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Abstract: Pyrrolizidine alkaloids (PAs) are distributed in plant families of Asteraceae, Boraginaceae,
and Fabaceae and serve in the chemical defense mechanism against herbivores. However, they became
a matter of concern due to their toxicity associated with the high risk of intake within herbal
preparations, e.g., phytopharmaceutical formulations, medicinal teas, or other plant-derived drug
products. In 1992, the German Federal Ministry of Health established the first limits of PA content
for fourteen medicinal plants. Because of the toxic effects of PAs, the Federal Institute of Risk
Assessment (BfR) established more stringent limits in 2011, whereby a daily intake <0.007 µg/kg body
weight was recommended and valid until 2018. A threefold higher limit was then advised by BfR.
To address consumer safety, there is the need for more efficient extraction procedures along with
robust, selective, and sensitive analytical methods to address these concerns. With the increased
prevalence of, e.g., phytopharmaceutical formulations, this timely review comprehensively focuses
on the most relevant extraction and analysis strategies for each of those fourteen plant genera. While
a variety of extraction procedures has been reported, differences in PA content of up to 1110 ppm
(0.11% (w/w)) were obtained dependent on the nature of the solvent and the applied extraction
technique. It is evident that the efficient extraction of PAs requires further improvements or at least
standardization of the extraction conditions. Comparing the various analytical techniques applied
regarding selectivity and sensitivity, LC-MS methods appear most suited. This review shows that
both standardized extraction and sensitive determination of PAs is required for achieving appropriate
safety levels concerning public health in future.

Keywords: pyrrolizidine alkaloids; analytical techniques; extraction techniques; medicinal plants;
Symphytum; Tussilago; Senecio

Key Contribution: The determined pyrrolizidine alkaloid content in plant extracts depends strongly
on the boundary conditions of the extraction procedure; and requires careful analytical strategies for
the quantitative assessment of efficiency of the applied procedures

1. Introduction

Pyrrolizidine alkaloids (PAs) are secondary plant constituents produced by a wide variety of
plants (Asteraceae, Boraginaceae, and Fabaceae) [1,2]. More than 500 different PAs were identified in
more than 6000 plant species to date [2]. They are believed to function against herbivores due to the
proven inhibiting effect of some PAs on acetylcholinesterase activity [3–6]. Recently, PAs and their
corresponding N-oxides (PANs) have been discussed controversially due to their various toxic effects,
induced by metabolic activation, resulting in tumors and necrosis of tissue [1,7–10]. The first limits were
set in 1992 by the German Federal Ministry of Health addressing pharmaceutical products containing
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herbal preparations of PA producing plants. In more detail, herbs of the genera Symphytum, Borago,
Brachyglottis, Cineraria, Alkanna, Tussilago, Lithospermum, Cynoglossum, Senecio, Eupatorium, Anchusa,
Petasites, Heliotropium, and Erechthites [11] were concerned. It was proposed that exposure may not
exceed 1 µg/day during a time period of six weeks. In case of longer usage, this level was further
reduced to 0.1 µg/day. PA contents which lead to an increased exposure (10 µg/day) were accepted
for herbal infusions or decoctions of Tussilago farfara. However, the high risk for ingesting these
toxic substances was determined to not only originate from PA-producing medicinal plants. Herbal
preparations may be contaminated with weeds as a result of disregardful harvesting or insufficient
removal during further processing. Due to the risk of intake and the high toxicity, the Federal Institute
of Risk Assessment in Germany (BfR) recommended a daily intake of not more than 0.007 µg/kg body
weight (i.e., 0.42 µg for a 60 kg human) [2] in 2011. With respect to the limit stated by German Health
Authority in 1992 (1 µg/day), this correspond to a 50% lower threshold. New risk assessments of
European Food Safety Agency (EFSA) and BfR were based on the NTP study on riddelliine rather
than the one on lasiocarpine and derived a threefold higher reference point of 237 µg/kg bw/day.
This effectively means that an exposure lower than 0.0237 µg/kg bw/day is considered a low health
concern (margin of exposure larger than 10,000) [12,13]. Especially for the required detection of the low
levels of PAs, more efficient extraction methods along with selective and sensitive analytical strategies
are essential.

This review is dedicated to summarizing the scientific progress within approximately 30 years
of research in PA extraction and analysis of medicinal plants. For each of them, we summarize the
most prevalent extraction techniques and analytical methods used for determining their concentration
levels. Parameters such as increased extraction temperatures, fresh solvent, high pressure, and a large
surface area are compared for promoting efficient extraction. Analytical methods are rated according
the reported selectivity of the procedure and the analytical-figures-of-merit with special emphasis
on the sensitivity (LoD and LoQ). Additionally, whenever reasonable, the potential advantages and
disadvantages of the analytical method are outlined.

2. Design and Methods

A systematic literature research was performed using the Mendeley online database (www.
mendeley.com). Keywords for the search were “plant genus + pyrrolizidine” or “plant genus +

medicinal use”; for example, “Senecio + pyrrolizidine” or “Senecio + medicinal use”. All published
manuscripts regarding extraction or analysis of PAs were reviewed. Results were not filtered by year
or language. Published literature was considered if extractions or analytical studies were performed
on one of the thirteen medicinal plant genera of interest that have been defined by the German Federal
Ministry of Health. Finally, more than 225 papers were considered for this review.

3. Considered Medicinal Plants

The German Federal Ministry of Health, addressed in 1992 the admission and registration of
herbal preparations containing PAs [11]. Fourteen plants were considered to be of phytopharmaceutical
relevance. These plants were reviewed for the extraction and analytical methods applied. Except the
genus Erechthites, all other genera were represented in scientific literature. Examples of inherent PAs
are shown in Figures 1–3. Because of the large number of species that have been partly investigated and
the differences in the PA composition depending on the growth conditions and time of investigations
of the individual species, only the genera are cited.

www.mendeley.com
www.mendeley.com
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4. Extraction, and Analytical Techniques 

Various techniques for extraction (see Table 1) of pyrrolizidine alkaloids from medicinal plants 

(see Table 2) are discussed. While some of them are more commonly used than others, most of them 

are based on maceration or percolation, the two main extraction principles stated in the literature (see 

Table 3). During maceration, the sample is soaked continuously with solvent, whereas, during 

percolation, the solvent flows through the plant material. Due to the dependence of the extraction 

yield on parameters such as viscosity of the solvent, diffusion coefficient and sample penetration, the 

technical implementation and the physical conditions vary.
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Figure 1. Pyrrolizidine alkaloids inherent in the genera of Alkanna, Anchusa, and Borago.

Toxins 2020, 12, x FOR PEER REVIEW 3 of 36 

 

 

Figure 1. Pyrrolizidine alkaloids inherent in the genera of Alkanna, Anchusa, and Borago. 

 

Figure 2. Examples for PAs inherent in plants of the genera Eupatorium, Heliotropium, Petasites, 

Brachyglottis, Cineraria, and Cynoglossum. 

 

Figure 3. Pyrrolizidine alkaloids inherent in plants of the genera Lithospermum, Tussilago, Senecio, and 

Symphytum. 

4. Extraction, and Analytical Techniques 

Various techniques for extraction (see Table 1) of pyrrolizidine alkaloids from medicinal plants 

(see Table 2) are discussed. While some of them are more commonly used than others, most of them 

are based on maceration or percolation, the two main extraction principles stated in the literature (see 

Table 3). During maceration, the sample is soaked continuously with solvent, whereas, during 

percolation, the solvent flows through the plant material. Due to the dependence of the extraction 

yield on parameters such as viscosity of the solvent, diffusion coefficient and sample penetration, the 

technical implementation and the physical conditions vary.

OH

N

O

O

N

O

O

OH

OH

7-Angeloylretronecine Triangularine

Alkanna

SupinineIntermedine

Anchusa

Thesinine Cynaustine

Borago

OH

O

O

OH

O

OH

O

OH

N N

OH

O

OH O

N

OO

OH

O

O

N

Echinatine Lindelofine

Eupatorium

RetronecinEuropine

Heliotropium

Senecionine Intergerrimine

Petasites

N

O

O

OH
OH

N

OH

OH

O

OH

O

OH

O

N

OH

OH

OO

N

OH

OH O
O

O

O

O

N
N

OH

O

OH

O

O

Hectorine Petasine

Brachyglottis

O

O

OH

OOH

N

N

O OO
O

O

N

O
O

O

N

C

O

O

O

O

O

O

O

C

OH

Cineraria

Otosenine Florosenine

Cynoglossum

OH

OH

OH

O

O

O

N

O

O
OH

N

OH O

OH

Heliosupine Rinderine

Senkirkin

Tussilago

SeneciphyllineCanesine Lithosenine

Lithospermum

O

N

O

OH

O
OH

OH

O

N

OH

OH

OO O

OHOHO

O

N

OH

O

O

OH

O

C

O

O

O
O

N

O

Erucifoline Ridelliine

Senecio Symphytum

Symphytine Lycopsamine

O

OH

C

O

O

O

N

O

OH

OO

OH

O
O

N

O

O

N

O

N

OH

OH OH

O

OH

O

O
OH

Figure 2. Examples for PAs inherent in plants of the genera Eupatorium, Heliotropium, Petasites,
Brachyglottis, Cineraria, and Cynoglossum.
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Figure 3. Pyrrolizidine alkaloids inherent in plants of the genera Lithospermum, Tussilago, Senecio, and
Symphytum.

