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Tumor immune escape plays a critical role in malignant tumor progression and leads to
the failure of anticancer immunotherapy. Spi-B, a lymphocyte lineage-specific Ets
transcription factor, participates in mesenchymal invasion and favors metastasis in
human lung cancer. However, the mechanism through which Spi-B regulates the
tumor immune environment has not been elucidated. In this study, we demonstrated
that Spi-B enhanced the infiltration of tumor-associated macrophages (TAMs) in the
tumor microenvironment using subcutaneous mouse models and clinical samples of
human lung cancer. Spi-B overexpression increased the expression of TAM
polarization- and recruitment-related genes, including CCL4. Moreover, deleting
CCL4 inhibited the ability of Spi-B promoting macrophage infiltration. These data
suggest that Spi-B promotes the recruitment of TAMs to the tumor microenvironment
via upregulating CCL4 expression, which contributes to the progression of
lung cancer.
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INTRODUCTION

Lung cancer, including non-small cell lung cancer (NSCLC) and
small cell lung cancer (SCLC), is one of the most prevalent
cancers and is the leading cause of cancer-related deaths
worldwide (1). Despite developments in targeted therapies and
immunotherapy, the 5-year survival rate of patients with
metastatic lung cancer remains below 5% (2, 3). Estimates
suggest that the diagnosis and treatment of lung cancer
patients at an early stage leads to improved prognosis (2). The
mechanisms of lung carcinogenesis and the role of the
microenvironment in tumor initiation remain to be elucidated.
Understanding these mechanisms may pave the way for new
treatments, especially personalized immunotherapy, which will
reduce the mortality rate of lung cancer patients.

Carcinogenesis is a complicated multistage process that
is influenced by tumor-intrinsic factors, the tumor
microenvironment (TME), and extrinsic carcinogens. The TME
is composed of the extracellular matrix, stromal cells, immune
cells, and secreted proteins (4). Tumor-associated macrophages
(TAMs) are a major component of the immunosuppressive TME
and are derived from circulating monocytes (5). Macrophages are
recruited to the TME by multiple chemotactic cytokines,
including CCL2 (MCP-1), CCL3 (MIP-1a), CCL4 (MIP-1b),
CCL5 (RANTES), and colony-stimulating factors (6–10). Most
of these chemotactic cytokines are produced by tumor cells,
fibroblasts, endothelial cells, and even TAMs themselves (11,
12). Macrophages are classified into M1 and M2 subtypes
depending on whether the immune response is induced by Th1
or Th2 cells. M2 macrophages are further subdivided into M2a,
M2b, andM2c cells based on their secreted cytokines and immune
functions. When exposed to interleukin (IL) 4 produced by CD4+

T cells and other immunosuppressive stimuli in the TME, TAMs
mostly present as the M2 phenotype (13, 14). TAMs release
various cytokines into the TME to enhance tumor development
and participate in multiple biological processes, including
angiogenesis, cell invasion, cell migration, and tumor metastasis.
High TAM infiltration is associated with poor prognosis in several
solid tumors, including lung cancer (15).

Spi-B, an Ets transcription factor, plays an important role in
the differentiation of B cells, plasmacytoid dendritic cells, and
intestinal microfold cells (16–18). Recently, Spi-B has been
detected in various malignant solid tumors (19–21), such as
lung cancer, where it promotes mesenchymal invasion and
autophagy-mediated anoikis resistance, thereby linking
epithelial cancer metastasis with a lymphatic transcriptional
program (20, 21). The present study aimed to investigate the
role of Spi-B in the immune microenvironment of lung cancer.
Our study showed that Spib enhanced TAM infiltration in
subcutaneous mouse models. Further, Spi-B expression in
tumor cells was significantly associated with CD163 in
human TAMs, suggesting poor clinical outcomes. Transwell
assays further revealed that Spi-B promoted TAM recruitment,
possibly by enhancing CCL4 expression. Our results
demonstrate that Spi-B might be an important diagnostic
biomarker for monitoring patients with lung cancer.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Experimental Animals
Female C57BL/6 mice (6 to 8 weeks old) were purchased
from Beijing Vital River Laboratory Animal Technology.
All animal experiments were performed accordance to
guidelines approved by the animal ethics committee of Tianjin
Medical University.

