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Abstract: In the wake of the COVID-19 pandemic, it is crucial to assess the application of a multitude
of effective diagnostic specimens for conducting mass testing, for accurate diagnosis and to formulate
strategies for its prevention and control. As one of the most versatile and amenable specimen options,
saliva offers great advantages for widespread screening strategies due to its non-invasive properties,
cost-effectiveness, excellent stability and minimal risk of cross-infection. This review attempts to
outline the scientific rationale for detection of SARS-COV-2 in saliva specimens. By combining
the data obtained from ten chosen published clinical studies, we calculated the pooled sensitivity
and specificity using an online calculator. Through evidence, we established that SARS-COV-2 is
detectable in saliva with a high degree of diagnostic sensitivity (87%) and specificity (98%). We also
presented a review of emerging technologies approved by the FDA for detection of SARS-COV-2
in oral fluids (saliva and sputum) using polymerase chain reaction methods. Given the challenges
involved in obtaining invasive specimens from the naso- and oropharynx, saliva can serve as an
easy to collect diagnostic specimen for screening in the work environment, schools and for home
testing. Furthermore, saliva offers the opportunity to screen early cases that can be missed by
invasive sampling.

Keywords: saliva; COVID-19; SARS-CoV-2; infection; diagnosis; polymerase chain reaction

1. Introduction

There is little debate that one of the major global healthcare challenges facing the world
today is the coronavirus pandemic. The virus has been named Severe Acute Respiratory
Syndrome Coronavirus-2 (SARS-CoV-2) [1]. This particular coronavirus (SARS-CoV-2)
belongs to the family of beta coronaviruses, sharing many similarities with prior viral
diseases such as SARS and MERS. Compared to these other viral infections, the current
SARS-CoV-2 virus has a greater affinity for binding with ACE-2 receptors on host cell
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surfaces, which increases the contagious potential of the infection, associated with the
virus, causing coronavirus disease 2019 (COVID-19) [2]. SARS-CoV-2 can be transmitted
via direct or indirect contact. One of the primary sources of transmission of coronavirus is
through salivary aerosols emitted from coughing, breathing, and even during speaking [2].
Figure 1, below, illustrates three potential trajectories for the presence of the virus in saliva
as explained by Sabino-Silva et al. [3]. Contemporary studies have gathered evidence
demonstrating molecular strategies adopted by the SARS-CoV-2 virus, enabling it to enter
the host cell, causing a high rate of infectivity. Possible activation of the SARS-CoV-2 virus
by gene expression of furin in salivary glands is also a noteworthy finding explained by
Shang et al. [4]. Furin is typically expressed by salivary glands and its components are
responsible for the regulation of different specific proteins while the gene itself is believed
to cleave different viral toxins including coronaviruses. As a result, the severity of COVID-
19 disease is increased if salivary infection is withdrawn from the salivary glands, while
the presence of furin in saliva leads to a rapid progression of the disease through salivary
droplets [5].
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Since mid-December 2019, global morbidity associated with COVID-19 has surpassed
119 million, contributing to more than 2.6 million global deaths [6]. In the United States
alone 29 million people have been affected, resulting in nearly 528,456 deaths [6]. As in
the case of many other infectious diseases, early diagnosis of coronavirus and effective
prevention strategies can help control COVID-19 transmission and limit deaths. To re-
spond effectively to the COVID-19 pandemic, mass community testing will be required in
multiple testing environments and this has recently been recognized by the new Biden Ad-
ministration in the US who have allocated USD 50 billion to expand testing and laboratory
capabilities. Rapid and accurate diagnosis of positive cases and contact management along
with appropriate clinical management efforts and infection control will be critical compo-
nents of the effort to fight the pandemic, in addition to the implementation of community
mitigation efforts [7]. Integral to all of these efforts is the implementation of widespread
testing efforts to test as many members of the public likely to be infected. While testing
protocols were initially limited to oropharyngeal and nasopharyngeal swab-based methods,
and reverse transcription polymerase chain reaction (RT-PCR) tests, these limited options
make it difficult to effectively reach all sectors of the community. This is in addition to
an early shortage of funding, as well as the lack of availability of test kits and personal
protective equipment (PPE) for healthcare professionals carrying out the tests, and most
importantly a global shortage of nasopharyngeal and oropharyngeal swabs, which led
to the evaluation of alternate specimen types. The combination of these unexpected cir-
cumstances provided an ideal set up for the evaluation and validation for inexpensive,
rapid, easy-to-handle, and non-invasive methodologies, for instance saliva, which could be
integrated with existing testing methods (RT-PCR, PCR) seamlessly while still meeting the
stringent performance needed in terms of high degrees of sensitivity and specificity [8].
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2. Regulatory Framework and Introduction of Salivary Diagnostics for COVID-19