4. Extraction, and Analytical Techniques

Various techniques for extraction (see Table 1) of pyrrolizidine alkaloids from medicinal plants
(see Table 2) are discussed. While some of them are more commonly used than others, most of them
are based on maceration or percolation, the two main extraction principles stated in the literature
(see Table 3). During maceration, the sample is soaked continuously with solvent, whereas, during
percolation, the solvent flows through the plant material. Due to the dependence of the extraction
yield on parameters such as viscosity of the solvent, diffusion coefficient and sample penetration,
the technical implementation and the physical conditions vary.

After successful extraction, sample solutions were most commonly analyzed using
chromatographic separation techniques such as HPLC, TLC and GC coupled with various detection
methods. Capillary electrophoresis (CE) with the separation based on migration of molecules in an
electric field, droplet counter current chromatography (DCCC) serving as an automated liquid–liquid
separation method, and miscellaneous electrokinetic chromatography (MEKC) techniques, which
are based on a combination of electrophoretic and chromatographic principles, were used as well.
Additionally, specific techniques without prior separation or purification such as 1H-NMR, 13C-NMR,
or ELISA (Enzyme Linked Immunosorbent Assay) tests based on specific antibody interactions with the
target molecule were used for quantification. An overview of the separation and detection techniques
is given in Table 4.
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Table 1. Concise description of extraction techniques used. All technical variations are based on maceration or percolation.

Technique Temperature Pressure Sample Solvent Remarks

Maceration ≤boiling point atmospheric e.g., flask any solvent sample is extracted by soaking in solvent

Refluxing ≤boiling point atmospheric round bottomed
flask any solvent

maceration on increased temperature,
vaporization of solvent is avoided by

condensation

Soxhlet ≤boiling point atmospheric Soxhlet cartridge any solvent special form of percolation (continuous)

Percolation room temperature atmospheric e.g., column any solvent sample placed in column, solvent is added, flow
through and is released

Sonication room temperature atmospheric e.g., flask any solvent maceration assisted by sonication to increase
solubility

SFE (Supercritical Fluid
Extraction) >boiling point pressurized reaction vessel e.g., CO2

temperature and pressure above critical point to
control extraction characteristics

PLE (Pressurized Liquid
Extraction) >boiling point pressurized reaction vessel

no
corrosive/decomposing

solvents

pressurization allows temperatures above boiling
point, faster extractions

MAE (Microwave
Assisted Extraction) >boiling point atmospheric reaction vessel no decomposing

solvents

pressurization or pressure stabile reaction vessels
allow temperatures above boiling point, faster

extractions heated by radiation

HPPE (High Pressure
Propane Extraction) >boiling point pressurized reaction vessel propane variation of SFE

Cold Ion Exchange room temperature atmospheric column any solvent
plant material placed in column solvent is

pumped continues in cycle, analyte is adsorbed on
specific material

PHWE (Pressurized Hot
Water Extraction) >boiling point pressurized column water (different

modifier)
sample is placed in column, hot water (modifier)

is pumped through column
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Table 2. Overview of PAs detected and identified in different genera. No distinction between N-oxides and free bases is made, as this was not differentiated by all
research groups. The main name describes the PA and its derivatives.

Genus Identified PAs

Alkanna
(Boraginaceae)

7-Angeloylretronecine [14,15], 9-Angeloylretronecine [14], 7-Tigloylretronecine [14], 7-Senecioylretronecine [14], 9-Tigloylretronecine [14],
9-Senecioylretronecine [14], 7-Angeloyol-9-(hydroxypropenoyl) retronecine [14], 7-Tigloyl-9-(hydroxy propenoyl) retronecine [14],

7-Angeloyol-9-(2,3-dihydroxypropanoyl) retronecine [14], 7-Tigloyl-9-(2,3-dihydroxypropanoyl) retronecine [14], Triangularine [14,15],
Triangularicine [14], Dihydroxytriangularicine [14,15]

Anchusa
(Boraginaceae) Anthamidin [14], Supinine [14,16], Intermedin [14,16], Lycopsamine [14,16], Currassavine [16]

Borago
(Boraginaceae) Lycopsamine [17], Supinidine [17],Viridiflorate [17], Cynaustine [17], Amabaline [17,18], Thesinine [18,19]

Brachyglottis
(Asteraceae) Senecionine [20,21], Retrorsine [20,21], Integerrimine [20], Senkirkine [20], Hectorine [20,21], Petasin [20,21], Angeloylheliotridine [20], Clivorine [20]

Cineraria
(Asteraceae)

Otosenine [22,23], Florosenine [22,23], Floridanine [22,23], Doronine [22], Senecionine [23,24], Integerrimine [23,24], Seneciphylline [23,24], Jacobine
[23,24], Usaramine [23]

Cynoglossum
(Boraginaceae) Heliosupine [25,26], Rinderine [25,26] Echinatine [25,26], Viridiflorine [26]

Eupatorium
(Asteraceae)

Lindelofine [27], Supinine [27–30], Lycopsamine [30–32], Intermedin [30–32], Amabaline [28,33], Echinatine [28–30,32,33], Rinderine [28],
Viridiflorine [28], Cynaustraline [28], Tussilagine [34]

Heliotropium
(Boraginaceae)

Trachelanthamine [35,36], Floridine [35], Heliovicine [35], Lycopsamine [37,38], Intermedin [38], Amabiline [37], Curassavine [37,39], Heliospathine
[37], Europine [40–43], Liamin [40], Heliotrine [42–45], Lasiocarpine [42,45,46], Retronecine [38,47–49], Helibracteatine [47], Helifoline [48],

Heliscabine [49], Heliosupine [44,46], Echinatine [44], Supinine [43], Heleurine [43], Coromandaline [39]

Lithospermum
(Boraginaceae) Lithosenine [50], Lycopsamine [51], Canescine [51,52] derivatives, Canescinine [51], Intermedine [51,53], Mysocorpine [53]

Petasites
(Asteraceae) Senkirkine [54–56], Senecionine [54,56–59], Intergerrimine [58,59], Petasitenine [55], Neopetasitenine [55]

Senecio
(Asteraceae)

Ridelline [60–66], Retrorsine [60–85], Seneciphylline [60–68,70–72,75,77,78,80–84,86–99], Senecionine [60–71,73–84,86,87,89–101],Senkirkine
[60–62,65,68,73,74,77,79,80,83,89,97,98,101], Jacobine [68,78,82,87,91,94–96,99], Integerrimine [61–64,66,68–80,82–84,87,89,92–95,97,99–101],

Spartiodine [61–63,66,68,70,77,78,82,90,92], Senecivernine [62,63,66,68,69,71,73–78,80,82,87,94,97], Platyphylline [61,62,100,102,103], Usaramine
[61,63,66,68–71,73,74,77–79], Adinofoline [61,68,104], Florosenine [68,71,73,74,77,94,98,101], Erucifoline [68,83,87,94,95], Otosenine

[68,71,73,74,77,88,94,97,101], Triangularine [75,100,105], Sarracine [75,100,105], Sarracinine [100], Eruciflorine [68,87], Onetine [68], Floridanine [68],
Senecicannabine [68,106], 7-Angeloylheliotridine [97,103], 9-Tiglylplatynecine [75,100], 7-Angeloylretronecine [75,97], Petasin [97],

9-Angeloylplatynecine [75], Monocrotaline [65], Uspallatine [69,85], Rosmarinine [90,107,108], Angularine [107,108], Hadiensiene [107], Ruwenine
[109], Ruzorine [109], Doriasenine [110], Sceleratine [111]

Symphytum
(Boraginaceae) Echimidine [112–114], Symphytine [112,113], Lasiocarpine [64], Intermedin [115], Lycopsamine [114–116]

Tussilago
(Asteraceae) Senkirkine [117–120], Senecionine [116,118–121], Intergerrimine [120], Seneciphylline [120], Senecivernine [122]
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Table 3. Overview of the extraction techniques and solvents used to process plant extracts.

Genus Technique Solvent

Alkanna
(Boraginaceae) Maceration 0.5 N HCl [14], Methanol [15]

Anchusa
(Boraginaceae) Maceration 0.5 N HCl [14], Chloroform [123,124], Methanol [123,124], Methanol/Water/Formic Acid (25/2/73) [125]

Borago
(Boraginaceae)

Maceration Methanol/Water/Formic Acid (25/2/73) [125], Methanol/Water [126], Hexane [18]

Refluxing Methanol/Water (4:1) [19]

Brachyglottis
(Asteraceae) Maceration Methanol [21], Ethanol [20]

Cineraria
(Asteraceae) Maceration Methanol [22,24], 0.5 N HCl [23]

Cynoglossum
(Boraginaceae)

Maceration 0.5 M Sulfuric Acid [127,128], Methanol [129], 0.5M HCl [26]

Soxhlet Methanol [25,130]

Refluxing Tartaric Acid in Methanol [131]

Eupatorium
(Asteraceae)

Maceration Methanol [27,29–31], Water [31], 0.05 M Sulfuric Acid [32]

Soxhlet Methanol/Dichlormethane [34]

Percolation Ethanol [33]

Heliotropium
(Boraginaceae)

Maceration Methanol [36,37,39,45,46,132], Ethanol [35,38,43,133–135], Methanol/Water/Formic Acid (25/23/2) [125]

Percolation Methanol [40–42], Ethanol [39,47,49,136]

Refluxing Methanol [137]

Lithospermum
(Boraginaceae)

Soxhlet Methanol [50,51,53]

Refluxing Tartaric Acid in Methanol [131]

Sonication Methanol [52]

Petasites
(Asteraceae)

Maceration Methanol [57,59,93], Water [55]

Refluxing Methanol/Tartaric Acid [54]

Soxhlet Ethanol [55]

SFE CO2 [138]

HP-Propan Propane [139]
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Table 3. Cont.