Cell Lines
A549, H1299, HEK293T, and LLC1 cells were obtained from the
American Type Culture Collection (ATCC, Manassas, VA,
USA). CMT167 and RAW264.7 cells were purchased from
Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd.
(China). All cell lines were maintained in the recommended
culture medium supplemented with 10% fetal bovine serum
(FBS), 100 U penicillin/mL, and 100 mg streptomycin/mL in
5% CO2 at 37°C.

Lentiviral Production and Transfection
The primers used for Spib cDNA amplification and the
shRNA sequences targeting Spib and Ccl4 are listed in
Table S1. The plasmids were co-transfected into HEK293T
cells along with the helper plasmids pMD2.BSBG, pMDLg/
pRRE, and pRSV-REV using Polyethylenimine (PEI). Viral
supernatants were harvested 24 h and 48 h after transfection.
For infection, the target cell medium was replaced with
virus-containing supernatant supplemented with 8 mg/mL
polybrene (Sigma, 107689) and incubated for 8 h. This
procedure was repeated daily for three consecutive days to
establish stable cell lines.

Subcutaneous Mouse Models and Immune
Cell Subset Analysis
A total of 5 × 105 LLC1 cells expressing empty vector or Spib were
subcutaneously injected into C57BL/6 mice on the right back
flank. After 14 days, in situ tumors were harvested for immune cell
subset analysis. The tumors were minced into small pieces and
digested in DMEM supplemented with collagenase I (5 mg/mL),
hyaluronidase (5 mg/mL), and deoxyribonuclease I (5 mg/mL) for
30 min at 37°C with gentle agitation. Single-cell suspensions were
obtained by gently passing the enzyme-treated tumor tissue
through a 70-µm cell strainer. The cell suspensions were
subjected to sequential Percoll (Sigma) gradient centrifugation
and resuspended in PBS supplemented with 1% FBS for
downstream flow cytometry analysis. For in vivo metastasis
assays, the mice were sacrificed under deep anesthesia at 6
weeks after subcutaneous injection and metastatic nodules in the
lungs was counted and assessed by histology using Hematoxylin
and Eosin (HE). For survival assays, the mice were inspected every
day for health issues, and deaths were recorded for three months
after resection.

A total of 1 × 106 CMT167 cells transduced with lentivirus-
expressing shRNA against Spib or control vector were
subcutaneously injected into C57BL/6 mice on the right back
June 2021 | Volume 11 | Article 659131
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flank. After 14 days, in situ tumors were excised to analyze
tumor growth.

Flow Cytometry Analysis
Single-cell suspensions from mouse subcutaneous tumors were
prepared as described above, counted, and resuspended in PBS
at a concentration of 1×107 live cells/mL. One hundred
microliters of each sample was plated for cell staining.
Surface staining was performed at room temperature for
30 min, and intracellular staining was performed using a
Foxp3-transcription factor staining kit (eBioscience). Live/
dead cell discrimination was performed using Fixable
Viability Stain 520 (BD Biosciences). Anti-mouse antibodies
against the following antigens were used for flow cytometry:
CD3 PerCP-CY5.5 (17A2, BioLegend, 1:100), CD45 PerCP (30-
F11, BioLegend, 1:200), NK1.1 APC (PK136, BD Biosciences,
1:50), Foxp3 PE (MF23, BD Biosciences, 1:100), Ly6G PE (1A8,
BioLegend, 1:100), Ly6C APC (HK1.4, BioLegend, 1:100),
CD11b BV421 (M1/70, BioLegend, 1:100), CD11b PerCP-
CY5.5 (HL3, BioLegend, 1:100), F4/80 APC (T45–2342, BD
Biosciences, 1:50), CD25APC (3C7, BioLegend, 1:100), CD4
APC (GK1.5, BioLegend, 1:100), and CD8a PE (53-6.7;
BioLegend, 1:100). All flow cytometry analyses were
performed using a Fortessa flow cytometer (BD Biosciences)
and analyzed using FlowJo software (TreeStar).