In the United States, the Centers for Disease Control and Prevention (CDC) works
closely with the Federal Drug Administration (FDA) who are responsible for the issuance
of an interim regulatory approval, known as the Emergency Use Authorization (EUA),
which companies working in the COVID-19 testing area are required to obtain before
commercializing their specific tests. The FDA is also responsible for the issuance of
guidance documents to provide policy and a framework for laboratories and commercial
manufacturers to accelerate the availability of alternate novel coronavirus (COVID-19)
tests [9,10]. Following the CDC and FDA’s policy guidelines, the Rutgers Clinical Genomics
Laboratory and Infinite Biologics, using the Thermo Fisher TaqPath™ SARS-CoV-2 assay
for high throughput testing, obtained EUA approval in April 2020 enabling them to begin
commercializing their salivary test for SARS-CoV-2 [11]. Table 1 shows a timeline of the
salivary testing kits.

Table 1. Timeline of the saliva collection devices for the SARS-CoV-2 sampling during the pandemic.

Sr. No. Tests Date of Approval

1 MicroGenDX Laboratories obtains FDA EUA approval for 24-h saliva test [RT-PCR] 4 April 2020

2 Rutgers University/Infinite Biologics gets first FDA EUA Approval for saliva high throughput method
connected to Thermo Fisher RT-PCR 13 April 2020

3 Curative receives FDA EUA for oral fluid test 19 April 2020

4 FDA announces changes in registration requirements 19 May 2020

5 MLB adopts saliva COVID-19 Testing 20 May 2020

6 Chronomics [UK] Saliva COVID-19 Test Launched 20 May 2020

7 Phosphorus gets FDA EUA for home saliva test [collection] 9 June 2020

8 Sysmex Japan gets approval in Japan with BGI RT-PCR Kit 10 June 2020

9 Yale/Saliva Direct working with the NBA 24 June 2020

10 CRL/OraSure get EUA with RT-PCR 31 July 2020

11 Approval for Yale/Saliva Direct 17 August 2020

12 U of Illinois-Urbana-Champaign FDA EUA approval granted 20 August 2020

13 OraSure/MiraDx get EUA for RT-PCR Kit 4 September 2020

14 Spectrum DNA gets FDA EUA for saliva collection kit 19 October 2020

15 DNA Genotek’s OMNIgene·ORAL OM-505 and OME-505 saliva collection devices receive FDA EUA 11 February 2020

16 AZOA P23 At-Home COVID-19 Home Saliva Collection Kit available at Costco Retail outlets for $129.99–$139.99 11 March 2020

17 PerkinElmer coronavirus RT-PCR assay receives CE Mark for saliva use, first for sample pooling 17 December 2020

18 Kleva Health’s at-home COVID-19 saliva test kit achieves EUA 12 September 2020

19 UAE: Scientists develop smartphone-read saliva testing method for Covid-19 12 October 2020

20 KnowNow COVID-19 saliva lateral flow from Vatic [UK] launched 19 October 2020

The assay is based on a real-time reverse transcription polymerase chain reaction
(rRT-PCR) test, performed in a laboratory. The study carried out by Rutgers in support of
their EUA approval indicated a one hundred percent positive and negative agreement for
SARS-COV-2 detection in saliva compared to oropharyngeal and nasopharyngeal swab
tests [11]. These findings were validated by the New Jersey State Health Department using
a previously authorized CDC SARS-COV-2, RT-PCR diagnostic panel [11]. As of today, mul-
tiple studies have investigated the diagnostic potential of oral fluids (sputum and salivary)
for COVID-19, using various methods including real-time reverse transcription polymerase
chain reaction and real-time loop-mediated isothermal amplification methods [10], each
demonstrating a high degree of positive and negative agreement in comparison to the
conventional CDC-approved RT-PCR test. Since the approval of the Rutgers test, multiple
saliva tests have received FDA EUAs. A selection of the most important tests are illustrated
in Table 2.
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Table 2. Comparison of studies using saliva-based testing versus conventional swab-based testing for the detection of SARS-COV-2.

