution of patients
regarding gender, stage, or subtype according to WHO
classification.

Identification of differentially expressed proteins

In total, 204 DEPs between tumor and adjacent normal
tissue of the 3 thymoma subtypes were identified
through statistical filtering (Table 2). The number of
DEPs detected in AB, B2, and B3 subtypes was 97, 103,
and 114, respectively. The number of up-/down-regu-
lated DEPs and unique (subtype-specific) DEPs is shown
in Table 2. The distribution of the total number of DEPs
among shared and unique DEPs is shown in Fig. 1a.

Cluster analysis

Principal component analysis of the 21 paired samples
(tumor versus normal, 42 dots in total) was performed
using a total of 204 DEPs in 3 subtypes (Fig. 1b). The
normal and tumor samples were clearly divided into 2
main groups, and within the tumor cluster, the B2 and
B3 subtypes were further distinguished from the AB sub-
type, with the exception of one B3 sample appearing
with the AB cluster. This result suggests a distinct pro-
tein expression pattern in the AB subtype of thymoma
as compared to the other 2 subtypes.

Hierarchical cluster analysis was performed within
each subtype-unique DEPs set (Fig. 1c). The expression
level of each unique DEPs set (labeled on the right) in
all three subtypes (labeled on the top) was presented by

Table 1 Clinicopathological characteristics of patients with
thymoma. Tumor stages are defined by Masaoka-Koga classification

Factors Number (%)
Age
260 6 (28.6)
<60 15(714)
Gender
Male 10 (47.6)
Female 11 (52.4)
Stage
\ 9 (429)
Il 7 (333)
If 2(95)
v 3(143)
WHO classification
AB 8 (38.1)
B2 8(38.1)
B3 5(23.8)
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Table 2 Number of differentially expressed proteins between heatmap. The expression difference of each unique DEPs

thymoma and adjacent normal tissue set was apparently greater in their own subtype than in
Thymoma Type other 2 subtypes, confirming the existence of unique sets
AB B2 B3 of DEPs for each subtype.

All proteins 3118

DEP (T vs N)* 97 103 114 Pathway analysis . . . .

‘ IPA revealed the biological pathways in which the DEPs

Up-regulation 40 33 34 .. . ,

A participated (Table 3). A —log P-value of Fisher’s exact test
Down-regulation >/ 0 80 and the ratio of DEPs to the total number of proteins in the
Unique 43 42 37 same pathway were used to estimate the significance and
T: tumor tissue; N: adjacent normal tissue importance of each pathway. Among the top 5 canonical

b DEP: differentially expressed protein. Selection criteria: absolute log, fold-
change value >7 and a P-value <0.05 using a Wilcoxon signed-rank test

pathways in each thymoma subtype (15 pathways total), the
most frequently occurring were signal transduction (6 path-
ways), LXR/RXR or FXR/RXR activation (4 pathways), and
complement system (2 pathways).
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Fig. 1 Analysis of differentially expressed proteins in different types of thymomas. a Venn diagram of differentially expressed proteins (DEPs) among 3
types of thymoma. b Principal component analysis of 21 samples using the complete set of DEPs (n = 204). Solid and hollow circles respectively stand
for tumor and normal samples, and AB (pink), B2 (green), and B3 (cyan) subtypes were presented in different colors. ¢ Expression profiling of DEPs.
Red: up-regulation in tumor tissues as compared to its adjacent normal tissues; Green: down-regulation
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Table 3 Pathway analysis of differentially expressed proteins for
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Table 4 Summary of thymoma subtype prediction by a LOOCV