Genus Technique Solvent

Senecio
(Asteraceae)

Maceration
0.05 M Sulfuric Acid [72], 1 M Sulfuric Acid [63], 0.05 M Hydrochloric Acid [140], 0.1 M Hydrochloric Acid [92], 1 M

Hydrochloric Acid [68], Chloroform 0.1 M Hydrochloric Acid (1:1) [73], Methanol [64,69,75,85,90,97,106,140–143], Ethanol
[79,84,107,144–146], 0.4 M Formic Acid [66], Et2O/Pertolum Ether/Methanol (1:1:1) [98], 0.05 M Sulfuric Acid [72]

Refluxing Methanol [86,91,93], Ethanol [61]

Soxhlet Methanol [71,74,76,82,83,86,91,96,99,100,103,107,108,147–151]

Sonication 0.05 M Hydrochloric Acid

SFE CO2 [78]

PLE Sulfuric Acid [122], Phosphoric Acid [122], Ammonia [122], Acetic Acid [122], Formic Acid [122]

Cold Ion
Exchange/

Continuous
Extractor

Methanol [81], Petroleum Ether [101]

Symphytum
(Boraginaceae)

Maceration Methanol (hot) [93], Methanol [64,152], 0.025 M Sulfuric Acid [153], Water (hot) [154], Tartaric acid in Methanol [152]; Ethanol
[152] 0.7 M HCl [152], Chloroform/Methanol [152]

Refluxing Tartaric Acid in Methanol [54,152], Methanol/Water (50/50) [116], Ethanol [152], 0.7 M HCl [152], Ascorbic Acid in Methanol
[152]

Sonication Chloroform (basic) [155], Methanol/Water (50/50) [116], Methanol/Chloroform (15/85) [116], Methanol [116], Ethanol [116],
Tartaric Acid in Methanol [152], Acetic Acid [152]

Percolation Methanol [152]

HWPE Water [116]

PLE Acetic Acid [122], Phosphoric Acid [122], Formic Acid [122], Sulfuric Acid [122], Ammonia [122]

Tussilago
(Asteraceae)

Maceration Methanol/Citric Acid [118,119,121], Methanol/Ammonia [118], 0.25 M Sulfuric Acid [156], Water [118], Acidified Water [118]

Microwave Methanol/Water acidified with hydrochloric acid or acetic acid [157]

Refluxing Methanol/Tartaric acid [117], Water [54,118], Methanol alkaline [118], 1 M HCl [157]

Soxhlet Methanol [118]

PHWE Hot water [157]

PLE Acetic acid [122], Phosphoric acid [122], Formic acid [122], Sulfuric acid [122], Ammonia [122]
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Table 4. Overview of analytical techniques and detection methods for the determination of PAs in plant extracts. The LoD or LoQ is listed if given in corresponding
manuscript, if not it is characterized by “–”.

Genus Separation Detection LoD (ppm) LoQ (ppm)

Alkanna
(Boraginaceae)

GC MS [14] – –

DCCC UV [15] – –

Anchusa
(Boraginaceae)

GC MS [14,16] – –

HPLC MS [124,125] – –

Borago
(Boraginaceae)

GC MS [18,19] – –

HPLC MS [126] – –

HPLC MS/MS [125] – –

HPLC Orbitrap [125,126] – 0.325

TLC Ehrlichs Reagent [17]

Brachyglottis
(Asteraceae)

GC MS [20,21] – –

TLC Visual [20,21] – –

Cineraria
(Asteraceae) GC MS [14,22] – –

Cynoglossum
(Boraginaceae)

HPLC MS [25,131] – –

GC MS [26,129,158] – –

TLC Visual [25,158] – –

none Photometric [127–129] – –

none q-NMR [130] – –

Eupatorium
(Asteraceae)

HPLC MS/MS [31,32] – –

GC MS [28,30,34,159] – –

TLC Visual [27,29,33], Chloranillin [30], Mattocks Reagent [34] – –

Heliotropium
(Boraginaceae)

HPLC MS/MS [125] – –

GC MS [45,135,137,160] – –

None p-Toluene Sulfonic Acid [137] – –

TLC Dragendorffs [137] – –

None Photometric [137] – –
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Table 4. Cont.

Genus Separation Detection LoD (ppm) LoQ (ppm)

Lithospermum
(Boraginaceae)

GC MS [50–52,131] – –

HPLC DAD [131] – –

HPLC MS [131] – –

TLC Ehrlichs—Reagent [52] – –

Petasites (Asteraceae)

HPLC UV [54–56,161] 0.10–5.0 0.35–25.0

HPLC RI [55] – <10

HPLC ToF-MS [56,161] 0.01 0.50

UPLC ToF-MS [138] – 0.002

GC FID [93] 2 –

TLC Densiometric [54] 20 40

TLC UV [57] 1 –

None Photometric [162] – –

None ELISA [57–59] 0.10 –

Senecio (Asteraceae)

GC FID [68,72,77,78,82,84,87,95,99], – –

GC MS [62,63,67,68,73–77,83,84,87,92,94,99,103,147] – –

GC NPD [68,72,87], – –

GC FTIR [71], – –

HPLC UV [140,151] 0.13 × 10−3–0.31 × 10−3 –

HPLC ELSD [64] 40 –

HPLC MS [86,150] – –

HPLC MS/MS [66,96,104] 0.5 × 10−3 1.0 × 10−3

UHPLC DAD-MS [61] – –

UHPLC MS/MS [65] 0.3 × 10−6–11 × 10−6 0.8 × 10−3–36 × 10−3

None ELISA [141,163–165] 0.02 × 10−3–10,000 × 10−3 –

None q-NMR (1H/13C) [80,149,166,167] – –
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Table 4. Cont.

Genus Separation Detection LoD (ppm) LoQ (ppm)

Symphytum
(Boraginaceae)

HPLC DAD [54] 0.06–0.2 0.10–0.35

HPLC ELSD [64] 40 –

HPLC MS [116] – –

HPLC MS/MS [122] 1 × 10–3 5 × 10−3

GC FID [93,114] – –

GC MS [114,153] – –

GC NPD [154] 0.4 × 10–3–1.0 × 10–3 –

GC FTIR [115] – –

TLC Densiometric [54,168] 22 73

TLC Visual [154] – –

None Photometric [152,169] 1 –

Tussilago
(Asteraceae)

HPLC UV [170] – –

HPLC Q-ToF [117] 0.275 × 10–3 0.916 × 10−3

HPLC MS/MS [122,171] <1.0 × 10–3 <5.0 × 10−3

HPLC MS/MS [157] 0.26–1.32 1.04–5.29

CE UV [118] <0.1 × 10–3 –

MEKC UV [121] 2.0 × 10–3–5.0 × 10–3 –

GC MS [120] – –

TLC VIS [117] – –

Titration Visually [156] – –
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5. Results

Thirteen of the fourteen genera relevant in 1992 are considered in the following sections. The genus
Erechtites could ultimately not be considered because of a lack of published data.

5.1. Alkanna

The genus Alkanna includes about 50 subtypes. For example, Alkanna tinctorial is used topically
for skin treatment due to its antibacterial effects [172]. The PAs found in the genus Alkanna are listed in
Table 2. Extraction was done by grinding the plant parts in Ultraturax using 0.5 N hydrochloric acid
as a solvent followed by soaking for 1 h [14]. Another procedure uses maceration in methanol [15]
(see Table 3). Quantitative analysis was performed by GC-MS [14]. Identification or qualitative analysis
was performed by 13C-NMR, 1H-NMR, infrared spectroscopy, or mass spectrometry [15] (see Table 4).

5.2. Anchusa

This genus includes about 50 species and is used in folk medicine for treating open wounds
and cuts [173]. Inherent PAs (see Table 2) were extracted by stepwise maceration with methanol and
CHCl3 [123,124] by grinding plant parts in 0.5 N HCl, as described by El Shazly [14] or using an acidified
mixture of methanol, combining the extraction power of organic, aqueous and acidic solvents [125]
(see Table 3). Analytical methods (see Table 4) were focused on isolation and identification of the
different PAs/PANs predominantly by GC-MS [14,16,124]. Siciliano et al. illustrated the PA pattern in
leaves, flowers and roots applying LC-MS. They were able to show that the leaves contain most PAs
followed by flowers and roots [123]. These et al. applied the previously reported LC-MS/MS screening
method [125].