Study Ref
Saliva

Collection
Method

Swabs and
Lavage for

Comparison

Diagnostic
Test N TP FP FN TN Sensitivity Specificity PPV NPV

Azzi, L et al., 2020 (Italy) [12] Drooling NPS RT-PCR 25 25 0 0 0 1 uc 1 uc

Azzi, L et al., 2020 (Italy) [13] Drooling BAL RT-PCR 2 0 2 0 0 uc 0 0 uc

Chen, Lili et al., 2020
(China) [14]

Cotton
Swabs—Saliva
from orifices

OPS RT-qPCR 31 4 0 9 18 0.31 1 1 0.66

Han, Mi Seon et al., 2020
(Korea) [15] Saliva NPS, OPS qPCR 2 1 0 1 0 0.50 uc 1 0

Wang, To et al., 2020
(Hong Kong, China) [16]

Sputum/Coughed-
out Saliva
(self-collected)

NPS RT-qPCR 12 11 0 1 0 0.92 uc 1 0

Wang, To et al., 2020
(Hong Kong, China) [17]

Coughed-up
Saliva—Posterior
OroPharynx

NPS, Sputum RT-qPCR 23 20 0 3 0 0.87 uc 1 0

Wyllie Anne et al., 2020
(USA) [18] Saliva (spitting) NPS rRT-PCR 46 38 1 7 0 0.84 0 0.97 0

Zheng Shufa et al., 2020
(China) [19]

Sputum
(hospitalized
patients)

Stool, Serum,
Urine RT-qPCR 96 96 0 0 0 1 uc 1 uc

Zhang Wei et al., 2020
(China) [20]

Oral Swabs
(hospitalized
patients—
baseline)

Blood, Anal RT-qPCR 16 8 0 8 0 0.50 uc 1 0

Pasomsub, E et al., 2020
(Thailand) [21] Saliva NPS, TS RT-PCR 200 16 2 3 179 0.84 0.98 0.88 0.98

Somrak et al., 2021 [22] Self-collected NPS RT-PCR 32 12 0 20 0 0.37 1 1 0.91

Basso et al., 2021 [23] Self-collected NPS RT-PCR 84 67 0 17 0 0.78 uc 1 0

Sample size (N); true positive (TP); false positive (FP); true negative (TN); false negative (FN); positive predictive value (PPV); negative predictive value (NPV); nasopharyngeal swab (NPS); broncho alveolar
lavage (BAL); oropharyngeal swab (OPS); throat swab (TS); real-time reverse transcription polymerase chain reaction (rRT-PCR); reverse transcription polymerase chain reaction (RT-PCR); unable to calculate (uc).
Sensitivity and specificity calculations were performed through an online tool (http://vassarstats.net/clin1.html) (accessed on 29 April 2021).

http://vassarstats.net/clin1.html
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3. Review of Studies on Salivary Diagnostics

The literature published up to 22 July 2020 investigating the presence of SARS-CoV-2
RNA in saliva was scrutinized and included in this review. Table 2 describes assays that
have received FDA EUA approval containing more recent data. The published material
included in this review targeted case reports and series, cross-sectional studies and obser-
vational studies. Different approaches and collection techniques were used in the trials
included here, such as collection of saliva by cough, passive collection from posterior
oro-pharynx, simple swab or a whole saliva collection technique. As of 22 July 2020, RT-
PCR using nasopharyngeal respiratory specimens is very much the gold standard for the
qualitative detection of the SARS-COV-2 virus.