each subtype of thymoma method
Canonical Pathway’ -log ) Ratio® Thymoma Type
(P-value) AB B2 B3
Subtype AB No. of Samples 8 8 5
Acute Phase Response Signaling 6.96 0.05 No. of Unique DEP 43 4 37
Complement System 318 008 LOOCV mean accuracy rate” 83% 83% 96%
Apoptosis Signaling 307 004 sensitivity 0.89 073 050
Triacylglycerol Degradation 3.05 0.08 Specificity 100 100 086
Granzyme B Signaling 259 0.13 Pp\F 100% 100% 38%
Subtype B2 NPV 97% 91% 91%
LXR/RXR Activation 8.06 0.07 AUCE 0.99 0.93 094
FXR/RXR Activation 671 0.06 ? DEP: differentially expressed protein
Atherosclerosis Signaling 557 006 ®The average classification accuracy rate was calculated in leave-one-out cross
validation using differentially expressed proteins
Production of Nitric Oxide and Reactive Oxygen 431 0.04 € PPV: positive predictive value, the proportion of positive results in a classifier
Species in Macrophages that is truly positive in the experimental results
IL-12 Si i d Production in M h 9 NPV: negative predictive value, the proportion of negative results in a
-12 Signaling and Production in Macrophages 410 0.04 classifier that is truly negative in the experimental results
Subtype B3 € AUC: Area under the curve, represents how well a classifier can distinguish
one type from the others
Acute Phase Response Signaling 12.00 0.08
Complement System 7.83 0.17 evaluations of the diagnostic test by ROC analysis are
Coagulation System 469 0.11 shown in Fig. 2, with the AUCs of the SVM classifiers in
LXR/RXR Activation 468 005 Table 4. Overall, AB (AUC = 0.99) seemed to be the best
EXR/RXR Activation 460 005 classifier among the 3 subtypes when comparing to

@ Canonical pathway analysis was conducted by the Ingenuity® Pathway
Analysis (IPA) program and analyzed based on the Ingenuity® Knowledge Base
(Content version: 39480507; Release date: 2017-09-14)

® Fisher's exact test was used to determine the enrichment of differentially
expressed proteins in a given canonical pathway

¢ Ratio represents the number of differentially expressed proteins in the
pathway divided by the total number of proteins in the same pathway

When comparing common pathways between sub-
types, subtypes B2 and B3 had 2 common pathways:
LXR/RXR activation (-log P-value = 8.06 (B2) and 4.68
(B3)) and FXR/RXR activation (-log P-value = 6.71 (B2)
and 4.60 (B3)). Subtypes AB and B3 also had 2 common
pathways: acute phase response signaling (-log P-value =
6.96 (AB) and 12.00 (B3)) and complement system (-log
P-value = 3.18 (AB) and 7.83 (B3)).

Subtype AB had the most similar pathways, where 3 of
the top 5 canonical pathways were signaling-related: acute
phase response signaling, apoptosis signaling, and gran-
zyme B signaling (-log P-value = 6.96, 3.07 and 2.59).

Predicting thymoma subtypes with unique DEPs
signatures

The results of thymoma subtype prediction by a super-
vised learning model with existing unique protein signa-
tures are shown in Table 4. The accuracy rate of
LOOCY for all 3 subtypes was > 80%, where B3 had the
highest accuracy rate (96%). Sensitivity, specificity, posi-
tive predictive value and negative predictive value are
also shown (Table 4). The prediction efficiency

other two subtypes, B2 (AUC = 0.93) and B3 in Fig. 2.

Lastly, we selected two of differentially expressed proteins
COL17A1 (Collagen Type XVII Alpha 1 Chain) and TBR1
(T-Box, Brain 1) for validation using immunochemical ana-
lysis. Based on the results of mass spectrometry, COL17A1
was only up-regulated in type AB, but not in type B2/B3,
and had the greatest fold-change (~920X). As shown in
Fig. 3, COL17A1 was differentially expressed in subtype AB
using immunohistochemistry (Fig. 3a). The immunoreac-
tive score is determined by multiplication of the score of
staining intensity with the score of percentage of positively
stained cells. The amount and the percentage of thymoma
containing COL17A1 was significantly (P <0.01) higher in
type AB as compared to type B2/B3 (Fig. 3b). In addition,
immunofluorescence of TBR1 validated the results of mass
spectrometry (Fig. 3c), which showed TBR1 had signifi-
cantly higher expression in type B2/B3 than type AB.

Discussion

Because of the diverse morphology of thymoma and the
rarity of the disease, classification of thymoma solely
based on histology is challenging. Here we used proteo-
mics information to identify DEPs in different thymoma
subtypes in order to classify them. This method can be
used to customize the diagnosis, treatment, and progno-
sis of specific thymoma subtypes. In our results, distinct
protein expression patterns of thymoma subtype AB
were revealed, as compared to B2 and B3 subtypes, in
both cluster analysis and pathway analysis. Furthermore,
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subtype AB was also the best classifier among the 3 sub-
types based on the ROC analysis.