5.3. Borago

Plants of the genus Borago are used in herbal medicinal products due its antihypertensive effect [174],
amoebicidal activity to treat gastrointestinal diseases [175], and antioxidant and antimicrobial
effects [176,177]. PAs determined in the different subtypes are listed in Table 2. Only few studies
were devoted to the extraction of Borago (see Table 3). Half of them investigated seeds or its
oil [17–19,126], which were processed by dissolving and vortex shaking [125,126] for analysis.
Only Hermann et al. refluxed the samples and isolated a glycosylated PA from Borago by further
processing [19]. These et al. used 25% methanol in 2% formic acid for maceration and reached with
their screening method based on tandem MS sensitivities in the low ppb region [125]. Despite the
simpler matrix and the usage of an Orbitrap, Vacilotto et al. reached a LoQ of 0.325 ppm for the
analysis of PAs in oil [125]. Dodson et al. determined the PAs in different plant parts and seeds with
gas chromatography [18]. A similar experiment was done by Larson et al. investigating the PA content
of fresh leaves and roots by TLC and visualizing them via Ehrlichs reagent [17].

5.4. Brachyglottis

With its 39 species that are all native to New Zeeland, Brachyglottis belongs to the aster family.
It is used to treat sores and wounds [178]. Antifungal [179], antiviral [178], anti-microbial [180],
and anti-cancer [178,180] properties were studied. Extraction of plant parts (listed in Table 3) was
performed by maceration with ethanol [20] or methanol [21]. Inherent PAs are summarized in Table 2.
Quantification was carried out via GC-MS [20,21].

5.5. Cineraria

Cineraria includes 35 species and is used in traditional medicine due to its abortive, uterus cleaning
properties as well as for its potential for treating chickenpox [181]. Tunudis et al., El Shazly et al., and
Wiedenfeld et al. investigated the PAs inherent to Cineraria species (see Table 2). They used maceration



Toxins 2020, 12, 320 12 of 35

with methanol [22,24] or grinding and soaking [23]. Separation and quantification was performed by
GC-MS [22,23] (see Table 4).

5.6. Cynoglossum

The genus Cynoglossum shows strong affinity to some of its neighboring genera (e.g., Pardoglossum
or Solenanthus) [182,183]. With over 75 species distributed worldwide, it is used in traditional
medicine for treating illness with fever, headache and sweating [184]. Moreover, Cynoglossum
clumnae revealed to exert cytotoxic [185,186], antimicrobial [185–187], antifungal [185], antidiabetic,
antihyperlipidemic, and antioxidant effects [188]. Only a few PAs were identified in the genus
Cynoglossum (see Table 2). Extraction was performed with Soxhlet extraction using methanol [25,130]
or maceration with ethanol 95% [158], sulfuric acid 0.5 N [127,128], methanol [129], or hydrochloric
acid 0.5 N [26]. Mroczek et al. extracted the PAs by refluxing with 1% tartaric acid in methanol [131].
No research group has to date investigated, optimized, or compared the influence of different extraction
conditions on the PA content with the same plant material. The most promising extraction procedures
were used by Mroczek et al. based on results achieved for comfrey [131]. Considering these results,
there may be losses anticipated during long term extraction at elevated temperatures [25,127,130]
because of PA degradation. Mattocks used GC-MS for identification of the different PAs in the genus
Cynoglossum [158], while El-Shazly et al. for screening of the alkaloid profiles in stems, leaves, flowers,
fruits, and roots [26]. Van Dam et al. quantified the individual PAs with GC-MS [129] before determining
the sum with a photometric color-reaction based method [127–129] developed by Mattocks [189].
HPLC-DAD-MS was used for PA screening of different plants too [131]. A screening of different
plants during maturation, without further purification, was done by Pfister et al. using q-NMR [130].
Purification or separation without direct quantification was done by TLC [25,129,158].

5.7. Eupatorium

In sum, there are over 45 different species of the genus Eupatorium. Different subtypes were
investigated due to their pharmaceutical applications based on their antimicrobial [190–192], wound
healing [192,193], analgesic [193], anti-inflammatory [192,193], antidiabetic [192], hepatoprotective [192],
and antioxidant [192] effects. Echinatine, lycopsamine, and intermedine are the most reported PAs
in Eupatorium (see Table 2). Samples are extracted mainly by maceration [27,29–32], percolation [33],
or using Soxhlet [34] (see Table 3). Colegate et al. compared qualitatively maceration in methanol
over 16 h at room temperature with hot water infusions or decoctions [31] (see Table 5). Hot water
infusions and decoctions lead to high amounts of all PAs [31], whereas alcoholic tinctures mainly
contain increased contents of free bases. This underlines that short extractions at high temperatures
can result in increased yields of PAs.

Table 5. Overview on the studies by Colegate et al. regarding optimal PA extraction for Eupatorium
[31]. Missing information is characterized by “–”.

Technique Sample
(g)

Volume
(mL)

Time
(h)

Temperature
(◦C) Solvent Result (ppm)

1 Tinctures – – – Room
Temperature Ethanol/Water Only free bases

2 Maceration 0.2 10 16 Room
Temperature Methanol Reference Point

3 Infusion 3.3 200 10 Boiling Point. Water High contents

4 Decoctions 3.3 200 10 Boiling Point Water High contents
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For the determination of PAs (see Table 4), most research groups applied GC-MS using ionization
methods such as electron impact (EI) [16,30,34] or chemical Ionization (CI) [28,30] in negative or positive
ion mode. Edgar et al. applied FAB (fast atom bombardment), a rarely used ionization technique in
MS [28]. No data regarding the sensitivity were reported by them, thus no advantages of the different
ionization techniques can be stated. Colegate et al. [31] and Kast et al. [32] used liquid chromatography
with mass spectrometric determination of PAs. Kast achieved an LoQ of 1.0 × 10−3–3.0 × 10−3 ppm
by using a triple quadrupole and improved sensitivity (LoD: 1.0 × 10−3 ppm; LoQ: 3.0 × 10−3 ppm)
applying a high-resolution q-ToF [32]. Both groups achieved this high sensitivity due to the usage of
selective detection methods, which should be considered state-of-the-art for the determination of PAs.
Other research groups address analytics in a simpler way by using TLC for purification [27,29,33,34] or
analysis [30] together with chloro-anillin or Mattocks reagent for visualization.

5.8. Heliotropium

Heliotropium belongs to the subgenus Heliotropiiodeae within the borage family. In traditional
medicine, Heliotrpium indicum is used to treat abdominal pain, amenorrhea, dysmenorrhea, skin
rashes, wounds, etc. [194–196]. Furthermore anti-cancer [194–196], anti-inflammatory [195,196],
hypotensive [197], and anthelmenic [198] effects have been reported. Only a few extraction approaches
(see Table 3) for PAs inherent in Helitropium species (see Table 2) were conducted. Methanol or
either ethanol are used mostly for percolation [39–42,47,48,136] or maceration [35–38,43,45,46,132–135].
These et al. achieved, again, good results by the usage of a mixture of methanol and formic acid
for maceration [125]. This procedure might be surpassed by that of Birecka et al. refluxing the
samples [135,137], because, as seen before, increased temperatures have a positive effect on the yield of
extracted PAs.

Most research groups were mainly interested in elucidating PA structures by applying 1H-NMR,
13C-NMR and MS [33,35–44,46–49,132–134,136]. If quantified (see Table 4), the focus was set on
determination of PA levels in young and matured leaves [135] or in elucidating different seasonal or
environmental patterns [45]. Mostly GC-MS was used [45,135,137,160]. By dividing the extracts into
two fractions followed by Zn/HCl reduction of one of them, Tosun et al. quantified the PA content
and the ratio of free bases to N-oxides in seeds of Helitropium [160]. Birecka et al. used four different
methods for PA analysis. Identification was done by TLC, using Dragendorffs or Ehrlichs reagent.
Quantification of several PAs was done by GC-MS, and the sum was determined using a photometric
detection at 565 nm and a titration with toluene sulfonic acid [137]. These et al. applied their LC-MS/MS
screening method on Heliotropium species [125]. However, in none of these articles are LoDs or LoQs
stated. Nonetheless, it may be safely assumed that the LC-MS/MS method revealed the best selectivity
with sensitivities in the low ppb region, as stated before.

5.9. Lithospermum

The genus Lithospermum includes 59 species. Lithospermum erythrorhizon, as an example, is used in
Traditional Chinese Medicine (TCM) to treat wounds, burns, and dermatitis. Nowadays, it is used as
adjuvant for treatment of cancer [199,200]. Additionally, anti-inflammatory [199,201], antifungal [201],
and antiviral [202] effects have been reported. Different PAs are reported to be inherent in the genus
Lithospermum (see Table 2). Plant material was extracted using Soxhlet extraction with methanol over
seven days [50,51,53], refluxed under acidic conditions [131]. Further a fourfold sonication-supported
maceration at 40 ◦C was performed by Pietrosiuk et al. [52]. Based on the insights gained from previous
extraction experiments losses in the PA content due to long-term extractions at increased temperature
cannot be excluded. However, the two other procedures seem to result in optimal PA yields.