A study in Hong Kong is the earliest available reported study during the course of pan-
demic, which investigated the presence of SARS-CoV-2 in saliva in 11 COVID-19-positive
patients. The patients were tested at various phases including during their recovery phase
and, at that time, a decline in salivary SARS-CoV-2 RNA was observed [24]. Early evidence
from Wuhan (China), revealed that in a cohort of 16 COVID-19 patients, the SARS-CoV-2
viral titers were discovered using oral swabs, anal swabs and in plasma; but investigators
also found that the detection overlap between the three samples was not consistent. Fur-
ther investigations revealed positive oral swab results in eight patients following medical
treatment [20]. Important studies evaluated the range of viral loads present in saliva
and researchers found values ranging from 9.9 × 102 to 1.2 × 108 copies/mL [17,25–32].
Other investigators evaluated and compared the difference in efficiency of saliva using
oro-nasopharyngeal swabs for the detection of viral load. Other studies validated the sensi-
tivity of saliva samples versus nasopharyngeal swabs using RT-qPCR analysis and these
are reported in multiple studies [12,21,30,32–37]. In a case study on a COVID-19-infected
neonate, Korean investigators identified that serial sampling of saliva demonstrated a
reduction in viral load over a 27-day follow-up [15]. Historically, perhaps, the first study
that investigated the clinical progression of the disease course with temporal viral load also
confirmed that posterior oropharyngeal salivary viral load was highest in the first week
after symptom onset, and subsequently declined with time [17]. In a separate study, inves-
tigators from the USA compared the sensitivity and specificity of nasopharyngeal swabs
versus saliva samples for the detection of SARS-CoV-2 via RT-PCR and demonstrated that
saliva had a higher detection sensitivity, maintained consistency throughout the course of
infection, and demonstrated less variability during the self-sampling collection process [18].
Furthermore, in a case report of two patients from an Italian study, investigators demon-
strated the positive detection of SARS-COV-2 virus in saliva specimens, while respiratory
swab specimens indicated a negative result in both cases [13]. In a study by Wong et al., the
cost of these two specimens was compared and it was estimated that saliva specimens (USD
8.24 per 100) were much more economical when compared to the use of NPS (USD 104.87
per 100) [38]. McCormick et al. introduced a technology described as a “faster” and “novel”
technique for the diagnosis of COVID-19 in saliva using the Xpert Xpress technology [39]
(Cepheid Diagnostics) while Chen et al., in another qualitative study, compared specific
differences in sensitivity between the two specimens using the same Xpert-Xpress rapid
real time RT-PCR test and concluded that there was no significant difference in detection
rate [40]. Nagura et al. evaluated the sensitivity of samples using different techniques
for analysis of saliva samples and demonstrated that rapid antigen tests exhibited lower
sensitivity than other approaches, particularly RT-qPCR, direct RT-qPCR and RT-LAMP
techniques [35]. These results echoed the findings of Mak et al., demonstrating lower
sensitivity in the case of antigen tests [41]. The presence of SARS-CoV-2 RNA in the saliva
of asymptomatic patients [35] was a noteworthy finding in a study by Nagura et al., whose
results were in consensus with Bosworth et al., who identified early positive saliva results
in healthcare workers who were later found to be symptomatic for COVID-19 [42].

In two additional studies, the variability of specimen collection time was evaluated.
Hung et al. in their work detected a higher viral load early in the morning in contrast to
nighttime [43], while Tajima et al. observed that samples taken during the day were less
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likely to be in harmony with results collected in the early morning [36]. Another study
from Wuhan (China), demonstrated that detectable levels of ACE-2 protein are expressed
in the salivary glands. In this experimental work, the authors demonstrated that in the
direct collection of saliva from salivary orifices, the SARS-COV-2 virus can be detected in
only 4 out of 31 COVID-19 patients, who were critically ill patients [14], and this does not
seem to be typical. Other studies have also been carried out by sampling sputum, but in
this sample matrix, the detection of SARS-COV-2 is quite low (refer to Table 2). In contrast,
pooled or saliva obtained by the drooling method (the recognized gold standard method),
demonstrates the highest sensitivity for the detection of viral load [44]. In a cohort of
25 COVID-19 patients, the Italian investigators demonstrated a 100% detection sensitivity
using pooled whole salivary samples [12].