Real-Time Quantitative PCR (qRT-PCR)
and Gene Expression
Total RNA was extracted from cell lines using TRIzol reagent
(Invitrogen) and reverse transcribed into cDNA (Thermo
Scientific, USA). The synthesized cDNA was assayed using
SYBR Green PCR kits (DBI Bioscience) on an ABI 7900 Real-
Time PCR system. Relative fold changes were normalized to
GAPDH expression using the 2−DDCt method. The primers used
for PCR are listed in Table S1.

Western Blotting
Cells were lysed in RIPA buffer and total protein was quantified
using the bicinchoninic acid method. Then, proteins were loaded
and resolved using sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred onto a nitrocellulose membrane.
The membranes were immunoblotted with antibodies against
the following antigens: Spi-B (Novus, NBP2-37458, 1:1000) and
b-actin (Sigma, MAB1501, 1:5000). Immunoreactive bands were
detected using enhanced chemiluminescence detection
substrate (Millipore).

T Cell Function Assays
Spleens from naive mice were isolated and passed through 70-
micrometer filters to generate single-cell suspensions. After red
blood cell lysis, T cells were purified using negative selection with
magnetic beads using the EasySep™ mouse T cell isolation kit,
according to the manufacturer’s instructions. CD11b+ myeloid
cells from subcutaneous tumors derived from LLC1 cells
expressing Spib or empty vector were purified using anti-
Frontiers in Oncology | www.frontiersin.org 3
CD11b+ microbeads. T cells were plated in 96 U-bottom wells
(2.5×104 cells per well) coated with 1 mg/mL anti-CD3 and 5 mg/
mL anti-CD28 antibodies. Then, T cells were co-cultured with
CD11b+ myeloid cells in a 3:1 T cell:myeloid cell ratio at 37°C for
48 h. For cytokine staining, we used a GolgiStop Fixation/
Permeabilization kit (BD Biosciences). For T cell proliferation
assays, carboxyfluorescein succinimidyl ester (CFSE, Invitrogen)
was used to stain T cells. CFSE-labeled CD8+ T cells were co-
cultured with myeloid cells in a 3:1 ratio. After 48 h, the cells
were harvested, and CFSE signal in the CD8+ T cells was
measured by flow cytometry.

Histological Staining
Excised mouse lungs, mouse subcutaneous tumors and human
lung tumors were fixed with 4% formaldehyde for 24 h and
embedded in paraffin for slide preparation. Tissue sections were
stained with hematoxylin and eosin (H&E) using standard
reagents and protocols. For immunohistochemical analysis,
tissue sections were immunostained with antibodies against
Spi-B (Novus, NBP2-37458, 1:100), CD163 (Abcam, ab182422,
1:100), and CD8 (Cell Signaling Technology, 98941S, 1:100), and
processed according to standard DAB staining protocols, as
described previously (20).

Recruitment Assays
RAW264.7 macrophage migration was examined in conditioned
medium without 10% FBS. A total of 1 × 105 RAW264.7 cells
were seeded into the upper chamber of 24-well transwell inserts
(Corning). Conditioned medium was added to the lower
chambers. RAW264.7 cells were incubated for 5 h in 5% CO2

at 37°C. The macrophages that migrated and attached to the
lower surface of the transwell membrane were fixed with 4%
paraformaldehyde and stained with 0.5% crystal violet. Cells in
five random fields were counted using a phase-contrast
microscope (200× magnification) to analyze the macrophage
migration rate.

Bioinformatics Analysis
The mRNA microarray data was obtained from the GEO
database (GEO database access no. GSE90645) (20). Gene
expression profiles (.gct files) were used as the input for gene
set enrichment analysis (GSEA; version 4.0.2). GSEA was run
using the gene-ranking metric Signal2 noise with C5
MsigDbcollection. A total of 1,000 permutations were used to
calculate p values. A nominal p < 0.01 was used as the cut-off
criterion for determining significant enrichment scores.

TIMER is a comprehensive online resource for studying
immune infiltration in various cancer types. We used TIMER
on lung cancer sample data to analyze the correlation between
Spi-B and key genes involved in macrophage polarization
and recruitment.