Regarding analytics, the focus in the literature appears to be on isolation and structure
elucidation [50,51,53] rather than selective and sensitive PA determination (see Table 4). TLC was mostly
used for purification, e.g., prior to GC-MS analysis [50,51]. For example, Pietrousk et al. determined
shikonin derivatives inherent in hairy roots. They separated them by TLC followed by visualization with
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Ehrlichs reagent and GC-MS analysis [52]. Mroczek et al. repeatedly tested his HPLC-DAD-thermobeam
MS method [131]. However, no quantification results are reported.

5.10. Petasites

About 15 species are known to belong to the genus Petasites and are distributed in the northern
regions in the world. Several of them are used as herbal supplement due to their antispasmodic and
anti-inflammatory effects and are included in herbal medicinal products as agent for treatment of
spasms of urogenital tract, gastrointestinal colic and dysmenorrhea [203]. It is currently investigated
in clinical trials for its effectiveness in migraine prophylaxis [204]. For Petasites, different inherent
PAs have been reported (see Table 2). They were extracted using maceration [55,57–59], refluxing [54]
or Soxhlet [55] (see Table 3). Schenk et al. analyzed a CO2-Extract [138] and Knez et al. developed a
procedure with propane (HPPE, high pressure propane extraction) [139] for large scale extraction of PAs.
Niwa et al. showed some evaluation of the PA extraction efficiency (see Table 6) [55]. They extracted
P. japonicus samples on the one hand with boiling water and on the other hand with ethanol by Soxhlet
for 24 h. They stated that only half of the PAs (54%) could be extracted with hot boiled water compared
to the ethanolic extraction procedure. However, due to the different solvents, time, and procedures
applied, it is difficult to compare the results. It can be suggested that an increased PA content is
achieved if ethanol is used at increased temperatures for elongated extraction times.

Table 6. Overview of PA content extracted with two different extraction procedures from Petasites.
The results correspond to the sum of petasitenine, neopetasitenine, senkirkine, and otosenine [55].

Technique Sample
(g)

Volume
(mL)

Time
(h)

Temperature
(◦C) Solvent Result

(ratio)

1 Soxhlet 10 – 24 Bp. Ethanol 1.0

2 Boiling 10 300 1 Bp. Water 0.5

Considering analytics of Petasites (see Table 4), Wildi et al. developed a TLC method with UV
detection accomplishing a LoD of 1 ppm, which can compete with HPLC- and GC-based techniques [57].
PAs in the genus Petasites were analyzed in most cases by liquid chromatography. Schenk et al. used
a coupling of UHPLC with ToF-MS [138] and achieved a quantification limit of 0.002 ppm (LoD not
given) for Petasites. That sensitivity limit was not reached by combination of ToF-MS with conventional
HPLC separation (LoD: 0.01 ppm; LoQ: 0.5 ppm) [56,205]. One explanation for the higher sensitivity
is that peaks achieved by UHPLC are narrower and therefore higher due to smaller particles and
higher pressure used. Satisfying results covering a LoQ from 0.35 to 25.0 ppm were also achieved
by using UV detection. Because of missing chromophores, Niwa et al. determined PAs with a RI
(refractive index) detector [55]. The smallest calibration point was set at 10.0 ppm, leaving thus the
question regarding the LoQ unanswered. Selective and sensitive quantification of PAs without prior
chromatographic separation was achieved by using an enzyme linked immunosorbent assay (ELISA)
specific for retrorsine [57–59]. Interesting results were achieved by Langer et al. developing antibodies
against retrorsine for the determination of senecionine; selectivity was shown and a LoD of 0.1 ppm in
plant material was reached [58]. A disadvantage is that only one PA is determined.

5.11. Senecio

More than 1000 subspecies of the genus Senecio are distributed worldwide. Therefore, several
of them were investigated for their medicinal effects. For example, Senecio scandens Buch.-Ham.
ExD. Don is exported as OTC in traditional Chinese medicine for treating bacterial diarrhea,
enteritis, conjunctivitis, and respiratory tract infections [206] or in Africa against malaria [207]
or hypertension [208]. Other species were tested for their relaxant effects [209] as well as
anti-inflammatory [155,206,209], antimicrobial [155,206], antileptospirosis [206], hepaprotective [206],
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anti-infusorial [206], antioxidant [206,210–214], antiviral [206,215,216], antitumoral [155,206,217],
analgesic [206], anti-tuberculosis [218], anti-spastic [155], and antibacterial [103] characteristics.
In several Senecio species, 39 different PAs have been identified (see Table 2).

Maceration under acidic conditions was mostly applied, e.g., 0.05 M HCl [65,104,140], 0.1
M HCl [92], 1 M HCl [68], 0.05 M H2SO4 [72], 0.1 M H2SO4 [63,95], or 0.4 M formic acid [66],
as well as methanol [64,75,85,97,106,142,143,219,220], ethanol [79,84,109,144,146], or other organic
mixtures [73,98]. A large scale maceration apparatus, based on acidic solvents, was developed
by Craig et al. [221]. Alternative techniques such as ultrasonic [65], supercritical fluid (SFE) [78],
continuous [101], and cold ion extraction [81] were performed as well. Extractions at increased
temperatures were mostly performed by Soxhlet [14,74,76,77,82,83,91,96,99,103,108,145,147–151,165]
or refluxing [25,88,105] with the extraction of Senecio studied by a few research groups in more detail.

Hartmann et al. compared the spontaneous reduction of N-oxides if Soxhlet extraction or
maceration was applied. They showed that up to 50% of the N-oxides were reduced during prolonged
Soxhlet extraction [72] due to thermal degradation (see Table 7).

Table 7. Overview on the extraction experiments for Senecio by Hartmann et al. Results correspond
to the content of free PA bases determined by GC-MS, and N-oxides by HPLC-UV [72]. Missing
information is characterized by “–”.

Technique Sample
(g)

Volume
(mL)

Time
(h)

Temperature
(◦C) Solvent Result (%)

1 Maceration 6–10 20 0.5 Room
Temperature

Sulfuric Acid
0.1 N 5 *

2 Soxhlet – – 48 Boiling Point Methanol 44 *

* percentage of free bases with reference to the overall PA content.

Bicchi et al. varied pressure and temperature of SFE, and compared the results with Soxhlet
extraction (see Table 8) [78]. It can be concluded that both temperature (Experiment 2 vs. 4) and
pressure (Experiment 3 vs. 4) have a significant influence on the extraction yield. However, this study
does not specify as to which parameter is more important. This may therefore constitute additive effects,
as despite the higher temperature applied during Soxhlet extraction SFE revealed higher contents.
This underlines the importance of increased pressures for an exhaustive extraction. The evaluation
of the ideal Soxhlet conditions was done by varying the sample amount of S. inaequidens between 1
and 25 g and the extraction time between 0.5 and 8 h. As a result, they limited the extraction time to
4 h [76], which may be a further evidence for thermal degradation.

Table 8. Overview of the extraction experiments by Bicchi et al. To optimize the SFE extraction
method for Senecio. The results correspond to the sum of senecionine and seneciphylline [78]. Missing
information is characterized by “–”.

Technique Sample
(g)

Volume
(mL)

Time
(h)

Temperature
(◦C)

Solvent/
Pressure

Result
(ppm)

1 Soxhlet 10 – 4 Boiling Point Methanol
ambient 0.74 */2.39 **

2 SFE 0.5 80 4 50 Methanol/
CO2 15MPa 0.68 */2.92 **

3 SFE 0.5 80 4 55 Methanol/
CO2 10MPa 0.65 */2.74 **

4 SFE 0.5 80 4 55 Methanol/
CO2 15MPa 0.84 */3.24 **

5 SFE 0.5 80 4 60 Methanol/
CO2 15MPa 0.81 */3.16 **

* Senecio inaequidens L.; ** Senecio cordatus L.
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Kopp et al. [122] investigated the influence of solvent (acidic or basic), concentration (1% or 5%),
temperature (25–125 ◦C), and pressure (see Table 9) using PLE. The results were compared with a
BfR-based maceration method [222]. It was shown that solvent is one of the most important parameters.
Temperature dependent differences of up to 600 ppm in final PA content were shown. No effect of
temperature was observed between 50 and 75 ◦C, but, if increased above 100 ◦C, dependent on solvent,
a loss of PAs could be detected. This loss can be correlated with PA degradation caused by reactive side
chains. Comparing these PA contents with the maceration-based method revealed higher PA yields of
up to 380 ppm at moderately increased temperature and increased pressure. The direct influence of
pressure could not be clarified during this study.

Table 9. Overview on the extraction experiments by Kopp et al. using PLE to investigate the influence
of different solvents at different temperatures on the extraction yield of PAs for the example of Senecio
with reference to the BfR-based extraction method. The results correspond to the sum of erucifoline,
senecionionine, senecivernine, seneciphylline, retrorsine, and their N-oxides [122].