4. Sensitivity and Specificity of Salivary Diagnostics for SARS-CoV-2 Testing

Table 1 highlights a selection of ten studies comparing the sensitivity and specificity of
saliva with conventional methods of specimen sampling (nasopharyngeal, oropharyngeal
and bronchoalveolar lavage) in detecting SARS-COV-2, for the diagnosis of COVID-19,
using the recognized RT-PCR method. Limited studies have demonstrated the compa-
rability or superiority of saliva sampling, relative to conventional swab-based sampling;
however, the results for saliva are compelling. As mentioned earlier, we were able to
compile the results from current and previously reported studies and have been able to
calculate a pooled sensitivity and specificity for saliva specimen collection in the detec-
tion of SARS-CoV-2. The table below (see Table 2) demonstrates a pooled sensitivity of
approximately 87% and a specificity of 98%. From the combined results, the probability of
a positive test result being a true positive (PPV/True-positive) is 98%, and the probability
of a negative test result being a true negative result (NPV/False-positive) is 86%. These
findings indicate that salivary-based detection of SARS-CoV-2 using the RT-PCR method
has a high diagnostic accuracy for positive cases but may lack accuracy for the detection of
false-positive cases. However, these performance data mirror that of data obtained using
nasopharyngeal swabs and represents a solid alternative for diagnostic purposes.

4.1. Strengths and Limitations of Salivary Diagnostics

Currently, recommended specimens for use in RT-PCR diagnostic testing for COVID-
19 infection include nasal, oropharyngeal and blood samples. In the case of lower respira-
tory tract infections, expectorated sputum specimens are also considered [45,46]. Use of
these specimens for the diagnosis of COVID-19 can introduce a few limitations. Bearing in
mind that there is close contact between COVID-19 patients and healthcare workers col-
lecting patient specimens, the exposure risk of healthcare workers to the virus is enhanced
using such specimens. Furthermore, the shortage of skilled staff, personal protective equip-
ment (PPE), testing kits and reagents are factors that limit the testing capacity during a
pandemic crisis. Given the invasive nature of sampling, subjects also experience significant
discomfort during the collection process, increasing the risk of injury and reducing patient
compliance. A number of contraindications of NPS including nasal septum deviation
and coagulopathy have also been reported, further signifying the need for additional
non-invasive and simple diagnostic approaches [47]. It is known that oral fluid (sputum
and saliva) obtained by coughing demonstrates a higher detection sensitivity for SARS-
COV-2, compared to sputum or saliva alone [16,48], but it has also been observed that
patient compliance during collection of an oral fluid specimen by coughing alone is very
low, making it an unreliable diagnostic specimen [48]. It is important to point out that
the conventional use of oropharyngeal and nasopharyngeal swab specimens leads to a
significant proportion of false-negative findings when compared to the application of saliva
specimens [2,44]. It is still unclear whether swab specimens can accurately reflect viral
titers in the individual or reflect disease progression.

Over the past few decades, saliva has become a highly viable diagnostic tool for the
detection of various oral and systemic diseases [49,50]. Human saliva is a complex mixture
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of cellular constituents, minor/major salivary gland secretions, proteinases, proteins and
molecular organisms [51]. The discovery of numerous robust salivary biomarkers has also
led to the detection of infectious diseases during early stages of disease [45,52,53].

The inclusion of saliva samples for the detection of SARS-CoV-2 coronavirus is a major
step forward in the fight to identify patients suffering from the disease. Due to its easily
accessible nature, it can be readily obtained from patients in a non-invasive fashion, thereby
reducing the risk of nosocomial infections among healthcare workers [8,54]. Equally
importantly, saliva samples possess high sensitivity and specificity when compared to
nasopharyngeal swabs for the detection of SARS-CoV-2 coronavirus (refer to Table 2).
Intriguingly, there are also a few studies that report that SARS-CoV-2 is detectable in saliva
samples but not in nasopharyngeal swabs [13,18]. It is documented that saliva collection is
beneficial in cases where screening of infected individuals is required on a larger scale such
as in the community, in a drive-through setting, in a hospital setup or in locations with
access to limited medical resources. In addition, it has also been previously documented
that certain viral strains may survive in saliva for 29 days post-infection, enhancing the
possibility of disease detection even at later stages of the disease [3].