Statistical Analysis
GraphPad Prism and SPSS 18.0 were used for statistical analysis.
The survival rates were determined with Kaplan-Meier analysis
June 2021 | Volume 11 | Article 659131
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using Mantel-Cox log-rank testing. Statistical analysis for the
comparison of two groups was performed using unpaired
Student’s t-test. The results are shown as the mean ± standard
deviation. P < 0.05 was considered statistically significant for
all tests.
RESULTS

Spib Overexpression Increases TAM
Infiltration and Promotes Lung Cancer
Progression in Subcutaneous
Mouse Models
To investigate the role of Spi-B in the lung carcinoma immune
microenvironment, we used a mouse subcutaneous engraftment
model and Spib-expressing LLC1 cells (Figure S1A). Spib
expression had a modest effect on LLC1-derived subcutaneous
tumor growth (Figure 1A, P > 0.05). At 6 weeks after injection,
subcutaneous engraftment of Spib-expressing LLC1 cells showed
Frontiers in Oncology | www.frontiersin.org 4
significantly more lung metastatic nodules and relative tumor
area than vector-transduced cells (Figures 1B, C). No metastases
were found in other organs. We also monitored the survival of
subcutaneous tumor-bearing mice. The survival of mice injected
with Spib-expressing cells was significantly reduced compared
with vector-transduced cells in subcutaneous mouse models
(Figure 1D). Conversely, the knockdown of Spib in CMT167
cells, a murine lung cancer cell line that expresses endogenous
Spib (Figures S1B, C), showed a significant reduction in
CMT167-derived subcutaneous tumor growth (Figure 1E).
These data indicate that Spib expression promotes lung cancer
progression in subcutaneous mouse models.

Flow cytometry analysis of TAMs, regulatory T cells (Tregs),
and myeloid-derived suppressor cells (MDSCs) with immune-
suppressive capabilities isolated from subcutaneous tumors
indicated that the percentages of total F4/80+ CD11b+ TAMs
in CD45+ tumor-infiltrating leukocytes (TILs) and CD206+ F4/
80+ CD11b+ macrophages (M2 macrophages) in total TAMs
were both markedly increased in Spib-expressing tumors
(Figures 2A, B and S2A). However, no differences in the Treg
A B