Technique Sample
(g)

Volume
(mL)

Time
(min)

Temperature
(◦C) Solvent Result

(ppm)

1 PLE 1 30 30 50/75/100/125 Phosphoric acid 1% 360.6/314.5/331.4/191.2

2 PLE 1 30 30 50/75/100/125 Phosphoric acid 5% 409.7/393.6/396.7/197.6

3 PLE 1 30 30 50/75/100/125 Ammonia 1% 177.9/185.2/218.4/106.6

4 PLE 1 30 30 50/75/100/125 Ammonia 5% 168.9/291.6/212.8/146.3

5 PLE 1 30 30 50/75/100/125 Sulfuric acid 1% 168.4/251.1/119.5/146.5

6 PLE 1 30 30 50/75/100/125 Sulfuric acid 5% 250.7/253.8/85.1/153.8

7 PLE 1 30 30 50/75/100/125 Acetic acid 1% 787.5/863.0/558.2/234.6

8 PLE 1 30 30 50/75/100/125 Acetic acid 5% 831.1/838.0/603.0/195.9

9 PLE 1 30 30 50/75/100/125 Formic acid 1% 798.9/776.9/574.9/255.5

10 PLE 1 30 30 50/75/100/125 Formic acid 5% 880.2/774.4/729.2/208.9

11 BfR based 2 40 30 RT Formic Acid/
Methanol/Water 504.7

Zhang et al. compared refluxing (methanol), soaking or sonication assisted extraction of samples
in aqueous HCl [104]. They decided to use sonication experiments for optimizing adonifoline content,
because of the easy, fast, and rugged handling without thermal degradation. A L9 (34) orthogonal
study design (also referred to as the Taguchi design) (see Table 10) was used.

Varied parameters were solvent volume, concentration, and extraction time. Zhang et al. concluded
that, in the case of adonifoline, the most important factor appears to be time followed by concentration
and volume. Hence, the best results were achieved if low concentrations of hydrochloric acid were
applied for a long time, i.e., 40 min.

To summarize the results for the extraction of plants of the genus Senecio, it may concluded that
best yields can be achieved by applying acidic solvents at increased temperatures for short time periods
preferably at high pressures.
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Table 10. Overview on experiments by Zhang et al. To optimize the extraction of adenofiline by
sonication. The results represent the content of adenofiline determined by HPLC-MS/MS [104].

Technique Sample
(g)

Volume
(mL)

Time
(min)

Temperature
(◦C) Solvent Result

(ppm)

1 Sonication 0.3 10 10 Room
Temperature

Methanol/HCl
0.2% 85.2

2 Sonication 0.3 10 20 Room
Temperature

Methanol/HCl
1.0% 75.9

3 Sonication 0.3 10 40 Room
Temperature

Methanol/HCl
5.0% 85.5

4 Sonication 0.3 25 20 Room
Temperature

Methanol/HCl
0.2% 86.6

5 Sonication 0.3 25 40 Room
Temperature

Methanol/HCl
1.0% 86.1

6 Sonication 0.3 25 10 Room
Temperature

Methanol/HCl
5.0% 74.5

7 Sonication 0.3 40 40 Room
Temperature

Methanol/HCl
0.2% 86.8

8 Sonication 0.3 40 10 Room
Temperature

Methanol/HCl
1.0% 79.4

9 Sonication 0.3 40 20 Room
Temperature

Methanol/HCl
5.0% 81.5

Analyzing PAs in the genus Senecio (see Table 4), the whole bandwidth of chromatographic techniques
were used. Unfortunately, the achievable sensitivity is rarely reported. For example, GC coupled with
FID [68,72,77,78,82,84,87,95], NPD [68,72,87], or MS [62,63,67,68,73–77,83,84,87,92,94,99,103] were used but
no LoDs or LoQs are stated. The same holds true for HPLC-based analyses. Only a few research
groups published their achieved sensitivities after optimization. Zhang et al. reported via MS/MS
detection based methods a LoD of 0.5 × 10−3 ppm [104]. A comparable result was achieved for
adinofoline in UV, after previous derivatization with chloro-aniline [140]. Schaneberg et al. reported
only medium sensitivity when ELSD was coupled to HPLC [64]. The best LoD (0.3–1.1 × 10−6 ppm)
was achieved by Zhou et al. with UHPLC combining high resolution with short analysis times and
reduced solvent consumption [65]. Determination without previous separation was mainly done by
quantitative NMR (q-NMR) and enzyme linked immunosorbent assay (ELISA). Pieters et al. compared
q-NMR (1H and 13C) with GC and concluded that there is a lack of selectivity due to the complex
spectrum with much overlapping signals using 1H-NMR. In contrast, 13C-NMR might be more suitable,
but it cannot compete with the sensitivity achieved by GC-MS [80]. Langer et al. developed specific
antibodies against retrorsine and immobilized them for the determination of senecionine, the main
alkaloid of genus Senecio. Despite an LoD of 0.023 × 10−3 ppm and the resolved cross-reactivities
against monocrotaline, senecyphilline, retrorsine-N-oxide, and senkirkine, its usage is limited to a
single PA [58].

5.12. Symphytum

Comfrey is used as a medicinal plant based on its anti-inflammatory and analgesic effects. Multiple
trials have demonstrated the efficacy of comfrey preparations for treatment of pain, inflammation, and
swelling of muscles in degenerative arthritis, sprains, acute myalgia in the back, contusions, and strains
after sport injuries [223]. Several PAs were identified in roots or leaves of Symphytum (see Table 2).
The dried, freeze-dried [153], or nitrogen-ground [224] plant parts were extracted by various extraction
procedures and solvents (see Table 3). In most cases, maceration with or without sonication was utilized
for PA extraction [64,93,116,152–155]. Other procedures such as refluxing [54,116,152], percolating [152],
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HPWE [116] or PLE [122] were used too. Only limited studies were devoted to investigate the effect
of different extraction conditions on the yield of PAs from Symphytum. The most detailed study was
presented by Mroczek et al. investigating the effect of solvents (organic, aqueous, acidified, alkalified,
or mixtures), temperature, time, or technique (maceration, percolation, sonication, or refluxing) [152]
(see Table 11).

Table 11. Overview on the extraction experiments by Mroczek et al. To investigate the influence
of extraction techniques using different solvents for different times at different temperatures on the
extraction yield of PAs for the example of Symphytum. The results correspond to the sum of PAs
quantified by UV-Vis [152] (1st, first extraction; 2nd, second extraction).

Technique Sample
(g)

Volume
(mL)

Time
(h)

Temperature
(◦C) Solvent Result

(ppm)

1 Maceration 1 100 6 Room
temperature Methanol 802

2 Maceration 1 100 12 Room
temperature Methanol 695

3 Maceration 1 100 18 Room
temperature Methanol 854

4 Maceration 1 100 12 50–60 Methanol 1081

5 Reflux 1 100 2 (1st) Boiling Point Methanol 1251

6 Reflux 1 100 2 (2nd) Boiling Point Methanol 155

7 Percolation 5 500 2 Room
temperature Methanol 1051

8 Percolation 2 200 2 Room
temperature Methanol 640

9 Maceration 1 100 10 Room
temperature

1% methanolic
solution of

tartaric acid
1024

10 Reflux 1 100 1 Boiling Point
1% methanolic

solution of
tartaric acid

1092

11 Reflux 1 100 2 Boiling Point
1% methanolic

solution of
tartaric acid

1301

12 Reflux 1 100 4 Boiling Point
1% methanolic

solution of
tartaric acid

1155

13 Sonication 1 100 0.5 Room
temperature

1% methanolic
solution of

tartaric acid
436

14 Maceration 1 100 18 Room
temperature Ethanol 95% 363

15 Reflux 1 100 4 Boiling Point Ethanol 95% 1258

16 Maceration 1 100 6 Room
temperature 2.5% HCl 498

17 Reflux 1 100 0.5 Boiling Point 2.5% HCl 304

18 Reflux 1 100 2 Boiling Point 2.5% HCl 214

19 Maceration 1 100 1 Room
temperature

Chlorofom/
MeOH/Ammonia 229

20 Sonication 1 100 0.5 Room
temperature 5% Acetic Acid 650

21 Reflux 1 100 2 Boiling Point
1% methanolic

solution of
ascorbic acid

163
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The significant influence of the solvent could be shown by comparing the results of a 1%
methanolic solution of tartaric acid (highest yields) with methanol (second highest yield), 2.5%
aqueous hydrochloric acid (third highest yield), followed by ethanol 95% and an alkalified mixture of
methanol and chloroform. However, it was also shown that this effect can be eliminated at elevated
temperatures. However, increased temperatures and selecting the least efficient solvent may result in
strongly decreased PA amounts. For example, high temperatures in combination with hydrochloric or
ascorbic acid resulted in decreased amounts. Considering time, extended extraction periods at room
temperature result in higher yields, yet in losses at higher temperatures (4-h reflux Experiment 12
compared to 2-h reflux experiment), which may come from degradation. Overall, experiments done
by Mroczek et al. show that contents between 163 and 1300 ppm were reached for the same plant
material dependent on the selected extraction parameters. In summary, acidic solvents and increased
temperatures for short time periods appear to be the parameters of choice.

Feng Liu et al. extracted samples by sonication, refluxing and pressurized hot water extraction.
Solvent (methanol, ethanol, and mixtures), time, and temperature were varied (see Table 12). The 6 ppm
higher content using water/methanol for extraction reflects that solvents have an important influence.
In combination with an increased temperature (i.e., refluxing), a fourfold content of lycopsamin was
achieved, which reveals the additional positive effect of increased temperatures. Even PHWE lead to
higher lycopsamine contents compared to those obtained with sonication [116].