Evidence generated so far in the literature indicates that higher sensitivity of SARS-
CoV-2 detection using salivary diagnostics is dependent upon the type of sampling strategy
and the diagnostic tests used (Table 2) [21,44]. In the collection of sputum or saliva, extra
caution should be sought to avoid excessive contamination by oral and upper respiratory
bacteria. This potential issue can be addressed by rinsing the oral cavity before sam-
ple collection and collecting the saliva in a sterile container used for sputum or urine
collection [44].

4.2. Emerging Technologies in Salivary Diagnostics for COVID-19

Besides the CDC-approved RT-PCR test for the detection of SARS-COV-2, many
other inexpensive, fast detection methods for mass screening purposes have been recently
approved by the FDA under the EUA (Emergency Use Authorization) mechanism [10]. As
illustrated in Table 2, the diagnostic specificity and sensitivity of oral fluids (saliva and
sputum) are very high in controlled studies with smaller sample sizes. What is currently
needed are larger-scale validation studies that could validate the implementation of these
tests for mainstream diagnostic purposes. Most controlled studies have validated the
use of salivary diagnostics in relatively small populations and it may be still too early
to implement salivary diagnostics as the sole method for the detection of SARS-CoV-
2 viral load, however, so far the results look promising. In mass screening programs,
however, due to human error, the issue of obtaining a false negative result far outweighs
the risk of having a false-positive result, so tests with high sensitivity are desirable. False-
negative results may arise due to improper specimen collection, degradation of viral RNA
during the logistical phase, the presence of RT-PCR inhibitors and the use of un-validated
extraction methods or assay reagents. On the other hand, false-positive results may arise
from cross-contamination of specimens or RNA contamination during the handling or
preparation phase.

4.3. Direction for Future Studies

Large-scale prospective studies are needed to establish the temporal trends in salivary
viral titers and tie them in with the course of infection or as markers of disease severity.
Although preliminary evidence indicates that salivary detection of SARS-CoV-2 is feasible
in mild or asymptomatic cases [16,17], once again this finding needs to be validated in
a larger cohort. Large-scale, epidemiological studies are needed to compare the sensi-
tivity and specificity of swab-based methods versus methods where saliva specimens
are used. Here we note that there are differences in the literature where various types
of oral samples collected have contributed to variability in the detection of SARS-CoV-2
(refer to Table 2). This in turn leads us to recommend that further studies should be per-
formed to validate different oral fluid collection protocols and to compare viral detection
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rates [20,55]. Moreover, it is important to extend the application of salivary diagnostics to
neglected or vulnerable populations such as pediatric populations, geriatrics and pregnant
females. Generally speaking, the literature is unclear on whether SARS-CoV-2 detection
is dependent on ACE-2 receptor expression at oral sites, versus nasopharyngeal sites, so
we believe this relationship should be investigated in future studies [56]. To avoid the
frequency of false-negative results in suspected positive cases, sampling a mix of multiple
specimens (including oropharyngeal, nasopharyngeal, oral, sputum and saliva specimens)
is recommended [57]. For proposed future research, we recommend the application of
saliva for a number of studies aimed at disease detection and looking at progression.
Saliva is an excellent matrix for the evaluation of salivary antibodies, so studies on a large
cohort of individuals will provide advantages for monitoring disease progression in the
COVID-19 area.

5. Conclusions

Saliva has shown true potential as an ideal non-invasive diagnostic specimen, with a
high degree of sensitivity and specificity for the detection of the SARS-COV-2 virus. Saliva
can also be used in the serial monitoring of viral load in COVID-19 patients. It is preferred
in situations where nasopharyngeal and oropharyngeal swabs are difficult or should be
avoided, and can certainly be used as a tool for self-collection. The significant potential
for salivary diagnostics needs large-scale, longitudinal studies to confirm saliva’s role as a
first-line diagnostic specimen for COVID-19 testing. Future studies should also corroborate
early clinical manifestations of the COVID-19 infection with viral titers in saliva, to confirm
the role of saliva in the early diagnosis and as an aid in limiting disease transmission.
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