D E

C

FIGURE 1 | Spib overexpression promotes lung cancer progression in subcutaneous mouse models. (A) Subcutaneous tumors in situ were excised 2 weeks after
inoculation with LLC1 cells expressing empty vector or Spib. Upper panel, images of subcutaneous tumors. Lower panel, tumor weight. (B) The mice were sacrificed
and lung metastases were analyzed 6 weeks after inoculation with LLC1 cells expressing empty vector or Spib (n = 5). Upper panel, representative images of lungs.
Black arrow, metastatic nodules. Lower panel, quantitation of lung metastatic nodules. (C) H&E staining of lungs from mice subcutaneously injected with vector or
Spib-expressing LLC1 cells (n = 5). Scale bars, 2 mm. Upper panel, representative H&E staining in lungs. Lower panel, the tumor burden was measured as the
percentage of the tumor area versus the total lung area. (D) Kaplan-Meier survival curve of mice subcutaneously injected with vector or Spib-expressing LLC1 cells.
Survival between LLC1 cells expressing empty vector and LLC1 cells expressing Spib was significantly different (P < 0.05; n = 6, vector; and n = 5, Spib).
(E) CMT167 cells expressing control or shRNA against Spib were subcutaneously injected into C57BL/6 mice. Two weeks later, subcutaneous tumors were
removed. Left, images of subcutaneous tumors. Right, tumor weight. Mean ± SD. *P < 0.05. **P < 0.01. ***P < 0.001.
June 2021 | Volume 11 | Article 659131
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FIGURE 2 | Spib overexpression increases TAM infiltration in subcutaneous mouse models. (A) Representative flow cytometry profiles and percentages of TAMs in
CD45+ TILs in subcutaneous tumors. n = 3-4. (B) Representative flow cytometry profiles and percentages of CD206+ cells in CD11b+ F4/80+ cell populations in
subcutaneous tumors. n = 3. (C) Quantification of Tregs in CD45+ TILs in subcutaneous tumors by flow cytometry. n = 3-4. (D) Quantification of monocytic myeloid-
derived suppressor cells (M-MDSCs) and granulocytic myeloid-derived suppressor cells (G-MDSCs) in CD45+ TILs in subcutaneous tumors by flow cytometry.
n = 3-4. (E) Quantification of CD8+ T cells and CD4+ T cells in CD45+ TILs in subcutaneous tumors by flow cytometry. n = 3-4. (F) Quantification of NK cells in
CD45+ TILs in subcutaneous tumors by flow cytometry. n = 3-4. (G) Immunostaining with anti-CD163 was performed in subcutaneous tumors derived from LLC1
cells expressing Spib or empty vector. Scale bars, 20 µm. Left, representative pictures of CD163 staining. Right, quantified CD163 expression in subcutaneous
tumors. FoV = field of view. n = 3 mice for each group. (H) Immunostaining with anti-CD8 was performed in subcutaneous tumors derived from LLC1 cells
expressing Spib or empty vector. Scale bars, 20 µm. Left, representative pictures of CD8 staining. Right, quantified CD8 expression in subcutaneous tumors. n = 3
mice for each group. (I, J) CD11b+ cells purified from subcutaneous tumors derived from LLC1 cells expressing Spib or empty vector were cocultured with T cells
for 2 days. Quantification of IFN-g+ in CD8+ T cells by flow cytometry (I). Quantification of the geometric mean fluorescence intensity of granzyme B in CD8+ T cells
(J). n= 3. (K) In vitro suppressive activity of tumor-infiltrating CD11b+ cells purified from subcutaneous tumors derived from LLC1 cells expressing Spib or empty
vector. Representative histograms of CD8+ T cell proliferation (left panel). Quantification of CD8+ T cell proliferation using carboxyfluorescein succinimidyl ester (CFSE)
(right panel). n = 3. Mean ± SD. *P < 0.05. **P < 0.01. ***P < 0.001.
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and MDSC percentages were observed between Spib-expressing
tumors and control tumors (Figures 2C, D and S2B, C). The
proportion of CD8+ T cells was significantly reduced in Spib-
expressing tumors compared with control tumors (Figures 2E
and S2D), indicating a decreased cytotoxic anti-tumor immune
response. We did not observe a significant change in the
percentage of CD4+ T cells or natural killer (NK) cells
(Figures 2E, F and S2D, E). Staining with CD163, a marker
of M2 macrophages, confirmed a significant increase in
the percentage of M2 macrophages in Spib-expressing
subcutaneous tumors and lung metastases (Figures 2G
and S3). Moreover, CD8 immunostaining in subcutaneous
tumors confirmed a marked reduction in the percentage of
CD8+ T cells in Spib-expressing tumors compared to control
tumors (Figure 2H). To identify the role of TAMs from Spib-
expressing tumors in T cell responses, CD11b+ cells were isolated
from subcutaneous tumors and incubated with CD8+ T cells
from the spleen of C57BL/6 mice for two days. Myeloid cells
from Spib-expressing tumors significantly inhibited interferon
(IFN)-g and granzyme B expression in CD8+ T cells compared
with myeloid cells from control tumors (Figures 2I, J).
Frontiers in Oncology | www.frontiersin.org 6
Furthermore, myeloid cells from Spib-expressing tumors
suppressed CD8+ T cell proliferation to a greater extent than
myeloid cells from control tumors (Figure 2K), indicating that
myeloid cells from Spib-expressing tumors exhibit more
suppressive activity. Collectively, these results suggest that Spib
overexpression in subcutaneous mouse models increases the
infiltration of TAMs, especially M2 macrophages, and
promotes lung cancer progression.