Table 12. Overview on the extraction experiments by Feng Liu et al. to investigate the influence of
the extraction technique, solvent, extraction time, and temperature on the extraction yield of PAs in
Symphytum. Results correspond to lycopsamine determined by HPLC- ESI-MS [116].

Technique Sample
(g)

Volume
(mL)

Time
(min)

Temperature
(◦C) Solvent Result

(ppm)

1 Sonication 1 50 10 Room
Temperature

Methanol/Water
(50/50) approx. 7.5

2 Sonication 1 50 10 Room
Temperature

Methanol/Water
(50/50), pH: 2.5 approx. 7.5

3 Sonication 1 50 10 Room
Temperature

Methanol/
Chloroform (15/85) approx. 1.5

4 Sonication 1 50 10 Room
Temperature Methanol approx. 3.0

5 Sonication 1 50 10 Room
Temperature Ethanol 95% approx. 1.0

6 Reflux 1 60 60 65 Methanol/Water
(50/50) approx. 30

7 PHWE 1 60 40 60 Methanol/Water
(50/50) approx. 12.5

8 PHWE 1 60 40 80 Methanol/Water
(50/50) approx. 10.0

Kopp et al. studied the extraction with PLE [122] and compared the results with the BfR-based
extraction method [222]. Solvent, concentration, and temperature were varied systematically, while
pressure was held constant during PLE experiments (see Table 13).
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Table 13. Overview on the extraction experiments carried out to investigate the influence of different
solvents, at different temperatures on the extraction yield of PAs of Symphytum with PLE and the
BfR-based extraction method. The result corresponds to the sum of lycopsamine and intermedine
quantified by LC/MS/MS [122].

Technique Sample
(g)

Volume
(mL)

Time
(min)

Temperature
(◦C) Solvent Result (ppm)

1 PLE 1 30 30 50/75/100/125 Phosphoric acid 1% 389.1/485.5/312.3/615.8

2 PLE 1 30 30 50/75/100/125 Phosphoric acid 5% 564.4/619.5/677.3/586.8

3 PLE 1 30 30 50/75/100/125 Formic acid 1% 321.3/318.4/422.6/462.6

4 PLE 1 30 30 50/75/100/125 Formic acid 5% 474.1/386.1/510.6/472.9

5 PLE 1 30 30 50/75/100/125 Sulfuric acid 1% 481.7/444.2/455.2/486.1

6 PLE 1 30 30 50/75/100/125 Sulfuric acid 5% 726.6/716.4/711.0/502.4

7 BfR based 2 40 30 RT Formic
Acid/Methanol/Water 251.7

Due to the inherent mucilage, comfrey was a challenging matrix resulting in cell clogging during
extraction. Therefore, ammonia and acetic acid were not considered. Best yields were shown for
PLE extraction on increased temperatures with strong acids at high concentration levels (e.g., sulfuric
acid). The evaluations showed that solvent was the most important factor, but selecting a less
ideal solvent composition may be compensated by increasing the extraction temperature, as shown
by Mroczek et al. [152]. Comparison with the maceration method reveal the positive influence of
temperature and pressure, because a threefold higher content of PAs was found in PLE extracts.

On the analysis, Roeder et al. [169] and Mroczek et al. [152] used a photometric quantification
method for determining the sum of PAs. A LoD of 1 ppm was reported by Roeder for this method. In the
case of comfrey, which has high contents of PAs, this may be acceptable. If smaller concentrations are
apparent, matrix effects due to accompanying substances have to be considered. Most research
groups used methods such as HPLC and GC for quantification, and TLC and CCC (counter
current chromatography) for preparative purification [113]. Janes et al. used TLC for analytical
purposes and developed a screening method with densiometric detection (LoD: 22 ppm) [168].
Schaneberg et al. improved selectivity using LC-ELSD (Evaporating Light Scattering Detection), but
only reached a LoD of 40 ppm [64]. Better results were achieved by Mroczek et al. [54], who developed
a sensitive HPLC- DAD method with a LoD of 0.06 ppm. Determinations of PAs by GC, to enhance
sensitivity, were made mainly by MS [114,153] and FID [93,114] as detection method. No LoDs have
been reported for these methods in the literature. Similar sensitivity to MS/MS was achieved by
Oberlies et al. using GC coupled with a nitrogen selective detector (NPD) [154]. Other methods have
an LoD of approximately 1 × 10−3 ppm. The sensitivity can be improved by using an orbitrap that
enables MSn, but no LoD was stated by Liu et al. [116].

5.13. Tussilago

Herbal preparations of Tussilago were used in traditional medicine for treating cough,
phlegm, bronchitic, and asthmatic conditions [225]. Today, different articles exist that prove
the antimicrobial [226,227], antitubercular [228], antioxidant [229,230], neuroprotective [229],
antitussive [225], expectorant [225], and anti-inflammatory [225] effects. Senkirkin is the most
commonly reported PA detected in Tussilago (see Table 2). The different techniques and solvents used
for extraction are listed in Table 3. Maceration of the dried plant [118,119,121,156] was found to be the
preferred procedure. Only a few research groups investigated the extraction behavior of inherent PAs.

Lebada et al. studied the influence of solvent, time, temperature, plant-to-solvent ratio, and the
extraction procedure applied on the extraction efficiency of senkirkine [118] (see Table 14).
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Table 14. Overview on experiments by Lebada et al. To investigate extraction parameter on the yield of
Senkirkine from Tussilago quantified by CE-UV [118].

Technique Sample
(g)

Volume
(mL)

Time
(min)

Temperature
(◦C) Solvent Result

(ppm)

1 Flask 15 1500 30 Room
Temperature Water 2.9

2 Reflux 15 1500 15 Boiling Point Water 9.3

3 Reflux 10 1000 15 Boiling Point Water acidified
with citric acid 8.0

4 Reflux 10 300 15 Boiling Point
Methanol/Water
(50/50) acidified
with citric acid

8.0

5 Reflux 10 600 15 Boiling Point
Methanol/Water
(50/50) acidified
with citric acid

11.2

6 Reflux 10 1000 15 Boiling Point
Methanol/Water
(50/50) acidified
with citric acid

11.0

7 Reflux 10 1000 120 Boiling Point
Methanol/Water
(50/50) acidified
with citric acid

9.2

8 Reflux 10 300 15 Boiling Point
Methanol/Water
(50/50) alkalized
with ammonia

8.9

9 Reflux 10 1000 15 Boiling Point
Methanol/Water
(50/50) alkalized
with ammonia

8.4

10 Soxhlet 10 500 2880 Boiling Point Methanol 2.5

11 Reflux 10 1000 15 Boiling Point
Methanol

alkalized with
ammonia

5.0

It was derived that a low plant-to-solvent ratio of 1 g/60 mL and 1 g/100 mL results in a 3 ppm
higher yields than shown for a ratio of 1 g/30 mL. Regarding extraction solvent, best yields were
achieved by using a mixture of methanol/water (1:1) acidified with citric acid. Alkaline solvents result
in a decreased senkirkine content. The influence of temperature was more drastic, as a threefold higher
PA content could be obtained for samples extracted with water, when increased temperature was
applied for a short time period. The opposite was shown for high temperatures over a long time period.
In the case of Soxhlet extractions lasting for 48 h, a loss of 8.7 ppm senkirkine was noted compared to
the best extraction.

Jiang et al. compared Microwave Assisted Extraction (MAE), Pressurized Hot Water Extraction
(PHWE), and heating under reflux [157] to show that PHWE is suitable for extraction of PAs from
Tussliago (see Table 15) After optimization, PAs extracted using MAE and PHWE were comparable to
that by heating under reflux. Again, a mixture of methanol/water acidified with HCl was found to
be the best extraction solvent. Varying the temperature in the range of 60–120 ◦C did not affect the
PA content significantly. It may also be concluded from this work, that using acidified solvents at
increased temperatures over short time periods results in good extraction yields.
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Table 15. Overview on the extraction experiments by Jiang et al. To investigate the influence of different
extraction techniques on the yield of senecionine and senkirkine extracted from Tussilago. The result
correspond to the sum of senecionine and senkirkine determined by LC/MS/MS [157].

Technique Sample
(g)

Volume
(mL)

Time
(min)

Temperature
(◦C) Solvent Result

(ppm)

1 MAE 1 40 15 Bp. Water/Methanol
acidified with HCl 104.4

2 Reflux 1 60 60 Bp. 1 N HCl 109.6

3 PHWE 0.25 50 50 60 Water 88.2

4 Reflux 1 60 60 Bp. 1 N HCl 87.9

Kopp et al. addressed the influence of temperature, kind of solvent (weak acid, strong acid, or
base), concentration, and pressure applying pressurized liquid extraction (PLE) [122]. These results
were compared with the BfR-based liquid–liquid extraction method [222]. Acidic extraction resulted in
a threefold higher PA content compared to alkaline ones (see Table 16). Comparison of PLE yields
with those of the BfR-based method underlines the assumption that the applied pressure increases the
extraction rates significantly.