In the beginning of the analysis, we excluded partial pro-
teins (< 5% of total protein) as background noise. Although
this may have slightly affected the results of the pathway
analysis, small changes in these partial proteins often lead
to tremendous fold changes and result in false positives.
Moreover, although subtype AB, B2 and B3 are all mixed
with various amount of lymphocytes, the contents of lym-
phocytes are not a concern because the classification is
based on the differentially expressed proteins in each sub-
type. If the differentially expressed proteins come from lym-
phocytes, they are part of characteristics for classifying the
subtypes of thymoma. Thirdly, although protein expression
levels could change at different tumor stages, we did not
consider stage as a factor in our analysis. The main reason
for this was that the samples used for compiling the data
set showed no significant deviation from randomness in
the distribution across stages, and the main focus of this
study was to classify subtypes of thymoma.

According to the “hallmarks of cancer” proposed by
Hanahan and Weinberg in 2000, the molecular abnor-
malities of malignancies can be summed up in 6 charac-
teristics: self-sufficiency in growth signaling; insensitivity
to antigrowth signals; evading apoptosis; limitless repli-
cative potential; sustained angiogenesis; and tissue inva-
sion and metastasis [18]. In our study, pathway analysis
revealed several canonical pathways related to signal
transduction (6 of 15 pathways), nuclear receptor activa-
tion (4 of 15 pathways), and complement system (2 of
15 pathways) in the 3 thymoma types, which correlate
with Hanahan and Weinberg’s hallmarks of cancer.

The similarity of pathways between subtypes could
be caused by similar genetic expression profiles be-
tween samples. As mentioned earlier, LXR/RXR acti-
vation and FXR/RXR activation were observed in
common in subtypes B2 and B3, whereas acute phase
response signaling and complement system were in
common in subtypes AB and B3. These results correl-
ate with the clustering analysis, where AB was
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Fig. 3 Immunochemical analysis of COL17A1 and TBR1 in type AB and B2/B3 of thymoma. (@) immunohistochemistry of COL17A1. Formalin-fixed
and paraffin-embedded (FFPE) tissue sections were stained to examine the presence of COL17A1. Scale bar: 100 um. Insert magnification: 400X
(b) Quantification of COL17A1. The immunoreactive score is determined by multiplication of the score of staining intensity with the score of

bar: 20 um

percentage of positively stained cells. **, P < 0.01. ¢ Immunofluorescence of TBR1. CK19 (Cytokeratin 19): epithelial marker of thymoma. Scale

separate from the B2+ B3 cluster, but closer to B3
than to B2.

The similarity between the top canonical pathways in
subtype AB—acute phase response signaling, apoptosis
signaling, and granzyme B signaling (-log P-value = 6.96,
3.07 and 2.59)—suggests that the genetic expression pro-
file changes in subtype AB are highly related to signal
transduction.

ROC analysis is useful for assessing the utility of pre-
dictors in clinical metrics and diagnostics tests. It is
widely used in epidemiology and diagnostic radiology
research [19-21]. So far this method has not yet been
performed for thymic tumor classification. As far as we
know, this is the first study applying ROC analysis to
classify different types of thymoma. In our study, the
AUC in all 3 tumor types was 20.93, implying high

performance of these classifiers. Despites of its high per-
formance and being scrutinized by leave-one-out cross
validation, if there are any other independent cohort
available, it will still be a good reason to further improve
its reliability without the use of original samples as stat-
istical assessment. However, because a rare disease
thymoma is, the difficulty of doing so is also higher than
other common diseases.

In this study, we analyzed the protein mass spectrom-
etry data of 21 Chinese patients with 3 types of thym-
oma (AB, B2 and B3), and developed a thymoma
subtype predictive model with overall AUC >0.93. Al-
though there probably does not exist any geographic or
racial difference in terms of histological classification of
thymomas, the use of single human race may still be a
limitation in this study.
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We expect to combine more clinical data (e.g., survival
data) in the future to improve the predictive model. Since
the current dilemma in classifying types of thymoma is
the diverse clinical features, generation of a predictive
model with good performance will be a considerable con-
tribution to this field of study.

Conclusions

In this study, we identified protein signatures to predict
the subtypes AB, B2/B3 of thymoma with high accuracy,
sensitivity and specificity. One of the differentially
expressed proteins COL17A1 was further validated using
immunohistochemistry. These specific protein signatures
could facilitate accurate diagnosis of thymoma patients.
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