Spi-B Expression in Human Lung Cancer
Tissues is Positively Correlated with
CD163 Expression and Predicts Poor
Survival of NSCLC Patients

To determine whether Spi-B expression promotes TAM
infiltration in human lung cancer tissues, we examined the
expression of CD163 and Spi-B in tissue samples obtained
from 79 NSCLC patients admitted to the Tianjin Medical
University Cancer Institute and Hospital. Epithelial cells in
normal lung tissues did not express Spi-B (Figure 3A, a). In
tumor-adjacent tissues, lymphocytes expressed Spi-B
A

B C D

FIGURE 3 | Spi-B expression positively correlates with the proportion of CD163+ macrophages in human lung cancer tissues. (A) Immunostaining of human CD163
and Spi-B in paraffin-embedded lung tissues using phase-contrast microscopy (400×). Representative images show a lack of Spi-B staining in normal lung epithelial
cells (a), but positive Spi-B staining in lymphocytes (b) and positive CD163 staining in alveolar macrophages (c). In lung cancer tissues, CD163-expressing TAMs
surrounded and infiltrated cancer masses of strong Spi-B staining (d, e). Scale bars, 20 µm. (B) Semiquantitative scoring was performed. CD163 scores were
associated with Spi-B scores (r = 0.6098, P < 0.0001). (C) Kaplan-Meier survival rates for 73 subjects with low (staining scores ≤ 3, n = 47, blue line) versus high
(staining scores > 3, n = 26, red line) CD163 expression were compared (P = 0.0307). (D) Kaplan-Meier survival rates for 73 subjects with low (staining scores < 4,
n = 29, blue line) versus high (staining scores ≥ 4, n = 44, red line) Spi-B expression were compared (P = 0.0366).
June 2021 | Volume 11 | Article 659131
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(Figure 3A, b), and alveolar macrophages expressed CD163
(Figure 3A, c). In human lung cancer tissues, TAMs
expressing CD163 surrounded and infiltrated the cancer
mass of strong Spi-B staining (Figures 3A, d, e). When
immunostained tissue sections were quantified, a highly
significant positive correlation was found between Spi-B+

cells in lung cancers and CD163+ macrophages (Figure 3B).
We also used TIMER to analyze the relationship between
Spi-B and CD163 expression. The results revealed that Spi-B
expression was positively associated with CD163 expression in
adenocarcinoma (ADC, Figure S4A) and squamous cell
carcinoma (SCC, Figure S4B).

Next, we investigated the prognostic impact of CD163+

macrophages in patients with NSCLC. Patients with high
CD163+ macrophage density had poorer overall survival (OS)
than patients with low CD163+ macrophage density (Figure 3C).
We also identified that patients whose tumors showed high Spi-B
staining intensity had poorer OS than those whose tumors
showed low staining intensity (Figure 3D). These results
suggest that CD163+ macrophages may serve as a significant
prognostic factor for NSCLC.

Spi-B Promotes Recruitment
of Macrophages
To assess the effect of Spi-B on macrophage infiltration during
lung cancer in vitro, human lung cancer cells (A549 and H1299),
which do not express endogenous Spi-B, were transfected with
SPIB. Transfection was verified by qRT-PCR (Figures 4A, B). A
transwell assay was performed to detect the effect of Spi-B on
macrophage recruitment. As shown in Figures 4C, D, we found
significantly increased recruitment of macrophages in Spi-B-
expressing lung cancer cells compared with control cells. Then,
LLC1 cells were transfected with the murine Spib gene
(Figure 4E), and CMT167 cells were transfected with shRNAs
to knockdown Spib (Figure 4F). We observed that Spib
overexpression in LLC1 cells exhibited similar effects on
macrophage recruitment (Figure 4G). In contrast to
overexpression, Spib knockdown significantly inhibited
macrophage chemotaxis compared with CMT167-shRNA-
scramble cells (Figure 4H), supporting the conclusion that
Spi-B expression in tumor cells promotes TAM recruitment.