Table 16. Overview on the extraction experiments investigating the influence of different solvents, at
different temperatures on the extraction yield of PAs for the example of Tussilago with reference to
the BfR-based extraction method. The result corresponds to the sum of senkirkine, senecionine, and
senecivernine quantified by LC/MS/MS [122].

Technique Sample
(g)

Volume
(mL)

Time
(min)

Temperature
(◦C) Solvent Result (ppm)

1 PLE 1 30 30 50/75/100/125 Phosphoric acid 1% 62.3/63.6/62.0/62.8

2 PLE 1 30 30 50/75/−0/125 Phosphoric acid 5% 58.3/64.8/65.0/62.4

3 PLE 1 30 30 50/75/100/125 Ammonia 1% 21.0/21.5/22.2/20.9

4 PLE 1 30 30 50/75/100/125 Ammonia 5% 21.2/20.8/20.2/20.6

5 PLE 1 30 30 50/75/100/125 Sulfuric acid 1% 60.6/62.0/65.6/63.4

6 PLE 1 30 30 50/75/100/125 Sulfuric acid 5% 60.9/61.2/60.0/62.8

7 PLE 1 30 30 50/75/100/125 Acetic acid 1% 59.7/62.4/62.4/62.8

8 PLE 1 30 30 50/75/100/125 Acetic acid 5% 63.7/60.7/62.6/63.7

9 PLE 1 30 30 50/75/100/125 Formic acid 1% 62.8/62.0/63.3/64.3

10 PLE 1 30 30 50/75/100/125 Formic acid 5% 59.6/62.6/62.2/63.6

11 BfR based 2 40 30 RT Formic
Acid/Methanol/Water 41.0

Summarizing the insights gained from previous results, it may be concluded that PAs are extracted
best if acidic conditions at elevated temperatures and increased pressure are applied. However, sizeable
extraction losses were recognized in case of long-term procedures such Soxhlet over 48 h [118].

Analytical techniques used for determining PA content in Tussilago extracts are summarized in
Table 4. Culvenor et al. determined the sum of PAs of the crude extract by titration with toluene
sulfonic acid [156]. Because of the lack of selectivity and sensitivity, methods with previous separation
such as TLC or HPLC, based on polar, apolar, ionic, chiral, and similar interactions are used more
often. Samples could be applied without cleanup or derivatization procedures and were determined by
various detection methods. Mass spectrometry was preferred one because of its performance regarding
sensitivity and selectivity [117,157]. Jiang et al. achieved an LoD of 0.000275 ppm for senkirkine using
LC-q-ToF [157]. GC-MS was used by Nedelcheva et al. To investigate the PA distribution of the genus
Tussilago native in Bulgaria [120].
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Advantageous is the increased selectivity because of the high resolution of GC vs. liquid
chromatography. Sample preparation is more time consuming because of the needed reduction step
(Zn/HCl or Serdoxit columns) for the non-volatile N-Oxides. Capillary electrophoresis (CE) provides a
still better resolution power than GC. It was used by Lebada et al. To quantify the content of senkirkine
and senecionine. Despite missing chromophores, with LC-Q-ToF a comparable LoD was achieved.
This may be attributed to the very narrow peak shapes [118]. Cao et al. used amplified sample stacking,
an online preconcentration step in combination with electrokinetic chromatography (MEKC). In this
combination of chromatography and electrophoresis, PAs are separated by differential partitioning
between micelles and the aqueous surrounding buffer [121].

6. Discussion

6.1. Extraction Techniques

The main aim of every extraction strategy is achieving a recovery of 100% of the analyte from
the respective matrix. To assess the efficiency of various PA extraction strategies from different plant
parts, the literature on thirteen relevant plant genera was reviewed regarding the selected extraction
conditions. A multitude of extraction procedures and solvents were applied. Plant parts were used
fresh, freeze dried, dried in oven, or frozen in liquid nitrogen. Afterwards, they were crushed, and
then ground or milled to obtain a powder suitable for efficient extraction. Maceration of plant material
was performed in organic, aqueous, acidic, or basic solvents, or even in mixtures thereof. Samples
were extracted once or multiple times, with or without treating samples at elevated temperatures,
and for time periods ranging from 30 min up to a few days. The same parameters (i.e., solvent,
temperature, and time) were also varied for all other reported extraction procedures. Only few
research reports discuss novel extraction routines such as MAE, HWPE, SFE, or PLE, whereby the
pressure is an additional parameter affecting efficient extraction. As the PA content in plant matter
differs with regard to subspecies, habitat of growth, soil of growth, nutrition, and/or water supply,
only relative comparisons of the results obtained by different research groups are possible. Every
plant collected or grown for a PA study provides an individual PA pattern and concentration level,
which renders absolute comparison of the applied techniques only feasible, if the bulk of the plant
material was identical. Only a few research groups have considered this aspect so far and have thus
compared various parameters on a fair basis for determining optimum conditions for close to ideal PA
recoveries. Suitable comparisons of the extraction procedures using essentially the same bulk material
was available for four of the thirteen plant genera reviewed herein. Evaluating these studies reveals
that the content of PAs varies up to 1100 ppm [0.11% (w/w)] for a specific plant material, if different
extraction methods, solvents, temperatures, and extraction durations were used.

In summary, it was shown that applying acidified mixtures of organic solvents at temperatures up
to 100 ◦C for short periods of time apparently leads to optimum yields of PAs. The precise extraction
conditions evidently depend on the character of the matrices and the molecular structures of the
inherent pyrrolizidine alkaloids. If these aspects are considered, clustering of plant matrices is possible
to extrapolate extraction conditions for a new plant material. It has to be considered that matrices
with inherently robust PAs are best extracted at high temperatures with solvent mixtures containing
strong acids. Comparatively simple matrices with PAs comprising sensitive functional groups are best
extracted using solvent mixtures containing weak acids at slightly increased temperatures. However,
for all matrices and PA properties, it was shown that short extraction times are preferred, as extractions
during extended time periods resulted in significantly decreased PA recoveries.

6.2. Analytical Techniques

For the purpose of determining toxic substances in plants or plant extracts used for herbal
preparations, appropriately sensitive and selective analytical methods are needed. Recapitulating
the analytical techniques reported in literature and summarized herein, a wide range of methods
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were applied predominantly based on some form of separation technique. The determination of
alkaloids as sum parameter without previous separation (i.e., photometrically, by titration, or by
quantitative NMR using spin of 1H or 13C) remains less pronounced and appears challenging due
to potential interferences resulting from accompanying substances within these extracts. Therefore,
chromatographic separations appear mandatory for ensuring sufficient selectivity and maximizing the
sensitivity of the coupled detection technique. For semi-quantitative or less sensitive PA determination,
thin layer chromatography was successfully applied. For visualization, Ehrlichs reagent, chloro-aniline,
Mattocks procedure, or Dragendorffs reagent is used in combination with densiometric detection or
detection under UV radiation. More recently, an increased usage of high- or ultra-high-performance
liquid chromatography has been noticed during reviewing the pertinent literature providing higher
chromatographic resolution, which was particularly successful for separating pyrrolizidine alkaloids
from their N-oxides.

Due to missing chromophores, a variety of alternative detection methods including ELSD, RI, etc.
were tested, yet have not achieved useful LoDs and LoQs. Hence, predominantly mass spectrometric
detection techniques have been reported for achieving improved detection limits and taking advantage
of the mass selectivity via quadrupole, triple quadrupole, ToF or Orbitrap detectors combined with a
variety of different ionization techniques. While GC and CE enabled efficient separation of species,
both appear restricted in sensitivity using UV or FID, respectively. In contrast, GC coupled with MS or
NPD yielded satisfying detection limits. The main remaining disadvantage is the fact that N-oxides
are not sufficiently volatile, and have to be reduced prior to the analysis (i.e., via Zn powder in acidic
solution, or by applying serdoxit Serdoxit columns). Finally, CE and MEKC methods were rarely
applied to date in PA analysis. Concluding, as the current state-of-the-art in terms of both selectivity
and sensitivity addressing these complex matrices with sufficient analytical quality, LC-MS/MS appears
the recommended technique.

7. Conclusions

The phytopharmaceutical industry has been analyzing pyrrolizidine alkaloids in plant extracts
for almost 30 years. To date, sensitive and selective analytical methods for determination of PAs in
plant extracts have been developed and applied. Surprisingly, only few research groups dedicated
efforts to the development of innovative, more efficient, and exhaustive extraction strategies. Hence, to
date, usually the simplest or most readily established techniques for the respective plant are applied,
albeit more efficient methods may be available. Only four out of thirteen plants were thoroughly
investigated with regard to optimal extraction conditions or procedures. Even less attention has been
paid to the fact that the trueness of the values reported during the analytical assessment of the PA
content undoubtedly hinges on the quantitative extraction of PAs for avoiding that erroneous levels
are reported.

In summary, this review shows that the extraction and analytical assessment of PAs in plant
extracts has a long history, yet would benefit from further evolving strategies on both innovative
efficient extraction schemes and advanced molecularly selective analytical quantification techniques
ensuring the safety of herbal substances and herbal extracts.
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