Spi-B Upregulates the Expression
of TAM Polarization- and
Recruitment-Related Genes
To better understand the molecular mechanisms underlying Spi-
B-mediated TAM recruitment, we performed a GSEA of
microarray data from Spi-B-expressing A549 cells and control
cells. We found that Spi-B overexpression significantly enriched
the positive regulation of macrophage activation, macrophage
differentiation, and regulation of monocyte chemotaxis
(NES=1.72, NES=1.64, and NES=1.60, respectively) (Figure 5A).
Next, we performed quantitative RT-PCR to confirm Spi-B-
dependent differential transcription of cytokines and chemokines
involved in TAM polarization and macrophage recruitment. We
Frontiers in Oncology | www.frontiersin.org 7
examined CSF2, which promotes macrophage differentiation; IL6,
which is involved in TAM polarization; and the chemokines,
CCL2, CCL3, CCL4, and CCL5, which are associated with
macrophage infiltration. CSF2, IL6, CCL3, CCL4, and CCL5
mRNA expression was significantly upregulated, while
CCL2 mRNA expression was slightly upregulated in Spi-B-
expressing A549 and H1299 cells compared with control cells
(Figures 5B, C). We also performed qRT-PCR in murine lung
cancer cells to confirm these results. Consistently, Spib knockdown
in CMT167 cells caused reciprocal changes in the expression of
Csf2, Il6, Ccl3, and Ccl4 compared with Spib expression in LLC1
cells (Figures 5D, E). However, the expression of Ccl2 and Ccl5
was moderately altered in CMT167 cells transfected with Spib-
shRNA and LLC1 cells transfected with Spib (Figures 5D, E).
These data indicate that Spi-B regulates TAM polarization- and
recruitment-related gene expression.

Spi-B Enhances Macrophage Recruitment
by Upregulating the Expression of CCL4
We used TIMER to further validate the correlation between the
expression of Spi-B and TAM polarization- and recruitment-
related genes in lung cancer tissues. The results showed that SPIB
expression was positively associated with CSF2, IL6, CCL3, and
CCL4 expression in ADC and SCC (Figures 6A, B). Moreover,
the expression of CCL4 was the most positively correlated with
SPIB expression. Next, we repressed CCL4 expression in SPIB-
overexpressing H1299 cells. The expression of CCL4 was
downregulated in H1299 cells co-transfected with SPIB and
CCL4-ShRNA (Figure 6C). As expected, CCL4 repression
completely abolished Spi-B-induced macrophage recruitment
(Figure 6D). These results suggest that Spi-B promotes TAM
recruitment via CCL4 upregulation.
DISCUSSION

The interaction between cancer cells and the TME is crucial for
tumor progression and metastasis. Here, we identified that the
ectopic expression of the lymphocyte-restricted transcription
factor, Spi-B, in lung cancer cells promotes the recruitment of
TAMs to the TME. Physiologically, Spi-B is expressed in B cells,
plasmacytoid dendritic cells, T cell progenitors, and intestinal
microfold cells (16–18, 22). Deleting Spi-B decreases B-cell
activation and T cell-dependent humoral immune responses,
indicating that Spi-B is required for sustaining germinal centers
and memory B cell differentiation (16, 23). In addition, Spi-B is
required for the development of human plasmacytoid dendritic
cells and intestinal M cells with antigen presentation capacity.
Based on the function of Spi-B during immune cell development,
we investigated the role of Spi-B expression in lung cancer cells
in regulating the composition of immune cells in the TME.

We found that Spi-B expressing promotes lung cancer
metastasis in a subcutaneous mouse model. In this study, we
analyzed immune cell infiltration into subcutaneous tumors
using flow cytometry. The percentage of TAMs was markedly
June 2021 | Volume 11 | Article 659131
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increased in Spib-expressing tumors compared with control
tumors, while the percentage of CD8+ T cells was significantly
reduced. Using immunostaining, we observed that CD163+

TAMs closely surrounded Spi-B-positive tumor cells in human
lung cancer tissues. Furthermore, transwell assays showed that
Spi-B overexpression in lung cancer cells enhanced macrophage
migration. In contrast, silencing Spi-B reduced the number
Frontiers in Oncology | www.frontiersin.org 8
of migrating macrophages. These findings suggest that
Spi-B expression in lung cancer cells is associated with
macrophage infiltration.

By analyzing microarray data from Spi-B-expressing A549
cells and control cells, we found that the expression of
macrophage polarization- and recruitment-related genes,
including CSF2, IL6, CCL3, and CCL4, was significantly
June 2021 | Volume 11 | Article 659131
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FIGURE 4 | SPIB promotes macrophage recruitment. (A, B, E, F) Human SPIB overexpression efficiency in A549 (A) and H1299 (B) cells verified by qRT-PCR.
Murine Spib overexpression efficiency in LLC1 cells (E) and Spib silencing efficiency in CMT167 cells (F) verified by qRT-PCR. *P < 0.05. **P < 0.01. ***P < 0.001.
(C, D, G, H) Recruitment assay. Left, representative transwell images of recruited macrophages. Right, relative fold changes of recruited macrophages in each image
field observed by phase-contrast microscopy (200×). Columns, mean (n = 3). Bars, SD. **P < 0.01. ***P < 0.001. Scale bars, 100 µm.
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upregulated by Spi-B. CSF2 is an important survival,
proliferation, and differentiation factor for macrophages and
neutrophils, and it promotes the infiltration of monocytes and
macrophages into injured tissues (24–26). CSF2 also regulates
the switch from the proinflammatory M1 phenotype to the M2
phenotype via the p-Stat5 pathway (24, 26, 27). IL6, a
proinflammatory cytokine secreted by various cell types, plays
several biological roles in different cells (28). In response to
specific microbial molecules, IL6 can be produced by
macrophages involved in the host immune defense (28). In the
TME, IL6 also regulates immune cell transformation from
monocytes to a suppressive M2 phenotype, thereby promoting
the proliferation and metastasis of various cancers, including
lung (29), breast (30), hepatocellular (31), prostate (32),
colorectal (33), renal cell (34), cervical (35), and ovarian
cancers (36). Thus, IL6 is an effective marker for predicting
poor prognosis in cancer patients. The b-chemokines, MIP-1a
(CCL3) and MIP-1b (CCL4), can induce macrophage
recruitment through CCR5 (37), which is highly expressed on
Frontiers in Oncology | www.frontiersin.org 9
macrophages (38). In our study, CSF2, IL6, CCL3, and CCL4
expression was upregulated by Spi-B overexpression and
downregulated by Spi-B knockdown, suggesting CSF2, IL6,
CCL3, and CCL4 as the target genes of Spi-B. Correlation
analysis using the TIMER database revealed that the expression
of CCL4 was the most positively associated with SPIB expression.
Furthermore, knockdown of CCL4 in Spi-B-overexpressing cells
inhibited macrophage recruitment. These results indicate that
Spi-B overexpression promotes macrophage infiltration by
upregulating CCL4 expression.

In the TME, M2 macrophages contribute to tumor
progression by producing anti-inflammatory cytokines, while
M1 macrophages play an important role in antitumor and
proinflammatory activity by producing proinflammatory
cytokines and reactive oxygen/nitrogen species (39). Spi-B
overexpression promotes lung cancer cell metastasis, which is
mostly associated with M2 macrophage recruitment. A previous
study showed that CCL4 expression was positively correlated
with the infiltration of M2 macrophages (40, 41). Inhibiting
A

B C

D E

FIGURE 5 | SPIB upregulates the expression of TAM polarization- and recruitment-related genes. (A) GSEA of C5 signatures (positive regulation of macrophage
activation, macrophage differentiation, and regulation of monocyte chemotaxis) in microarray data of A549 cells expressing SPIB and control vector. (B–E) Validation
of microarray data by RT-qPCR. RNA was purified from A549 cells expressing SPIB or empty vector (B), H1299 cells expressing SPIB or empty vector (C), LLC1
cells expressing Spib or empty vector (D), and CMT167 cells with knockdown of Spib or control (E). Mean ± SD. *P < 0.05. **P < 0.01 ***P < 0.001.
June 2021 | Volume 11 | Article 659131

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Spi-B Promotes TAMs Recruitment
CCR5 (a receptors of CCL4) can induce TAM repolarization,
which is mediated via the STAT3/SOCS3 pathway in
macrophages (42). CCR5-deficient mice exhibit reduced tumor
formation compared with wild-type mice (43). These studies
suggest that Spi-B enhances macrophage infiltration and
contributes to M2 macrophage polarization via the CCL4-
CCR5 axis to promote tumor progression.

In summary, the current study demonstrates that Spi-B-
positive lung cancer cells play an important role in increasing
TAM recruitment by upregulating the expression of various
cytokines, such as CSF2, IL6, CCL3, and CCL4. TAMs in the
TME promote tumor metastasis. Monitoring Spi-B expression
and targeting the CCL4-CCR5 axis raises the possibility of
precise diagnosis and treatment of lung cancer.
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